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From a neuroscience perspective, artificial neural networks are regarded as 
abstract models of biological neurons, yet they rely on biologically implausible 
backpropagation for training. Energy-based models represent a class of brain-
inspired learning frameworks that adjust system states by minimizing an energy 
function. Predictive coding (PC), a theoretical model within energy-based 
models, constructs its energy function from forward prediction errors, with 
optimization achieved by minimizing local layered errors. Owing to its local 
plasticity, PC emerges as the most promising alternative to backpropagation. 
However, PC face gradient explosion and vanishing challenges in deep networks 
with multiple layers. Gradient explosion occurs when layer-wise prediction errors 
are excessively large, while gradient vanishing arises when they are excessively 
small. To address these challenges, we propose bidirectional energy to stabilize 
prediction errors and mitigate gradient explosion, while using skip connections to 
resolve gradient vanishing problems. We also introduce a layer-adaptive learning 
rate (LALR) to enhance training efficiency. Our model achieves accuracies of 
99.22% on MNIST, 93.78% on CIFAR-10, 83.96% on CIFAR-100, and 73.35% on 
Tiny ImageNet, comparable to the performance of identically structed networks 
trained with backprop. Finally, we developed a Jax-based framework for efficient 
training of energy-based models, reducing training time by half compared 
to PyTorch. 

KEYWORDS 

artificial neural network, biologically plausible learning rule, local learning, energy-
based model, predictive coding 

1 Introduction 

Artificial neural networks (ANNs) trained using backpropagation (backprop) 
have achieved remarkable advancements over the past decade. Despite this success, 
neuroscientists have questioned the biological plausibility of backprop. A key criticism 
is that biological neurons adhere to rules of accessing information only from adjacent 
neurons locally, whereas backprop transmits information from distant neurons layer by 
layer via the chain rule (Crick, 1989; Stork, 1989). This disparity has prompted researchers 
to explore alternative solutions based on biology, particularly bio-inspired models and 
learning algorithms. Some studies on the structure and function of biological neural 
networks. Such as the simulation modeling of neural network connection methods (Yang 
et al., 2021; Hoffmann et al., 2024), the topological structure and interaction of neural 
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connections in biological neural networks (Znaidi et al., 2023; 
Boccato et al., 2024; Salova and Kovács, 2025; Xiao et al., 
2021), the interconnection structure, self-organization and self-
optimization characteristics of brain-derived neurons (Yin et al., 
2020), all of these studies have pointed out that the local 
interactions of the connections in biological neural networks 
have adaptive adjustment characteristics, which can optimize the 
overall information transmission efficiency. At the same time, some 
“backprop-free” local learning methods that avoid global gradient 
transmission have been proposed. These methods aim to modify 
the weights of the dynamical equations by using locally available 
information. Such methods are usually strongly inspired by 
biological synaptic plasticity and give rise to various algorithms and 
models. These models include self-organizing maps (Khacef et al., 
2019; Hirani et al., 2024; Sa-Couto and Wichert, 2023), hebbian 
learning (Pogodin and Latham, 2020; Krotov and Hopfield, 2019; 
Moraitis et al., 2022), forward-forward algorithms (Hinton, 2022; 
Momeni et al., 2023), feedback alignment algorithms (Lillicrap 
et al., 2016; Nøkland, 2016), local error-driven (Cheng et al., 2024; 
Yin et al., 2023), energy-based local learning models (Bengio and 
Fischer, 2015; Hopfield, 1982; Scellier and Bengio, 2017; Xie and 
Seung, 2003). 

Energy-based local learning models (EBLL) originate from 
the broader category of energy models, which view learning and 
inference as the minimization of an energy function defined 
over the states of model variables (such as inputs, outputs, or 
hidden states). These models must define and estimate an explicit 
global energy function. EBLL typically adheres to classical energy 
theories, such as the free energy principle or hopfield energy. 
During the energy minimization process, EBLL minimizes local 
energy through a locality principle, either hierarchically or in 
blocks, thereby avoiding the propagation of global energy gradients. 
Even under the guidance of classical energy theories, defining and 
estimating an energy function remains challenging in practical 
applications, such as hierarchical predictive coding (HPC) models 
(Friston, 2005; Friston and Stephan, 2007; Whittington and Bogacz, 
2017; Buckley et al., 2017; Millidge et al., 2021) based on the 
free energy principle. The free energy principle (Friston, 2005; 
Friston et al., 2006; Friston and Stephan, 2007; Friston, 2010) 
is a normative theoretical framework that asserts that systems 
maintain a generative model and minimize a quantity called free 
energy to reduce the mismatch between predicted and observed 
sensory data. HPC (Rao and Ballard, 1999; Friston, 2003; Clark, 
2013) is an implementation model that describes how the brain 
achieves perception through the minimization of local errors. 
After the free energy principle was proposed, predictive coding 
became an approximate implementation of it (Buckley et al., 2017; 
Millidge et al., 2021). In the free energy principle, predictive 
coding assumes the generative model to be a hierarchical Gaussian 
probabilistic model, and free energy is defined as the difference 
between an approximate variational posterior distribution and the 
true posterior distribution, which is not easy to estimate directly 
(Friston and Kiebel, 2009; Spratling, 2017; Piekarski, 2023). In 
most specific supervised task implementations (Whittington and 
Bogacz, 2017; Dold et al., 2019; Rosenbaum, 2022; Millidge et al., 
2022), this expression of free energy is approximated as the sum 
of squared local feedforward prediction errors between layers, 

that is, a quadratic energy function of the squared prediction 
errors in a single direction. This approximate expression relies 
on the assumption of a Gaussian distribution. This quadratic 
energy function offers notable computational advantages and is 
widely adopted in practice. Mathematically, it is a convex function 
with continuous gradients and analytical derivatives, usually 
ensuring the existence of a unique minimum. This characteristic is 
particularly convenient for calculation in the process of minimizing 
the energy function. However, it also has significant limitations. 
The real perception mappings and deep network representations 
are often highly non-Gaussian and nonlinear. In high-dimensional 
spaces, this can result in substantial errors, potentially leading 
to instability or even divergence during the learning process. In 
deep networks, this manifests as gradient explosion and vanishing 
gradient phenomena. When the prediction error of a single internal 
layer in an artificial neural network is too large, it amplifies in 
deeper layers, leading to high energy levels and gradient explosion 
during the energy minimization phase. Conversely, overly small 
energy levels, typically caused by network depth, can impede 
progress toward energy minimization. 

Recent studies (Pinchetti et al., 2022; Kinghorn et al., 
2022) have demonstrated that HPC suffers from performance 
degradation or outright collapse during training when applied to 
complex or deep neural network architectures. To address these 
challenges, some approaches have been proposed. Both Kinghorn 
et al. (2022) and Millidge et al. (2023) introduce the weight-
regularization, a regularization method for HPC that uses the L1 
weight norm and a simple weight restriction strategy to prevent 
performance degradation. While regularization is generally an 
effective technique for improving stability, its practical reliability 
remains inconsistent. Pinchetti et al. (2022) extended the HPC 
based on Gaussian distribution to any probability distribution and 
successfully applied it to a transformer network with a single head 
and 128 dimensions. The energy function shifts from minimizing 
the numerical prediction error to minimizing the discrepancy 
between the predicted distribution and the true distribution, 
typically measured by the Kullback-Leibler (KL) divergence. 
However, this approach can be computationally demanding, as 
the KL divergence is often intractable. In many tasks, the true 
distribution is either unknown or cannot be analytically integrated. 
Therefore, this method underscores its broad applicability to any 
family of distributions for which an explicit analytical form of the 
KL divergence can be derived. 

Taking into account the computational advantages of the 
energy minimization process, we still followed the energy function 
in the form of prediction error under the assumption of Gaussian 
distribution. However, we made a structured improvement to the 
energy function to overcome the gradient explosion and vanishing 
during training. This improvement was inspired by two key 
aspects in biology. First, we consider the biological perspective, 
focusing on the reciprocal interactions between feedforward 
and feedback connections in cortical regions (Rockland, 2022; 
Angelucci and Petreanu, 2023). Second, we take inspiration 
from machine learning’s emulation of biological processes. For 
example, Lillicrap et al. (2020) suggested that feedback pathways 
primarily adjust neural activities to transmit information essential 
for effective multilayer learning. Consequently, Lillicrap et al. 
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(2016) introduced feedback alignment (FA), a biologically plausible 
learning model. However, the use of fixed random feedback 
weights limits FA’s effectiveness in deeper networks. Later studies 
extended FA through bidirectional learning, refining the reverse 
pathways to improve feedback transmission (Amit, 2019; Luo 
et al., 2017). Similarly, target propagation (Bengio, 2014; Lee 
et al., 2015) algorithm employs stacked auto-encoders to reverse 
reconstruct local representations, guiding the learning process. 
These prior research findings inspire the use of bidirectional 
free energy to mitigate gradient explosion issues in deep 
PC networks. Bidirectional energy functions go through the 
following mechanisms: 

i) Feedback connections relay signals from higher-level to 
lower-level units, where they are processed to produce 
prediction errors. 

ii) The feedback and feedforward prediction errors together 
create a bidirectional symmetry in energy. 

iii) During the energy minimization process, the interplay between 
bidirectional prediction errors in both directions stabilizes 
neuronal updates, alleviating the issues of gradient explosion 
in HPC networks. 

The remainder of this paper is organized as follows. Section 2 
reviews HPC and its gradient explosion and vanishing problems. 
Section 3 presents an overview of bidirectional PC (BiPC), 
illustrated with a biologically inspired ANN model. This approach 
integrates both bottom-up and top-down predictions in each 
network block, ensuring stable gradient updates during energy 
minimization. Section 4 explores the layer-wise weight update 
mechanism of EBLL and introduces the layer-adaptive learning 
rate (LALR). By dynamically adjusting learning parameters across 
network layers, LALR enhances convergence speed while ensuring 
stability. Section 5 presents a unified energy function framework 
for PC and EP in a supervised learning context. We propose that 
the energy function under the supervised learning scenario is split 
into internal and external energy components. The internal energy 
reflects the intrinsic dynamics of the PC, while the external energy 
represents the impact of the loss function. We then implement 
a Jax-based framework (Frostig et al., 2018; Bradbury et al., 
2018) for training energy-based models, reducing training time 
by half compared to PyTorch. Finally, Section 6 demonstrates 
the effectiveness of our approach through experiments, including 
image classification on MNIST, CIFAR10, CIFAR100, and Tiny 
ImageNet. The results show that our framework enables reliable 
learning within deep ANNs using EBLL, achieving accuracy similar 
to that of backprop under identical ANN conditions. 

2 Hierarchical predictive coding 

The classical HPC model in the visual cortex is an 
unsupervised learning framework (Rao and Ballard, 1999), 
where top-down processing generates predictions, with feedback 
pathways transmitting predictions from the activities of higher-
level to lower-level units. Prediction errors are processed bottom-
up, with the feedforward pathways carrying the residuals between 
the predictions and the actual activities (Rao and Ballard, 1999). 

HPC efficiently encodes input data by iteratively looping and locally 
predicting and correcting input signals through its hierarchical 
structure. However, applied to supervised machine learning tasks 
in an ANN, HPC functions in a manner contrary to its theoretical 
model described above (Millidge et al., 2022; Rosenbaum, 2022). 
The data X is assigned to layer 0 at the bottom, and labels Y are 
assigned to layer L + 1 at the top. Predictions are made through 
the feedforward process, while prediction errors at each level adjust 
unit activities and parameters in a backward direction. The detailed 
process is outlined as follows. 

We consider an L-layers feedforward network with unit states 
V , where vi ∈ V denotes the latent states of the ith layer, with 
v0 = X and vL+1 = Y . We refer to Rosenbaum (2022) for the 
state initialization protocol, where the initial forward pass is used 
as initial values. In a supervised learning context, the output of the 
network must converge to the label Y . The prediction errors for 
each layer are defined as follows 

i = vi − v̂i 

= vi − gi(vi−1; θi), (1) 

where gi(vi−1; θi) implies the ith layer function applied to vi−1, 
yielding the feedforward prediction v̂i = gi(vi−1; θi). 

Ultimately, supervised learning HPC optimizes a global energy 
function F, which includes internal layer-wise prediction errors and 
a loss function applied to the set of output units (Dold et al., 2019). 

F = 
L 

i=1 

2 
i + C, (2) 

where C indicates the mean squared error between the output 
prediction and target behavior (Dold et al., 2019). Both unit states 
and parameter dynamics of the network can be derived as a 
gradient descent on the energy function F. Therefore, F can also be 
interpreted as the global objective function of the network (Millidge 
et al., 2022). 

At each iteration, the network states are updated as follows: 
vi = vi − ηvdvi, where ηv refers to the step rate for v, and dvi is 
expressed as: 

dvi = 
∂F 

∂vi 

= i − i+1 
∂gi+1(vi; θi+1) 

∂vi 
, (3) 

After sufficient iterations, F eventually converges to its 
equilibrium point Fmin. At this point, the parameters θi are updated 
as θi = θi − ηθ dθi, where ηθ implies the step size for updating θ . 
The formula for dθi is given by: 

dθi = 
∂Fmin 

∂θi 

= −i 
∂gi(vi−1; θi) 

∂θi 
, (4) 

Although supervised HPC adheres to local updates, some 
studies suggest that HPC in supervised learning approximates 

Frontiers in Artificial Intelligence 03 frontiersin.org 

https://doi.org/10.3389/frai.2025.1605706
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chen et al. 10.3389/frai.2025.1605706 

backprop. This indicates that HPC possesses notable potential. 
However, it also faces gradient explosion and vanishing. Gradient 
explosion occurs when a large i amplifies subsequent errors. In 
the process of minimizing the energy function, the computation 
of the dvi, which is derived from Equation 3, depends on two 
terms: the first term i, and the second term i+1 

∂gi+1(vi;θi+1) 
∂vi

. if  
i is excessively large, even a moderate second term may still 
result in an overly large gradient. Furthermore, updating the 
state vi, expressed as vi = vi − ηvdvi, can lead to significant 
changes in vi when ∂F

∂vi 
or the learning rate ηv is excessively 

large. As the hierarchical network propagates forward, such drastic 
changes in vi influence the prediction of the next layer, given by 
v̂i+1 = gi+1(vi; θi+1), consequently increasing i+1. This effect 
becomes amplified in deep networks. In cases where the network 
depth is substantial, errors and gradients accumulate progressively 
during inter-layer propagation, ultimately leading to gradient 
explosion. Conversely, the same mechanism can contribute to 
gradient vanishing. 

3 Bidirectional predictive coding 

Here, we introduce a novel, biologically plausible BiPC model. 
As described in Section 2, supervised HPC relies only on 
feedforward prediction error driven. When the prediction error 
in one layer is excessively large or small, the cumulative effect of 
forward propagation through the hierarchical network frequently 
results in severe explosion or vanishing of the gradient, thereby 
constraining its effectiveness for complex tasks. The BiPC model 
overcomes these limitations by incorporating bidirectional error 
propagation. As noted in Section 1, this bidirectional architecture 
is inspired by the reciprocal connectivity observed in cortical 
neural networks, exemplified by the interplay between feedforward 
pathways from the primary visual cortex (e.g., V1) to extrastriate 
cortex (e.g., V2, V3, V4) and feedback pathways from extrastriate 
cortex back to V1. These feedback signals modulate feedforward 
inputs–either amplifying or suppressing them–to refine visual 
perception. Grounded in a biologically inspired artificial neural 
network (ANN), the BiPC model features a feedback prediction 
pathway from higher to lower representations, enabling symmetric 
modulation between feedforward and feedback prediction errors at 
the same level. This symmetry suppresses excessive error signals, 
mitigating gradient explosion. Furthermore, skip connections are 
employed to strengthen the flow of gradients to deeper layers, 
addressing gradient vanishing and ensuring robust learning across 
the network. 

We model a network of nodes and edges designed to simulate 
the cortical structure. Each node represents a cortical area in the 
brain, such as V1 or V2, and encodes the activation values of all 
units at a given time, which are subsequently transmitted to the next 
node through edges. The bottom node captures the initial input 
data features, while the top node encodes advanced features for 
label prediction. 

The edges between these nodes represent four distinct 
connectivity patterns found in cortical regions: feedforward 
connection and feedback connection, skip connection, and 
recurrent connection. These connections work together to generate 
state predictions within cortical regions: 

• The bottom-up feedforward based on inference prediction 
circuit extracts high-level representations from input signals 
for decision-making. 

• The top-down feedback based on the generative prediction 
circuit generates estimates grounded on high-level 
representations from the inference circuit. 

• The recurrent connections enable bidirectional propagation of 
node states at each level, from left to right and vice versa. 

3.1 Feedforward prediction 

We demonstrate the inference and learning process of the 
BiPC model using the states of an intermediate node vm,t as a 
representative example. 

As shown in Figure 1, the feedforward state predictions for the 
mth node require three input components: the first component 
is the output of the node states vm−1,t−1 from the previous 
node processed through the feedforward connection; the second 
component is the output of the node states vm−2,t−1 from a 
lower node, processed through the skip connection; and the third 
component is the node’s own output from the previous time step. 

Let ˆ vf
m,t signifies the feedforward state predictions of the mth 

node at time t which is expressed as: 

v̂ 
f 
m,t = gm,m 

 bottom-up connection    
gm−1,m 

 
vm−1,t−1; θm−1,m 

+ 

skip connection    
gm−2,m 

 
vm−2,t−1; θm−2,m 

+ 

self-excitation    
vm,t−1 ; θm,m , (5) 

where gm−1,m indicates the connection function from the lower 
node m − 1 to the higher node m, gm,m implies the recurrent 
connection function for the node m, and gm−2,m denotes a skip-
connection function from the lower node m − 2 to the higher-level 
node m. The predicted state is then compared to the actual activity 

of bm at time step t, yielding the forward prediction errors, f 
m,t . 

 
f 
m.t = vm,t − v̂ 

f 
m,t , (6) 

3.2 Feedback prediction 

Previous research has examined some methods for modeling 
the feedback pathways to simulate the brain feedback. One 
approach involves creating a secondary feedback network (Hinton, 
2003; Xie and Seung, 2003), often requiring the presence of reverse 
connections that mirror the forward connections. In this study, 
we design the feedback pathways to produce feedback predictions 
of node states, which are integrated with feedforward prediction 
errors to adjust these states. This process demands symmetry 
between the feedback and forward prediction errors. Consider 
mth node as an example, according to the principle of symmetry, 
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FIGURE 1 

The comparison between the traditional HPC and our proposed BiPC model for supervised tasks. (a) In the HPC model, only bottom-up predictions 
(represented by black arrows) are present. Forward prediction errors (denoted by orange triangles) are computed by comparing these predictions 
with the actual unit states, and the derived error signals serve as feedback (shown as red arrows) to modify the unit states. (b) The BiPC model 
features symmetric connectivity, integrating both feedforward and feedback prediction routes. This results in the generation of both feedforward and 
feedback prediction errors (illustrated by orange and purple triangles, respectively), along with the inclusion of recurrent and skip connections. (c) An 
in-depth depiction of the evolution of unit states over time. The red dashed box highlights the unit state vm,t, while the semi-transparent modules 
represent components not directly linked to vm,t. On the left, both feedforward and feedback predictions for vm,t are presented, producing 
feedforward prediction errors  f m,t (orange triangle) and feedback prediction errors  b 

m,t (purple triangle). On the right, the energy minimization phase 
is demonstrated, where the bidirectional prediction errors are employed to modify the unit states. 

there should be three feedback connections symmetrical to each 
feedforward, skip, and recurrent connection. We exclude higher-
to-lower-level skip connections due to significant information 
loss during the transfer, which impedes the accurate recovery of 
lower-level representations. Two branches are used to generate the 
feedback state prediction comprising v̂b 

m,t . One branch connects 
vm+1,t+1 to vm,t , with its feedback prediction comprising v̂b 

m+1,t and 
v̂b

m,t . The feedback prediction representation v̂b 
m,t and its errors b 

m,t 
are defined as follows: 

v̂ b 
m,t = 

1 

2 

top-down connection    
zm+1,m(vm+1,t+1; θ  

m,m+1) + 
1 

2 

recurrent connection    
zm,m(vm,t+1; θ  

m,m), (7) 

 b 
m,t = vm,t − v̂ b 

m,t , (8) 

where zm+1,m refers to the feedback function from the high-
level node m + 1 to low-level node m, and zm,m indicates its 
self-recurrent feedback function. In supervised ANN tasks, the 
feedforward function typically handles feature extraction and 
downsampling operations, while the feedback function manages 
signal reconstruction and upsampling. The forward encoding uses 
convolutional operations, while the reverse decoding employs 
transposed convolutions. The feedback function applies transposed 
convolutions with the transpose of the feedforward parameters. 

3.3 Enery function 

The energy equation can be expressed in Equation 9, 
representing the sum of two distinct PC components–the 
feedforward and the feedback pathways: 

F = 
T

t=0 

M 

m=1 

( 
f 
m,t)

2 + ( b 
m,t)

2 + Cf + Cb , (9) 

where Cf indicates the feedforward loss function, specifically using 
cross-entropy loss for the supervised discrimination task, and 
Cb signifies the feedback loss function, employing mean squared 
error loss. 

However, we found that this formulation often causes gradient 
explosion in deep networks. Since both feedforward and feedback 
prediction errors are squared and positive, large errors in one 
are not sufficiently controlled by the other, leading to a potential 
gradient explosion. 

Therefore, we propose a revised energy function, which will be 
applied consistently throughout this study: 

F = 
T

t=0 

M 

m=1 

( 
f 
m,t +  b 

m,t)
2 + Cf + Cb , (10) 
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Equation 10 mitigates gradient explosion by balancing 
positive and negative cancellation of feedforward and feedback 
prediction errors. 

With the energy function established, the node states are 
updated based on the energy function using the following formula. 
First, the states v are updated via gradient descent based on the 
energy function F. Subsequently, parameter updates are performed 
at the minimum energy Fmin. Both error directions are used for 
updating states and parameters to maintain stability during the 
inference and learning process, as shown in Equation 10: 

vm,t = vm,t − ηv 
∂F 

∂vm,t 
, (11) 

θm,i = θm,i − ηθ 
∂Fmin 

∂θm,i 
, (12) 

where ηv and ηθ refer to the step size for states and parameters 
update, respectively, and θm,i implies the parameters from node m 
to other nodes or itself. 

4 Layer-adaptive learning rate 

DNNs are typically trained using methods such as stochastic 
gradient descent (SGD), which apply a fixed global learning 
rate (LR) across all layers. However, a fixed LR can cause 
inefficiencies and instabilities during training. Some adaptive 
update rules like AdaGrad (Duchi et al., 2011) and Adam 
(Kingma and Ba, 2014) adjust the global LR to mitigate these 
issues. However, these methods remain suboptimal for EBLL in 
hierarchical networks, where layer parameter updates driven by 
each layer’s own parameter variations (Equation 4). Given the 
significant variation in gradient dynamics across layers in such 
models, a global LR fails to adequately address the distinct needs 
of each layer, resulting in inefficient convergence and potential 
training instability. 

To demonstrate this point, we calculated the ratio of the 
model’s weight norm based on the product of each node’s 
gradient norm and the global LR. This ratio quantifies weight 
changes in individual nodes relative to the entire weight space. 
As illustrated in Figure 2a, significant variations in weight changes 
are observed across different nodes. As noted by You et al. 
(2017, 2020), an excessively large LR can cause parameter updates 
across the entire parameter space to become too large, risking 
divergence. This observation is evident when the ratio falls 
below 1, a result confirmed in our experiment and depicted 
in Figures 2b, c. 

To resolve this issue, we propose adapting the LR for each layer 
based on its parameter changes relative to the entire parameter 
space, aiming to enhance training stability. This approach forms 
the foundation of our Layer-Adaptive Learning Rate Optimization 
(LALR) algorithm. LALR introduces the layer-wise LR (ηθ ,i), 
derived from a global LR (ηθ ) and scaled to ensure stable and 
balanced updates across the model. The key idea is to normalize 
the parameter update magnitude of each layer to match the average 
update magnitude across the model’s entire parameter space, 
thereby mitigating disparities in parameter change amplitudes 
among layers. To achieve this, we first quantify the layer-wise 

parameter update magnitude (θi) and average update magnitude 
of all model parameters (θ). 

θi = ηθ ,i · dθi2, (13) 

θ = ηθ · S 
 

dθi2, (14) 

We employ the harmonic mean function S to measure the 
update magnitude across the model’s parameter space. This choice 
is motivated by the harmonic mean’s reduced sensitivity to extreme 
values, which ensures a more robust estimation of the gradient 
behavior across all model parameters. Finally, we adjust the layer-
wise learning rate ηθ ,i based on the relative balance between local 
parameter gradient updates (θi) and global parameter gradient 
updates (θ) (see Equations 15, 16). 

θi 

θ 
= 1, (15) 

ηθ ,i = 
ηθ · S dθi2 

dθi2 
, (16) 

The advantage of this local-global relative balance update 
strategy is twofold: it ensures that layers with smaller gradients 
receive larger layer-specific learning rates, allowing sufficient 
updates to local layer parameters, and that layers with larger 
gradients receive smaller layer-specific learning rates, preventing 
excessive updates in any single layer that might destabilize training. 
This dual benefit improves overall optimization efficiency while 
maintaining stability across various gradient magnitudes. As shown 
in Figures 2b, c, applying LALR significantly stabilizes the training 
process of both HPC and BiPC. However, LALR does not fully 
eliminate the risk of divergence in HPC, with occasional divergence 
emerging in the later stages of training. Nevertheless, it provides a 
notable improvement compared to HPC with standard SGD. 

5 Energy-based framework 

This section introduces an energy-based framework that 
integrates PC and equilibrium propagation (EP). EP (Scellier and 
Bengio, 2017), a key method in EBLL, uses an energy function 
combining Hopfield energy and output loss. In the first phase, 
EP solely minimizes the Hopfield energy, which includes the unit 
states of all network nodes, guiding the model to a steady state and 
generating a prediction. In the second phase, output loss is added to 
direct the model toward the correct target. Resultantly, the energy, 
including the output loss, is minimized again, causing a new steady 
state. Once this state is achieved, the model’s weights are updated 
based on the difference between the energy gradients at the initial 
and second steady states. 

As outlined in PC and EP, the EBLL method consists of two 
distinct phases: first, it adjusts the model’s states to minimize 
energy; second, it updates the network parameters once the energy 
reaches its minimum. This is quite different from backpropagation. 
Backpropagation has only one parameter adjustment stage, that is, 
the output layer error is adjusted by the chain rule to propagate 
backward layer by layer to update the learnable parameters 
(Figure 3a). 

To effectively support EBLL, we have redefined the energy-
based framework in terms of both energy form and network 
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FIGURE 2 

The impact of the LALR method. (a) The ratio of weight to gradient norms across various nodes in the model, with the y-axis showing the ratio 
w2 /(ηdw2 ), and the x-axis representing different nodes. The solid lines depict the ratios for both HPC and BiPC models during the 20th epoch of 
normal training, while the dashed line indicates the ratio at the 30th epoch when the gradient explosion took place. The training losses of (b) HPC 
and (c) BiPC on the CIFAR10 dataset before and after incorporating LALR. The blue and orange lines denote Adam and LALR optimizers, respectively. 

structure. As outlined in Section 2, any EBLL energy consists of 
two components: 

Internal energy, which represents the energy contribution from 
all layers of the network except the output layer. It encapsulates the 
inherent dynamics of the network’s internal states in the absence 
of influence from external supervisory signals. External energy 
corresponds to the supervised loss. Therefore, our framework 
defines the energy function as follows: 

F = E + βC, (17) 

where E and C indicate the internal and external energy, 
respectively, E in EP implies a kind of Hopfield energy, defined as 
E = 1 

2 i vi2 − 1 
2 i,j,i=j ρ(vi)wijρ(vj) − i biρ(vi), and E in PC 

signifies the sum of squares of the prediction error, calculated from 
the actual and estimated node states of the network, Here, β ∈ [0, 1] 
refers to a scaling factor used to balance the influence of internal 
energy and external energy. Specifically, When β = 0, the influence 
of external energy is eliminated, and the model operates in a fully 
free phase, stabilizing solely based on its internal dynamics. When 
β ∈ (0, 1), the model becomes subject to constraints from external 

labels at the output layer, a requirement essential for supervised 
tasks. The target loss function, acting as external energy, drives 
the model to re-establish a balance between maintaining intrinsic 
state stability and achieving the target objective. When β = 1, 
the weights of internal and external energies are equal, maximizing 
the external influence while preserving the integrity of the internal 
structure without overwhelming. 

The proposed network structure and energy form enable any 
EBLL to operate within the framework in two stages: inference 
and learning stages. During the inference stage, as expressed in 
Equation 18, the network achieves equilibrium by adjusting vi to 
minimize F. Once equilibrium is reached, the learning stage as 
formulated in Equation 19 optimizes synaptic weights by adjusting 
θi to further minimize F. Notably, this approach ensures that the 
network dynamics naturally align with the gradient direction of the 
target losses. 

inference : dvi = 
∂F 

∂vi 
, (18) 

learning : dθi = 
∂Fmin 

∂θi 
, (19) 
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FIGURE 3 

(a) In backprop, the error is transmitted step-by-step from the output layer to the input layer, with parameters updating based on the globally 
propagated errors. The green rectangle represents a layer function containing trainable parameters. (b) In the EBLL framework, node states are 
defined at the nodes, while parameters are situated on the edges. The total network energy consists of internal energy from the hidden states and 
external energy related to the output states. Both states and parameters can be updated locally based on the energy. (c) In the EBLL framework, the 
initial state is determined by traversing the adjacency matrix, and the network energy is computed using the energy function and the initial state. 
Following this process, the inference phase is performed, followed by the learning phase, to fully execute the EBLL method. 

The network is constructed using nodes and edges as 
fundamental units, where nodes represent states and edges 
denote parameterized mapping functions. This design allows the 
framework to accommodate networks with arbitrary topologies, as 
represented in Figure 3b. An adjacency matrix is defined to record 
the indices of edges connecting nodes. 

The EBLL framework is implemented on the Jax backend– 
a Python library developed by Google designed for high-
performance array computation and program transformation 
(Frostig et al., 2018). Within this framework (Figure 3c), PC or 
EP sequentially performs inference and learning phases to train 
the model. During the inference phase, initial states and energy 
are computed by traversing the adjacency matrix, followed by 
iterative state updates until energy minimization. In the learning 
phase, local computations on the minimized energy enable parallel 
parameter updates. By utilizing JAX’s Just-in-Time (JIT) technology 
(Bradbury et al., 2018), operations such as automatic differentiation 
of any order–including those expressed in Equations 18, 19 are 
efficiently compiled. This process converts numerical computations 
in the prediction process into an optimized machine code 
at runtime using advanced tracing and XLA compilers, as 
demonstrated in Appendices A and B. 

6 Experiment 

Our methods are trained and tested for object recognition 
using specific datasets and networks, with performance compared 

against baselines. All experiments are conducted within our energy-
based framework. 

6.1 Experiment settings 

6.1.1 Datasets 
6.1.1.1 MNIST 

This dataset comprises 70,000 grayscale images of handwritten 
digits, each measuring 28*28 pixels and representing single 
digits ranging from 0 to 9. The dataset is divided into 
training 60,000 images and 10,000 testing images. Preprocessing 
involves normalizing all images using channel means and 
standard deviations. 

6.1.1.2 CIFAR 
This dataset includes two main subsets: CIFAR10 and 

CIFAR100, containing 32*32 colored images drawn from 10 and 
100 classes, respectively. Each subset comprises 50,000 training 
images and 10,000 testing images. Preprocessing involves data 
normalization and augmentation techniques such as flipping and 
random cropping. 

6.1.1.3 Tiny ImageNet 
A curated subset of the larger ImageNet dataset, Tiny 

ImageNet consists of 100,000 color images at a resolution of 
64*64 pixels. The dataset features 200 distinct classes, each 
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comprising 500 training images, 50 validation images, and 50 
test images. 

6.1.2 Network architecture 
We use network architectures with different spatial and 

temporal complexity: hierarchical feedforward network and skip 
connection recurrent network, as represented in Table 1. 

6.1.2.1 Hierarchical feedforward network 
his network architecture is a feedforward convolutional neural 

network architecture comprising nine convolutional layers and two 
fully connected layers. The convolutional layers utilize 3*3 and 1*1 
kernels with varying kernel counts per layer. Max pooling with a 
2*2 kernel the size of the feature maps, followed by the application 
of the tanh activation function. Two fully connected layers follow 
the convolutional layers. 

6.1.2.2 Skip connection recurrent network 
As shown in Figure 1b, the network has two variants based on 

spatial complexity: a simple version and a complex version. The 
simple version consists of 8 nodes, with the 0th node serving as the 
input. Each node has a single state, and the 0th node encodes the 
input to the 1th node using a convolution function, mimicking the 
retina’s processing of visual input. The 1th node processes the input, 
repeating the signal and projecting it to the second high-level node 
via the convolution function. The 7th node decodes the output. 
Apart from the 1th and 7th nodes, each internal node has edge 
functions that map the state to the next high-level, time step, and 
cross-layer nodes, using 3*3 convolutions with varying channels. 
The complex version also uses eight nodes, with each internal 
node containing two states. Compared to the simple version, 
the edge functions include an additional internal state mapping 
function, implemented as a 1*1 convolution function. These 
convolution settings are inspired by CORnet (Kubilius et al., 2018) 
settings. Additionally, the nonlinear activation function employs 
the hyperbolic tangent (tanh) activation function in each layer. 

6.1.3 Hyper-parameter 
The model was trained and tested using an NVIDIA A100 

80G GPU device, with the remaining hyperparameters detailed in 
Table 2. 

6.2 Evaluation of the effectiveness of BiPC 

In the EBLL model, the inference and learning phases are 
executed sequentially. During inference, gradient descent is applied 
to the energy function to minimize energy by adjusting the states. 
Once minimized, the weight gradient is computed to update the 
parameters. Managing gradient explosion or vanishing during 
inference is critical, as these issues indicate extreme energy values 
and directly affect weight updates in the learning phase. Proper 
gradient control during inference ensures stable and effective 
parameter optimization. 

We examine whether the BiPC model, utilizing two distinct 
energy formulas expressed in Equations 9, 10, can effectively 

TABLE 1 Network configuration. 

Architecture Hierarchical 
feedforward 
network 

Skip connection 
recurrent network 

Simple Complex 

Number of nodes 11 8 8 

Time – 5 5 

Nodes’ connections conv3-128 conv3-64∗∗ conv3-32∗∗ 

conv3-256 
maxpool-2 

conv3-128∗∗ conv3-64∗∗ 

conv3-512 
maxpool-2 

conv3-128∗ 

conv3-256∗∗ 

conv3-512∗∗∗ 

conv1-128# 
maxpool-2# 
conv3-128∗ 

conv3-256∗∗ 

conv3-1024∗∗∗  

conv3-120 
maxpool-2 

conv3-256∗ 

conv3-512∗∗ 

conv3-200∗∗∗ 

conv1-512# 
conv3-512∗ 

conv3-1024∗∗ 

conv3-256∗∗∗ 

conv1-256 conv3-512∗ 

conv3-200∗∗ 

conv3-32∗∗∗  

conv1-768# 
maxpool-2# 
conv3-768∗ 

conv3-256∗∗ 

conv3-256∗∗∗  

conv1-80 conv3-200∗ 

conv3-32∗∗ 
conv1-128# 
conv3-128∗ 

conv3-256∗∗ 

conv3-64 conv3-32∗ conv1-64# 
maxpool-2# 
conv3-64∗ 

conv3-100 flatten 
fc-10/100/200 

flatten 
fc-512 
fc-10/100/200 

conv3-50 
maxpool-2 

fc-512 

fc-10/100/200 

∗Recurrent connection; ∗∗forward connection; ∗∗∗skip connection; # internal connection. 

TABLE 2 Settings for model hyperparameters. 

Parameter Description Value 

Batch size Number of samples per gradient update 128 

N Maximum number of iterations for inference 
phase 

200 

ηv LR for inference phase 0.01 

ηθ LR for learning phase 0.01 

β Scaling factor for external energy 1 

Threshold Energy convergence threshold 1e–7 

mitigate gradient explosion and vanishing during inference. The 
gradient norm value during training serves as the primary 
indicator for detecting these issues. A near-zero gradient norm 
indicates vanishing gradients, while a sudden escalation by several 
orders of magnitude signals gradient explosion. Using the simple 
version of the skip connection recurrent network from Table 1 

Frontiers in Artificial Intelligence 09 frontiersin.org 

https://doi.org/10.3389/frai.2025.1605706
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chen et al. 10.3389/frai.2025.1605706 

FIGURE 4 

The gradient norms of HPC and BiPC were evaluated across varying network depths and connection structures during the inference phase. The 
average gradient norm was determined for the 2th (shallow), 4th (middle), and 6th (deep) nodes, with the 6th node not incorporating skip 
connections. The Top subplot: the gradient norms for the HPC model. The Middle subplot: the BiPC gradients derived from the energy formulation 
expressed in Equation 10. The  Bottom subplot: the gradient norms of the BiPC model based on the energy formulation presented in Equation 9. 
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FIGURE 5 

Training loss comparison between the HPC and BiPC models across four benchmark datasets: (a) MNIST, (b) CIFAR10, (c) CIFAR100, and (d) Tiny 
ImageNet. Both HPC and BiPC are trained using the simple skip connection recurrent network (see Table 1) with the Adam optimizer. In all 
subfigures, the blue curve represents the HPC model, while the orange curve represents the BiPC model. 

and the CIFAR10 dataset as an example, we evaluate BiPC 
under varying network depths and connection configurations. The 
average gradient norm during the inference phase is computed. As 
illustrated in Figure 4, the red line represents the simple version of 
the skip connection recurrent network without recurrent or skip 
connections, while the blue line depicts the same network without 
skip connections. The green line corresponds to the fully equipped 
skip connection recurrent network (simple version). To evaluate 
HPC’s performance with gradients across varying depths and 
connection types, the top subplot of Figure 4 illustrates that HPC 
consistently experiences gradient explosion, regardless of whether 
connections are feedforward, combined feedforward and recurrent, 
or include skip connections. The middle subplot of Figure 4 
demonstrates that with the energy equation in Equation 10, 
gradient explosion is effectively mitigated across various depths 
and connections. However, gradient vanishing remains an issue in 
shallower layers, especially without skip connections. This trend 
indicates that while the BiPC model resolves gradient explosion, 
addressing vanishing gradients requires the inclusion of skip 

connections. The bottom subfigure of Figure 4 reveals that the BiPC 
model using Equation 9 experiences the gradient explosion across 
various depths and connections. Similarly, we evaluate HPC and 
BiPC learning performance on MNIST, CIFAR10, CIFAR100, and 
Tiny ImageNet using the simple skip connection recurrent network 
and the Adam optimizer. As illustrated in Figure 5, the BiPC model 
demonstrates effectiveness by mitigating the loss explosion on 
CIFAR10/100 and surpassing HPC performance on more complex 
datasets such as Tiny ImageNet. 

6.3 Evaluation of the effectiveness of LALR 

To evaluate the effectiveness of the LALR method, we analyzed 
weight gradient fluctuations and accuracy for BiPC/EP across three 
adaptive optimization algorithms: Adam, LALR, and LARS (You 
et al., 2017). Figures 6a–c demonstrate the variations in weight 
gradients for BiPC when employing these optimizers within the 
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FIGURE 6 

Comparison of weight gradient fluctuations across various optimizers on the CIFAR10 dataset. Changes in weight gradients for the BiPC model when 
utilizing (a) Adam, (b) LARS, and (c) LALR optimizers. Similar plots for EP corresponding to a (d) EP Adam, (e) EP LARS, and (f) EP LALR optimizers. 

TABLE 3 Comparison of validation accuracies (%) for various approaches on the hierarchical feedforward and the skip connection recurrent networks. 

Network Methods MNIST CIFAR10 CIFAR100 Tiny ImageNet 

Hierarchical feedforward network HPC (Adam) 96.91 ± 0.30 60.96 ± 6.53 33.59 ± 4.30 21.06 ± 5.25 

BiPC (Adam) 98.46 ± 0.00 80.39 ± 0.70 49.51 ± 0.89 35.98 ± 0.63 

EP (Adam) 96.42 ± 0.40 75.17 ± 0.73 44.14 ± 0.65 30.49 ± 0.89 

backprop (Adam) 97.63 ± 0.00 81.69 ± 0.01 52.47 ± 0.01 35.70 ± 0.00 

HPC (LALR) 97.98 ± 0.02 70.61 ± 2.25 36.20 ± 2.40 24.82 ± 1.96 

BiPC (LALR) 98.82 ± 0.00 83.95 ± 0.36 53.12 ± 0.55 37.85 ± 0.49 

EP (LALR) 98.60 ± 0.06 81.56 ± 0.54 54.52 ± 0.56 35.22 ± 0.60 

backprop (LALR) 98.95 ± 0.00 82.91 ± 0.00 54.01 ± 0.02 36.14 ± 0.01 

Skip connection recurrent network (simple) HPC (Adam) 95.63 ± 0.36 62.21 ± 5.13 33.94 ± 5.62 23.05 ± 4.30 

BiPC (Adam) 95.03 ± 0.26 87.30 ± 0.75 76.58 ± 0.60 67.06 ± 0.63 

backprop (Adam) 98.84 ± 0.05 90.05 ± 0.07 77.63 ± 0.10 70.83 ± 0.26 

HPC (LALR) 97.66 ± 0.01 64.02 ± 3.53 34.98 ± 3.50 25.16 ± 3.69 

BiPC (LALR) 99.22± 0.0199.22 ± 0.0199.22 ± 0.01 90.82± 0.4890.82 ± 0.4890.82 ± 0.48 81.70± 0.4781.70 ± 0.4781.70 ± 0.47 72.39± 0.5372.39 ± 0.5372.39 ± 0.53 

backprop (LALR) 98.89 ± 0.02 91.46 ± 0.42 82.40 ± 0.55 71.98 ± 0.55 

Skip connection recurrent network (complex) HPC (Adam) 96.03 ± 0.03 63.33 ± 5.03 34.20 ± 4.68 24.82 ± 4.93 

BiPC (Adam) 97.43 ± 0.00 90.63 ± 0.42 79.87 ± 0.47 70.25 ± 0.50 

backprop (Adam) 98.51 ± 0.00 94.25 ± 0.43 80.65 ± 0.45 70.58 ± 0.49 

HPC (LALR) 98.65 ± 0.01 66.13 ± 2.99 35.80 ± 3.49 26.61 ± 4.20 

BiPC (LALR) 99.22± 0.0099.22 ± 0.0099.22 ± 0.00 93.78± 0.4093.78 ± 0.4093.78 ± 0.40 83.96± 0.4683.96 ± 0.4683.96 ± 0.46 73.35± 0.4573.35 ± 0.4573.35 ± 0.45 

backprop (LALR) 98.89 ± 0.01 94.56 ± 0.46 81.60 ± 0.49 74.18 ± 0.50 

Bold values indicate the best accuracy results. 
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4th block of the generalized skip connection recurrent architecture. 
Figures 6d–f depict the weight gradient variations for EP with 
different optimizers in the first layer of the hierarchical feedforward 
network. LALR ensures smoother, more stable gradient transitions 
and achieves stability more rapidly than LARS. Table 3 presents 
the Top-1 validation accuracies of BiPC and LALR, respectively, 
compared against HPC, EP and backprop baselines across various 
datasets. The results indicate that LALR substantially enhances 
the accuracy of HPC, BiPC, and EP. Notably, BiPC combined 
with LALR achieves accuracy levels comparable to backprop 
within the same network architecture. However, we also observe 
lower performance on CIFAR-100 and Tiny ImageNet compared 
to MNIST and CIFAR-10. This discrepancy can be attributed 
to several factors. First, CIFAR-100 and Tiny ImageNet contain 
100 and 200 categories respectively, with significant intra-class 
variability in object appearance, posture, and background. In 
contrast, MNIST and CIFAR-10 have only 10 well-separated 
categories with simpler visual patterns. The higher data complexity 
in CIFAR-100 and Tiny ImageNet increases the learning difficulty 
under fixed model capacity. Second, complex datasets often require 
deeper or wider networks with stronger feature representation 
capabilities to capture fine-grained distinctions between classes. 
As shown in Table 3, the skip-connection recurrent architecture, 
which contains more parameters and a more expressive structure 
than the hierarchical feedforward model, consistently outperforms 
the latter across all datasets. Third, our model inherits the 
Gaussian distribution assumption from the free-energy-based HPC 
framework. While this simplifies energy formulation and allows 
tractable optimization, it limits expressiveness when applied to 
high-resolution or highly non-Gaussian data. In real-world datasets 
such as CIFAR-100 and Tiny ImageNet, the pixel distributions are 
multimodal and deviate significantly from Gaussianity, which may 
lead to increased variational error and degraded performance. 

6.4 Evaluation of the effectiveness of 
energy-based framework 

To assess the reliability and efficiency of our framework, 
we trained the specified network using identical methods and 
hyperparameters on both PyTorch and our framework, utilizing 
a single NVIDIA A100 GPU. As shown in Figure 7, our 
framework achieves comparable training accuracy and loss to 
PyTorch under identical settings, while reducing runtime by 
50 percent. 

7 Discussion and conclusion 

This study aims to address gradient explosion and vanishing 
issues in EBLL models, such as classic hierarchical PC, during 
ANN training. To enhance training efficiency, we developed a JAX-
based framework. Drawing on neuroscience and AI engineering, 
we introduce a novel BiPC model based on a biologically inspired 
ANN. BiPC utilizes energy from forward and backward processes 
to constrain updates and prevent gradient explosion during 
local state and parameter optimization. Experiments reveal that 
while bidirectional energy constraints effectively address gradient 
explosion in deep ANNs, resolving gradient vanishing necessitates 
incorporating skip connections. BiPC with recurrent and skip 
connections surpasses models relying solely on feedforward and 
feedback connections. To address gradient variability across 
layers during local updates, we propose the LALR method, 
optimizing gradient descent for state and parameter updates in 
energy-based PC and EP. This method significantly improves 
target recognition performance. BiPC with LALR achieves object 
recognition accuracy comparable to backprop; however, LALR 
alone cannot fully address gradient explosion in hierarchical 

FIGURE 7 

Comparison of training accuracy, loss, and runtime between the our energy-based model with JAX implementation and the same model with 
PyTorch implementation on the CIFAR10 dataset. (a) Training curves of accuracy and loss using a batch size of 128 and input shape [32,32,3]. Solid 
curves denote training accuracy, while dashed curves denote training loss. Blue solid curve and red dashed curve correspond to our BiPC model with 
standard PyTorch implementation, whereas the green solid curve and orange dashed curve correspond to our BiPC model with JAX implementation. 
(b) Runtime comparison per epoch. The red bars indicate the training time of our BiPC model with JAX implementation, while the blue bars show the 
PyTorch baseline. Across all epochs, our method significantly reduces computational time, demonstrating better efficiency. 
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PC. Our EBLL framework, structured with points and edges, 
demonstrates superior accuracy and faster execution compared to 
PyTorch in hierarchical and recurrent architectures. 

Our model and framework have some limitations. While BiPC 
resolves gradient explosion, it does not fully address gradient 
vanishing, likely due to both model directions producing low 
energy, leading to gradient decay. Additionally, BiPC focuses 
on a single cortical region without accounting for inter-unit 
interactions across the entire brain. Furthermore, this model is 
trained solely on biologically inspired neural networks, excluding 
biomimetic networks such as spiking neural networks (SNNs) 
or brain emulation networks. This study focuses on optimizing 
EBLL algorithms for practical applications in ANNs, rather than 
theoretical study. Future work will investigate energy-based models 
in biomimetic networks, such as SNNs and brain emulation 
systems. Additionally, the bidirectional concept in the BiPC 
method has yet to be effectively applied to local learning approaches 
based on Hopfield energy, such as EP. This trend is because 
Hopfield energy originates from a fully connected network, 
making its energy undirected. Additionally, the EBLL framework 
uses a graph structure, theoretically enabling its application to 
networks with arbitrary topologies, including large-scale brain 
simulation networks with millions of nodes and edges. However, 
the framework lacks effective memory management, limiting 
its scalability for large networks. Improving efficient learning 
support for large-scale networks is a critical challenge. Currently, 
brain simulation networks (Potjans and Diesmann, 2014) have  
not successfully handled complex tasks such as vision and text. 
Therefore, overcoming these limitations and advancing EBLL 
methods for intelligent task mastery in large-scale brain simulations 
is a key research objective. 
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