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Introduction: Creating training and testing datasets for machine learning 
algorithms to measure linear dimensions of organs is a tedious task. There 
are no universally accepted methods for evaluating outliers or anomalies in 
such datasets. This can cause errors in machine learning and compromise the 
quality of end products. The goal of this study is to identify optimal methods for 
detecting organ anomalies and outliers in medical datasets designed to train 
and test neural networks in morphometrics.

Methods: A dataset was created containing linear measurements of the spleen 
obtained from CT scans. Labelling was performed by three radiologists. The 
total number of studies included in the sample was N = 197 patients. Using visual 
methods (1.5 interquartile range; heat map; boxplot; histogram; scatter plot), 
machine learning algorithms (Isolation forest; Density-Based Spatial Clustering 
of Applications with Noise; K-nearest neighbors algorithm; Local outlier factor; 
One-class support vector machines; EllipticEnvelope; Autoencoders), and 
mathematical statistics (z-score, Grubb’s test; Rosner’s test).

Results: We identified measurement errors, input errors, abnormal size values 
and non-standard shapes of the organ (sickle-shaped, round, triangular, 
additional lobules). The most effective methods included visual techniques 
(including boxplots and histograms) and machine learning algorithms such is 
OSVM, KNN and autoencoders. A total of 32 outlier anomalies were found.

Discussion: Curation of complex morphometric datasets must involve thorough 
mathematical and clinical analyses. Relying solely on mathematical statistics or 
machine learning methods appears inadequate.
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1 Introduction

The advancement of artificial intelligence (AI) technologies for 
enhancement of priority sectors such as healthcare is a key component 
of the national agenda in many countries (Decree of the President of 
the Russian Federation, 2019; Mashraqi and Allehyani, 2022; Vasilev 
et al., 2024) (Supplementary Figure S1).

Dataset curation is an essential component of digitalization. 
Datasets are critical for both machine learning algorithms and AI 
model testing. One of the key factors is the quality of validation and 
test datasets. The dataset evaluation methods, labelers’ quantity and 
training, and quality of data (i.e., images, tables, and annotations)—
are critical (Vasilev et al., 2024). This study assesses and identifies 
outliers and anomalies that emerge during curation of training and 
testing datasets for machine learning applications in computer vision, 
specifically for automating measurements in diagnostic imaging 
(regression labelling) and morphometrics.

Since 2020, a large-scale experiment has been conducted in 
Moscow, Russia, to explore innovative computer vision technologies 
for medical image analysis and enhancement of the healthcare system 
(hereinafter - the Experiment). Over this period, the municipal public 
healthcare system was enhanced with AI models. Since the beginning, 
the models have evolved and now demonstrate high efficiency in 
detection and classification tasks (Mosmed.AI, 2025).1 This is 
evidenced by the fact that the second reading of screening 
mammograms in Moscow is conducted by an AI model rather than a 
radiologist (Vasilev et al., 2023).

The next task for the developers was to create AI models that 
automate routine measurements (morphometry). This required 
generation of complex datasets with measured anatomical 
structures. Routine data from radiological studies exhibit several 
characteristics: ambiguity, lack of standardization, large 
per-patient data volumes, dynamic parameters, and abundance of 
techniques for organ measurements (Vasilev et  al., 2023). 
Consequently, when curating datasets for training and testing the 
morphometric AI, we encountered a lack of uniform approaches 
or clear roadmaps. Certain challenges were associated with 
detecting outliers and anomalies during regression labelling of 
organs (linear dimensions, angles between organ structures, 
volumes, indices, and areas).

This paper defines an outlier as an observation (measured linear 
dimension of an organ) that significantly deviates from other 
observations, suggesting an error. This may result from physician 
input errors or measurement errors due to varying approaches to 
determining organ linear dimensions, influenced by radiologist 
expertise. Outliers in the final dataset can significantly impact 
machine learning algorithm training. Since even isolated values can 
substantially influence machine learning algorithms, neglecting 
dataset standardization could compromise the AI model, or lead to 
incorrect assessment and misinterpretation of radiological findings 
(Wada, 2020; Makarov and Namiot, 2023).

The goal of outlier identification goes beyond their immediate 
removal from dataset. Outliers can be categorized as either errors, 
requiring revision, correction, or removal, or anomalies 

1 https://mosmed.ai/ai/

(hereafter - anomalies) (Wada, 2020; Yepmo et al., 2022; Foorthuis, 
2021). Anomalies are observations that deviate from other 
measurements but are not caused by input or technical errors. They 
are of particular interest, necessitating careful analysis to determine 
their cause, such as a rare but possible organ size. Unreasonable 
removal of such data can compromise representativeness and, 
consequently, significant interpretation errors (Yepmo et al., 2022; 
Gaspar et al., 2011). Furthermore, abnormal organ size values can 
be of particular interest to researchers.

Consequently, the analysis of outliers and anomalies includes the 
following tasks:

 1. Identifying observed values as outliers;
 2. Reviewing data acquisition procedures and understanding the 

cause of outliers;
 3. Identifying abnormal values, as they may be  of particular 

research interest, and considering them separately.

Although outlier identification has been addressed in numerous 
scientific papers since the mid-19th century (Peirce, 1852), it remains 
highly relevant (Wada, 2020; Yepmo et al., 2022; Foorthuis, 2021). 
Currently, outlier and anomaly identification utilizes various methods, 
including machine learning (Makarov and Namiot, 2023; Nassreddine 
et al., 2023; Diers and Pigorsch, 2022), in addition to mathematical 
statistics (Sidnyaev and Battulga, 2024; Sysoev and 
Scheglevatych, 2019).

Development of datasets for morphometric AI models required 
comparison between mathematical statistics and machine learning 
approaches using a dataset of spleen linear measurements. Three 
radiologists labelled the dataset. We  considered the causes of 
outliers and anomalies, and proposed options for their occurrence 
and prevention. Thus, this paper seeks to advance the enhancement 
of healthcare AI, particularly in creating reliable systems that 
automate radiological measurements. This work addresses 
identification and processing of outliers and anomalies in 
morphometric datasets. Furthermore, it aligns with current global 
AI development strategies and modern trends in AI implementation 
in “digital healthcare.”

The goal of this paper is to identify effective methods for detecting 
and processing outliers and anomalies in radiological morphometric 
datasets, particularly for regression labelling of organ linear 
dimensions in computed tomography.

2 Materials and methods

The data were acquired during the Experiment (ClinicalTrials.gov 
identification code—NCT04489992).

2.1 Dataset

2.1.1 Population data
The dataset comprises computed tomography (CT) images of 

abdominal organs that includes linear dimension measurements of 
the spleen. The data acquired in Moscow medical facilities between 
April 1, 2023, and May 28, 2024, were extracted from the Unified 
Radiological Information Service of the Unified Medical 
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Information and Analytical System of Moscow (ERIS EMIAS). The 
data were anonymized using dedicated anonymization software 
(Vasilev et al., 2025). The dataset includes: 197 patients (89 men, 108 
women). Age: minimum 18 years, maximum 99 years, median 
61 years.

To prepare the dataset for evaluating AI models in spleen 
morphometry, sample size was calculated using Scipy and NumPy 
libraries in Jupyter Notebook. The null hypothesis (H0) suggested that 
the AI model would yield correct measurements for at least 81% of the 
studies. The anticipated AI performance was at 86%. With statistical 
power of 80% and one-sided significance of 0.025, a sample size of 379 
measurements was determined. This was rounded up to 400 to 
account for potential data rejection. Three defective studies were 
excluded (low image quality, absence of the spleen), resulting in 394 
measurements from 197 studies.

CT acquisition parameters: native study, slice thickness ≤1.5 mm, 
windowing “soft tissue (standard) kernel.”

Inclusion criteria: patient age over 18 years.
Exclusion criteria: artifacts, positioning defects, low image quality, 

incorrect slice thickness, oral contrast, and spleen absence.

2.1.2 Dataset labelling
Three radiologists independently labelled the studies. 

Requirements to labelers: radiologist certification and at least 3 years 
of abdominal CT experience.

Spleen diameter (largest anterior–posterior axial measurement) 
and thickness (the largest perpendicular dimension to the diameter in 
the axial plane) (Gaillard et al., 2009) were measured using a DICOM 
viewer (AGFA, Belgium), rounded to the nearest whole number, and 
recorded in an Excel table (.xlsx).

2.1.3 Units of measurement
The Russian Federation uses the International System of Units. All 

spleen measurements were in millimetres (mm), ranging from 1 
to 100 mm.

2.2 Data analysis

Statistical parameter calculation, machine learning, and data 
visualization were performed in Python (version 3.11.5) using the 
following libraries: numpy, pandas, matplotlib, seaborn, scipy, and 
sklearn, in their latest versions as of May 1, 2024.

Two method groups were used: mathematical statistics and 
classical machine learning, with a Kolmogorov–Smirnov test for 
normal distribution.

A selective literature review was conducted using various 
databases (PubMed, ScienceDirect, Google Scholar, Scopus, elibrary, 
etc.), though it was not the primary focus of this paper. Several 
mathematical statistics and machine learning method groups 
commonly used for outlier and anomaly detection in medical datasets 
were identified. Further spleen dataset analysis was performed using 
these methods.

2.2.1 Mathematical statistics and visual methods
Interquartile range (1.5 IQR) (Vinutha et al., 2018): a measure of 

dispersion reflecting the data spread. Specifically, it is defined as the 

difference between the upper (Q3) and lower (Q1) data quartiles (per 
scipy library documentation).

Z-score: a method based on data standardization (Carey and 
Delaney, 2010), requiring value recalculation using the formula (1):

 
µ

σ
−

= i
i

xZ
 

(1)

where x is the measurement result, μ is the mean value, and σ is 
the standard deviation. A Z-score exceeding three SD from the mean 
is considered an outlier.

Grubbs’ test: used (Adikaram et al., 2015) for samples with more 
than six observations (n > 6) to identify whether the largest or 
smallest value is an outlier. It detects isolated outliers (maximum 
or minimum), requiring iterative application. The null and 
alternative hypotheses are as follows (statistical significance 
α = 0.05):

H0: The largest (smallest) value is not an outlier.

H1: The largest (smallest) value is an outlier.

Suitable for isolated outlier detection; for multiple outliers, other 
methods are preferred. More suitable for outlier detection in normally 
distributed data (Davies and Gather, 1993).

Rosner’s test (Rosner, 1975; Rosner, 1983): used for samples with 
more than 20 observations (n > 20) to detect multiple outliers 
simultaneously. The method assumes a normal data distribution. The 
method compares each observation with other values. Although this 
method can detect outliers, we did not consider it as it is not applicable 
to our data.

2.2.2 Machine learning
Isolation forest: a robust outlier detection algorithm (resistant to 

small data fluctuations). The algorithm relies on decision tree 
principles and the ensemble random forest method (Sysoev and 
Scheglevatych, 2019; Popova, 2020). The algorithm randomly selects 
a feature and a split within that feature’s range. Observations less than 
or equal to the split go to the left child node; those greater go to the 
right. This process is repeated recursively across the dataset.

The following algorithm settings were used: contamination = 0.05, 
random_state = 3,000. Principal component analysis was used for 
outlier visualization, though it does not clearly identify outlier values. 
Therefore, a table of potential outlier values was generated for 
comprehensive analysis. Principal component analysis (Greenacre 
et  al., 2022) reduced data dimensionality to three principal 
components (considered necessary and sufficient), enabling three-
dimensional data visualization. Where there are multiple features, the 
method allows identifying the total number of potential outliers. This 
technique is useful for visualizing outlier distribution across features.

Density-based spatial clustering of applications with noise 
(DBSCAN): the algorithm (Monalisa and Kurnia, 2019; Schubert et al., 
2017) identifies clusters in data and outliers, regardless of cluster 
shape. It identifies high-density feature kernels and expands clusters 
with them. Suitable for data with clusters of similar density. Requires 
careful manual parameter selection, which can be challenging for 
multidimensional data. DBSCAN defines clusters based on two 
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parameters: Eps (maximum distance between two points to 
be considered neighbours) and min_samples (minimum number of 
neighboring points to qualify as a core point). If the ε-neighborhood 
has fewer than min_samples points, the point is not a core and may 
be considered noise.

In this study: spleen diameter - ε (eps) = 30, min_samples = 20; 
spleen thickness  - eps = 9, min_samples = 15. Parameters were 
manually adjusted.

K-nearest neighbors algorithm (KNN): this supervised learning 
method (Monalisa and Kurnia, 2019) was used in a non-conventional 
way. The dataset lacked predefined “outlier” or “non-outlier” labels, as 
it was not possible to know in advance whether it contained outliers 
or anomalies. Therefore, the method relied entirely on threshold 
values. The threshold values for outlier identification were set 
manually. After model training, the kneighbors method identified the 
k nearest neighbors for each observation, and distances to these 
neighbors were calculated. If k is too small, there is a risk of missing 
an outlier cluster; if k is too large, regular points may be misclassified 
as outliers (Wang et al., 2021). In this study, n_neighbors = 3.

Local outlier factor (LOF): this method (Popova, 2020; Xu et al., 
2022; Dulesov and Bayshev, 2023) uses data point density to detect 
outliers. Like KNN, LOF uses k-nearest neighbor distance estimation 
for outlier detection. It calculates the LOF metric based on sample 
local density and its k-nearest neighbors. This method is useful when 
the outlier status depends on the neighborhood of the data point, not 
the entire dataset. The method assigns each observation an outlier rate 
based on its isolation compared to neighboring observations 
(data points).

The following parameters were used: n_neighbors = 10, 
contamination = 0.5, novelty = False.

One-class support vector machines (OSVM): a popular outlier 
detection method (Ji and Xing, 2017), but sensitive to noise as it treats 
all observations equally. It is more suitable when all observations in 
the dataset follow a normal distribution. Since this is a supervised 
learning method, the dataset must be split into training and validation 
sets. The method constructs a nonlinear surface around the origin. A 
cut-off threshold (gamma) (Wang et  al., 2018) can be  set for 
anomalous data, useful for non-normally distributed datasets. The nu 
parameter controls the outlier proportion.

The following parameters were used: kernel = “rbf,” 
gamma = 0.001, nu = 0.03.

EllipticEnvelope: an outlier detection method (Kim et al., 2019) 
effective for normally distributed or time-series datasets.

The following settings were used: contamination = 0.03, 
random_state = 0.

Autoencoders: a method based on autoencoder, which is a neural 
network, was used to detect anomalies (Abhaya and Patra, 2023). It is 
trained to recover the input data from its compressed latent 
representation. The autoencoder architecture included 6 input features 
(spleen diameter and thickness along three dimensions), an encoder 
with layers of dimensionality 8, 4, 2 and a similar decoder, with 
LeakyReLu activation function (negative_slope = 1) and parameter 
optimization using the Adam algorithm with a learning step of 0.001. 
StandardScaler was used to normalize the data. Training was 
performed for 400 epochs using the MSE (mean square error) loss 
function. Outliers were defined as points whose reconstruction errors 
exceeded a threshold set at the 90th percentile level.

2.2.3 Data visualization
Outlier or anomaly presence can be determined by using methods 

other than mathematical statistics or machine learning. Visual statistical 
methods can be used independently of algebraic calculation methods.

Boxplot: box and whisker plots (Sim et al., 2005) are commonly 
used to present dataset details. It allows preliminary exploratory data 
analysis and identify outliers or extreme values (anomalies). This 
method provides insight into location, distribution, and asymmetry 
of data points. However, the method has limitations, especially with 
non-parametric data distributions.

Histogram: despite its seeming simplicity and applicability 
restrictions (Goldstein and Dengel, 2012), this method offers speed, 
accuracy, and adaptability to various data distributions. Outlier 
detection is highly dependent on histogram bin diameter and data 
accumulation per bin. Therefore, this method, like the boxplot, is 
effective for initial exploratory data analysis. The following parameters 
were used: bins = 30.

Heat map: this graphical method is used only in combination with 
other methods (DeBoer, 2015). In our case, it is associated with the 
Z-score. No specific parameters were used for the heat map.

Scatter plot: scatter plots can help detect outliers in visualized data 
clusters (Yuan and Hayashi, 2010). It can be used to identify and 
explain the behaviour of observed data points. No special settings 
were used for this method in our study. Interpretation of results.

An expert radiologist (over 5 years of CT experience) reviewed 
values identified as outliers or anomalies and interpreted the 
corresponding studies.

2.3 Validation of the use of methods in AI 
testing

To illustrate the use of our outlier search methods, we studied 
their impact on the testing process of an open source algorithm for 
spleen segmentation - medical open network for artificial intelligence 
(MONAI) (Project MONAI, 2025). For testing we used our dataset, 
where outliers and anomalies in the data had already been found 
previously, using the above methods.

Using MONAI, we  obtained spleen segmentation masks. 
Additionally, using the MONAI algorithm (after some refinement), 
we  calculated the diameter and thickness of the spleen. The 
obtained dimensions were compared with data from three 
radiologist. We  evaluated the hit in the range (minimum and 
maximum value from 3 doctors) of the measurements performed 
by the AI. We calculated the percentage of hits in the range. Then 
the expert reviewed those cases where there were input and 
measurement errors.

3 Results

Exploratory analysis and descriptive statistics calculation are 
mandatory data analysis steps, allowing researchers to formulate 
preliminary hypotheses that are subsequently tested. The results of 
basic descriptive statistics calculations for spleen thickness and 
diameter measurements by three radiologists are presented in 
Supplementary Table S1.
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3.1 Data obtained using visualization 
methods

 1. Finding outliers using a boxplot. Shown in Figure 1. Potential 
outliers are values outside the boundaries of (Q3, 
Q1) ± 1.5 IQR.

In this case, the method classified spleen diameter measurements 
>150 mm and <50 mm as outliers.

 2. An example of outliers found using a histogram is shown in 
Figure 2.

In this case, interpretation of visual data depends entirely on 
researcher opinion. In our study, spleen diameter of 175 mm or more 
and below 50 mm were considered outliers.

 3. A heat map constructed using Z-scores: this method 
normalizes all dataset values. We  used a heat map for 
visualization. A heat map is a graphical data representation 
where dataset values are represented by matrix colors. This 
method allows to visually assess features whose values differ 
significantly from the average, indicating potential outliers. The 
resulting heat map is shown in Figure 3.

The heat map interpretation: black bars are outliers, lighter areas 
are common measurements among radiologists in our dataset. 
Observed outliers: Radiologist #3–8 and 48 mm (spleen diameter); 
Radiologist #2–176 mm (spleen diameter). A limitation of this 
method is the difficulty in accurately identifying outliers and their 
exact values in large datasets. The most common spleen diameter 
measurement range is 96 mm – 160 mm.

The scatter plot was constructed using both spleen diameter and 
thickness values. Figure 4 shows two values that differ from the others.

It is difficult to determine if these are input error outliers or two 
patients with unusually small spleens. This graphical method allowed 
us to define a task: review this radiologist’s results for these two 
patients, clustered separately.

3.2 Outliers detected by mathematical 
statistics methods

Table  1 summarizes the number of outliers (or anomalies) 
detected by mathematical statistics and graphical methods.

FIGURE 1

Example of outlier identification—boxplot. Dots indicate potential 
outliers or anomalies in spleen diameter data (mm). FIGURE 2

Example of outlier identification—histogram. Red dotted lines and 
red colouring indicate potential outliers/anomalies.

FIGURE 3

Heat map constructed for Z-scores (±3σ). Diameter and thickness 
units are millimeters (mm).
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The two-sided Grubbs test shows Radiologist #1’s maximum 
spleen diameter values (Supplementary Table S1) are not outliers. 
Radiologist #2’s maximum and minimum spleen diameter 
measurements are outliers. Radiologist #3 has four outliers: two 
maximum and two minimum values. Grubbs and Rosner tests assume 
normally distributed data, which our data did not follow, so these 
results were excluded from analysis.

3.3 Outlier evaluation using machine 
learning

Machine learning methods detected outlier or anomaly signs in 
24 patients.

To demonstrate the Isolation Forest method, a graph (Figure 5) 
was constructed showing outliers using principal component analysis. 
Principal component analysis creates new linearly independent 
variables by combining original variables. Principal component (PC) 
is the coordinate axis that maximizes data variance.

Principal component analysis interpretation is difficult due to data 
dimensionality reduction that makes perception inconvenient. This 
graph shows data location in reduced-dimensionality space, clarifying 
why some data points were considered outliers. Full detected outlier 
information is shown in Table 2. Outlier value clarification is necessary 
and remains at the researcher’s discretion.

For the DBSCAN algorithm, graphs (Figure 6) of linear value 
distribution were constructed. While the method makes it convenient 
to determine outliers, it is parameter-sensitive and outlier-insensitive. 

In this case, two outliers are recognized, with spleen diameter less 
than 20 mm.

Outliers identified with the KNN method are not entirely obvious. 
Visualization methods (Figure  7) simplify decision-making about 
presence/absence of outliers.

Result interpretation relies on the researcher. We considered all 
spikes above Radiologist #3’s average spleen diameter as outliers. 
Precise interpretation is difficult as exact outlier values are unspecified. 
Outlier identification requires comparison with the original table 
containing patient’s unique identification number (UID).

Regardless of settings, the LOF algorithm identifies numerous 
dataset observations as outliers: 99 out of 197 observations were 
considered anomalies. An example of visualization is presented in 
Figure 8.

Interpreting LOF Distance values requires understanding the 
LOF algorithm. In our case, LOF Distance values are normalized 
from −1 to 1. Values close to 1 indicate an outlier. Values close to −1 
indicate a point is in a dense dataset cluster. Values near 0 indicate a 
regular data point (there are none in this dataset, values are either 
outliers or a single cluster). Outlier identification threshold choice 
can be  based on expert opinion. However, we  could not find an 
optimal threshold (threshold set to the 95th percentile is shown in 
Figure 8).

OSVM is also difficult to configure. It is not always clear which 
observation is an outlier and why. Visualization is presented in 
Figure 9.

Five outliers were detected in Radiologist #1’s labels. It is unclear 
why these specific points were considered outliers. For precise 
anomaly and outlier identification, an outlier table is advisable, though 
it may not specify spleen thickness or diameter. In this case, all red 
plus-marked points in Figure 9 and shown in Table 3 are considered 
outliers (for Radiologist #1).

EllipticEnvelope is convenient for anomaly or outlier detection. 
However, some outliers are questionable, despite the algorithm’s help 
with obvious outliers. Visualization is presented in Figure 10. Anomaly 
detection strongly depends on method settings.

An outlier table is necessary in addition to all methods. In this 
case, 8 mm spleen diameter is an outlier, but this is not clear from the 
graph. A separate table revealed six outliers: 8 mm (Radiologist #2 
spleen diameter), 12 mm (Radiologist #3 spleen diameter), 8 mm 
(Radiologist #3 spleen diameter), 90 mm (Radiologist #1 spleen 
diameter), 192 mm (Radiologist #1 spleen diameter), and 92 mm 
(Radiologist #1 spleen diameter).

Autoencoders can be used to find outliers. From the results 
obtained from the study, 20 outliers were found, where 12 matched 
the outliers found by other machine learning methods. The 
remaining 8 were reviewed by the radiologist, where 1 case was 

TABLE 1 Number of outliers identified by mathematical statistics methods for spleen thickness and diameter measurements across radiologists.

Method Thickness 1 Thickness 2 Thickness 3 Diameter 1 Diameter 2 Diameter 3

Hist (bins = 197) 2 4 0 5 2 2

Boxplot 2 4 0 6 5 8

Z-score 0 0 1 4 1 3

Grubbs test 0 0 0 0 2 4

Rosner test 0 0 0 4 1 2

The diameter and thickness indices indicate the radiologist who conducted the study.

FIGURE 4

Scatter plot. Spleen diameter and thickness, Radiologist #3.
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input error, 2 cases were measurement error (wrong slice was 
selected during markup). The remaining 5 cases were abnormal 
organ structure (sickle-shaped spleen, presence of additional 
lobules, other non-standard organ shapes in the form of a ball, 
triangle, etc.).

A general summary of outliers detected by machine learning 
methods is presented in Table 4.

3.4 Revision of outliers, study interpretation

As mentioned in the Materials and Methods section, studies that 
were considered outliers were reviewed by an expert radiologist for 
correctness, input errors (e.g., incomplete numbers, incorrect field 

entries, unit errors), and organ abnormalities. Data are presented in 
Table 5.

Experts described abnormal spleen structure and size cases 
among abnormal values identified by mathematical statistics and 
machine learning methods: splenomegaly, abnormal spleen 
appearance, accessory spleen. The observations are presented in 
Supplementary Figure S2.

Thus, using a combination of machine learning, visualization, and 
mathematical statistics, we  identified 24 patients with potential 
outliers, who were reviewed by radiologists. Some patients did have 
spleen abnormalities. The remaining diameter and thickness values 
were input errors.

3.5 Analysing AI performance

The percentage of hits in the spread before analysing outliers—
were from 17.8 and 21.8% (in thickness and diameter respectively), 
after removing outliers—18.2 and 21.2%. We  also analysed the 
performance of the algorithm solely with anomalous cases (no input 
errors and no measurement errors). It is noteworthy that the algorithm 
failed in measuring anomalous cases. Out of 13 cases that can 
be considered as anomalies of the organ structure or cases where the 
experts have established pathological condition of the organs, the AI 
fell within the range of measurements from radiologists in 7.7 and 
23.1% of cases (in thickness and diameter respectively).

4 Discussion

The development and advancement of AI technologies present 
novel challenges for researchers and software developers. Oftentimes, 
these challenges necessitate the development of unconventional 
solutions. One of the main goals is to automate routine measurements 
and morphometry. Morphometry involves the application of AI 
models for automated measurement of dimensions, volumes, indices, 
and angles in diagnostic images. The training and validation of such 
models necessitate creation of reference datasets and development of 
robust evaluation methodologies. The curation of these datasets is 
associated with numerous complexities. This study focuses on a data 

FIGURE 5

Outliers found using isolation forest and principal component 
analysis. PC is the component number (three main components). 
PC1 explains the largest data variance, indicating maximum data 
variation direction. PC2 explains the second largest data variance. 
PC2 is orthogonal to PC1. PC3 is the third axis orthogonal to PC1 
and PC2.

TABLE 2 Suspected outliers identified using isolation forest.

Diameter 1 Diameter 2 Diameter 3 Thickness 1 Thickness 2 Thickness 3

89 115 12* 45 35 51

151 154 169* 68 72 72

151* 128 130 68 78 80

192* 156 159 71 65 82

187* 161 163 65 53 68

187* 148 156 92* 59 56

151* 177 171 68 53 65

152 153 145 91 86 76*

182* 161 170 57 59 58

115 121* 113 81 81 82

*Outliers.
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analysis in morphometry: the identification of outliers in splenic size 
measurements obtained from abdominal CT scans.

The authors evaluated various outlier detection methods. The 
reviewed visualization techniques significantly simplify outlier 
identification and provide a comprehensive overview of the data 
distribution. The optimal approach involves a combination of 
calculation techniques and visual representation through graphs and 
histograms, complemented by tabular summaries of identified outliers.

The basic method involves constructing distribution histograms, 
enabling visual or boundary-based (e.g., 2σ or 3σ standard deviations) 
identification of outlying values. Boxplots are another commonly used 
data visualization technique. Scatter plots and heat maps are less 
common. The selection of a visualization technique depends on the 
specific task, data volume and type, and researcher preferences. The 
core principle of visual outlier detection is to define thresholds and 
analyse values outside them. These methods typically facilitate the 
identification of major errors, such as those associated with data entry 
or unit conversion.

More sophisticated methods, such as Z-scores, enable the 
identification of a greater number of anomalies and outliers, effectively 
detecting extreme values (e.g., in our study, 3 of 4 outlier errors 
were detected).

The Grubbs’ test enables analysis of extreme values and the 
derivation of statistically robust conclusions regarding outlier 
identification. However, this method presents several limitations in 
the context of medical data. Primarily, the Grubbs’ test is applicable 
only to normally distributed data. Medical research data often exhibit 
complex distributions, rendering this approach problematic. 
Furthermore, in medical contexts, values identified as outliers may 
possess clinical significance and necessitate careful review. Automatic 
exclusion of these values may result in the loss of crucial information. 
Considering these factors, for medical datasets, a thorough review of 
the maximum and minimum sample values informed by clinical 
context, may be more appropriate.

Rosner’s test, similar to the Z-score, is effective in identifying 
extreme values, but its application is also constrained by the 
assumption of normal data distribution.

Dixon’s, Chauvenet’s, and Romanovsky’s tests (Radkevich et al., 
2006; Zalyazhnyh, 2022) were excluded from the primary analysis due 
to their efficacy being limited to small datasets. However, we assume 
that their application may be  beneficial in other domains when 
addressing outlier detection challenges. In contrast to the other 

FIGURE 6

Determining outliers using DBSCAN. “+” - algorithm-found outliers.

FIGURE 7

Outlier search using KNN. Spikes are potential outliers. ID, identifier.

FIGURE 8

Identifying anomalies in a dataset using the LOF algorithm. Yellow 
points represent potential outliers.

FIGURE 9

Identifying anomalies in a dataset using the OSVM algorithm. 
Radiologist #1’s results are shown as an example. Crosses represent 
potential outliers.
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methods, which assessed outliers within the entire dataset (197 studies 
with diameter and thickness measurements from three radiologists), 
these criteria can be applied iteratively to each study and measured 
parameter. This approach facilitates identification of outliers in 
individual studies, which is particularly valuable in medical data 
characterized by case-specific nuances. These tests can be employed 
independently or in conjunction with other methods to pinpoint 
specific measurements that may be  outliers. This approach was 
demonstrated in the studies (Promtep et al., 2022; Bendre and Kale, 
1987) and proved effective in detecting anomalies in individual studies 
(Promtep et al., 2022; Bendre and Kale, 1987). However, most studies 
indicate that the Dixon test is less effective than other methods, such 
as Grubbs’ or Z-tests, for outlier detection across various distributions. 
It is most effective when applied to samples of 5–12 observations 
(Promtep et al., 2022). The presence of multiple simultaneous outliers 
can hinder the detection of individual outliers. Nevertheless, 
we applied the Chauvenet and Romanovsky tests to the data identified 
as “outliers” in this study, row by row. Using this approach, we did not 
detect any outliers. Therefore, within the context of this paper, these 

tests are not applicable, possibly due to the limited number of 
measurements per study.

Machine learning methods represent a complex suite of tools for 
outlier detection in medical data. Among the reviewed methods, only 
the Local Outlier Factor proved unsuitable for our dataset. Attempts 
to optimize the LOF algorithm resulted in an excessive number of 
outlier detections: 99 of 197 values were classified as anomalies. This 
may be attributed to the method’s high computational complexity, 
difficulties in hyperparameter selection, and reduced efficiency with 
small datasets, as the algorithm requires a sufficient number of 
neighbors for accurate density estimation. However, the literature 
suggests that 50–100 data points provide sufficient statistical 
significance (Popova, 2020).

OSVM was the most effective for outlier detection, identifying 16 
anomalies, 9 of which were missed by other methods. Among these 
16 outliers, 3 of 4 were data entry errors, and 7 of 12 were measurement 
errors. Additionally, the method identified 6 anomalies, including 
conditions such as splenomegaly and altered spleen morphology. 
However, interpreting its results can be challenging, as determining 
which measurements were classified as outliers and the underlying 
reasons requires in-depth expert analysis. Thus, OSVM demonstrated 
the highest sensitivity to organ structural anomalies among the other 
methods. This is because OSVM defines thresholds that separate 
“typical” data from outliers. It identifies a hyperplane in a 
multidimensional space that optimally separates normal observations 
from anomalies.

Isolation Forest ranked second in outlier detection, identifying 5 
measurement errors and 4 abnormal values, but exhibited low 
sensitivity to extreme values (only one data entry error was detected).

The k-Nearest Neighbors (KNN) method demonstrated high 
sensitivity to data entry errors, detecting all 4 errors. However, it 
detected only one organ anomaly. The primary reason is that KNN 

TABLE 3 Outliers identified by the OSVM method in radiologist #1’s 
labelling.

Spleen diameter, mm Spleen thickness, mm

48 33

71 64

118 34

182 57

115 81

Anomaly type (diameter or thickness) is indeterminate.

FIGURE 10

Detecting outliers using EllipticEnvelope. Calculating Mahalanobis distance.
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is highly sensitive to inter-value distances. If the distance between 
data points is small, the algorithm may not classify a measurement 
as an outlier. This is because KNN relies on local data characteristics: 
it determines if an observation is an outlier based on the density of 
neighboring points. Consequently, in datasets with low variability 
or tight clustering, the method may miss significant anomalies, 
which limits its ability to detect outliers in complex or noisy data. 
Data entry errors are typically points distant enough from the main 
data distribution, which secures their identification.

DBSCAN demonstrated results comparable to KNN in outlier 
detection. With the settings described in the Materials and Methods 
section, this algorithm is effective in identifying extreme data 
anomalies. However, as the epsilon (ε) parameter decreases, the 
number of detected outliers increases significantly. Conversely, as the 
min_samples parameter increases, the number of outliers decreases. 
This is because DBSCAN classifies points as outliers if they lack 
enough neighbors within a specified radius.

The EllipticEnvelope method identified 6 outliers. With specific 
settings, it successfully detected 3 of 4 data entry errors, but the 
remaining anomalies were detected with reduced efficacy.

In total, we used the autoencoder to find 20 cases that were labelled 
as “outliers.” The advantage of this method was that it was able to find 
those abnormalities of the organ structure that were not detected by 
other machine learning methods. However, it missed some of the 
measurement errors. This method requires a large amount of resources 
(radiologists) to review values that are not detected by other methods. 
Additionally, it is worth noting that it can lead to over-analysis. However, 
research shows that with various ways to improve this method, it has 
great potential in medical applications (Zimmerer et al., 2022). Thus, it 
is best used in conjunction with other machine learning methods.

Approbation of the use of outlier search methods in testing the AI 
showed low values of hits in the range from three doctors, which is 
most likely due to two main factors. Firstly, peculiarities of the AI 
operation: during the analysis the expert noted incorrect segmentation 
of the organ (clipping of segmentation boundaries). Secondly, the 
peculiarities of measurement by doctors and AI. Radiologists perform 
measurements on two-dimensional images (slices), while the AI 
segments the organ. Post-processing of the AI results consisted in 
finding the maximum and minimum dimensions of the organ, which 
in practice does not always correspond to classical slice measurements. 
Therefore, counting the number of hits in the range before and after 
removal of outliers was not indicative in this case.

It is also noteworthy that the algorithm copes better with diameter 
measurements than with thickness. This is due to the fact that the 
diameter is measured from the maximum equidistant points of the 
anteroposterior dimension on the axial slice of the spleen, so it is not 
so difficult to find the mask with the maximum diameter. The 
thickness is measured from the gate of entry of the vascular bundle 
into the spleen, which does not always correspond to the minimum 
size and is much more difficult for this segmentation algorithm. A 
total of 13 analysed studies with abnormalities of the spleen structure 
showed that in this case the AI copes worse with the thickness 
measurement. The findings clearly demonstrate that the algorithms 
require additional training on abnormal data, which should potentially 
improve the performance of the AI.

It is crucial to recognize that in medical studies, the presence of 
outliers in measurements does not invariably necessitate data 
exclusion. This stems from the potential for such outliers to signify 
pathological changes in a particular patient. Therefore, measurements 
identified as outliers should be reviewed by a medical expert. The 

TABLE 4 Number of potential outliers detected by machine learning methods.

Method Diameter 1 Thickness 1 Diameter 2 Thickness 2 Diameter 3 Thickness 3

Isolation forest 6 1 1 0 2 1

DBSCAN 2 2 1 1 2 0

KNN 1 2 1 1 2 1

LOF 99 - Hard to interpret

OSVM 5 6 7

EllipticEnvelope 1 1 1 0 3 0

Autoencoder 20

TABLE 5 Distribution and interpretation of outliers determined by different methods.

Method Input errors Measurement errors Abnormal values

z-score 3 3 3

Isolation forest 1 5 4

DBSCAN 3 3 2

KNN 4 3 1

OSVM 3 7 6

EllipticEnvelope 3 2 1

Autoencoder 4 9 8

Studies identified as outliers 4 15 13

OSVM-determined values differ from Table 4 due to some studies being marked as outliers twice by different radiologists.
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expert should decide whether to keep, replace, or exclude them from 
the dataset. This study demonstrates that variations in measurement 
methods are a primary source of outliers, highlighting the importance 
of developing precise labelling instructions for dataset curation. Such 
instruction must include measurement units, rounding parameters, 
measurement algorithms, and procedures for abnormalities, such as 
organ developmental anomalies, positional variations, and 
pathological changes. Including such studies in the dataset is 
essential, as it enhances representativeness and addresses anomalies 
and pathologies that demand urgent clinical attention, hence crucial 
for artificial intelligence development, testing and training.

4.1 Limitations

The methods evaluated were applied to two measurements of a 
single organ within one imaging modality (splenic diameter and 
thickness on abdominal CT scans). Results may vary under different 
research conditions. In addition, the normality of the distribution 
and the size of the sample under study should be taken into account 
when selecting the optimal methods for estimating emissions. When 
using machine learning methods, the hyperparameters are adjusted 
individually for each problem to be solved.

Future research should focus on developing automated medical 
image processing and analysis systems using integrated machine 
learning and statistical approaches. The results of this study (or the 
described methods) will be integrated in a data curation platform 
for visualization and automated outlier detection during study 
labelling (Vasilev et  al., 2025). Such a tool will allow both an 
integrated approach to the creation of quality representative datasets 
and isolated use in analysing data for different scientific tasks.

5 Conclusion

This study investigated various methods for identifying outliers 
and anomalies in splenic linear dimension measurements obtained 
from computed tomography. The analysis revealed that both classical 
statistical and machine learning methods are effective in identifying 
data anomalies. OSVM and autoencoders were the most productive 
methods, identifying the highest number of outliers, though its 
interpretation necessitates significant expert effort.

Visual techniques, such as histograms and boxplots, proved useful 
in preliminary data analysis, enabling rapid identification of potential 
outliers. However, for a deeper understanding of outlier characteristics, 
algorithms such as Isolation Forest and DBSCAN, which provide 
detailed analyses and reveal hidden data patterns, are most useful. 
Statistical methods, such as Z-scores, can be effective in describing 
outliers but lack sensitivity to organs with anomalies. Notably, most 
established statistical outlier detection methods assume normally 
distributed datasets, which is often unrealistic in biomedical research.

It is crucial to recognize that presence of outliers does not 
invariably necessitate data exclusion. In medical research, they may 
reflect genuine pathological changes. Therefore, results classified as 
outliers or anomalies should undergo thorough expert analysis and 
review to inform subsequent data processing decisions.

This study underscores the importance of an integrated approach to 
data analysis in morphometric studies. It is evident that a universal 

approach or algorithm cannot be consistently applied to analyse such 
datasets. Only a combination of diverse outlier detection and 
visualization methods can enhance analysis quality and improve the 
reliability of conclusions, which is particularly crucial in medical practice.

The main task that is supposed to be solved with the help of the 
considered methods is the creation of datasets for testing and 
training of AI. First of all, it is to improve the quality of datasets (and 
as a consequence, AI) by handling measurement errors. In addition, 
these methods will identify anomalies and non-standard cases to 
add or remove them to the dataset (depending on the problem the 
AI is solving). Another important application area is population 
science research. The use of AI algorithms to process diagnostic 
images will produce large data sets that will be  further analysed 
using the methods described. This will make it possible to identify 
and study non-standard cases, which in the future may lead to new 
scientific discoveries and improve the quality of medical care.
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