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Introduction: Time series analysis plays a critical role in various applications,

including sensor data monitoring, weather forecasting, economic predictions,

and network tra�c management. While traditional methods primarily focus on

modeling time series data at a single temporal scale and achieve notable results,

they often overlook dependencies across multiple scales. Furthermore, the

intricate structure of multi-scale time series complicates the e�ective extraction

of features at di�erent temporal resolutions.

Method: To address these limitations, we propose AMDCnet, a multi-scale-

based time series decomposition and collaboration network designed to

enhance the model’s capacity for decomposing and integrating data across

varying time scales. Specifically, AMDCnet transforms the original time series into

multiple temporal resolutions and conducts multi-scale feature decomposition

while preserving the overall temporal dynamics. By extracting features from

downsampled sequences and integrating multi-resolution features through

attention-gated co-training mechanisms, AMDCnet enables e�cient modeling

of complex time series data.

Results: AMDCnet achieving 44 best results and 10 second-best results out of 64

cases. Experimental results on 8 benchmark datasets demonstrate that AMDCnet

achieves state-of-the-art performance in time series forecasting.

Discussion: Our research provides a robust baseline for the application of

artificial intelligence in multivariate time series forecasting. This work leverages

multi-scale time series decomposition and gated units for feature fusion,

e�ectively capturing dependencies across di�erent temporal scales. Future

studies may further optimize the scale decomposition and fusion modules. Such

e�orts could enhance the representation of multi-scale information and help

address key challenges in multivariate time series prediction.

KEYWORDS

long-term time series, forecasting, multi-scale decomposition, feature fusion,

attention-gate

1 Introduction

In recent years, accurate long-term time series forecasting has become increasingly

important across various fields, including finance (D’Urso et al., 2021), healthcare

(Bahadori and Lipton, 2019), energy management (Zhou et al., 2021), and weather

prediction (Wu et al., 2021). Time series data inherently exhibit variability over time,

characterized by continuity, trends, and periodicity; this complexity and uncertainty

present significant challenges. Consequently, deep learning models, which are adept at

capturing nonlinear relationships and intricate temporal features, have gained widespread

application in time series forecasting tasks.
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Existing deep learning frameworks for long-term time series

forecasting can be categorized into three groups: (i) Recurrent

Neural Network (RNN)-based models (Connor et al., 1994); (ii)

Transformer-based models (Vaswani, 2017); and (iii) Temporal

Convolutional Networks (TCNs)-based models (Bai et al., 2018).

RNN-based models have evolved various variants, such as Long

Short-Term Memory (LSTM) (Hochreiter, 1997), Gate Recurrent

Unit (GRU) (Cho, 2014). LSTM solves the problem of gradient

vanishing but still faces the problem of long training time and

difficulty in capturing the production time dependence, GRU is

faster in training compared to LSTM but still has limitations in

dealing with long sequences; Transformer-based models rely on the

self-attention mechanism to model the long-distance relationship

effectively, but it requires a large amount of computational

resources when dealing with long sequences; TCNs-based model

expands the receptive field by stacking convolutional layers, which

can effectively extract local and global information, but sometimes

relies too much on local features and faces the problem of

large memory usage when dealing with long sequences. Existing

studies have applied multi-view learning (Yu et al., 2025) and

broad learning (Lin et al., 2025; Zhong et al., 2024) to anomaly

detection or time series forecasting. ILMNN (Yang et al., 2024)

mitigates intra-class imbalance by reducing intra-class sample

distances while increasing inter-class sample distances, combined

with weight allocation. GEIB (Chen et al., 2025) enhances system

robustness by employing an adaptive broad learning system to

capture variability among imbalanced samples.

These models hold great potential for time-series modeling.

However, they often fail to account for feature learning across

different time scales, which results in suboptimal capturing

of complex dataset characteristics. To address this issue, recent

approaches have employedmulti-scale feature learning frameworks

to capture intricate data patterns. For example, TimesNet (Wu

et al., 2022) addresses the limitations of one-dimensional data

representation by transforming one-dimensional time data

into two-dimensional tensors, thereby capturing variations

within and across periods. MSGNet (Cai et al., 2024) aims

to capture the correlations between multi-dimensional time

data sequences by utilizing frequency domain analysis and

adaptive graph convolutions across multiple scales to capture

specific and comprehensive inter-sequence dependencies, while

also integrating self-attention mechanisms to model intra-

sequence dependencies. Although these multi-scale methods

have demonstrated commendable performance in time-series

forecasting and validated the effectiveness of multi-dimensional

data from different modeling perspectives, they overlook further

decomposition of the sequence during the multi-scale partitioning

phase. Multi-scale learning is performed only at the sequence

level, which, while effectively learning periodic information, may

neglect trend-related information in the data. For instance, when

sequences exhibit trend-like changes over an extended time span,

the limitations of the multi-scale range might hinder the attention

mechanism from capturing meaningful information.

All methods encounter two key challenges: (i) multivariate time

series often exhibit complex characteristics such as randomness

and periodicity, which cannot always be simplified into seasonal

and trend components; (ii) simply combining forecasting results

fails to highlight the primary features of the time series. To

address these issues, we propose a multi-scale decomposition and

collaboration network based on attention gates. AMDCnet is not

limited to capturing only seasonal and trend patterns. After multi-

scale decomposition, it employs odd-even sequence sampling to

comprehensively cover sequence information. It then performs

stacked learning on odd-even sequence information across

different scales to capture a broader range of data characteristics.

Subsequently, we employ an attention-gated collaborative module

to learn time-series features at various resolutions and introduce

a feature pyramid for more comprehensive feature fusion.

Our method aims to model temporal dependencies across

different scales in multi-dimensional time-series data through

detailed decomposition and collaboration processes. The main

contributions of this paper are as follows:

• We propose AMDCnet, a novel multiscale-based time series

forecasting model that effectively creates an accurate temporal

representation for multidimensional time series data by

capturing sequence patterns without temporal resolution.

• We propose a multi-scale time series feature decomposition

and collaboration module to explore the dependence of data

features at different temporal resolutions and an attention-

gate-based unit to promote the collaboration of different

time scale representations, effectively modeling multi-scale

temporal dependence.

• We validate AMDCnet using eight real-world datasets, and the

experimental results show that it achieves better performance

than recent state-of-the-art methods.

2 Related works

2.1 Time series forecasting

Research on time series forecasting tasks has been conducted

for decades with a focus on time-varying modeling. Traditional

methods such as Autoregressive Integrated Moving Average Model

(ARIMA) (Box and Jenkins, 1968), which combines the three

components of autoregression (AR) (Hannan and Quinn, 1979),

differencing (I) (Dickey and Pantula, 1987) and moving average

(MA) (Said and Dickey, 1984), can deal with non-stationary time

series and capture trends, cycles and stochastic fluctuations in the

time series, but real-world time series variations are very complex,

and ARIMA’s assumption that the time series is linear does not deal

well with nonlinear and complex patterns.

In recent years, deep learningmethods have effectively captured

nonlinear and complex dependencies in time series data. RNN-

based approaches, such as LSTM networks, adeptly handle long-

term dependencies, while GRUs demonstrate superior efficiency.

The NGCU (Wang et al., 2022) introduces a novel gating unit

that enhances computational complexity and model sensitivity

compared to LSTM and GRU, addressing the gradient vanishing

and exploding issues common in traditional RNNs. Transformer-

based methods excel at capturing dependencies over medium to

long distances by utilizing self-attention mechanisms, significantly

enhancing modeling capabilities for long sequences. FEDformer

(Zhou et al., 2022) integrates seasonal-trend decomposition

methods to improve the Transformer’s performance in long-

term forecasting by capturing the global profile of time series
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data. TimesNet (Wu et al., 2022) overcomes limitations of

one-dimensional representation by transforming one-dimensional

time data into a two-dimensional tensor, extracting intra-

period and inter-week variations. The Temporal Convolutional

Network (TCN)-based method does not rely on time-dependent

sequential processing, instead capturing time series patterns

through convolutional operations. M-TCN (Wan et al., 2019)

constructs a sequence-to-sequence framework for non-periodic

datasets, effectively improving prediction accuracy for multivariate

time series. PSTA-TCN (Fan et al., 2023) employs a stacked

TCN backbone network combined with a parallel spatio-temporal

attention mechanism to extract features, significantly reducing

computation time while enhancing prediction accuracy.

It is worth noting that while all these methods effectively

enhance prediction performance, they do not take into account

the potential benefits of combining the decomposition and

collaboration of multi-scale features to further improve

model efficacy.

2.2 Multi-scale feature learning

Multiscale feature learning is a crucial method in time series

analysis, aiming to extract multiple features from a time series

across different time scales or frequency ranges. Numerous recent

approaches in time series analysis have integratedmultiscale feature

learning as a key component of their models. MANF (Feng et al.,

2023) combines relative positional information with multiscale

attention, recognizing that small-scale attention is more sensitive

to local contexts while capturing higher-order global information

through cascading attention mechanisms applied at hierarchical

time scales, such as intra-day, intra-week, and Intra-month. MICN

(Wang et al., 2023) introduces a multiscale hybrid decomposition

module to separate seasonal and trend-periodic patterns in the

series, but it only uses a simple mean operation to integrate these

patterns, without considering an appropriate method for weight

assignment. Preformer (Du et al., 2023) proposes a novel multiscale

segmentation mechanism that encodes the series based on

segmental correlation attention, aggregating dependencies across

different time scales within a multiscale structure. These models

have not explored the temporal features under finer variations of

decomposition factor sizes, focusing only on feature learning at

the sequence level. Moreover, these multi-scale techniques face

challenges during the final scale fusion process, as they simply

concatenate features without emphasizing the tendencies of the

time series toward specific characteristics. How to reasonably

allocate fusion weights across different scales has a critical impact

on the accuracy of multivariate time series forecasting.

3 Methodology

3.1 Problem definition and formulation

In the context of multivariate time series forecasting, we

consider a system containingN variables. Where the historical data

is provided through a backward-looking window Xt−L : t of length

L, this matrix includes the observed values of each variable from

time point t − L to t − 1. The task of time series forecasting is

to estimate the values of these variables at the next T time steps

based on this historical data. The output is the prediction matrix

X̂t to t+T−1, which contains the predicted values of all variables from

time point t to t + T − 1.

3.2 Overall architecture

The overall architecture is shown in Figure 1. The process

consists of three main components: (a) a multiscale decomposition

module; (b) a multiscale collaboration module based on attention

gating; and (c) time series prediction. (a) AMDCnet applies a

multiscale decomposition method to the input data, generating

multiple time series at different resolutions. Each time scale

produces two subsequences through successive down-sampling.

(b) The Parallel Fusion Convolution Block processes these

subsequences with distinct convolutional filters to extract both local

and global features of the time series. The features at different

resolutions are subsequently upsampled, balanced by attentional

gating, and reaggregated into a new representation of the sequence.

These paired subsequences are then reincorporated into the

original time series as residuals. (c) Finally, a fully connected

network is employed as a decoder to predict the time series.

3.3 Multi-scale decomposition

Our proposed Multi-scale Data decomposition approach

transforms time series data into multi-scale data inputs. The input

data Xt−L : t represents observations from time t − L to t − 1. We

process this data using the normalization function RevIN (Kim

et al., 2021) which has been shown to enhance the training efficiency

of the model and effectively mitigate data distribution drift. The

normalization process is defined as:

Xin = RevIN(Xt−L : t) (1)

The multi-scale decomposition process is shown in Figure 2.

Inspired by DCdetector, we use channel independence and sub-

patch methods to transform the time series into multiple time

scales. For a selected set of time scales {s1, · · · , sk}, we reshape

the multivariate time series inputs Xin ∈ R
L×N into a 3D

tensor, creating representations for different time scales using the

following equations:

Xi = Reshapesi ,fi (Xin), si =
L

fi
(2)

Here, Xi ∈ R
N×si×fi denotes the reshaped representation for

the time scale si. Where L is the length of the sequence, and fi is the

scale partition factor. The fi factor is then embedded into a vector

of size dmodel, represented as Xemb and computed as follows:

Xemb = Conv1D(Xi)+ PE (3)

We utilize a one-dimensional convolutional filter to project

Xi into a dmodel-dimensional matrix. PE ∈ R
dmodel×L represents
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FIGURE 1

The overall architecture of AMDCnet. AMDCnet consists of a multi-scale data decomposition and collaboration block, which can capture changes in

di�erent time scales through fusion convolution blocks and learn based on up-sampling fusion representation.

FIGURE 2

Multi-scale decomposition block. The input sequence is decomposed and converted to a parity subsequence at multiple resolutions.

the positional embedding of the input Xi. The down-sampling

decomposition process involves decomposing Xi
emb

into Xi
odd

∈

R
N×

si
2 ×dmodel and Xi

even ∈ R
N×

si
2 ×dmodel . These decomposed

sequences are then used as input matrices for the multi-scale

Fusion Block.

3.4 Multi-scale collaboration

We propose a novel attention-gate-based multiscale

collaborative block to capture both global information

representations and local dependencies of sequences across
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different time scales. Specifically, we apply distinct information

characterizations to the parity subsequences obtained from

downsampling. In contrast to TCNs, which employ a single

shared convolution filter at each layer, our fused convolutional

module enhances feature extraction by aggregating information

from subsequences decomposed at different time scales, offering

both local and global perspectives of the time series at varying

temporal resolutions. Unlike TCNs with shared convolutional

filters, our fused convolutional module not only extracts

features across multiple time scales through a diverse set of

convolutional filters but also achieves a larger receptive field, akin

to extended convolution.

The odd-even division mechanism is designed to enhance

temporal feature structural symmetry on top of multi-scale

sequences. This partitioning ensures alternating coverage of

two subsequences along the temporal axis, thereby avoiding

information leakage and contextual disruption. Unlike the odd

sequence, the even sequence achieves global information extraction

by adjusting the size of the spatial pool, thus reducing the spatial

dimension of each channel of Xi
odd

to a one-dimensional vector

with global information. The global channel context is computed

as follows:

Global(Xi
odd) = B(PWConv2(δ(B(PWConv1(Avg(X

i
odd

)))))) (4)

Here, Avg(·) denotes average pooling, and patchwise

convolution PWConv is used for local channel context aggregation.

The kernel sizes of PWConv1 and PWConv2 are
(

d × C
)

× C
r × 1,

where r is the channel reduction factor, B represents the

BatchNorm, and δ denotes the Rectified Linear Unit (ReLU).

The local channel context branching structure is implemented by

PWConv and is computed as follows:

Local(Xi
even) =B(PWConv2(δ(B(PWConv1(X

i
even))))) (5)

We then summarize the global and local scale feature

information through the attention-gate unit, using the

following equation:

w = σ
(

Local(Xi
even)⊕ Global(Xi

odd)
)

, (6)

ˆ
X

i
out = w⊗ Global(Xi

odd)+ (1− w)⊗ Local(Xi
even) (7)

Here, ⊕ denotes the broadcast addition which generates an

attentional representation incorporating both local and global

context. The function σ is a Sigmoid function that serves as a gating

unit to regulate the weights of local and global representations.

⊗ denotes the dot product. Finally ˆ
X

i
out ∈ R

N×
si
2 is used as a

fused feature. To advance our model, we need to integrate tensors

of different scales ˆ
X

1
out,

ˆ
X

2
out · · · ,

ˆ
X

k
out. The Feature Pyramid

Networks (FPN) structure, renowned for its ability to capture

features at multiple scales, is widely used in target detection

and semantic segmentation due to its powerful feature extraction

capabilities. Inspired by the FPN, we employ a pyramid structure to

aggregate different time scales, enabling our model to integrate and

leverage information from various temporal resolutions effectively.

X̂out = Interp(. . . (Interp( ˆ
X

1
out)+

ˆ
X

2
out)+ . . .)+ ˆ

X
k
out

(8)

In this process, Interp(·) is an interpolation operation

where we recover high-resolution features step-by-step by

up-sampling through linear interpolation. This method fuses

multiple resolution feature layers, effectively capturing the

multi-scale dynamic information of the data. This blending

strategy promotes the integration of multi-scale features into the

subsequent layers, enhancing the model’s ability to utilize diverse

temporal information.

3.5 Time series forecasting

The model utilizes a linear projection to map X̂out ∈ R
N×L

to the X̂t : t+T ∈ R
N×T for prediction. The projection process is

described as follows:

X̂t : t+T = X̂outWt + b (9)

Here,Wt ∈ R
L×T and b ∈ R

T are learnable parameters. X̂t : t+T

is the final prediction.

4 Experiments

4.1 Datasets

We validate the performance of AMDCnet on eight widely used

and recognized benchmark datasets, including Weather, Traffic,

Electricity, ETT (ETTh1, ETTh2, ETTm1, ETTm2), and Exchange.

Table 1 provides a summary of the statistics for these datasets and

the detailed information of each dataset is as follows:

• Weather (Angryk et al., 2020) consists of time series data for

21 meteorological metrics, collected every 10 min by the Max

Planck Biogeochemical Research Weather Station in 2020.

• Traffic (Chen et al., 2001) records hourly road occupancy rates

measured by 862 sensors on San Francisco Bay Area freeways,

spanning January 2015 to December 2016.

• Electricity (Khan et al., 2020) contains hourly electricity

consumption data for customers from 2012 to 2014.

• ETT (Zhou et al., 2021) comprises electric transformer

data from July 2016 to July 2018, including load and

oil temperatures.

• Exchange (Lai et al., 2018) tracks daily exchange rates from

1990 to 2016 for eight countries.

4.2 Baselines

To validate the effectiveness of the AMDCnet model, we

compared it with six well-known time-series forecasting models,

including the latest multi-scale model MSGnet (Cai et al., 2024),
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TABLE 1 Statistics of popular datasets for the benchmark.

Dataset Weather Tra�c Electricity ETTh1/2 ETTm1/2 Exchange

Variates 21 862 321 7 7 8

Timesteps 52,696 17,544 26,304 17,420 69,680 7,588

Granularity 10 min 1 h 1 h 1 h 15 min 1 day

dominant Transformer-based models: TimesNet (Wu et al., 2022),

FEDformer (Zhou et al., 2022), Non-stationary Transformer (Liu

et al., 2022), and Informer (Zhou et al., 2021). Additionally,

we also included a non-Transformer-based model, DLinear

(Zeng et al., 2023).

4.3 Experimental setups

For a fair comparison, the same experimental setup was used

for all models. We used the ADAM (Kingma, 2014) optimizer to

train the models, with the learning rate set to 1e-4, training epochs

set to 10, andmean square error (MSE) as the training loss function.

The baseline used relevant data from the paper TimesNet or the

official code. Our model is based on PyTorch (Paszke et al., 2019),

and all experiments were conducted using NVIDIA GeForce RTX

3090 24GB GPUs.

4.4 Experimental results

Table 2 presents the main experimental results of all models

across eight datasets, with the best and second-best results for

each scenario (dataset, level, and metric) highlighted in bold

and underlined. AMDCnet demonstrates outstanding performance

in long-term time-series forecasting. Specifically, AMDCnet

outperforms existing benchmarkmethods, achieving 44 best results

and 10 second-best results out of 64 cases. Compared to the

state-of-the-art multi-scale model MSGNet, AMDCnet shows a

near-complete improvement in performance across most datasets

(Weather, Traffic, Electricity, ETTh1, ETTh2, ETTm1), with

moderate or approximately equivalent improvements observed on

a few datasets (ETTm2, Exchange). In terms of the average Mean

Squared Error (MSE) across all datasets, AMDCnet significantly

reduces the MSE by 6.4% (from 0.357 to 0.334) compared

to MSGNet, by 7.2% (from 0.360 to 0.334) compared to the

multi-scale Transformer-based model TimesNet, and by 12.7%

(from 0.383 to 0.334) compared to DLinear. Overall, AMDCnet

surpasses the current state-of-the-art multi-scale model MSGNet

and other models.

We visualize the forecasting performance of AMDCnet,

MSGNet, TimesNet, and DLinear on the Electricity dataset

to evaluate their long-term prediction capabilities. As shown

in Figure 3, AMDCnet exhibits high prediction accuracy and

effectively captures the variation patterns in high-frequency

fluctuation regions, with its predicted curve closely aligning with

the true values. MSGNet and TimesNet generally perform well,

but face difficulties in accurately predicting extreme values, while

DLinear performs poorly, showing low prediction accuracy even in

non-extreme regions. Although MSGNet, TimesNet, and DLinear

are capable of learning the data change patterns in high-frequency

fluctuation areas, demonstrating their ability to model the seasonal

and trend characteristics of the data, they struggle to accurately

predict peaks, leading to substantial deviations from the true

values. In contrast, AMDCnet shows high prediction accuracy,

highlighting its ability to handle complex and dynamic time-

series data.

A comprehensive analysis of the adaptive weightingmechanism

revealed that the learned weights predominantly fluctuate between

0.3 and 0.7, with a mean value of ∼0.49. This oscillatory behavior

suggests that the model effectively captures distinct weighting

patterns from odd and even sequences. To assess the impact of

adaptive weighting, we compared it against a fixed-weight baseline

(set to 0.5, equivalent to a uniform distribution across odd and

even sequences). The results demonstrated a reduction in MSE of

0.03 on the ECL dataset (input length: 96, prediction horizon: 96).

While the improvement is modest, it underscores the efficacy of the

attention-based gating mechanism.

5 Model analysis and ablation study

5.1 Analysis: past sequence length

AMDCnet achieved state-of-the-art performance in

experiments with L = 96. To further evaluate its effectiveness,

we extended the assessment to L = 336. The Electricity and

Weather datasets, where AMDCnet demonstrated superior results

in the main experiment, were selected for this evaluation. The

prediction lengths remain consistent with those used at L = 96,

i.e., T ∈ {96, 192, 336, 720}, and are compared against the current

state-of-the-art models, MSGNet and TimesNet.

The obtainedMSE results are visualized in Figure 4. The curves

indicate that, regardless of themethods and datasets used, theMSEs

consistently increase as the prediction sequence lengthens. This

trend is consistent with the performance observed at L= 96, where

the models’ predictive accuracy gradually declines with increasing

prediction length. In terms of model comparison, AMDCnet

outperforms both MSGNet and TimesNet in the Electricity dataset

and slightly surpasses MSGNet and TimesNet in the Weather

dataset at L = 336. Collectively, AMDCnet maintains a level of

excellence beyond the current SOTAMSGNet.

5.2 Analysis: training dataset

The experiment on the impact of the size of the training set

on the performance of the model is mainly to evaluate whether

the model itself is effective, and at the same time help us observe
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TABLE 2 Comparative results of long-term forecasting performance on eight real datasets.

Models Ours MSGNet TimesNet DLinear FEDformer Non-stationary Informer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 96 0.155 0.206 0.163 0.212 0.172 0.220 0.196 0.255 0.238 0.314 0.173 0.223 0.354 0.405

192 0.207 0.253 0.212 0.254 0.219 0.261 0.237 0.296 0.275 0.329 0.245 0.285 0.419 0.434

336 0.267 0.297 0.272 0.299 0.280 0.306 0.283 0.335 0.339 0.377 0.321 0.338 0.583 0.543

720 0.347 0.347 0.350 0.348 0.365 0.359 0.345 0.381 0.389 0.409 0.414 0.410 0.916 0.705

Traffic 96 0.447 0.296 0.589 0.343 0.593 0.321 0.650 0.396 0.576 0.359 0.612 0.338 0.733 0.410

192 0.465 0.307 0.616 0.363 0.617 0.336 0.598 0.370 0.610 0.380 0.613 0.340 0.777 0.435

336 0.478 0.314 0.642 0.372 0.629 0.336 0.605 0.373 0.608 0.375 0.618 0.328 0.776 0.434

720 0.517 0.335 0.689 0.403 0.640 0.350 0.645 0.394 0.621 0.375 0.653 0.355 0.827 0.466

Electricity 96 0.154 0.256 0.165 0.274 0.168 0.272 0.193 0.308 0.186 0.302 0.169 0.273 0.304 0.393

192 0.169 0.266 0.184 0.292 0.184 0.289 0.201 0.285 0.197 0.311 0.182 0.286 0.327 0.417

336 0.188 0.286 0.195 0.302 0.198 0.300 0.209 0.301 0.213 0.328 0.200 0.304 0.333 0.422

720 0.214 0.310 0.231 0.332 0.220 0.320 0.245 0.333 0.233 0.344 0.222 0.321 0.351 0.427

ETTh1 96 0.388 0.396 0.390 0.411 0.380 0.402 0.386 0.400 0.376 0.419 0.513 0.491 0.941 0.769

192 0.438 0.425 0.442 0.442 0.436 0.429 0.437 0.432 0.420 0.448 0.534 0.504 1.007 0.786

336 0.479 0.445 0.480 0.468 0.491 0.469 0.481 0.459 0.459 0.465 0.588 0.535 1.038 0.784

720 0.484 0.470 0.494 0.488 0.521 0.500 0.519 0.516 0.506 0.507 0.643 0.616 1.144 0.857

ETTh2 96 0.310 0.355 0.328 0.371 0.340 0.374 0.333 0.387 0.358 0.397 0.476 0.458 1.549 0.952

192 0.388 0.403 0.402 0.414 0.402 0.419 0.477 0.476 0.429 0.439 0.512 0.493 3.792 1.542

336 0.429 0.438 0.435 0.443 0.452 0.452 0.594 0.541 0.496 0.487 0.552 0.551 4.215 1.642

720 0.458 0.461 0.417 0.441 0.462 0.468 0.657 0.450 0.463 0.474 0.562 0.560 3.656 1.619

ETTm1 96 0.337 0.371 0.319 0.366 0.340 0.377 0.345 0.372 0.379 0.419 0.386 0.398 0.626 0.560

192 0.355 0.393 0.376 0.397 0.374 0.387 0.380 0.389 0.426 0.441 0.459 0.444 0.725 0.619

336 0.409 0.409 0.417 0.422 0.410 0.413 0.413 0.413 0.445 0.459 0.495 0.464 1.005 0.740

720 0.474 0.444 0.481 0.478 0.478 0.450 0.474 0.453 0.543 0.490 0.585 0.516 1.133 0.845

ETTm2 96 0.174 0.259 0.177 0.262 0.183 0.271 0.193 0.293 0.203 0.287 0.192 0.274 0.355 0.462

192 0.256 0.315 0.247 0.307 0.248 0.309 0.284 0.362 0.269 0.328 0.280 0.339 0.595 0.586

336 0.324 0.356 0.312 0.346 0.304 0.348 0.369 0.427 0.325 0.366 0.334 0.361 1.270 0.871

720 0.413 0.406 0.414 0.403 0.385 0.400 0.554 0.522 0.421 0.415 0.417 0.413 3.001 1.267
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whether a full dataset is needed to train the model. We investigated

the effect of training set size on AMDCnet’s performance using

the ETTh1 and Weather datasets. The parameter settings were

consistent with previous experiments, with L = 96 and T ∈

{96, 192, 336, 720}. As shown in Figure 5, for the ETTh1 dataset, the

MSE is significantly higher when the training set size is only 10%.

However, as the training set proportion increases, the MSE steadily

decreases and eventually stabilizes. A similar trend is observed

for the Weather dataset, where the MSE also decreases as the

training set size increases. However, unlike ETTh1, where the MSE

quickly stabilizes, the MSE for the Weather dataset drops rapidly

between 40 and 70% of the training set size, with little change

beyond this point. Empirical results show that comparable model

performance can be achieved without using the complete training

dataset, especially in specific data fields such as meteorological

observation. This observation result indicates that strategically

reducing the cardinality of the training set can achieve the effect

of reducing the training time while maintaining the validity of

the model.

5.3 Analysis: computational e�ciency

To evaluate training efficiency, we performed experiments on

the electricity dataset, comparing AMDCnet with Transformer-

based models (MSGnet, TimesNet, FEDformer) and DLinear. All

models were trained under identical hyperparameters, including

a historical sequence length of 96, a prediction horizon of 96,

and a batch size of 64. As shown in Table 3, AMDCnet exhibits

faster training speeds than all Transformer-based counterparts.

The latter typically demand longer training durations due to

the computational overhead of their self-attention mechanisms.

In contrast, AMDCnet leverages a convolutional neural network

architecture, which confers a substantial efficiency advantage in

training time. DLinear, a non-Transformer baseline included in this

study, achieved an average training time of merely 5.63 seconds

per epoch, surpassing all other models in efficiency. However,

this result stems primarily from its simplistic linear structure,

which lacks the representational complexity of convolutional or

Transformer-based approaches. Overall, AMDCnet attains the

second-highest training efficiency while maintaining superior

experimental performance.

5.4 Ablation: fused convolution

The Fused Convolution module integrates local and global

information representations along with an attention-gating unit.

For comparison purposes, we replaced this module with a shared

convolution kernel, which does not require the moderation of

the gating unit and does not differentiate between local and

global information: w/o FB. As shown in Table 4, the performance

degrades after this replacement for the Weather, Traffic, and

ETTh1 datasets. However, there is a slight improvement in the

performance for the ETTm2 dataset at prediction lengths of 336

and 720. This could be attributed to overfitting during the fusion

convolution process, which leads to an imbalanced allocation of
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FIGURE 3

Visualization of the predicted results for the Electricity dataset: the blue line shows the true value and the orange line shows the predicted result.

FIGURE 4

MSE at di�erent prediction lengths on Electricity and Weather datasets, L = 336 and T ∈ { 96, 192, 336, 720}.

gate unit weights. Overall, the decline in performance validates

the effectiveness of the fusion convolution module in multi-scale

collaborative work.

5.5 Ablation: FPN block

Feature Pyramid Network (FPN) is a crucial method for

multi-scale feature fusion, combining deep and shallow features

through a feature pyramid structure and lateral connections.

This allows the network to capture target information at varying

scales in the image more comprehensively. In AMDCnet, we

utilized interpolated upsampling for FPN fusion. During the

ablation experiments, we designed a fully connected module

to directly fuse the data as a comparison to verify the FPN

block’s capability in capturing multi-scale features: w/o FC.

As shown in Table 4, the model’s performance consistently

degrades across almost all datasets after replacing the FPN
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FIGURE 5

MSE on ETTh1 and Weather with di�erent Training dataset ratio.

TABLE 3 Average training time of the models.

Model AMDCnet MSGnet TimesNet DLinear FEDformer

AVGTimes/epoch(s) 67.46 107.65 186.84 5.63 79.43

TABLE 4 Ablation analysis of weather, tra�c, ETTh1, and ETTh2 datasets.

Models AMDCnet(base) w/o FB w/o FC

Metrics MSE MAE MSE MAE MSE MAE

Weather 96 0.155 0.206 0.162 0.215 0.163 0.214

192 0.207 0.253 0.212 0.254 0.211 0.256

336 0.267 0.297 0.269 0.298 0.267 0.296

720 0.347 0.347 0.348 0.347 0.347 0.348

Traffic 96 0.447 0.296 0.522 0.358 0.505 0.337

192 0.465 0.307 0.519 0.351 0.504 0.338

336 0.478 0.314 0.526 0.352 0.517 0.341

720 0.517 0.335 0.568 0.373 0.556 0.361

ETTh1 96 0.388 0.396 0.396 0.403 0.392 0.399

192 0.438 0.425 0.445 0.431 0.44 0.426

336 0.479 0.445 0.483 0.45 0.481 0.447

720 0.484 0.470 0.499 0.479 0.484 0.471

ETTm1 96 0.337 0.371 0.338 0.371 0.34 0.377

192 0.355 0.393 0.375 0.387 0.381 0.4

336 0.409 0.409 0.405 0.407 0.417 0.419

720 0.474 0.444 0.470 0.443 0.496 0.462

Results represent the prediction length {96, 192, 336, 720}, with the best performance highlighted in bold black.

block. This indicates that the FPN effectively fuses multi-scale

features under different datasets, validating its ability to capture

multi-scale features—consistent with mainstream experimental

findings. Additionally, it demonstrates that the upsampling

interpolation fusion method, employed as part of AMDCnet’s

multi-scale collaboration module, plays a critical role in the

post-decomposition synergy.

6 Conclusion

In this paper, we propose a novel network for long-term

time series prediction called Attention-gate-based Multiscale

Decomposition and Collaboration Network, built upon multiscale

time series processing techniques. AMDCnet leverages multiscale

decomposition of time series and collaboration through gating
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units for feature fusion. Specifically, we incorporate channel

independence and sub-patch strategies in the multiscale

decomposition process, where the sequence is downsampled

and processed by a multiscale fusion convolution module to

learn both local and global sequence features. After weight

assignment via the gating unit, the data enters the FPN module

for feature fusion. Extensive experiments on eight real-world

datasets demonstrate that AMDCnet outperforms existing models

and effectively captures dependencies across different time

scales. Additionally, ablation studies on the fusion convolution

module and the FPN module further confirm the effectiveness

of AMDCnet. In future work, we aim to explore additional

methods further to improve the accuracy of AMDCnet in time

series prediction.
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