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Background/Introduction: Skin lesion classification poses a critical diagnostic

challenge in dermatology, where early and accurate identification has a direct

impact on patient outcomes. While deep learning approaches have shown

promise using dermatoscopic images alone, the integration of clinical metadata

remains underexplored despite its potential to enhance diagnostic accuracy.

Methods: We developed a novel multimodal data fusion framework that

systematically integrates dermatoscopic images with clinical metadata for the

classification of skin lesions. Using the HAM10000 dataset, we evaluated multiple

fusion strategies, including simple concatenation, weighted concatenation,

self-attention mechanisms, and cross-attention fusion. Clinical features were

processed through a customized Multi-Layer Perceptron (MLP), while images

were analyzed using a modified Residual Networks (ResNet) architecture. Model

interpretability was enhanced using Gradient-weighted Class ActivationMapping

(Grad-CAM) visualization to identify the contribution of clinical attributes to

classification decisions.

Results: Cross-attention fusion achieved the highest classification accuracy,

demonstrating superior performance compared to unimodal approaches

and simpler fusion techniques. The multimodal framework significantly

outperformed image-only baselines, with cross-attention e�ectively capturing

inter-modal dependencies and contextual relationships between visual and

clinical data modalities.

Discussion/Conclusions: Our findings demonstrate that integrating clinical

metadata with dermatoscopic images substantially improves the accuracy of

skin lesion classification. However, challenges, including class imbalance and

the computational complexity of advanced fusion methods, require further

investigation.

KEYWORDS

skin lesion classification, multimodal fusion, dermatoscopic images, clinical metadata,

cross-attention, HAM10000, interpretability, deep learning

1 Introduction

Skin cancer ranks as the 5th most widespread cancer type. It is among the most

severe variants and is projected to overtake cardiovascular disease as the primary

cause of death in humans in the near future (Hasan et al., 2023). From 1990 to

2017, the incidence of individuals diagnosed with malignant skin melanoma (MEL),

squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) surged by 215.7%,

196.8%, and 90.9%, respectively (Kavita et al., 2023). The predominant forms of

skin cancer include MEL, BCC, and SCC, alongside precancerous conditions such as

actinic keratosis (AK) (Rogers et al., 2015). As a pressing global health issue, skin

cancer highlights the urgent necessity for early detection to enhance patient prognosis
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and decrease fatality rates. Timely identification facilitates less

aggressive interventions and reduces medical expenses by catching

cancers at manageable phases (Jerant et al., 2000). Existing

diagnostic approaches, like skin self-examination (SSE) and clinical

skin examination (CSE), depend significantly on visual assessment

and tools like the Asymmetry, Border, Color, Diameter, Evolving

(ABCDE) criteria. While advanced methods such as dermoscopy

and total body photography (TBP) boost precision, conventional

techniques are often subjective, labor-intensive, and unavailable in

under-resourced regions (Loescher et al., 2013; Rajput et al., 2021;

Esteva et al., 2017).

Computerized systems, including Computer-aided Diagnosis

(CAD) software and image processing algorithms, offer

reproducible, objective, and quick evaluation of skin lesions,

less dependent on subjective human judgment. Such systems

can process large volumes of data with efficiency, allowing early

detection of subtle patterns that would be easily overlooked by

conventional techniques (Han et al., 2018). Automation also

enhances accessibility by being incorporated into telemedicine

platforms, extending diagnostic abilities to distant and under-

served communities. By minimizing the necessity for invasive

biopsies and follow-up visits, automation decreases healthcare

expenditure without compromising diagnostic efficiency and

patient outcome (Tschandl et al., 2019).

Machine learning (ML) and deep learning (DL) have made

tremendous progress over the last few years, fueled by more

computational power and large datasets. These technologies have

shown remarkable success in a range of medical classification

problems, including eye movement-based disease prediction

with Decision Trees and Random Forests, automated skin

disease classification with k-Nearest Neighbors(KNN) and Support

Vector Machines(SVM) with 98.22% accuracy, and brain tumor

classification with Convolutional Neural Networks (CNNs) from

the Visual Geometry Group(VGG) like VGG16 and VGG19 with

accuracies ranging from 92.5% to 97.8% (Ahsan et al., 2022).

Haenssle et al. (2018) tested the diagnostic accuracy of a

homegrown Convolutional Neural Network (CNN) constructed on

top of Google’s Inception v4 model, trained on data from partner

dermatologists and the International Skin Imaging Collaboration

(ISIC) dermoscopic archive, with a heterogeneous panel of 58

dermatologists from across the globe. The findings indicated that

the CNN performed better than most dermatologists with a mean

AUC-ROC of 0.86 against 0.79 (p < 0.01). This work highlights

the possibility of dermatologists adopting CNNs in their practice,

thus enhancing the accuracy of diagnosis and ultimately improving

patient outcomes such as better prognosis, treatment options, and

general well-being.

Multimodal data represents information derived from

diverse sources and formats, including images, text, audio,

and physiological signals. This integrated approach mirrors

human cognitive processes, where multiple sensory modalities

contribute to perception and interpretation. In medical contexts,

multimodal data combines Medical images, Patient records

(demographics, medical history, lab results), Physiological signals,

and Patient-reported outcomes.

Recent studies have demonstrated the efficacy of multimodal

approaches in medical diagnosis. For example, Adarsh et al.

(2024) achieved 98.27% accuracy using a Multi-feature Kernel

Supervised within-class-similar Discriminative Dictionary

Learning (MKSCDDL) algorithm for Alzheimer’s Disease

classification, Jiang et al. (2022) employed multimodal ultrasound

data with a CNN, achieving 98.22% accuracy in early breast

cancer detection, and Kumar et al. (2022) utilized audio and X-ray

imaging with a CNN and Deep Uniform Net, obtaining 98.67%

accuracy in COVID-19 classification.

In this study, we analyze fusion techniques for skin cancer

classification, leveraging multimodal skin images and clinical data.

Our research explores how fusion methods can enhance skin

lesion classification performance compared to single-modality

approaches. We investigate various fusion strategies to integrate

diverse data sources and improve model accuracy.

To enhance the interpretability of our multimodal systems,

we apply the Gradient-Weighted Class Activation Mapping (Grad-

CAM) approach for deep learning explainability and feature

relevance assessment. Our contributions aim to advance skin lesion

classification by presenting robust fusion strategies that offer high

accuracy and clinical interpretability.

2 Related work

The automated detection and classification of skin lesions,

especially for the diagnosis of skin cancer, has been an essential

area of research in Applied Artificial Intelligence (AI). Current

research has investigated various methodologies, from texture-

based feature extraction to multimodal deep learning, with the

objective of improving the accuracy, efficiency, and explainability

of computer-aided diagnosis systems.

In the research conducted by Arshad et al. (2021), the skin

images were subjected to augmentation, after which important

features were extracted using fine-tuned ResNet-50 and ResNet-

101. A serial-based fusion approach fused the features, and the

selected best features were classified using supervised learning

algorithms. As a future scope, the authors propose improvements

in feature selection, extraction, and parallel feature fusion.

Sevli (2021) employed a customized CNN to classify 7 types

of skin lesions in the HAM10000 dataset. They developed a web

application to deploy the model and validated its performance

with seven dermatologists. The analysis was twofold: evaluating

the classification performance of the model with expert feedback

and vice versa. The authors attributed the model’s success to

improvements in training set size and proposed the use of real

lesion images to enhance generalizability.

Wang et al. (2023) introduced a two-stream neural network

architecture for feature extraction. The extracted features were

fused using a feature fusion module with a multireceptive field

and Generalized Mean Pooling (GeM). As future work, the authors

proposed incorporating different imaging modalities and other

clinical diagnostic data to enhance the study’s scope.

Adebiyi et al. (2024) employed the Align Before Fuse (ABEF)

framework, which combined image features extracted by a Vision

Transformer and text features extracted by Bidirectional Encoder

Representations from Transformers(BERT). These features were

jointly encoded using a text-image encoder for classification.

Srivastava et al. (2022) proposed a median-based quadrant

texture feature extraction module, which was combined with
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a modified CNN architecture for classification. Their advanced

texture extraction method outperformed existing models due to its

superior noise-handling capabilities.

Datta et al. (2021) compared the performance of various

transfer learning architectures with and without a soft attention

mechanism for skin cancer classification. The soft attentionmodule

effectively localized cancerous regions, thereby enhancing model

accuracy and interpretability.

Lan et al. (2022) enhanced the capsule network architecture

by integrating a large-kernel convolution (31 × 31) and a

Convolutional Block Attention Module (CBAM). They further

included group convolution to reduce parameter overhead

and avoid underfitting. The capsule layer was redesigned to

improve feature extraction and runtime efficiency. A lightweight

variant, FixCaps-DS, was introduced using depthwise separable

convolutions to maintain performance while reducing complexity.

Gessert et al. (2020) designed a multimodal deep learning

system that handled two tasks from the International Skin Imaging

Collaboration (ISIC) 2019 challenge: image-only classification and

image+metadata classification. For task 1, they used an ensemble

of EfficientNet variants and other CNNs for architectural diversity.

For task 2, metadata (e.g., age, sex, anatomical site) was processed

with a two-layer dense neural network. Features from both

modalities were concatenated and passed through additional dense

layers before classification.

Ou et al. (2022) employed a deep neural network that used

inter-modality cross-attention and intra-modality self-attention

to classify skin lesions. ResNet-50 was used to extract image

features, and a Multi-Layer Perceptron (MLP) encoded the

clinical metadata. After applying the attention mechanisms,

features were concatenated and passed through a fully connected

softmax classifier.

Restrepo et al. (2024) evaluated vector embedding-based

multimodal fusion methods for low-resource settings, comparing

them with traditional raw data processing. They tested unimodal

embeddings (DINO v2 for images, LLAMA 2 for text), Vision-

Language Models (VLM) like CLIP, and fine-tuned transformers

(BERT, ViT) using early and late fusion strategies. A novel

alignment method was also introduced to reduce the “cone effect”

in embedding space. While promising results were achieved on

benchmark datasets like BRSET and HAM10000, domain-specific

limitations for dermatology were acknowledged.

To summarize, despite notable progress having been made on

both single-modality and multimodal skin cancer classification,

some of the shortcomings still remain. Numerous current models

are computationally intensive, rendering them impractical to use

in real-world applications, particularly where there are constraints

on resources. These models also have difficulty generalizing

across varied datasets, and their performance becomes suboptimal

when they have to handle other unknown classes or metadata.

Additionally, while multimodal systems have shown improved

accuracy, they still suffer from limitations like overfitting and

inadequate training and inference efficiency.

Our method is designed to address these limitations by

building on fusion methods that integrate skin images and

clinical data, improving classification performance while being

efficient. We focus on minimizing computational expenses and

storage needs, rendering the system more implementable in

resource-constrained environments. In addition, to enhance

interpretability, we incorporate the Grad-CAM method so that

feature relevance can be better evaluated and the system can

be made more clinically usable. Finally, our method aims to

deliver a strong, efficient, and interpretable solution for skin

lesion classification in real-world, resource-limited settings. Table 1

consolidates the above papers.

3 Materials and methods

3.1 Dataset

The dataset we have used for our classification problem is the

HAM10000 dataset (Tschandl et al., 2018; Scott Mader, 2018).

HAM10000, or “Human Against Machine,” is a curated dataset of

multi-source dermatoscopic images of pigmented skin lesions. The

final dataset comprises 10,015 dermatoscopic images collected

over 20 years from two principal sources: (1) the Department

of Dermatology at the Medical University of Vienna, Austria, a

tertiary referral center where diagnoses were established using

a combination of histopathology, in vivo confocal microscopy,

and expert consensus; and (2) a general skin cancer screening

practice in Queensland, Australia, operated by Dr. Cliff Rosendahl.

This second source provided images acquired in a real-world

clinical setting, where lesions were typically triaged and either

confirmed via histopathological examination or diagnosed by

expert dermatologists with long-term follow-up. The dataset

includes 7 diagnostic categories representing the most common

pigmented skin lesions seen in clinical practice. The distribution of

the classes is presented in Table 2.

In addition to images, the dataset also contains metadata for

every patient, including clinical data like age, gender, and location

of the lesion. With an image_id column, the patient’s metadata

can be associated with its respective lesion image. Such metadata is

detailed in Table 3.

3.2 Preprocessing pipeline

The preprocessing pipeline for the HAM10000 dataset was

designed to ensure consistent, high-quality input data for our

multimodal fusion model. This involved careful handling of

image data, metadata, and class imbalance. The key steps are

outlined below.

3.2.1 Data splitting
Prior to any augmentation or preprocessing, the full dataset

was randomly split into a 70–30 ratio for training and testing.

No separate validation set was used. This ensured that augmented

samples derived from the training set did not leak into the

evaluation pipeline.

3.2.2 Class balancing
The HAM10000 dataset exhibits significant class imbalance,

with some classes (e.g., DF) containing as few as 115 images
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TABLE 1 Comparative summary of skin lesion classification approaches.

References Dataset Classifiers/techniques Performance

Arshad et al. (2021) HAM10000 ResNet-50, ResNet-101; serial fusion; SVR-based feature selection;

supervised ML classifiers

95% on fused features (augmented); 91.7% after

selection

Sevli (2021) HAM10000 Modified CNN with contrast enhancement and expert validation 90.28% accuracy; corrected 11.14% of

dermatologist misdiagnoses

Wang et al. (2023) ISIC 2018 Two-stream CNN (DenseNet-121+ improved VGG-16);

multi-receptive field module+ GeM pooling

91.24% accuracy

Adebiyi et al. (2024) HAM10000 Multimodal ALBEF (Vision Transformer+ BERT) 94.11% accuracy; AUC-ROC 0.9426

Srivastava et al. (2022) HAM10000,

ISIC-UDA11

M-QuadLTQP texture encoding+ CNN 96% average accuracy

Datta et al. (2021) HAM10000,

ISIC-2017

Soft attention integrated with IRv2, ResNet, Inception; Grad-CAM

visualizations

93.4% precision (HAM); 91.6% sensitivity

(ISIC-2017)

Lan et al. (2022) HAM10000 FixCaps with CBAM+ large-kernel conv; FixCaps-DS with depthwise

conv

96.49% (FixCaps); 96.13% (lightweight)

Gessert et al. (2020) ISIC 2019

Challenge

Ensemble of CNNs (EfficientNets, ResNeXt, SENet); metadata fusion

+ heavy augmentation

Balanced Acc: 74.2%; Sensitivity: 63%

Ou et al. (2022) PAD-UPES-20 ResNet-50+MLP; MMF-Net with intra/inter attention fusion 76.8% accuracy; BACC: 77.5%; AUC: 94.7%

Restrepo et al. (2024) HAM10000, BRSET Embedding fusion using CLIP, DINOv2+ LLAMA2; early/late fusion 81.8% accuracy (HAM10000); 98.7% (BRSET)

TABLE 2 Breakdown of classes in the HAM10000 dataset.

Class name Number
of images

Description

Melanoma (MEL) 1,113 Melanoma is a malignant tumor of

melanin-producing melanocyte cells

(National Cancer Institute, 2024a)

Melanocytic

nevus (NV)

6,705 Benign moles of pigment-producing

skin cells (James et al., 2006)

Basal cell

carcinoma (BCC)

514 Slow-growing, locally destructive skin

cancer derived from the basal cell layer

of the epidermis (National Cancer

Institute, 2024b)

Actinic

keratosis/Bowen’s

disease (AKIEC)

327 Precancerous scaly lesions found on

sun-damaged skin (Reinehr and Bakos,

2019)

Benign keratosis

(BKL)

1,099 Common benign skin lesions with

sharply demarcated borders,

homogenous brown pigmentation, and

fine scaling that include Seborrheic

keratosis (SK), lichen planus-like

keratosis (LPLK), and solar lentigo (SL)

(Scott and Oakley, 2023)

Dermatofibroma

(DF)

115 Benign skin nodules of soft tissue

(Myers and Fillman, 2024)

Vascular lesions

(VASC)

142 Lesions involving blood vessels, such as

angiomas (Steiner and Drolet, 2017)

and others (e.g., NV) containing over 6,000. To mitigate this, we

applied data augmentation exclusively on the training set using the

following techniques:

• Replication: Duplicated samples from minority classes.

• Jittering: Added random noise to pixel intensities.

• Geometric transformations: Horizontal/vertical flips,

rotations, and scaling.

TABLE 3 Clinical features in the HAM10000 dataset.

Clinical
feature

Distribution Description

Diagnosis (dx) - Nevus (NV): 67%

- Melanoma (MEL): 11%

- Other types: 22%

Medical diagnosis of the skin

lesion

Diagnostic

method

- Histopathology: 53%

- Follow-up: 37%

- Other methods: 10%

Method used to confirm the

diagnosis

Patient age - Range: 0–85 years

- Divided into 10-year

intervals

Age of the patient at the time

of diagnosis

Gender - Male: 54%

- Female: 45%

- Unspecified: 1%

Patient’s gender identification

Anatomical

location

- Back: 22%

- Lower extremity: 21%

- Other locations: 57%

Body location where the

lesion was found

• Random undersampling: Reduced samples from majority

classes to avoid overwhelming the model.

After augmentation, each class in the training set contained

6,000 images, resulting in a balanced training dataset of

42,000 images.

3.2.3 Image preprocessing
Each dermatoscopic image underwent the following

preprocessing steps:

• Resizing: All images were resized to a uniform resolution of

256× 256 pixels.

• Normalization: Pixel values were scaled to the range [0, 1] by

dividing by 255.
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3.2.4 Metadata preprocessing
Metadata was preprocessed in the following stages:

• Handling missing values: For numerical features (e.g., age),

missing values were imputed using the median, which is

robust to outliers. For categorical features (e.g., gender, lesion

location), missing entries were imputed with the mode. This

imputation preserved the statistical structure of the data: using

the median reduced sensitivity to skewed distributions, while

mode imputation maintained categorical class balance with

98% fidelity.

• Encoding: After imputation, all categorical features were

one-hot encoded. One-hot encoding was applied after mode

imputation to enable the model to process these discrete

attributes in a format suitable for neural networks.

• Normalization: Numerical features were standardized to have

zero mean and unit variance.

3.2.5 Data alignment
To ensure proper alignment between images and metadata,

we used the image_id column as the primary key to merge

records. This guaranteed that each dermatoscopic image was

correctly paired with its corresponding metadata during training

and evaluation.

The complete preprocessing workflow is visualized in Figure 1.

3.3 Model pipeline process

The multimodal fusion pipeline consists of three main

components: (1) a customWeighted ResNet for extracting features

from dermatoscopic images that we define as DermiResNet, (2)

a Clinical MLP for processing clinical metadata, and (3) a fusion

module that combines the extracted features for final classification.

The pipeline operates as follows:

• Input: Dermatoscopic images and clinical metadata are

preprocessed and fed into the pipeline.

• Feature extraction: DermiResNet processes the images, while

the Clinical MLP processes the metadata.

• Fusion: The extracted features are combined using one

of several fusion techniques that are further discussed in

the paper.

• Classification: The fused feature vector is passed through

a Feed-forward Neural Network (FFN) to predict the skin

lesion class.

The details of all networks has been provided in the architecture

section and the pipeline has been illustrated in Figure 2.

3.4 Architecture

3.4.1 Clinical MLP
A Multi-Layer Perceptron (MLP) is a class of feedforward

artificial neural networks composed of fully connected layers

and nonlinear activation functions. MLPs are particularly

well-suited for processing structured tabular data such as patient

FIGURE 1

Overview of the preprocessing pipeline.

metadata, which lacks spatial structure and does not benefit from

convolutional operations (Rumelhart et al., 1986).

In this study, we utilize a lightweight yet effective multi-

layer perceptron (MLP) to process structured clinical metadata,

including variables such as age, sex, and anatomical site of the

lesion. The input is a 1D vector representation of all available

metadata fields, which is first mapped to a 128-dimensional latent

space via a fully connected layer with ReLU activation. This

is followed by a second fully connected layer that expands the

representation to 256 dimensions. This compact architecture is

designed to extract meaningful latent embeddings from clinical

features while being computationally efficient.

Figure 3 delineates the architectural pathway of the Clinical

MLP, emphasizing its role in encoding patient metadata into

latent space.

3.4.2 DermiResNet
Residual Networks (ResNets), introduced to mitigate the

degradation problem in deep architectures, extend conventional

convolutional networks by learning residual mappings instead
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FIGURE 2

Overview of the multimodal fusion pipeline.

FIGURE 3

Architecture of the clinical MLP.

of direct functions (He et al., 2016). Rather than learning an

unreferenced function, ResNets learn a residual mapping, which

simplifies optimization and enables very deep architectures. Unlike

AlexNet, ResNet is conceptually derived from the simpler and

deeper VGG networks (Simonyan and Zisserman, 2015), but it

introduces residual or skip connections that alleviate vanishing

gradient issues during training.

A typical residual block includes two convolutional layers. If x

is the input to a block, and W1, W2 are convolution kernels with

non-linear activation σ , then the residual output is given by:

F(x) = W2 · σ (W1 · x) (1)

This results in the following expression for the block’s output:

y = F(x)+ x (2)

DermiResNet extends this formulation by introducing a

learnable weight α for the skip connection:

y = F(x)+ α · x (3)

Here, α ∈ R is a learnable scalar parameter that determines the

relative importance of the shortcut connection, enabling the model

to adaptively weigh the residual and identity paths during training

(Xu et al., 2024).

The architecture begins with a primary convolutional

module (conv1), after which the network progresses through

four sequential stages. Each stage consists of a downsampling

convolutional unit and a corresponding residual unit. Across

these stages, the number of feature channels is gradually increased

(64 → 128 → 256 → 512), while spatial dimensions are

reduced through stride-2 convolutions. Within each residual

unit, two convolutional layers are used, each followed by

batch normalization and LeakyReLU activation. To mitigate

overfitting, dropout is applied in the later residual units (res3

and res4).

The final classification head includes an adaptive average

pooling layer, flattening, a two-layer fully connected network,

and a softmax activation to output a 512-dimensional

feature vector. The complete architecture is visualized

in Figures 4, 5.

3.4.3 Fusion block
In this layer, we fuse the extracted features from the

DermiResNet (image features) and the Clinical MLP (clinical

metadata features). The fusion process combines these multimodal
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FIGURE 4

DermiResNet.

features into a unified representation, which is then passed to

a simple classifier for final prediction. The classifier consists of

fully connected layers with ReLU activation functions, reducing the

FIGURE 5

Blocks in DermiResNet.

fused feature space to 7 output classes corresponding to the skin

lesion types.

We explore several fusion techniques to combine the features

effectively, including:

• Simple concatenation

• Weighted concatenation

• Hadamard product

• Tensor fusion

• Bilinear fusion

• Gated fusion

• Self-attention

• Cross-attention

Detailed descriptions of these fusion techniques, including their

mathematical formulations and implementation, are provided in

Section 3.5

3.5 Fusion details

Fusion involves integrating information from different sources

or data modalities into a single, cohesive representation. This

approach is especially valuable in multimodal learning, where

inputs such as images, metadata, or text are combined to enhance

model accuracy and robustness. In this study, we combine features

produced by the DermiResNet (which yields 512-dimensional

image embeddings) and the Clinical MLP (which produces 256-

dimensional clinical metadata embeddings). The resulting fused

representation serves as the input to the classification layer. The

following subsections present and analyze several fusion strategies

explored in our experiments, highlighting their relative strengths

and performance.

3.5.1 Simple concatenation
Simple concatenation involves merging features from different

modalities by stacking them along a specific dimension. Given two

feature vectors x ∈ R
512 (from the image model) and y ∈ R

256
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(from the clinical model), the concatenated feature vector z ∈
R
768 is:

z = [x; y] (4)

Equation 4 shows the simple concatenation of two

feature vectors.

3.5.2 Weighted concatenation
Weighted concatenation improves on simple concatenation

by applying modality-specific weights. Instead of blindly stacking

features, we scale each vector by a learnable scalar weight to reflect

its importance (Ngiam et al., 2011; Kiela et al., 2018). Letw1,w2 ∈ R

be scalar weights applied to the 512D image vector x and 256D

clinical vector y, respectively. The fused vector z ∈ R
768 is:

z = [w1 · x;w2 · y] (5)

3.5.3 Hadamard product fusion
The Hadamard product, or element-wise multiplication,

combines two modalities by interacting their elements

multiplicatively. Since this requires equal dimensions, we

first project both x ∈ R
512 and y ∈ R

256 into a common latent

space R256. The fused representation z ∈ R
256 is given by:

z = x′ ⊙ y (6)

Here, x′ = Linear512→256(x), and ⊙ represents element-wise

multiplication (Kim et al., 2017).

3.5.4 Tensor fusion
Tensor fusion captures all possible interactions between

modalities using an outer product, resulting in a second-order

tensor (Zadeh et al., 2017). For x ∈ R
512 and y ∈ R

256, the fused

tensor Z ∈ R
512×256 is:

Z = x⊗ y (7)

This allows pairwise modeling of every feature from one

modality with every feature from the other, at the cost of

increased dimensionality.

3.5.5 Bilinear fusion
Bilinear fusion is a feature interaction mechanism that

combines information from two different modalities by explicitly

modeling the pairwise multiplicative interactions between their

respective features. Unlike simple concatenation or element-wise

operations, bilinear fusion generates a richer and more expressive

representation by learning how every feature from one modality

interacts with every feature from the other. Conceptually, bilinear

fusion captures second-order statistics between modalities—unlike

first-order techniques such as concatenation, which only represent

raw values. This is particularly valuable in multimodal tasks where

the interplay between modalities is non-trivial and nonlinear

(Fukui et al., 2016).

Given an image feature vector x ∈ R
512 and a clinical metadata

feature vector y ∈ R
256, the bilinear fusion mechanism applies

a set of bilinear mappings to produce a fused feature vector z ∈
R
256. Each dimension zi of the output vector is computed using a

learnable bilinear interaction:

zi = x⊤Wiy, for i = 1, . . . , 256 (8)

Here, each Wi ∈ R
512×256 is a slice of the 3D learnable weight

tensorW ∈ R
256×512×256, such that:

z =
[

x⊤W1y, . . . , x
⊤W256y

]⊤
(9)

This results in a final fused representation z ∈ R
256, which is

then passed through a fully connected layer for classification.

3.5.6 Gated fusion
Gated fusion introduces a dynamic weighting mechanism that

assigns different attention to modalities based on input features

(Arevalo et al., 2020). The gating vector g ∈ R
256 is derived

from a sigmoid function applied to a learnable affine combination

of inputs:

g = σ (Wxx
′ +Wyy) (10)

The final fusion is:

z = g⊙ x′ + (1− g)⊙ y (11)

Here, x′ = Linear512→256(x), and ⊙ denotes element-

wise multiplication. This fusion strategy adaptively prioritizes

modalities at an instance level.

3.5.7 Self-attention fusion
Self-attention enables the model to attend to the most

relevant parts of a single modality. Applied independently on each

modality, it transforms the sequence of features X ∈ R
n×d via

attention weights:

Z = softmax

(

QK⊤
√
d

)

V (12)

Where:

Q = XWQ, K = XWK , V = XWV

Here, WQ,WK ,WV ∈ R
d×d are learnable weight matrices. In

this context, Q (Query) represents the features for which we want
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to find contextual relevance, K (Key) encodes the features to be

compared against, and V (Value) holds the actual information to

be aggregated. Self-attention enables each position in the feature

sequence to attend to all positions, allowing the model to learn

intra-modality dependencies. It is used before fusion to enhance

modality-specific representations (Vaswani et al., 2017).

3.5.8 Cross-attention fusion
Cross-attention aligns features between modalities by using

one modality as query and the other as key-value pairs. For image

features X ∈ R
1×512 and metadata features Y ∈ R

1×256, the query

is derived from image features and the key/value from metadata:

Z = softmax

(

QxK
⊤
y√
d

)

Vy (13)

Where:

Qx = XWQ, Ky = YWK , Vy = YWV

In cross-attention, Qx represents the query derived from

the primary modality (e.g., image features), which is seeking

relevant complementary information. Ky and Vy are the key

and value vectors derived from the secondary modality (e.g.,

clinical metadata), where the key determines alignment and the

value contributes the corresponding context. This fusion allows

modalityX to selectively attend tomodalityY, creating cross-modal

representations that are aligned and context-aware (Lu et al., 2019).

3.6 Experimental set-up

3.6.1 Hardware and software configuration
The hardware and software specifications used for the

experiments are summarized in Table 4.

3.6.2 Training configuration
The specific training configuration, which outlines

hyperparameters and other details, is documented in Table 5.

Each model was trained for an estimated duration of 2 h.

3.7 Evaluation metrics

The performance of the model was evaluated using Accuracy,

Precision, Recall, F1-Score, and AUC-ROC.

4 Result analysis and discussion

4.1 Ablation studies

To assess the contribution of eachmodality to the overall model

performance, we first evaluated the individual models trained

separately on clinical metadata and dermatoscopic images. The

results of these experiments are summarized in Table 6.

TABLE 4 Hardware and software configuration.

Component Specification

GPU NVIDIA GeForce RTX 4060

Processor AMD Ryzen 7 7800X3D

Memory 16GB DDR4 RAM

Operating System Linux Mint 21.1

CUDA Enabled

TABLE 5 Training configuration.

Parameter Value

Batch size 64

Number of epochs 100

Learning rate 0.001

Optimizer Adam

Loss function Cross-entropy loss

TABLE 6 Performance of individual models in ablation studies.

Model Accuracy Precision Recall F1-Score

Clinical MLP

(metadata

only)

77.0% 0.76 0.75 0.76

DermiResNet

(image only)

92.0% 0.91 0.92 0.91

The Clinical MLP achieved an accuracy of 77.0%, indicating

that clinical metadata alone offers moderate predictive capability.

However, the DermiResNet, trained exclusively on dermatoscopic

images, achieved a significantly higher accuracy of 92.0%,

showcasing the superior discriminative power of visual data for

skin lesion classification. This result aligns with the diagnostic

process commonly employed by dermatologists, where visual

inspection of skin lesions is typically prioritized over metadata

analysis for accurate classification (Dinnes et al., 2018).

4.2 Multimodal fusion performance

We evaluated the performance of various fusion techniques,

including simple concatenation, weighted concatenation,

Hadamard product, tensor fusion, bilinear fusion, gated fusion,

self-attention, and cross-attention. The results are summarized in

Table 7.

The comparison of different multimodal fusion methods

provides profound insights into the design of AI-powered

medical diagnostic systems. From among the methods, two

high-performance methods are notable: Cross-attention and the

Hadamard product, both of which deliver near state-of-the-art

performance with respective accuracies of 98.86% and 98.85%.

Cross-attention, one of the high-performance and intricate

methods, performs exceptionally well by dynamically weighting

and matching modalities’ features. Through the computation of
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TABLE 7 Performance of multimodal fusion techniques.

Fusion technique Accuracy Precision Sensitivity (recall) F1-score Specificity

Simple concatenation 96.5% 0.93 0.93 0.93 0.97

Weighted concatenation 97.15% 0.97 0.97 0.97 0.98

Hadamard product 98.85% 0.97 0.97 0.97 0.99

Tensor fusion 96.52% 0.96 0.96 0.96 0.97

Bilinear fusion 98.76% 0.98 0.98 0.98 0.99

Gated fusion 93.0% 0.93 0.93 0.92 0.91

Self-attention 92.70% 0.92 0.93 0.92 0.90

Cross-attention 98.86% 0.98 0.98 0.98 0.99

attention scores between dermatoscopic image features and clinical

metadata, it dynamically concentrates on the most discriminative

data for every input. This imitates the subtle diagnosis reasoning

of skilled clinicians to a great extent. For example, when

visual features are uncertain (e.g., look-alike lesions), Cross-

Attention uses contextual information like patient age or lesion

site to sharpen its prediction. This capacity to represent high-

grained, adaptive interactions makes it particularly useful for

sophisticated diagnostic tasks such as skin lesion classification

(Ou et al., 2022).

Hadamard product, another high-performance method but

relatively less complex in design, combines features through

element-wise multiplication. It extracts localized interactions

across modalities, for example, texture-lesion vs. age correlations,

with remarkable performance. Nevertheless, in contrast to Cross-

Attention, it does not have the dynamic feature importance

adaptation capability that may limit its effectiveness in extremely

ambiguous or nonlinear situations.

Conversely, certain sophisticated techniques performed

poorly. Gated fusion (93.0% accuracy) and Self-attention fusion

(92.70% accuracy) performed poorly despite their complex

architectural design. Gated Fusion adds more learnable parameters

in the form of gating mechanisms, which can lead to heightened

overfitting risks and tougher training, particularly with small data

sizes. Self-Attention is incredibly strong in a single modality but

might miss key inter-modality dependencies when utilized stand-

alone, thus reducing its multimodal performance.

Surprisingly, also simple approaches can perform well.

Weighted concatenation, a low-complexity method, performed

97.15% accuracy. By using static or learnable weights for

every modality prior to concatenation, it is good at balancing

interpretability, stability, and performance. Without modeling

high-level feature interactions, its simplicity and stability make it

a very practical solution for most clinical scenarios.

These findings highlight an important point: algorithmic

complexity is no guarantee of better performance. The selection

of fusion strategy must be informed by the particular properties

of the dataset and clinical application, striking a balance between

accuracy, interpretability, and computational cost.

In conclusion, while sophisticated fusion mechanisms

such as Cross-attention deliver state-of-the-art performance

by dynamically aligning visual and clinical modalities, our

results demonstrate that in some scenarios, simpler techniques

like Weighted Concatenation are highly competitive offering

comparable accuracy with significantly lower computational

overhead. This makes them well-suited for practical deployment

in real-world medical settings, particularly where resources

are constrained or rapid inference is essential. Cross-attention,

on the other hand, proves most valuable in cases involving

complex diagnostic patterns—such as ambiguous lesions or subtle

correlations between metadata and visual features, where adaptive

modality interaction becomes critical.

Ultimately, the success of a multimodal fusion approach lies

not merely in algorithmic sophistication but in its ability to

replicate the holistic, context-aware diagnostic reasoning employed

by clinicians. The choice of fusion strategy should thus be guided

by the specific clinical setting, data complexity, and resource

constraints, striking a balance between accuracy, interpretability,

and efficiency.

4.3 Confusion matrix analysis

To further analyze the performance of the best-performing

fusion model (Cross-attention), we present its confusion matrix in

Figure 6. The matrix shows the number of correct and incorrect

predictions for each class.

The confusion matrix highlights the performance of the

model across various skin cancer classes. Notably, the diagonal

entries, which represent correctly classified instances, dominate,

demonstrating strong overall performance.

The model achieves near-perfect classification for classes like

DF,VASC, andAKIEC, withminimal or nomisclassifications. This

suggests that these classes are well-represented in the training data

and exhibit distinct features, allowing the model to identify them

with high confidence.

However, there are minor misclassifications, particularly

between similar-looking lesion types such as BKL and MEL or

NV. For instance, 7 cases of BKL are misclassified as MEL,

and 5 as AKIEC, indicating some overlap in visual or clinical

features. Similarly, 4 cases of NV are mistaken for MEL, which

is expected given their subtle differences and shared features in

certain instances.
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FIGURE 6

Visualization of the confusion matrix for the best-performing Cross-attention model. This heatmap helps identify specific misclassifications and

overall model behavior across classes.

The small number of misclassifications in BCC and MEL

classes suggests the model handles malignant lesions well but still

requires improvements to reduce errors in high-stakes scenarios.

Overall, the model demonstrates high classification accuracy

with room for improvement in distinguishing between lesion types

with overlapping visual or clinical characteristics.

4.4 ROC-AUC curve

The ROC-AUC scores for different classes are presented in the

figure below. The model achieved a score of 0.99 for MEL, 0.98 for

NV, and 1.0 for the remaining classes, as shown in the ROC curve

(Figure 7).

These high AUC values suggest that the model is capable of

effectively distinguishing between the classes. The results indicate

that there is no sign of underfitting or overfitting, with the model

generalizing well and avoiding excessive fitting to noise in the

training data.

4.5 Explainability

Explainability is a foundation of applying machine learning

models in healthcare. Although deep learning models tend to

exhibit state-of-the-art performance, their “black-box” nature is

highly problematic in the healthcare domain. Physicians and

medical experts need interpretable models for them to comprehend

the rationale of predictions, making diagnoses not only correct

but also clinically reasonable. Lack of transparency can translate to

mistrust, preventing the implementation of AI systems into actual

healthcare workflows.

Black-box models that give no clue about their reasoning are

especially troubling in high-risk areas such as dermatology. For

example, a model can be highly accurate by leveraging spurious

correlations or data artifacts instead of clinically significant

features, leading to serious failures when deployed in more diverse

or unseen clinical environments (Zech et al., 2018). Explainability

closes this gap by illuminating how a model comes to a decision,

allowing doctors to verify its reasoning and spot potential errors or

biases (Amann et al., 2020).

This research emphasize explainability so that the

multimodal fusion model is not just precise but also reliable

and comprehensible. Through the use of visual explanations

(Grad-CAM) coupled with relevance analysis of clinical features,

an integrated understanding of the decision-making process of the

model is presented.

4.5.1 Grad-CAM
Grad-CAM is a powerful technique for visualizing the regions

of an image that are most influential in a model’s decision. It
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FIGURE 7

ROC-AUC curve for melanoma, nevi, and other classes.

extends the Class Activation Mapping (CAM) approach by using

gradient information to weight the importance of feature maps,

making it applicable to a wider range of architectures, including

those without global average pooling layers.

Mathematical formulation: LetAk be the activationmap of the

k-th channel in the target convolutional layer, and let yc be the score

for class c. The weight α
c
k
for the k-th channel is computed as the

global average of the gradients of yc with respect to Ak:

α
c
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

,

where Z is the number of pixels in the activation map. These

weights capture the importance of each feature map for the

target class.

The Grad-CAM heatmap Lc is then obtained by a weighted

combination of the activation maps, followed by a ReLU function:

Lc = ReLU

(

∑

k

α
c
kA

k

)

.

The ReLU function ensures that only positive influences are

considered, as negative values are not relevant for the target class

(Selvaraju et al., 2017).

Grad-CAM indicates areas of the image that the model

considers most significant for its prediction. For instance, in

images obtained with dermatoscopy, these areas may be lesion

boundaries, texture, or color transitions. By projecting these areas,

Grad-CAM opens a window to the model’s “thinking process,”

allowing physicians to ensure that the AI system is concentrating

on clinically relevant features (Jaworek-Korjakowska et al., 2021).

4.5.2 Analysis of grad-CAM results for
cross-attention

To understand the decision-making process of the top-

performing model, which utilizes a cross-attention fusion

approach, Grad-CAM visualizations were employed. This

technique facilitates the interpretation of the model’s predictions

by identifying key areas in dermatoscopic images that most

strongly influence the results. Such post-hoc explainability is

especially valuable in medical contexts, as it allows clinicians to

confirm that the model’s predictions are grounded in clinically

significant features.

The cross-attention fusion mechanism enhances the

interpretability of the model by dynamically aligning and

integrating features from different modalities or scales. Unlike

simpler fusion techniques, cross-attention computes attention

weights between modalities, enabling the model to emphasize

the most diagnostically relevant interactions. While Grad-CAM

visualizations help interpret the image-based decision process by

highlighting regions of importance in dermatoscopic inputs, they

are limited to visual modalities. To gain a holistic understanding

of the model’s reasoning, particularly for clinical metadata, we

later discuss Clinical Feature Relevance Scores, which complement

Grad-CAM by providing insight into how non-image features

influence predictions. This combined interpretability offers a more

comprehensive explanation of the model’s diagnostic behavior.

Figure 8 provides an illustrative example of a Grad-CAM

heatmap overlaid on an input dermatoscopic image. The model

predicts the lesion as BCC with a confidence score of 1,

focusing primarily on the lesion’s irregular borders and regions

of heterogeneous pigmentation. These features are clinically
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FIGURE 8

Grad-CAM visualization for a dermatoscopic image classified as Basal Cell Carcinoma. The left panel shows the original image, while the right panel

highlights clinically significant regions contributing to the model’s prediction. Red regions indicate high importance, and blue regions indicate low

importance.

significant as BCC are characterized by asymmetry, border

irregularity, and color variation (Puckett et al., 2025).

In this specific example, the heatmap demonstrates that the

model successfully identifies features associated with malignancy

while ignoring irrelevant artifacts, such as hair strands and uniform

skin areas. Themodel’s ability to focus on clinically relevant features

is a direct outcome of the cross-attention fusion mechanism, which

dynamically aligns and weights features from different modalities.

By doing so, the model achieves a higher level of alignment

with dermatological practices, where lesion borders and internal

variations are critical for diagnosis.

As discussed earlier, the model occasionally misclassifies BKL

as MEL due to overlapping visual characteristics. One contributing

factor is that both lesion types can exhibit irregular pigmentation,

asymmetric structures, and varying border definitions, which are

also key diagnostic markers for MEL. This confusion is particularly

evident in cases where keratosis presents with darker pigmentation

and irregular borders, mimicking features of malignant lesions.

Figure 9 illustrates such a misclassification, where a BKL lesion

has been incorrectly predicted as MEL with a confidence score of

0.46. The left panel shows the original image, while the right panel

presents the corresponding Grad-CAM heatmap, highlighting the

regions that influenced the model’s decision.

From the heatmap, it is evident that the model assigns high

importance (red/yellow regions) to darker pigmented areas and

irregular structures within the lesion. This suggests that the

model’s decision boundary between benign and malignant lesions

is influenced primarily by pigmentation and border irregularity,

which are not always exclusive to melanoma.

Beyond this example, Grad-CAM visualizations across a wide

range of test cases reveal consistent patterns in the model’s

behavior. The model often prioritizes irregular lesion borders and

regions of color variation, which are crucial for distinguishing

malignant lesions from benign ones. In cases of BCC, the heatmaps

highlight central regions with ulceration or shiny surfaces, further

reinforcing the model’s alignment with clinical indicators. This

interpretability is invaluable for real-world deployment, as it allows

clinicians to confirm that the model’s focus areas correspond to

meaningful diagnostic features.

The insights provided by Grad-CAM are directly correlated

with the model’s strong quantitative performance. For example,

the regions identified by the heatmaps frequently align with

features responsible for the model’s high sensitivity and specificity,

particularly in challenging cases of melanoma and basal cell

carcinoma. This combination of performance metrics and visual

interpretability underscores the potential of the cross-attention

fusion-based model as a trustworthy diagnostic aid.

Additional Grad-CAM visualizations for Cross-attention are

provided in Figure 10, showcasing further examples of model

attention across different lesion types and cases.

4.5.3 Clinical feature relevance
To assess the instance-specific relevance of clinical features,

we employed an attribution-based approach using Integrated

Gradients (IG) (Sundararajan et al., 2017). IG is a path-

based attribution method that quantifies feature importance by

computing the integral of gradients along an interpolation path

from a baseline input to the actual input.

Given an input clinical feature vector x ∈ R
d and a baseline

vector x′ ∈ R
d, the integrated gradient for the ith feature is

computed as:

IGi(x) = (xi − x′i)×
∫ 1

α=0

∂f
(

x′ + α(x− x′)
)

∂xi
dα, (14)

where f (·) represents the model’s prediction score for the target

class. The integral is approximated using a summation over

discrete steps:

IGi(x) ≈ (xi − x′i)×
1

S

S
∑

s=1

∂f
(

x′ + s
S (x− x′)

)

∂xi
, (15)

where S is the number of interpolation steps.
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FIGURE 9

Grad-CAM visualization of a misclassified Benign Keratosis case. The model incorrectly predicts this lesion as Melanocytic (MEL) with a confidence

of 0.46.

For each instance, we set the baseline x′ as a zero vector,

representing the absence of clinical features. The integrated

gradients were computed over S = 50 steps, and the absolute

values of the attributions were taken as feature importance

scores. These scores were then normalized to the range [0, 1] to

facilitate interpretability.

The resultant feature relevance scores highlight the

contribution of individual clinical attributes to the model’s

prediction. Features with higher attributions indicate stronger

influence on the classification decision, thereby providing insights

into the model’s reliance on clinical metadata.

4.5.4 Clinical feature relevance analysis
For a specific instance of NV, we analyzed the relative

importance of clinical features using our best-performing Cross-

Attention fusion model. As shown in Table 8, the top features

with high importance include localization (scalp, foot, neck),

and diagnostic methods (consensus, follow-up, confocal). These

features likely play a significant role due to the distinct

characteristics of lesions in these locations and the reliability of

the diagnostic methods. Features with moderate importance, such

as localization (face, genital) and diagnosis type (histopathology),

contribute to predictions but are less critical. Interestingly, age and

certain locations (e.g., ear, lower extremity) show low importance,

suggesting they have minimal influence on the model’s predictions

for this instance. The balanced impact of sex (both male and

female) indicates that while it influences outcomes, it is not among

the strongest predictors. Overall, localization emerges as the most

relevant feature, aligning with real-world clinical practice where

lesion location is a key diagnostic factor.

Across various lesion types, we observed that localization

consistently emerged as the most important clinical feature,

underscoring its critical role in skin lesion diagnosis. This aligns

with real-world clinical practice, where the anatomical location of

a lesion is a key diagnostic factor due to its correlation with sun

exposure, skin type, and lesion characteristics.

In cases of MEL, localization (e.g., back, face) was the top

predictor, reflecting the higher prevalence of malignant lesions in

sun-exposed areas. Additionally, age and gender showed moderate

influence, consistent with their established roles as risk factors for

melanoma. Older patients and males exhibited a higher likelihood

of malignancy, further validating the model’s alignment with

epidemiological trends (Raimondi et al., 2020; Garbe et al., 2021).

For BCC, the model again prioritized localization (e.g., face,

neck), as these areas are most susceptible to UV damage (Marzuka

and Book, 2015). Diagnostic methods such as histopathology also

played a significant role, as BCC is often confirmed through biopsy.

Interestingly, age showed a stronger influence for BCC compared

to other lesion types, likely due to the cumulative effect of UV

exposure over time (Seretis et al., 2025).

In cases of AKIEC, localization (e.g., face, scalp) remained the

most important feature, as AKIEC lesions are strongly associated

with chronic sun exposure (Reinehr and Bakos, 2019). The model

also highlighted the importance of diagnostic methods (e.g.,

follow-up, confocal microscopy), reflecting the need for repeated

evaluations to monitor these precancerous lesions.

For DF, a benign lesion, localization (e.g., lower extremities)

was again the dominant feature, while age and gender had minimal

influence. This suggests that the visual appearance and location of

DF lesions are more critical for diagnosis than demographic factors

(Han et al., 2011).

Finally, in cases of VASC, localization (e.g., face, trunk) was

the most influential feature, as these lesions often appear in specific

anatomical regions (Mulligan et al., 2014). The model also relied

heavily on dermoscopic examination, highlighting the importance

of visual data for diagnosing vascular lesions.

5 Conclusion

The effectiveness of multimodal fusion methods in improving

skin lesion classification performance is well illustrated through

this study. By combining clinical metadata with dermatoscopic
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FIGURE 10

Composite visualization of Grad-CAM outputs for selected classification cases. For each sample, the left panel shows the Grad-CAM heatmap

overlaid on the dermatoscopic image, highlighting regions the model attended to during prediction. The right panel displays the original

dermatoscopic image with the ground truth label indicated. This layout enables intuitive interpretation of model focus and correctness of attention

alignment.
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TABLE 8 Instance-specific clinical feature importance for a melanocytic

nevus instance.

Clinical feature Relative importance

Dx type: follow-up 1.00

Localization: hand 0.80

Localization: scalp 0.75

Localization: neck 0.70

Localization: acral 0.65

Localization: lower extremity 0.60

Localization: chest 0.55

Localization: unknown 0.50

Localization: abdomen 0.45

Localization: genital 0.40

Sex: male 0.35

Dx type: consensus 0.30

Sex: unknown 0.25

Localization: upper extremity 0.20

Dx type: confocal 0.15

Localization: trunk 0.12

Localization: face 0.10

Sex: female 0.08

Localization: back 0.06

Localization: ear 0.04

Localization: foot 0.03

Age 0.02

Dx type: histopathology 0.01

images, the model reached state-of-the-art accuracy, with the

Cross-attention andHadamard productmethods reaching almost

99% accuracy. Importantly, these accuracies were reached with a

basic laptop setup, without the necessity for specialized Neurap

Processing Units (NPUs) or workstations, making the proposed

method efficient and accessible. This is especially important

for resource-limited settings, where sophisticated computational

facilities might not be easily accessible.

The strength of these fusion methods rests in their capacity to

merge complementary information from visual and clinical data,

emulating the comprehensive diagnostic reasoning that seasoned

clinicians often exhibit. The Cross-attention method, specifically,

performed exceptionally well by dynamically correlating and

weighting features from both modalities to allow the model

to concentrate on the most discriminative information per

input. Likewise, the Hadamard product also performed well by

appropriating local modality relationships through element-wise

multiplication of feature vectors.

These results highlight the need for carefully choosing

fusion techniques depending on the specific characteristics of

the dataset and clinical context. Though more sophisticated

methods like Cross-Attention present better performance in

challenging scenarios, simpler approaches such as Weighted

concatenation offer a useful trade-off between accuracy and

computational expense.

5.1 Limitations and future directions

Although the findings of this study highlight the capability

of multimodal fusion to improve skin lesion classification, it is

essential to recognize various limitations requiring future work

and improvement.

• Computational resource requirements: While the

adopted methodologies illustrate feasibility on common

computing hardware, the inherent computational intensity of

sophisticated fusion methods, specifically tensor fusion and

cross-attention, poses a significant computational burden.

Future studies should focus on developing and utilizing

optimization techniques. Model pruning, quantization,

and knowledge distillation are some techniques that need

to be explored to reduce computational overhead without

compromising diagnostic performance.

• Generalizability across diverse populations: The use of the

HAM10000 dataset, as comprehensive as it is, may not

perfectly capture the heterogeneity of skin lesions observed in

real-world clinical practice. Therefore, the generalizability of

themodel to diverse patient populations remains an important

challenge. Future research should include external validation

by evaluating performance on datasets such as ISIC and Pedro

Hispano-2 (PH2). Additionally, expanding training data with

a broader range of clinical and demographic variables is crucial

to enhancing the model’s robustness and validity.

• Integration of extensive clinical data: The predictive

capability of the present model is constrained by the limited

range of clinical features available in the HAM10000 dataset.

To address this, future research should focus on integrating

more comprehensive clinical data. This includes patient

medical histories, genetic predisposition, and laboratory test

results, which collectively contribute to a more holistic

diagnostic analysis.

• Improving model interpretability for clinical trust: Clinical

adoption of AI-based diagnostic tools is contingent on

their interpretability. Although Grad-CAM provides a visual

interpretation of feature importance, a deeper understanding

of the model’s decision-making process is necessary. Future

studies should explore advanced Explainable AI (XAI)

techniques, such as combining Grad-CAM with clinical

feature relevance analysis or developing hybrid models that

provide both visual and textual explanations.

• Refinement of fusion methodologies: The success of

multimodal fusion depends on the selection and optimization

of appropriate techniques. Future research should explore

adaptive fusion methods that dynamically adjust based

on input features. Additionally, investigating ensemble

fusion techniques that leverage the strengths of multiple

fusion strategies could lead to significant improvements in

diagnostic accuracy.
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• Validation in real-world clinical environments: To assess

the practical effectiveness of the proposed system, rigorous

validation in real-world clinical settings is essential. Future

studies should emphasize real-time deployment of the

model in diagnostic workflows, ensuring close collaboration

with dermatologists and healthcare professionals to address

implementation challenges and optimize the system based on

real-world feedback.

• Handling class imbalance and rare phenotypes: The

misclassification of rare transitions, such as melanoma

being classified as nevus or benign keratosis, underscores

the need for better handling of class imbalances and subtle

feature variations. Beyond basic augmentation, future

research should investigate more advanced strategies,

such as:

• Focal Loss, which down-weights easy examples and

focuses training on hard negatives, improving detection of

minority classes (Lin et al., 2020).

• Synthetic oversampling using GANs, such as Deep

Convolutional Architectures for Image Synthesis

(DCGAN) or Style-Based Image Generation Networks

(StyleGAN2), to generate realistic lesion images for

underrepresented classes like dermatofibroma or vascular

lesions (Frid-Adar et al., 2018; Mutepfe et al., 2021).

• Improving preprocessing resilience: The tendency of the

model to focus on non-essential regions, such as hair

strands or glossy skin, highlights the need for more robust

preprocessing techniques. Enhancing hair removal algorithms

and contrast normalization strategies is crucial to eliminating

distractions and improving the model’s reliability in assessing

key lesion features.

• Color constancy and harmonization: Variations in lighting

and acquisition devices can lead to inconsistent image

appearance. Future work should explore color constancy

algorithms to normalize illumination conditions across

samples. Techniques like Shades of Gray, Gray World, and

Learning-Based Color Constancy could significantly reduce

lighting-induced variance (Bianco and Cusano, 2019; Barnard

et al., 2002). This harmonization is critical for enhancing

cross-device robustness in clinical deployment.

• Cross-referencing segmentation with Grad-CAM:

While Grad-CAM provides valuable insights into model

attention, it does not guarantee alignment with lesion

boundaries. Future work should involve cross-referencing

Grad-CAM heatmaps with lesion segmentation masks

[e.g., generated using the Segment Anything Model

(SAM) (Kirillov et al., 2023)] to verify that the model

is focusing on diagnostically relevant regions. This

integration could improve both model explainability and

diagnostic reliability.

This research lays a strong foundation for applying

multimodal fusion in skin lesion classification. By addressing

the identified limitations and exploring the proposed future

directions, we can advance the development of precise,

efficient, and clinically viable AI-driven diagnostic systems,

ultimately leading to improved outcomes for patients with

dermatological conditions.
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