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The conception of autonomous, intelligent, collaborative robots has been the 
subject of science fiction rather than science in the second half of the previous 
century, with practical applications limited to industrial machines without any level 
of autonomous, intelligent, and collaborative capacity. The new century is facing the 
challenge of pressing industrial and social revolutions (4, 5, 6, …) with the prospect 
of infiltrating robots in every sector of human society; however, this dissemination 
will be possible if and only if acceptable degrees of autonomy, intelligence, and 
collaborative capacity can be achieved. Scientific and technological innovations 
are needed within a highly multidisciplinary framework, with a critical integration 
strategy and functional characterization that must ask a fundamental question: 
the design of autonomous, intelligent, collaborative robots should aim at a unified 
single template to be mass-produced including a standard setup procedure for 
the functional adaptation of any single prototype, or should the design aim at 
“baby” robots with a minimal set of sensory-motor-cognitive capabilities as the 
starting point of a training and educational process in close connection with 
human companions (masters, partners, final users)? The former alternative is 
supported by EAI, i.e., the Embodied variant of the Artificial Intelligence family 
of computational tools based on large foundation models. The latter alternative 
is bio-inspired; namely, it attempts to replicate the computational structure of 
Embodied Cognitive Science. Both formulations imply embodiment as a core 
issue. Still, we think this concept has a markedly different meaning and practical 
implications in the two cases, although we are still far away from the practical 
implementations of either roadmap. In this opinion paper, we explain why we think 
the bio-inspired approach is better than the EAI approach in providing a feasible 
roadmap for developing autonomous, intelligent, collaborative robots. In particular, 
we focus on the importance of collaborative human-robot interactions conceived 
in a general sense, ranging from haptic interactions in joint physical efforts (e.g., 
loading/unloading) to cognitive interactions for joint strategic planning of complex 
tasks. We envision this type of collaboration only made possible by a deep human-
robot mutual understanding based on a structural equivalence of their embodied 
cognitive architecture, based on an active, first-person acquisition of experience 
rather than a passive download of third-person knowledge.
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Introduction

The conception of autonomous, intelligent, collaborative robots 
has been the subject of science fiction rather than science in the 
second half of the previous century, with practical applications limited 
to industrial machines without any level of autonomous, intelligent, 
and collaborative capacity. The new century faces the challenge of 
pressing industrial and social revolutions (4, 5, 6, …) with the prospect 
of infiltrating robots in every sector of human society. Still, this 
dissemination will be possible if and only if acceptable degrees of 
autonomy, intelligence, and collaborative capacity can be achieved. 
Scientific and technological innovations are needed, pursued within a 
highly multidisciplinary framework, with a critical convergent strategy 
and functional characterization that must ask a fundamental question: 
the design of autonomous, intelligent, collaborative robots should aim 
at a unified single template to be mass-produced, including a standard 
setup/tuning procedure for the functional adaptation of any single 
prototype, or should the design aim at baby robots with a minimal set 
of sensory-motor-cognitive capabilities as the starting point of a 
training and educational process in close connection with human 
companions (masters, partners, final users)? Considering that both 
alternatives are decades from an actual implementation/application 
level, we suggest weighing the pros and cons of the different options 
and the robustness of their founding bases beyond the strong and/or 
excessive acclamation of AI technologies.

Knowledge, cognition, intelligence, 
wisdom

The 2024 Nobel Prizes in Physics and Chemistry awarded to two 
artificial intelligence scientists have highlighted the social and 
economic expectations for a scientific methodology based on big data 
and big computational power, whose scientific substance, in the 
framework of the modern scientific method established by Galilei and 
Newton, is still to be understood and still to be proven. There is no 
doubt that commercially available large language models (LLMs) or 
vision language models (VLMs) would pass the Turing test, exhibiting 
the machine’s ability to participate in plausible, natural language 
conversation. In particular, recent experimental results show that 
GPT-4.5 can pass formalized versions of such test when suitably 
prompted, with human judges identifying them as human in over 70% 
of cases—even more frequently than actual human participants (Jones 
and Bergen, 2025).

We should remember that the test was initially called the imitation 
game, and as such it could be considered more as a humanlikeness test 
rather than a direct test of intelligence. Moreover, the only aspect 
tested is verbal ability, which, by itself, is not the only source for 
acquiring and organizing knowledge and is certainly not related to the 
acquisition and organization of goal-driven motor abilities required 
in robotics. At the same time, there is no doubt that AI models can 
accelerate the search of complex problem spaces and thus can be used 
as powerful tools for discovering regularities and hidden properties in 
large data sets, e.g., for predicting proteins complex structures.

Moreover, the efficiency of the new computational tools does not 
imply that they characterize a new and superior scientific paradigm, 
as proposed by AI enthusiasts (Martin and Mani, 2024; Xu et al., 2024) 
who expect foundation models in generative AI to evolve into a new 

scientific domain: the crucial innovation would be to overcome the 
cognitive limitations of human minds, thus achieving reasoning and 
mental abilities far exceeding those of well-educated humans, 
including the most distinguished scientists as well as Nobel prize 
winners. In other words, the evolution of large AI models is expected 
by AI enthusiasts to quickly achieve a form of general AI (AGI) at the 
highest level of human intelligence, and then overcome it, ultimately 
becoming a superhuman omniscient sage, capable of “wisdom,” on top 
of immense amounts of encyclopedic knowledge; without attempting 
to define in a cogent way such challenging concept, either from the 
natural or artificial point of view, the jump from intelligence to 
wisdom is difficult to explain and justify.

In our opinion, the expectation of a future form of “artificial 
wisdom” on the side and the top of a supreme form of artificial 
intelligence is somehow illogical and frightening at the same time: in 
particular, we should consider the well-known ethical problems of AI 
expressed by many, including one of the two Nobel prize winners 
(Geoffrey Hinton), interviewed by Heaven (2023). Although the 
ethical issue is outside the focus of this paper on cognitive robotics, 
the scientific and technological rationale of an envisaged artificial 
wisdom needs to be addressed at the beginning of this article, which 
is based on the crucial role of embodied cognition for human-robot 
interaction and collaboration principles.

Knowledge, intelligence, and wisdom are related but distinct 
concepts about human nature, which a standard template cannot 
capture because each individual is somehow unique, i.e., an exception 
concerning any conceivable standard, and thus, human nature, in 
general, is paradoxical, contradictory, and subject to continual change. 
An inteligent system in the framework of current AI is mainly a 
system with problem-solving ability that implies the knowledge of 
large sets of facts and rules. Human wisdom is characterized by several 
potentially conflicting components (Jeste and Lee, 2019), such as 
social decision-making, a value system, emotional regulation, 
prosocial behaviors, self-reflection, acceptance of uncertainty, 
decisiveness, fusing knowledge with experience, insight, good 
judgment, etc. Moreover, wisdom has a fundamentally social function, 
namely, to suggest and induce people to consider the consequences of 
their actions to themselves and society in the framework of a value 
system, and there is experimental evidence that the relationships 
between intelligence and wisdom in individuals is far from linear 
(Glück and Scherpf, 2022). Thus, moving from the natural to the 
artificial domain, there is no solid ground to believe that betting on 
intelligence to achieve wisdom is a promising evolutionary outline. 
Modern history, marked by the Renaissance and illuminism, which 
nurtured and consolidated the emergence of the scientific paradigm 
as an undisputed methodological standard, is a clear witness of the 
erratic evolution of the shared understanding of the concept of 
wisdom: in any case, wisdom appears as a changing work in progress, 
as something to be  decided and conquered by a community of 
individuals, within some democratic framework, not the exceptional 
individual capability to be evaluated in a competition, as a chess game. 
Consequently, the expectation of autonomous artificial wisdom as the 
emerging asymptotic property of higher and higher versions of AI 
foundation models appears illogical and misleading, scientifically 
and socially.

In short, we believe that considering advanced forms of AI as a 
new scientific paradigm is wrong. However, such technologies will 
be a powerful tool in developing the fourth industrial revolution and 
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beyond. Moreover, there is a predictable “saturation” of the AI-driven 
futuristic scenarios determined by the maturation of new computing 
scenarios such as quantum computing (Morasso, 2023; Gill et al., 
2024) and/or wetware/organic computing (Jordan et al., 2024), thus 
overcoming the limitations of the digital framework that characterizes 
the current computational formulation of AI. Quantum computing is 
expected to address the quantum effects that underlie dynamic 
interaction at the nano-scale in biology, opening the door to an 
entirely new understanding of the self-organizing processes that 
characterize the organization and the development of the central 
nervous system, thus supporting the evolution of natural intelligence. 
Moreover, a crucial difference between the all-digital scenario and the 
scenario based on quantum/wetware computing is the energetic 
consumption, i.e., the energetic frugality intrinsic in the non-digital 
or only partially digital future scenarios.

On the other hand, the surprising performance of recent 
foundation models, such as large language models (LLMs) or vision 
language models (VLMs), hides the fact that these models are 
essentially passive: they are trained based on vast amounts of data, and 
thus are intrinsically unable to provide the robot’s body with specific 
inference capabilities, necessary for identifying in any given task the 
crucial and typically small set of information and combination of 
actions that make the difference between success and failure or wise 
versus foolish behavior.

AI vs. embodied cognition

AI is a disembodied computational process conceived to conduct 
all sorts of imitation games, starting with the Turing test (Turing, 
1950). The issue of embodiment is called on stage if an AI agent is 
requested to act, i.e., the agent is supposed to answer questions coming 
from the physical world, and the answers should somehow produce 
effects in the same world. Thus, the cognitive agent must have a body, 
which includes sensors for detecting and evaluating what happens in 
the environment and actuators for generating physical effects within 
a well-defined time framework: in real-time, delayed-time, or 
intermittent-time. Probably, the first example of a minimal embodied 
AI agent was proposed by Braitenberg (1984) describing Vehicles, 
namely a class of simple, autonomous moving agents where simple, 
conceptually analog, wired schemes implemented the process between 
visual sensors and motor actuators. Depending on the chosen scheme 
and the structure of the environment, the vehicle could show a variety 
of complex behaviors that may appear flexible, adaptive, goal-directed, 
and even intelligent, although in a nutshell scale, without any specific 
cognitive processes.

This minimalistic approach to what is now known as EAI 
(Embodied AI) was expanded by Brooks (1991), who proposed that 
there is no need for complex algorithms or internal representations for 
producing intelligent behaviors of autonomous agents because the key 
source of adaptive dynamics is the direct physical interactions of the 
agent with its environment. Since such interaction is made possible by 
the agent’s body, Brooks concluded that Intelligence must have a body 
and suggested calling it “embodied intelligence.” This embodiment 
hypothesis was further elaborated upon by Smith and Thelen (1994), 
Pfeifer and Scheier (2001), and Smith (2005), among others, ending 
up with the current understanding that EAI is a variety of AI that 
integrates artificial intelligence into physical entities like robots, 
endowing them with the ability to perceive, learn from, and 

dynamically interact with their environment: in other words, the 
explicitly stated goal of EAI is to build General-Purpose Robots via 
Foundation Models (Hu et al., 2023), namely “robots that operate 
seamlessly in any environment, with any object, and utilizing various 
skills to complete diverse tasks.” The problem is how to integrate the 
rationale of data-driven foundation models in the sensory-motor-
cognitive structure of a robot, covering the large variety of functions 
related to perception, prospection, task planning, and action 
generation: the combined “space” of environments, tasks, and actions 
is virtually infinite, and attempting to sample it to train a set of 
foundation models that may encapsulate the cognitive capabilities 
expected of a generally intelligent robot looks like a hopeless goal, at 
least in an open environment and in the framework of 
bounded resources.

On the other hand, we should consider that the same goal of 
conceiving and designing robots with general intelligence has been 
investigated well before EAI under the label of Cognitive Architectures 
for Cognitive Agents. This research field has been very active for 
several decades, as reported by a recent review (Kotseruba and 
Tsotsos, 2020), considering tens of projects at different levels of 
development. However, we  are still far away from some standard 
framework. Among the well-developed prototypes, some architectures 
focus on modeling human cognition in general as a unified theory of 
cognition, like SOAR (Laird et al., 1987), ACT-R (Anderson, 1996), 
CLARION (Sun, 2007), and others aimed explicitly at developmental 
robotics as iCub (Vernon et al., 2007, 2011) or the cognitive software 
framework of humanoid robotscognitive robotics, such as ISAC 
(Kawamura et  al., 2008), ArmaX (Vahrenkamp et  al., 2015), and 
CRAM (Beetz et al., 2023). In different manners, such prototypes 
integrate essential cognitive functions for autonomous cognitive 
agents (e.g., active perception, purposive action, perceptual inference, 
learning, adaptation, anticipation, prospection, motivation, attention, 
action selection, memory, reasoning) with a hybrid combination of 
computational tools, including symbolic tools (based on logic-based 
programming and the use of rules and axioms to make inferences and 
deductions) and sub-symbolic ones, similar to the neural networks of 
the foundation models of EAI.

However, in both approaches considered above, the embodiment 
issue plays only a minor role, namely the integration of input–output 
peripherals with a reasoning/inference machinery of different 
complexity levels: in the case of the Vehicles model (Braitenberg, 1984), 
the computational machinery is a simple hand-wired electronic circuit; 
in the case of CRAM (Beetz et al., 2023) the computational machinery 
includes self-programmability entailed by physical symbol systems, a 
plan language for generalized action plans, implicit-to-explicit 
manipulation, generative models, digital twin knowledge 
representation, and narrative-enabled episodic memories; in the case 
of the envisaged innovation toward general-purpose robots via 
foundation models (Hu et al., 2023) it is expected to apply both existing 
vision and/or language foundation models already modified for robotic 
applications (Ahn et al., 2022; Chen et al., 2023) as well as models 
specifically developed for robotic functions (Brohan et  al., 2023a, 
2023b) counting on their potential generalization ability across 
different tasks and even embodiment schemes. In this view, 
embodiment is somewhat limited and reduced to a one-way flow of 
information from the sensory periphery toward more remote areas of 
the brain and then back to the motor periphery. More generally, there 
is ground to doubt to which extent EAI is really embodied (Hoffmann 
and Patni, 2025).
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In contrast to the minimal utilization of the embodiment concept 
that characterizes EAI, we should consider an alternative view, namely 
a form of Embodied Natural Intelligence based on cognitive 
neuroscience, in particular the subfield known as embodied cognition 
(Varela et al., 1991; Clark, 1997, 1998) which emerged in the nineties 
in opposition to the Cartesian dualism and, more recently, to 
cognitivism and computationalism. Embodied models of cognition 
are opposed to the disembodied Cartesian model, according to which 
all mental phenomena are non-physical and thus not influenced by 
the body, as well as to EAI models where embodiment is limited to 
one-way interaction between brain, body, and environment. By 
embodiment, the supporters of embodied cognition refer to the 
circular, bi-directional interaction where the body allows the brain to 
physically interact with the environment to accumulate and distill 
personal experiences, driving the formation and evolution of the 
agent’s cognition. An account of this process is proposed by Varela 
et  al. (1991) as enaction theory, whereby cognitive processes 
incorporate sensations into a sensorimotor loop, through which active 
experience of the environment is realized (“enacted”). In this 
framework, the goal is not to learn the model of the world through 
interaction but to learn the model of the interaction between the agent 
and the world. Such a view about embodied cognition, based on the 
working hypothesis that cognitive processes are deeply rooted in the 
body’s bi-directional interactions with the world, is summarized by 
Wilson (2002) into six claims about the fundamental features of 
human embodied cognition which have a direct computational 
relevance: (1) situated-ness, (2) time-pressured-ness, (3) exploitation 
of the intrinsic dynamics of the environment, (4) integration of the 
environment in the cognitive architecture, (5) cognition is mainly an 
online, action-oriented process; (6) even offline cognition is body 
based. The experimental baseline to support such claims is diverse and 
includes the following lines of evidence: ideo-motor theories of 
perception (Prinz, 1987); the developmental psychology of Piaget 
(1952) who traced the evolution of cognitive levels from the 
consolidation of sensorimotor abilities up to higher levels; the 
ecological psychology of Gibson (1977) who characterized active 
perception as the discovery of potential interactions with the 
environment, i.e., affordances; the linguistic decomposition of abstract 
concepts in terms of qualitative explanations based on bodily 
metaphors (Lakoff and Johnson, 1999); the sociocultural theory of 
Vygotsky (1978) emphasizing the role of social interaction in shaping 
cognitive development.

Despite all this evidence in favor of the view that the mind must 
be understood only in the context of its relationship with a physical 
body that interacts with the world in an online manner (the 
embodiment hypothesis), it has been objected that cognitive activities 
of various nature can take place as well when the brain is decoupled 
from any immediate interaction with the environment, i.e., in an 
offline manner. This coexistence of online and offline operational 
modes of human cognitive activities contradicts the embodied 
cognition hypothesis, which claims to characterize the whole of 
cognition, not only a part of it. However, this is only an apparent 
paradox if we associate the online vs. offline antinomy (related to the 
interaction of a cognitive agent with the environment) with two 
additional antinomies, namely actual vs. imagined activities and overt 
vs. covert actions: these antinomies reflect the computational and 
neural equivalence between the sensory-motor-cognitive processes 
involved in the execution of purposive actions and the processes 

activated for reasoning about virtual actions, for example in the 
context of the fundamental cognitive function known as prospection. 
Prospection is the mental simulation of actions to evaluate their 
potential sensorimotor, environmental, and social effects in the future, 
thus supporting an informed (and potentially wise) decision-making 
process (Gilbert and Wilson, 2007; Seligman et al., 2013; Vernon et al., 
2015). The experimental evidence about the equivalence stated above 
comes from the study of motor imagery (Decety, 1996; O’Shea and 
Moran, 2017) and different forms of a simulation theory of cognition 
(Decety and Ingvar, 1990; Jeannerod, 2001; Hesslow, 2002, 2012; 
Grush, 2004; Ptak et al., 2017); an essential part of this theory is that 
the simulation is performed by the same neural mechanisms as those 
typically involved in movement execution and perception, although 
some researchers suggest that simulation (or emulation) of actions is 
performed by a neural mechanism that is different and separate from 
brain areas directly involved in movement and perception (Wolpert 
et al., 1998). In any case, the equivalence between overt and covert 
actions does not refer only to the geometry of the involved brain areas 
but also to the timing of the simulated actions in comparison with the 
executed ones (Shepard and Metzler, 1971; Decety et al., 1989; Decety 
and Jeannerod, 1995; Karklinsky and Flash, 2015; Gauthier and van 
Wassenhove, 2016).

The issue about the apparent online vs. offline paradox, related to 
the timing of purposive action in support of embodied cognition, is 
further completed if we consider another facet of human cognition, 
related to the spatial aspect of purposive actions, i.e., the role of 
cognitive cortical maps: such brain structures, located in the medial 
temporal lobe, were proposed by Tolman (1948) for understanding 
flexible behavior in rodents, e.g., foraging patterns by rats in mazes. In 
humans, it has become evident that, in addition to their function in 
spatial navigation, cognitive maps are also the backbone of a 
systematic organization of knowledge in abstract spaces in such a way 
as to support the learning of higher-level knowledge (Behrens et al., 
2018; Bellmund et al., 2018; Bokeria et al., 2021; Qiu et al., 2024): this 
means that neurons previously identified in cognitive maps for 
guiding navigation in the physical environment, such as “place cells,” 
“grid cells” and “head-direction cells” are also likely to support the 
ability to mentally “navigate” through conceptual spaces for more 
abstract reasoning tasks.

The double role of cognitive maps, namely the integration in the 
same brain structure of the “geometrical” aspects of actions at different 
abstract levels, together with the double role of the brain areas 
involved in the simulation theory of cognition, for the representation 
of the “timing,” “kinematic,” and “haptic” aspects of overt as well as 
covert actions, explains in which sense and how much embodied 
human cognition is fundamentally embodied in contrast to the 
minimal degree of embodiment which characterizes artificial 
intelligence, in general, and EAI in particular.

From the philosophical standpoint, the strong formulation of the 
nature and organization of embodied cognition is consistent with the 
extended mind hypothesis (Clark and Chalmers, 1998), namely the 
belief in the fundamental active role of the environment in driving 
cognitive processes. Learning, one of the mind’s primary functions, 
emerges from the closed-loop dynamics that link active perception, 
purposive action, cognition, and dynamically changing environment. 
In other words, learning and other fundamental cognitive functions 
as prospection should be understood in the framework of an extended 
theory of the mind, which includes the changing environment as a 
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part of the mind dynamical model. In the extended mind hypothesis 
framework, we should also consider that such extension is naturally 
articulated in two directions: extension to the physical environment 
and the social environment. In other words, we should assume that 
the process of mind extension is not innate or genetically coded, 
although it is based on genetically based mechanisms, but is mainly 
the product of different developmental processes, articulated in two 
main streams: (a) the multi-stage theory of cognitive development, 
starting with the sensorimotor stage (Piaget, 1952); (b) the 
sociocultural theory of cognitive development (Vygotsky, 1978).

Figure 1 illustrates in a simplified manner the difference between 
the two roadmaps examined above for the design of autonomous, 
intelligent, collaborative robots, namely the roadmap based on AI 
foundation models and the roadmap based on full embodied cognition. 
The former alternative, in the top panel, shows that the sensory, motor, 
control, and reasoning processes that are required for carrying out a 
given task as a function of a given environment are inferred from a 
large foundation model, trained by the sampled performance of a 
population of skilled human agents operating in similar situations, i.e., 
a large dataset of third-person knowledge: the crucial point is that such 
data are collected with unnecessary high-resolution but with 
insufficient filtering of “keyframes.” The bottom panel illustrates the 
main features of the proposed bio-inspired roadmap. In particular, it 

singles out the crucial features of embodied cognition, based on the 
accumulation of first-person experience, filtered and organized into a 
personal episodic/procedural memory, evaluated through a prospective 
process that combines overt and covert actions using a body model and 
cooperative interactions with a skilled tutor. Although the body, which 
is in charge of producing overt actions, and the body-schema, which is 
supposed to deal with covert (mental) actions, are represented 
graphically as different blocks, we must remember that, in agreement 
with the theory on the neural simulation of actions, they incorporate 
and integrate both functions in the same computational module.

Embodied cognition and 
computational frugality

Summarizing the analysis of the previous section, we highlight 
that human cognition substantiates first-person (autobiographical) 
human experience, characterized as embedded, enactive, and 
extended, based on the continually changing, embodied, and affective 
interactions with the world. In contrast, EAI aims at the design of 
general-purpose robots via foundation models (Hu et al., 2023) based 
on large amounts of pre-coded, general-purpose, encyclopedic 
knowledge, providing third-person (impersonal) experience with a 

FIGURE 1

Design principles of autonomous, intelligent, collaborative robots. Summary of the difference between the roadmap based on EAI (top section) and the 
roadmap based on embodied, developmental cognition (bottom section).
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low degree of embodied cognitive interaction. In any case, the goal of 
EAI is still far away, and possibly the expectation of functionally open-
ended, general-purpose, super-intelligent robots is an unreasonable 
dream. Even EAI enthusiasts (Liu and Wu, 2024) recognize that there 
is still a lot to do because large foundation models (LLMs and VLMs) 
may support only a part of the essential cognitive capabilities of 
autonomous intelligent robots, providing efficient inference 
capabilities. In the framework based on foundation models, what is 
lacking is related to the crucial first-person cognitive experience that 
may allow a robot to be truly autonomous, intelligent, and efficient. In 
particular, it is suggested that EAI robotics must develop several 
brand-new cognitive models as the following: an evolutionary learning 
process driven by the agent’s physical interactions with open 
environments; multiverse representations of a virtual environment 
that can effectively emulate the real world, and interact with the EAI 
systems (Hall et al., 2022); understanding the physical world, such as 
the concept of gravity, by using intuitive physics models (Piloto 
et al., 2022).

In general, at the current level of development and understanding, 
EAI-based robots are likely to face a kind of deep “personality 
conflict,” namely the conflict between the third-person, disembodied, 
offline-trained foundation models that should provide the central core 
of the cognitive capabilities and the first-person, online interaction 
with the environment and the associated training processes. There is 
no guarantee that the two coexisting paradigms can avoid conflicting 
situations and/or may face conflicts without a principle of arbitration 
and solution in the short and long term. Conversely, findings from 
developmental psychology demonstrate that in humans abstract 
cognitive skills—such as the use of abstract verbs or numerical 
reasoning—are fundamentally grounded in sensorimotor activity, and 
bodily experience scaffolds symbol formation. Such a process allows 
a smooth integration of first-person and third-person knowledge, as 
suggested by computationally modeled formulations (Cangelosi and 
Stramandinoli, 2018).

The foundational role of the body becomes particularly evident 
when we contrast it with the limitations of current large-scale learning 
architectures. Despite their remarkable performance in language and 
vision tasks, foundational models—whether LLMs or VLMs—struggle 
to generalize seemingly trivial spatial concepts. Notions such as height, 
relative position, or reachability—intuitively mastered by humans from 
early infancy through bodily interaction—remain elusive for these 
models, especially when they are applied in robotic contexts. For 
instance, robotic arms trained through behavioral cloning on extensive 
demonstrations show impressive proficiency when reproducing known 
actions in familiar settings. However, even minor changes—such as a 
slight shift in the object’s position, a different tablecloth pattern, or a 
slight variation in height—can cause performance to drop dramatically, 
as recently pointed out by Dieter Fox in his “Where’s RobotGPT” talk 
(Fox, 2024). These changes, which humans would effortlessly generalize 
due to their embodied spatial understanding and reasoning, often 
require retraining or additional examples for the model to adapt, thus 
illustrating how the lack of embodied grounding and causality severely 
limits the generalization and adaptability of current AI models in 
physical environments.

A fundamental difference between passive learning—as 
performed by LLMs—and the kind of first-person learning 
we advocate lies in the nature of captured relationships. LLMs, trained 
on vast corpora of linguistic data, have proven remarkably capable of 

extracting statistical regularities, many of which reflect deep 
correlations embedded in language. This correlational power allows 
them to solve complex tasks with apparent fluency. However, this 
mechanism radically differs from how humans (and robots with a 
fundamentally embodied training experience) learn through active 
engagement with the world. In first-person learning, the agent does 
not merely observe correlations—it experiences causation. By 
performing an action with a specific goal in mind and perceiving its 
consequences, the agent can establish a direct link between its 
behavior and the resulting outcome. This ability to isolate causal 
mechanisms provides a powerful filter that distinguishes meaningful 
action-effect relationships from coincidental correlations, a 
fundamental process well documented in the developmental literature. 
According to the “interventionist” view of causality (Gopnik and 
Schulz, 2007), knowing that X causes Y implies that manipulating X 
leads to a change in Y. Children learn about causation precisely 
through intentional interventions and the observation of contingent 
outcomes. By age four, children can actively experiment to infer causal 
structures (Schulz and Bonawitz, 2007), going beyond early Piagetian 
learning, where actions are simply associated with their direct 
outcomes (Piaget, 1930). Even at around 24 months, infants are adept 
at observational causal learning: they do not merely imitate or detect 
correlations between events but infer causal relationships from others’ 
actions and use those inferences to plan their own interventions 
(Meltzoff et al., 2012). These findings suggest that the human capacity 
for causal learning is rooted in embodied, intentional activity from a 
very early age. Crucially, this causally grounded understanding—
emerging from both action and observation—enables robust 
generalization. Instead of brute-force pattern matching over all 
conceivable correlations, the agent can reason about what actions are 
likely to produce desired effects, even in unfamiliar scenarios. 
Replicating this capacity in artificial agents requires grounding 
learning in embodied, interactive experience. Otherwise, the ability to 
generalize causal knowledge across domains and contexts will likely 
remain severely limited.

Moreover, it may be  observed that the computational model, 
which forms the philosophical foundation of artificial intelligence, 
implies intractable problems (Clark, 1999): in particular, an 
information bottleneck occurs when the mind is requested to 
construct detailed representations of the external world to produce 
appropriate purposive actions. The problem is that the world is 
constantly changing, for its dynamics and as an effect induced by the 
agent’s actions, and thus, the demands on the mental system are likely 
to preclude the agent from producing appropriate actions just in time. 
The nature of such information bottleneck, due to the supposed need 
for a multiverse representation of the environment, is another aspect 
of the computational prodigality that characterizes AI in general and 
EAI in particular, based on the “brute-force” assumption that infinite 
amounts of training data are available and computational resources 
are vast and free. In contrast, as observed by Clark, humans need 
relatively little information about the world before they manage to act 
effectively upon it.

Vision and, in general, the multi-sensory perception of the 
peripersonal space in the surrounding environment (Di Pellegrino 
and Làdavas, 2015; de Vignemont et al., 2021) is an active, purposive, 
attention-driven process not a passive, high-resolution, virtual 
representation. Although the spatial awareness implicit in everyday 
life supports the illusion of a stable and fully detailed representation 
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of the world, this subjective impression (Clark, 1997) obscures the 
reality of minimal and low-detail environmental information where 
the constraint of quick action guides the search and acquisition of 
missing perceptual evidence to extract information “just in time.” This 
concept exemplifies the computational frugality of the bidirectional 
human embodied cognition. It avoids the computationally expensive 
reconstruction of a detailed world model on the working assumption 
that the world is its best model, which only needs to be sampled where 
and when required.

Another crucial aspect of the computational frugality of the 
human-embodied cognitive system is related to the role of episodic 
memory (Dickerson and Eichenbaum, 2010) in the framework of 
versatile and articulated human memory systems. The episodic 
memory system is implemented in the brain by an extended circuitry 
centered around the medial temporal lobe (MTL), interacting with 
several cortical and subcortical areas: the functions of the cortical 
components address many aspects of perception and cognition, 
whereas the MTL system mediates the formation and retrieval of the 
associative network of memories whose details are stored in the 
cortical areas. Episodic memories (EMs) are related to specific 
personal experiences that occur in daily life and, for some reason, are 
isolated for their “exceptional” relevance and stored in long-term 
memory. The motivations to single out such episodes from the 
sensory-motor flow of daily life can be of different types, such as 
curiosity, novelty detection, emotional drive, social interaction with a 
teaching master, etc. These memories are structured chunks of 
information that include spatio-temporal patterns about sequences of 
actions and the surrounding environment. They include a declarative 
component, expressed explicitly by direct conscious access to 
information and communicated by spoken language, and a 
nondeclarative component, such as a procedural memory about the 
learned sequence of movements or actions appropriate for the 
memorized episode.

Episodic memories are unique samples extracted from any 
embodied cognitive agent’s continuous sensorimotor experience flow 
and coded in some associative storage. Sensorimotor intelligence 
implies the dual capacity, on one side, to identify and code relevant or 
crucial episodes and, on the other, to detect the resonance with a 
stored episode in a given action sequence. Thereafter, the cognitive 
agent is supposed to quickly retrieve the detailed episode, adapt it to 
the specific circumstance, and produce the corresponding procedural 
behavior. In any case, this mnemonic process is not reproductive, as a 
kind of playback routine of stored information, but reconstructive, 
namely the activation of an internal simulation model based on the 
key parameters stored in the episodic memory. Of course, episodic 
memories are far from detailed digital recordings and do not need to 
be so. When retrieved from long-term memory to guide an action 
plan, they are instantiated with slight modifications induced by the 
situation and the agent’s state. However, this kind of flexibility may 
include margins of failure if the recall occurs in extreme conditions. 
This issue is well known in forensic psychology (Sarwar et al., 2004) 
concerning the possible contradictions of eyewitnesses: due to the 
reconstructive nature of the mnemonic process, it is likely that the 
event recalled by an eyewitness, in situations with intense emotional 
stress, is corrupted by unrelated memory fragments that have nothing 
to do with the truth. Such a problem affects large associative memory 
systems, such as Hopfield networks (Hopfield, 1982), in case of 
overloading. However, this does not affect the main issue, namely the 

fact that the episodic memory system, in association with procedural 
memories, is a formidable mechanism of computational frugality that 
allows a cognitive agent to store and retrieve the minimum amount of 
information together with the minimum amount of 
computational power.

Preliminary studies have explored the systematic use of episodic 
memories in cognitive robotics (Mohan et al., 2014; Vernon et al., 
2015). In our opinion, this is one of the crucial research lines to 
be  further investigated in embodied cognitive robotics. The main 
difference of this approach, in comparison with the EAI approach, 
based on large foundation models, is that it is based on first-person 
experience rather than third-person, pre-coded knowledge: 
computational frugality of the single autonomous agent vs. 
computational prodigality of the population of super-intelligent 
agents. However, this does not imply that cognitive robots, educated 
according to principles of first-person acquisition of experience, 
cannot take advantage of the consultation of encyclopedic knowledge 
stored in books, manuals, movies or web browsers using language 
tools as AI foundation models. This (third-person) knowledge can 
be  used to update or adapt/consolidate first-person know-how 
obtained through personal experience, for example, by modifying 
specific parameters of episodic memory or the associated procedural 
trace. The opposite process, namely integrating first-personal 
knowledge into a large third-person structure, is unnatural 
and impractical.

Along the same line of reasoning, we suggest that the issue of 
computational frugality can be  associated with the well-known 
epistemological, philosophic concept known as Ockham’s razor, 
namely the principle of cognitive parsimony in the search for an 
explanation of scientific or philosophic problems, i.e., the principle 
that robust explanations should be  constructed with the smallest 
possible set of elements: entia non sunt multiplicanda praeter 
necessitate (entities should not be multiplied beyond necessity).

Embodied cognition and the extended 
mind hypothesis

In a previous section, we briefly discussed the extended mind 
hypothesis (Clark and Chalmers, 1998), concerning the organization 
of embodied cognition, and we suggested two interrelated extensions: 
integration with the physical environment and integration with the 
social environment. The former issue deals with the need for the 
embodied cognitive system to incorporate some degree of what is 
known as commonsense knowledge about the dynamics of the 
physical world, including causality during physical interaction, the 
effect of gravity, etc. Commonsense representation and reasoning have 
been among the central issues addressed by symbolic AI (a.k.a. 
GOFAI: Good Old-Fashioned AI) in the 70s and 80s, focused on a 
family of computational models known as expert systems. In 
particular, the subsets of expert systems oriented to robotic 
applications were designed to implement qualitative physics (Forbus, 
1988): the key idea was to find ways to represent continuous properties 
of the world, traditionally formulated employing differential 
equations, by discrete systems of symbols, thus allowing different 
styles of reasoning, like qualitative simulation and envisioning. The 
success of this approach to commonsense was somewhat limited, with 
scarce application to autonomous robotics. More recently, with the 
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expansion of connectionist AI to the level of foundation models, the 
topic was revisited under the label of intuitive physics (Piloto et al., 
2022): it is conceived as a network of concepts focused on the 
discovery of the hidden principles that explain the interactions of 
macroscopic objects in the real world. The suggested approach is to 
use foundation models of the VLMs type, such as the PLATO (Physics 
Learning through Auto-encoding and Tracking Objects). PLATO is 
a foundation model that has been trained by a large number of videos 
depicting objects interacting according to the laws of physics. For 
simplicity, the videos were generated by simulation experiments, not 
by observed phenomena. The big dataset was used to train large, deep 
networks to acquire some commonsense understanding of the 
dynamics of the physical world, which is useful for reasoning 
and prospection.

In a different way and with a different sophistication level, 
qualitative physics, and intuitive physics models fail to achieve the 
goal of EAI, namely the design of autonomous, intelligent, 
collaborative robots because are unable to implement an embodied 
cognitive architecture fully integrated with the first-person 
experience of a cognitive agent operating in a specific environment 
and with well-defined functions. The alternative to PLATO is 
bio-inspired in the sense of exploiting the simulation theory of 
cognition, which supervises both real and virtual sensorimotor 
patterns performed in the context of the current world model and of 
the typical tasks performed by the cognitive agent in real life and 
cooperation with human or robotic partners. Thus, the training data 
that are necessary for developing or updating neural models capable 
of achieving an intuitive understanding of physics are self-generated 
by the cognitive agent: intuitive physics and/or other intuitive 
understanding of the dynamics of the environment and the body-
environment interaction and are implicitly addressed in a first-
person manner. Moreover, this first-person approach combines 
active synergy formation with data preparation for learning, 
including the critical labeling step, an Achilles’ heel for training 
foundation models.

The intuitive physics component of the extended mind 
hypothesis, based on the active physical interaction with the 
environment, may also be characterized as a computationally frugal 
strategy, accumulating an amount of data for self-training according 
to the principle as much as needed, not in general but in a 
personalized way for the specific cognitive agent.

In a bio-inspired way, we  suggest that the extension of the 
extended mind hypothesis as a result of learning by self-training is 
the result of a developmental process, organized in layers according 
to the Piagetian theory with a progressive acquisition of the level of 
intuitive physics understanding. We may also envisage that, at high 
levels of cognitive capability, including a sufficient level of linguistic 
competence, the cognitive agent may be motivated to search for 
third-person knowledge by interrogating commercially available 
foundation models trained with massive encyclopedic datasets. For 
example, the answer provided by the foundation model may allow 
the cognitive agent to choose one alternative sequence of actions 
among several possibilities consistent with his previous experiences 
and incorporate this information in the corresponding 
episodic memory.

As regards the social extension of the extended mind hypothesis, 
we should consider the broad research area at the border of motor 
neuroscience and cognitive neuroscience, namely the large number 

of experimental studies that emphasize the strong implication of the 
motor system, specifically responsible for the production of covert 
and overt actions, also in typical cognitive functions as action 
observation, imitation and social interaction (Fadiga et al., 1995; 
Fadiga et al., 2002; Iacoboni et al., 1999; Grezes et al., 2001) as well as 
activities related to movement in a more abstract way as the 
observation of manual tools or the use of action verbs (Martin et al., 
1996; Grafton et  al., 1997). Although these studies were aimed 
primarily at understanding the interaction of human subjects with 
the environment and/or the interaction between humans, we believe 
that they can be naturally extended to the design of autonomous, 
intelligent, and collaborative robots.

We can view the motor and cognitive systems as forming a pair 
of equivalent loops, one related to open actions and the other to 
covert actions: in the former case, motor commands cause muscle 
contractions with consequent sensory feedback, which in turn 
influences the control of future motor commands; in the latter case, 
motor intentions activate an internal body schema with consequent 
sensory predictions, which in turn affect the ideomotor formulation 
of future action plans (Mohan et al., 2019). When a person (a naïve 
performer) interacts with another person (an expert), we can think 
of an analogous additional loop, namely a social interaction loop in 
which the “controlled object” is the other person rather than the 
actual or imagined motion of one’s own body. For example, the social 
interaction loop is instantiated because the naïve person attempts to 
imitate the expert or because the experts supervise the naïve partner’s 
action, guiding his performance with intermittent intervention. 
Therefore, in social interactions, by controlling someone else rather 
than our own body, we can estimate their hidden state, including 
their mental state, rather than our own body (Wolpert et al., 2003). 
In other words, the control signals that characterize social interactions 
may be  considered communicative actions, including speech, 
gestures, and haptic interaction.

One of the primary motivations for adopting this approach for a 
fully embodied AI roadmap is that it strongly matches the 
requirement of mutual understanding between humans and robot 
partners in a very general sense. Equipping robots with a cognitive 
architecture grounded in first-person experience allows the 
emergence of a form of cognitive compatibility between human and 
robot agents. When both share similar developmental principles—
such as the incremental accumulation of sensorimotor experiences, 
episodic memory formation, and action-oriented reasoning—the 
human partner is more likely to understand the rationale behind the 
robot’s behavior, including its mistakes. This compatibility can play a 
crucial role in enabling a more natural and effective form of robot 
education (Matarese et al., 2021). In such a scenario, humans can 
more easily interpret the robot’s errors and provide corrective 
feedback in ways that the robot can meaningfully incorporate. As a 
result, robot learning becomes more transparent, interpretable, and 
ultimately more efficient. Conversely, when it is the robot’s turn to 
provide suggestions or assistance, its behavior is more likely to 
be perceived as understandable and trustworthy (Matarese et  al., 
2023). This compatibility not only facilitates the correction of 
sensorimotor mistakes or the refinement of practical know-how but 
also opens the door to a richer educational process involving abstract 
and culturally embedded concepts, including notions of what is 
considered appropriate or inappropriate behavior. In other words, it 
becomes feasible to teach a robot not only how to do something, but 
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also whether it should be done—based on the teacher’s values. Much 
like a child learns through example and imitation what is right or 
wrong within a given family or culture, a robot equipped with an 
embodied cognitive architecture may become receptive to similar 
forms of moral or normative guidance (Sandini et al., 2024). Even in 
the case of interspecies learning, such as training a dog, the process 
succeeds despite evident communicative asymmetries because the 
animal learns through embodied interaction and contextual 
reinforcement. Similar dynamics can be envisioned in human-robot 
interaction, provided that the robot cognition is grounded in first-
person experience and can structure knowledge accordingly. In 
contrast, this possibility is largely inaccessible in the case of passive 
AI systems trained offline on abstract, third-person data, where the 
encoding of universal ethical rules becomes an ill-defined and 
arguably unsolvable problem.

Moreover, this is also the roadmap for integrating learning 
through first-person experience and third-person interaction with 
various interaction channels, from web-interrogation to human 
education and tutoring. The relevance of the educational issue of 
embodied cognition (Hegna and Ørbæk, 2021) is also thoroughly 
addressed by a theme issue “Minds in movement: embodied 
cognition in the age of artificial intelligence” of the Philosophical 
Transactions B (Barrett and Stout, 2024). After having recognized 
embodiment as a unifying concept in the study of cognition, this 
study focuses on two key themes, namely the role of language in 
cognition and its entanglement with the body and the multiple bodily 
mechanisms of interpersonal perception and alignment across the 
domains of social affiliation, teaching, and learning: in both themes, 
AI language models can be valuable tools for robot training.

Conclusion

Summarizing this opinion paper, we may say that the roadmap to 
the design of autonomous, intelligent, collaborative robots supposed 
to infiltrate our society for its expected technology-driven 
reorganization can be  characterized according to the 
following principles:

 • Fully embodied cognitive architecture functionally equivalent to 
the human counterpart

 • Learning and training based on prospection capabilities and 
accumulation of first-person experiences stored in 
episodic memory

 • The crucial role of social interaction for accessing third-person 
information, defining the intelligence level appropriate for the 
sought performance target and achieved through a process of 
sensory-motor-cognitive development

 • Human-robot collaboration should adhere to the principle that 
the limit to a robot’s autonomy is the ultimate responsibility of 
the human partner and/or the social environment at large.

In general, we  suggest that it does not make sense (from the 
scientific and economic sense) to aim at a single design target of a 
super-intelligent robot to be easily adapted to the variety of application 
paradigms that should fit social needs. In many situations, this could 

be  too much and a waste of computational resources; in specific 
situations, it could be too little. We suggest a frugal computational 
architecture with an initial, minimal configuration to be grown up 
through learning and training in a well-organized social context. Such 
minimal architecture could be  conceived as an extension of the 
Vehicle paradigm (Braitenberg, 1984), grown up in a self-organizing 
and self-training context. Moreover, we fully agree with (Lake et al., 
2017) that such machines should be  designed to learn and think 
like people.

An alternative roadmap is pursued by AI companies, counting on 
the continuously growing progress in developing LLMs to understand 
human requests and communicate plans of action using natural 
language. A very recent example is provided by the new model, 
Gemini Robotics, developed by Google DeepMind (Gemini Robotics 
Team, Google DeepMind, 2025) that combines its best large language 
model with robotics. The goal is to give robots the ability to be more 
dexterous and generalize across tasks, exploiting the generalizing 
capabilities of LLMs, such as reasoning about which actions to take in 
a given context. In any case, Gemini robots are trained similarly to 
most LLMs, namely text, images, and videos from the internet or 
synthetic data generated by simulation models without any personal 
accumulation of personal experience and first-person knowledge. The 
explicitly stated rationale of the Gemini Robotics family is to develop 
general-purpose robots that realize AI’s potential in the physical 
world: despite the remarkable documented examples of performance, 
we believe that this is not the appropriate roadmap for the massive 
diffusion of cooperative cognitive agents in a variety of qualitatively 
different scenarios as robot teachers, robot helpers, robot companions, 
and so on. Critical features of such scenarios may not be coded in large 
collections of text, images, videos, or synthetic datasets but may 
be  hidden in haptic interaction, haptic guidance, and gestural 
non-verbal communication with human partners, thus allowing the 
crucial development of shared embodied cognition of robot and 
human cooperative partners.

The research group that includes the authors of this paper has 
been working on various building blocks for the design of 
autonomous, intelligent, collaborative robots according to a 
bio-inspired roadmap based on embodied cognition for more than a 
decade. In particular, this research activity has been focused, among 
other things, on prospection, learning a body schema, embodied 
simulation of action, imitation learning, episodic memory, 
understanding physical interaction, social cognition based on 
embodied communication, and developmental learning (Lungarella 
et al., 2003; Mohan and Morasso, 2007; Metta et al., 2010; Mohan 
et al., 2011, 2013, 2014; Vernon et al., 2015; Bhat et al., 2016; Bhat 
et  al., 2017; Sciutti and Sandini, 2017; Sandini et  al., 2018, 2024; 
Pasquali et  al., 2025). We  are still away from an implementation 
framework that allows us to integrate the variety of building blocks 
outlined above in a flexible and self-organizing way. In our opinion, 
such a framework should be  hybrid, combining digital, analog, 
symbolic, and subsymbolic representations similar to what we know 
of the human embodied cognitive architecture. In any case, we are 
confident that the proposed roadmap is naturally suitable for facing 
ethical issues and social impact because the main design goal is to 
facilitate a shared embodied cognition between the robot and the 
human companion as much as possible.
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