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Large Language Models (LLMs) have significantly advanced sentiment analysis,

yet their inherent uncertainty and variability pose critical challenges to achieving

reliable and consistent outcomes. This paper systematically explores the Model

Variability Problem (MVP) in LLM-based sentiment analysis, characterized by

inconsistent sentiment classification, polarization, and uncertainty arising from

stochastic inference mechanisms, prompt sensitivity, and biases in training data.

We present illustrative examples and two case studies to highlight its impact and

analyze the core causes of MVP, discussing a dozen fundamental reasons for

model variability. We pay especial atenttion to explainabily, with an analysis of

its importance in LLMs from the MVP perspective. In addition, we investigate

key challenges and mitigation strategies, paying particular attention to the role

of temperature as a driver of output randomness and highlighting the crucial

role of explainability in improving transparency and user trust. By providing a

structured perspective on stability, reproducibility, and trustworthiness, this study

helps develop more reliable, explainable, and robust sentiment analysis models,

facilitating their deployment in high-risk domains such as finance, healthcare and

policy making, among others.

KEYWORDS

sentiment analysis, large languagemodels, uncertainty, model variability problem, LLM-

based sentiment analysis

1 Introduction

Sentiment analysis has emerged as a critical application of large language models

(LLM) in fields such as customer feedback analysis, financial market predictions, brand

reputation monitoring, and trend detection on social media. In many of these domains—

e.g., algorithmic trading or automated credit scoring—even a few-tenth shift in polarity can

move millions of dollars or trigger high-impact decisions, so robustness and consistency

are essential. Prompt-based LLMs are especially attractive in such settings because, unlike

traditional classifiers that require full retraining, their behavior can be redirected instantly

through natural-language prompts, allowing domain experts to adjust sentiment criteria

as regulations, market language, or risk tolerances evolve. Traditional sentiment analysis
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approaches relied on rule-based lexicons or supervised machine

learning models, which, while interpretable, struggled with

nuanced expressions such as sarcasm, irony, and contextual

sentiment shifts (Wankhade et al., 2022; Zhang et al., 2024;

Krugmann and Hartmann, 2024). With the introduction of LLMs

such as GPT-4, BERT, RoBERTa, and T5, sentiment classification

has improved significantly in terms of precision, contextual

understanding, and adaptability to various domains. LLMs

leverage their vast pretraining corpora and deep transformer

architectures to understand sentiment beyond simple polarity

detection, incorporating emotion classification, aspect-based

sentiment analysis, and entity-level sentiment extraction (Yang H.

et al., 2024).

Despite these advancements, the reliance on probabilistic text

generation and deep feature representations introduces challenges

related to output variability, inconsistency between inference

runs, and susceptibility to biases in training data (Beigi et al.,

2024). Unlike traditional classifiers, which yield deterministic

output, LLMs can generate different sentiment scores for the

same input based on factors such as decoding parameters, prompt

phrasing, and the model’s internal confidence in its predictions.

This variability is particularly concerning in high-risk decision-

making applications, such as automated financial sentiment

analysis, where unstable predictions can lead to inaccurate market

forecasts. Addressing this issue requires robust techniques such

as uncertainty quantification, model calibration, and ensemble

averaging to enhance stability, reliability, and explainability in

sentiment classification.

The Model Variability Problem (MVP) refers to the

phenomenon in which an LLM or machine learning system

produces inconsistent outputs for the same input in multiple

runs (Wankhade et al., 2022). This issue arises in various natural

language processing applications but is particularly problematic

in sentiment analysis, where a model tasked with assigning a

sentiment polarity score (ranging from 0 to 1) may yield different

values for identical input text. These inconsistencies result from

the stochastic nature of LLM inference mechanisms, leading

to fluctuations that impact the reliability, trustworthiness, and

downstream applications of the model in decision-making systems.

The survey (Wankhade et al., 2022), entitled “A Survey on

Sentiment Analysis Methods, Applications, and Challenges," pay

attention to the uncertainty and the MVP. It aligns closely with

the uncertainty and variability described in the context of LLM-

based sentiment analysis. The authors discuss key challenges such

as domain dependency, ambiguity in textual data, implicit language

understanding (including sarcasm and irony), and feature selection

complexities—all contributing factors to variability issues observed

in modern sentiment analysis approaches. These identified

challenges echo the broader MVP, highlighting fundamental issues

like aleatoric uncertainty due to ambiguous language and epistemic

uncertainty caused by insufficient domain knowledge or lack

of generalization capabilities in models. In addition, the survey

emphasizes the limitations of conventional sentiment analysis

methods, including lexicon-based and supervised approaches,

stressing that each method faces difficulties in reliably capturing

nuanced sentiment, particularly in real-world settings involving

sarcasm, irony, slang, and domain-specific terminology. This is

directly related to MVP, as similar ambiguities significantly affect

LLM predictions, causing inconsistent sentiment classifications

between different inference runs (Da et al., 2025).

Recent advances in LLMs have significantly impacted sentiment

analysis, notably enhancing sentiment analysis-based crowd

decision making (ESA-CDM) by using structured prompt design

strategies, as evidenced by recent empirical studies utilizing

different LLMs (Herrera-Poyatos et al., 2025). Prompt-based

approaches are especially attractive in such contexts because

they can be adapted by domain experts without costly re-

training, provide an interpretable record of decision rules, and

complement traditional fine-tuned classifiers when rapid domain

shifts occur. Although these methods show promising potential for

extracting consensus-driven sentiment classifications from large-

scale opinion datasets, the inherent uncertainty and variability

within LLMs pose fundamental challenges. The variability

problem, which arises from sensitivity to prompt variations,

stochastic inference methods, and biases of training datasets,

critically impacts the reliability and consistency of crowd-driven

sentiment classification. This paper extends the existing analysis

by exploring the uncertainty and variability factors that affect

the accuracy of sentiment classification, highlighting the need for

refined methodologies that address consistency, robustness, and

transparency in ESA-CDM contexts supported by LLM.

In addition, given the high stakes involved in ESA-CDM

and other critical applications of sentiment analysis, particular

emphasis must be placed on the explainability and reliability

of LLM-generated sentiment predictions and explanations. As

discussed extensively in the recent literature, the opaque nature

of LLMs impedes understanding of model predictions, posing

significant barriers to trust and user acceptance. Herrera (2025)

underscores the importance of adopting explainability frameworks

to improve the transparency of AI-driven sentiment analysis,

facilitating better human-AI interaction, trust building, and

informed decision-making. Thus, this paper also explores strategies

to integrate robust explainability methodologies, ensuring that

sentiment classification outputs are not only consistent and reliable

but also transparent and comprehensible for diverse stakeholders

involved in ESA-CDM contexts.

The consequences of model variability in sentiment analysis

and other natural language processing applications include:

• Unstable sentiment classification: a business analyzing

customer feedback may receive conflicting sentiment scores

from the same input.

• Bias amplification: variability can exacerbate inherent model

biases, leading to systematic errors in human-AI decision

making, where AI systems must assist the human with advice.

• Reduced reproducibility in sentiment analysis with LLMs:

studies relying on LLM output may not reproduce results,

affecting model benchmarking.

• Challenges in trustworthy AI: end users and policymakers

require an explainable and consistent AI behavior, which

variability undermines.

The purpose of this paper is to provide a comprehensive and

holistic analysis of MVP and associated uncertainties that arise
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from the use of LLM-based sentiment analysis. We pay attention

to challenges, mitigation strategies, and the role of explainability.

We adopt a structured approach from the MVP perspective,

beginning with some illustrative examples to show the variability

in LLM-generated sentiment predictions. Subsequently, we

performed an in-depth analysis of the primary factors contributing

to uncertainty and variability, focusing on critical aspects such

as stochastic inference methods, prompt sensitivity, and biases in

training data. Finally, the article identifies emerging trends and key

challenges and describes promising directions and methodologies

as mitigation strategies.

In addition, we also pay attention to a fundamental aspect of AI

systems in general and LLMs in particular—the AI explainability.

Explainable AI (XAI) allows us to get information on the internal

mechanisms, reasoning pathways, and decision-making processes

of models. XAI is very important from the point of view of trust AI

(Afroogh et al., 2024). As discussed inHerrera (2025), explainability

is not only a technical challenge but also a human-centered and

philosophical endeavor, essential to foster meaningful interaction

and accountability in human-AI ecosystems. As highlighted in

Luo and Specia (2024), XAI in LLMs must evolve from mere

understanding of model behavior to practical utilization, where

explanations serve real-world user needs in dynamic and uncertain

contexts. In the context of sentiment analysis and model variability,

XAI can provide an essential lens through which uncertainty and

trust can be assessed, contested, and aligned with user expectations.

In order to develop the discussion and analysis, the paper is

organized as follows. Section 2 shows some illustrative examples

on the problem of focus, uncertainty, and variability. Section 3

introduces the fundamental reasons for model variability with a

literature analysis. Section 4 introduces a reflection and analysis

on the importance of explainability for LLM. Section 5 discusses

challenges and mitigation strategies for MVP in LLM-based

sentiment analysis. Finally, some conclusions are pointed out in

Section 6.

2 Case studies and illustrative
examples to show the uncertainty and
model variability

It has interest to present examples when addressing

uncertainty and MVP in LLM-based sentiment analysis, as

tangible demonstrations facilitate clearer visualization and a

deeper understanding of this complex phenomenon. Real-world

examples offer an accessible entry point for grasping abstract

concepts such as stochastic inference, prompt sensitivity, or subtle

contextual shifts, enabling more effective discussions, diagnostics,

and ultimately the formulation of robust mitigation strategies.

We present two case studies in Section 2.1 and Section 2.2 that

illustrate the unpredictable nature of model output when dealing

with real-world sentiment data. In the first case study, we explore

the variability in repeated sentiment evaluations using the GPT-

4o model, showing how the same input can produce fluctuating

predictions due to stochastic inference. In the second case study,

we analyze inconsistencies between numerical sentiment scores and

categorical labels obtained from theMixtral 8x22Bmodel, revealing

the impact of contextual interpretation on model reliability.

Following these case studies, we discuss the broader

implications of model variability through additional illustrative

examples in Section 2.3. These examples further emphasize

how unpredictable and inconsistent sentiment predictions can

undermine the credibility of LLM-based applications, particularly

in contexts such as customer reviews and finance.

We present both empirical evidence and conceptual scenarios

to foster a deeper understanding of the critical challenges

posed by uncertainty in sentiment analysis. Our aim is to

advocate robust strategies to mitigate model variability and

enhance trustworthiness.

2.1 Case study 1: TripR-2020Large dataset

In order to introduce a short analysis, we consider the TripR-

2020Large dataset (Zuheros et al., 2021) since it collects real data to

evaluate Decision-Making (DM) models with unrestricted natural

language input. The TripR-2020Large dataset1 contains 474 written

reviews in English from 132 TripAdvisor users, who express their

experiences in four restaurants, forming the set of alternatives:

X = {x1, x2, x3, x4} = {The Oxo Tower, The Wolseley, The Ivy, J.

Sheekey}. Since not all experts review every restaurant, the dataset

comprises slightly fewer than 132× 4 documents.

In the following, we present an analysis of the opinion

introduced in Figure 1 and show the uncertainty observed when

the query is repeated 100 times using the GPT 4o model, accessed

through the OpenAI API. All other decoding parameters (e.g., top-

p = 1.0) were left at their default values; only the temperature

was varied, 1.0 for the stochastic setting and 0.0 for the near-

deterministic one. Some options, such as top-k, are not exposed

through the API and therefore cannot be modified, while others—

like seed—are still in Beta; all were kept at their defaults.

This analysis highlights how variability manifests itself in model

predictions and quantifies the inherent uncertainty associated with

sentiment analysis. To conduct this study, we used the following

prompt to assess the sentiment of the given review:

Rate the sentiment of this review on a continuous scale from 0 to 1, where 0

means entirely negative, and 1 means entirely positive. The answer must be

only a number:

[DOCUMENT]

The resulting variability distribution, shown in Figure 2, shows

how the predictions (polarity) fluctuate even when analyzing the

same review multiple times while using a temperature of 1.0. It

should be noted that polarity fluctuates between negative (0.3) and

positive (0.6) values. Meanwhile, Figure 3 shows the uncertainty

when the temperature is set to 0.0, in theory, reducing its stochastic

behavior. The scores still span the same range—0.3 (negative) to

0.6 (positive)—as in the temperature 1.0 run, but with temperature

1 https://github.com/ari-dasci/OD-TripR-2020Large
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FIGURE 1

Review from the TripR-2020Large dataset.

FIGURE 2

Uncertainty under the opinion analysis using GPT 4o with

temperature 1.

0.0, 71% of the outputs collapse to 0.4, compared with 63% under

temperature 1.0.

Despite the narrower histogram, the extreme scores (0.3 and

0.6) still occur, so the possible polarity swing for downstream

decisions remains unchanged.

2.2 Case study 2: global inconsistency on
sentiment analysis problem

The second study, shown in Figure 4, presents the evaluation

of all opinions for the restaurant The Wolseley, obtained using

the Mixtral 8x22B model. The model was served locally via

llama.cpp,2 a lightweight, dependency-free C/C++ framework

for efficient LLM inference across diverse hardware platforms, on

four H100 GPUs with 80 GB VRAM each; parameters were kept

2 https://github.com/ggml-org/llama.cpp

FIGURE 3

Uncertainty under the opinion analysis using GPT 4o with

temperature 0.

at their documented defaults: temperature = 1.0, top-p = 1.0, top-k

= 40 and the random seed flag was left unset. This study aims to

analyze the consistency between numerical sentiment scores and

categorical labels, highlighting the inherent challenges posed by

prompt sensitivity and contextual variability.

The data shown in Figure 4 consists of the following elements:

• The histogram illustrates the frequency of sentiment scores

ranging from 0.0 (entirely negative) to 1.0 (entirely positive),

with intermediate values indicating varying degrees of

sentiment polarity.

• The color of each bar represents the sentiment label predicted

by the same model, obtained by using a different prompt that

explicitly asks for a label among positive, neutral or negative.

Therefore, the color coding reflects the prediction of the

sentiment label, while the height of each bar corresponds to

the frequency of scores.
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The histogram is generated by combining the results from two

different prompts, which are as follows:

Classify the sentiment of the following text as positive, neutral or negative, the

answer must be a single label and one word:

[DOCUMENT]

Classify the sentiment of the following text using a score between 0 and

1, where 0 represents a completely negative sentiment and 1 represents a

completely positive sentiment. The answer must be only a number:

[DOCUMENT]

The responses obtained from these prompts are then matched

for each review, allowing both the model’s score and label

predictions to be visualized together in the histogram.

Figure 4 reveals significant inconsistencies between the

numerical sentiment score and the categorical label. For example,

some reviews classified as negative exhibit relatively high sentiment

scores, while positive labels occasionally appear at low scores. This

discrepancy highlights the model’s variability, reflecting challenges

related to stochastic inference and prompt sensitivity.

The two presented case studies clearly demonstrate the

profound challenges posed by uncertainty and model variability

in LLM-based sentiment analysis. The first study highlights the

inherent instability of model outputs when repeating the same

sentiment analysis query multiple times, revealing how even minor

stochastic variations can lead to significantly different predictions.

This phenomenon is particularly concerning when consistent input

should logically yield stable output, but the inherent randomness of

the model results in a fluctuating range of sentiment scores.

The second study exposes an equally critical issue: the

inconsistency between numerical sentiment scores and categorical

labels. Even when using the same model and evaluating the

same input with slightly different prompts, the outputs diverge

significantly, revealing a lack of coherence between quantitative

and qualitative sentiment assessment. This inconsistency points

to a fundamental challenge in how LLMs interpret and classify

sentiment, especially when prompt phrasing subtly alters the

context or interpretation.

Together, these case studies reveal that model variability and

inconsistency are not merely occasional glitches, but systematic

challenges that arise from the nature of LLM-based sentiment

analysis. This variability significantly undermines the reliability and

trustworthiness of automated sentiment classification, particularly

in critical applications such as customer feedback analysis,

healthcare monitoring, and financial sentiment prediction.

By quantifying the extent of variability and demonstrating

its impact through real-world examples, we highlight the urgent

need for robust mitigation techniques that can reduce the

unpredictability of model outputs and enhance the stability of

sentiment predictions in practical applications.

FIGURE 4

Inconsistency between numerical and linguistic polarity using

Mixtral 8x22B model.

2.3 Illustrative examples

Illustrative examples can vividly showcase the practical

consequences of model variability, particularly in high-risk

domains such as finance, healthcare, and consumer analytics,

among others. When variability is demonstrated through clear

cases, such as analyzing sentiment from customer reviews or

interpreting financial news headlines, users and developers alike

can better appreciate its impact on reliability and trustworthiness.

This practice not only helps to recognize the urgent need for stable

and transparent AI solutions but also emphasizes the importance of

investing in research to develop techniques for reducing MVP, thus

enhancing the overall dependability and effectiveness of sentiment-

analysis applications powered by LLMs. We now introduce three

illustrative examples that demonstrate the real-world implications

of model variability.

2.3.1 Sentiment variability in customer reviews
To clearly illustrate the phenomenon of model variability

in sentiment analysis, consider an example involving

customer reviews analyzed by GPT-4. When analyzing the

following sentence.

“Oh great, another rainy day!"

GPT-4 may interpret this sentiment differently in multiple

inference runs. In one instance, influenced by the literal meaning of

“great," it might assign a neutral or slightly positive sentiment score,

whereas in another instance, detecting potential sarcasm, it could

produce a strongly negative sentiment. Such inconsistencies reflect

the inherent uncertainty that stems from the ambiguity of natural

language and the stochastic decoding processes employed by LLMs,

significantly affecting the reliability of sentiment classifications in

practical, real-world applications.
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2.3.2 Variability in financial sentiment analysis
Another illustrative example is observed in financial

sentiment analysis tasks using LLMs such as ChatGPT,

where market sentiment predictions based on news headlines

exhibit considerable variability. For example, the following

headline might trigger diverse sentiment polarity scores

across different runs, ranging from cautiously optimistic to

highly positive.

“Company X announces a surprise merger"

This variation arises due to differences in prompt

construction, subtle contextual interpretations, and model

parameter settings such as temperature or top-k sampling,

leading to instability that critically impacts decision-making

in scenarios requiring precision and reproducibility, such

as algorithmic trading or risk assessment. These examples

underscore the urgent need to understand and mitigate

MVP to improve trust and effectiveness in LLM-based

sentiment analysis.

2.3.3 Hypothetical high-risk finance scenario
Consider a realistic trading scenario. An investment-bank

dashboard ingests live news wires and relies on an LLM-based

sentiment module to trigger automated “buy,” “hold,” or “sell”

signals.

“Central bank hints at surprise rate cut next quarter”

To show a hypothetical experiment, we fed GPT-4O the

hypothetical headline one hundred times through the OpenAI

API, using the same parameters as in our earlier TripR

experiment: temperature = 1.0, top-p = 1.0; all options were

left at their defaults. The resulting sentiment scores, visualized

in Figure 5 ranged from 0.40 to 0.80 with a mean of 0.67.

Under a typical rule that fires a sell for scores below 0.4, a

hold between 0.4 and 0.6, and a buy for scores above 0.6.

The experiment shows that the same headline could trigger

different trading actions. This kind of inconsistency can expose

the trading desk to significant intraday risk and possibly draw

regulatory attention.

This hypothetical yet reproducible example shows why

stability-aware evaluation is indispensable in finance: reporting

only an average score would have concealed a potentially

costly vulnerability.

3 A dozen fundamental reasons for
model variability

MVP refers to the phenomenon where LLMs produce

inconsistent outputs for the same input on multiple runs. Based on

analysis of key literature, we identify a dozen fundamental reasons

that contribute to this issue. We provide a short introduction to

each and the appropriate literature that supports them.

FIGURE 5

Uncertainty for the hypothetical high-risk scenario using GPT 4o

with temperature 1.

3.1 Aleatoric and epistemic uncertainty

Uncertainty in sentiment classification can be categorized

into two primary types: aleatoric uncertainty, which arises from

inherent randomness in data, and epistemic uncertainty, which

stems from knowledge limitations within the model. These factors

contribute significantly to MVP, leading to inconsistent sentiment

predictions in inference runs.

Aleatoric uncertainty manifests itself when textual data

contains ambiguities, sarcasm, or sentimentally mixed expressions,

making the interpretation highly dependent on context. Sentiment

analysis models often struggle with these complexities, leading

to unstable and inconsistent sentiment classifications. Addressing

aleatoric uncertainty requires enhanced contextual embeddings,

advanced linguistic modeling techniques, and probabilistic output

representations to better handle ambiguous textual inputs. Studies

such as Shorinwa et al. (2024) identify data-driven noise—

stemming from annotation inconsistencies, ambiguous labels, and

linguistic variability—as a primary source of aleatoric uncertainty

in LLM-based sentiment analysis. Furthermore, Beigi et al.

(2024) highlights how social media slang, domain shifts, and

informal text variations exacerbate this uncertainty, making it

challenging for models to generalize sentiment classification across

different contexts.

Epistemic uncertainty, on the other hand, arises when gaps

in pre-training data prevent the model from confidently handling

unfamiliar or underrepresented linguistic structures. This type

of uncertainty leads to unstable predictions, particularly in

domain-specific sentiment tasks where LLMs lack sufficient

exposure to nuanced vocabulary. Furthermore, epistemic

uncertainty can result in confidence misalignment, where

models express unwarranted certainty in incorrect predictions,

undermining trustworthiness. Reveilhac and Morselli (2024)

explores how knowledge limitations in LLM-powered voting

systems introduce contradictions in sentiment-based decision-

making, reinforcing the need for uncertainty-aware training

approaches. Similarly, Passerini et al. (2025) shows how
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human-LLM interactions can mitigate or amplify epistemic

uncertainty, depending on whether the model is trained on high-

quality, diverse sentiment data or exposed to biased, repetitive

user input.

Addressing both aleatoric and epistemic uncertainty requires a

multifaceted approach, integrating data augmentation techniques,

uncertainty-aware learning frameworks, and structured fine-

tuning methodologies. By enriching training data, improving

contextual sensitivity, and implementing confidence calibration

techniques, LLMs can achieve greater stability and reliability

in sentiment classification. Future research must focus on

quantifying these uncertainties systematically and designing

adaptive models that can dynamically adjust confidence levels

based on input complexity.

3.2 The role of temperature in the
variability of LLM output

One of the most influential hyperparameters yet examined in

LLM is the temperature, which directly controls the stochasticity

of the output generation process. Temperature scales the logits

(output probabilities) before applying the softmax function, thus

modulating how deterministic or exploratory the model’s sampling

behavior becomes during inference. Lower temperatures (e.g.,

T = 0.1–0.3) make the model output more deterministic

by increasing the probability mass on the most likely tokens,

while higher temperatures (e.g., T = 0.8–1.5) introduce more

randomness, promoting diversity and creativity at the expense

of consistency.

This parameter has critical implications for the MVP.

High-temperature settings, although useful in open-ended

tasks like creative writing or brainstorming, inherently

increase output variance—even for semantically equivalent

prompts. This introduces unpredictability and reduces

reliability in use cases where stability, reproducibility,

and fairness are essential, such as sentiment analysis,

medical decision support, or legal QA. In such contexts,

repeated queries with identical prompts may yield

divergent responses, undermine user trust, and compromise

decision integrity.

Recent studies have shown that even at moderate temperature

settings (T = 0.7), LLMs such as GPT-3.5, Falcon, or LLaMA

exhibit significant variance in sentiment polarity, justification

styles, and factuality levels (Beigi et al., 2024). This variance

becomes particularly problematic in applications relying on

aggregate decision models (e.g., crowd decision-making or

sentiment voting systems), where fluctuations in individual

model predictions can distort final consensus or rankings.

Moreover, the interaction between temperature and prompt

sensitivity exacerbates MVP: small syntactic rephrasings

can drastically shift the model sampling trajectory under

high-temperature decoding.

Understanding and controlling the effects of temperature

is thus vital not only for task-specific performance but also

for broader goals in LLM trustworthiness, explainability,

and reproducibility.

3.3 Inference stochasticity and sampling
mechanisms

MVP in LLM-based sentiment analysis is exacerbated by

stochastic inference mechanisms that introduce nondeterministic

behavior into sentiment predictions. LLMs employ stochastic

decoding strategies, including temperature scaling (previously

analyzed) and top-k sampling, which introduce variability into

their responses; deterministic methods such as beam search are

also available and, when used with fixed model parameters and

decoding settings, do not contribute to this stochasticity.

Although these methods improve response diversity

and adaptability, they also lead to inconsistent sentiment

output, even when processing identical inputs multiple times.

This variability poses significant challenges in applications

that demand stability and reproducibility, such as financial

sentiment analysis, legal document evaluation, and automated

decision-making systems.

One of the main contributors to sentiment variability in

LLMs is the randomness of token selection during inference, as

evidenced in studies such as (Ye et al., 2024). The authors analyze

how sampling randomness impacts sentiment classifications,

demonstrating that identical sentiment analysis tasks can yield

inconsistent results due to stochastic decoding. The study

specifically examines temperature scaling and top-k sampling,

highlighting how these hyperparameters influence the distribution

of possible sentiment labels. Similarly, Lefort et al. (2024) identifies

quantile-based variations in sentiment classification across

repeated runs, further confirming that LLM inference introduces

an inherent degree of unpredictability into sentiment analysis.

Furthermore, research by Loya et al. (2023) explores how

hyperparameter sensitivity impacts model decision making,

emphasizing that even when inference settings are held constant,

minor prompt variations can still lead to differing sentiment

classifications. This highlights an essential issue: stochastic

variability is not just a function of temperature or top k sampling,

but also depends on contextual prompt dependencies, making the

problem even more complex. The findings of Atil et al. (2024)

further validate this concern, demonstrating accuracy fluctuations

of up to 10% across repeated identical inference runs, even in

cases where deterministic configurations were enforced. Their

study introduces stability-focused evaluation metrics, including

the Total Agreement Rate at N (TARr@N and TARa@N),

which systematically measure inference instability across different

sentiment classification tasks.

Beyond stochastic inference, uncertainty quantification

techniques play a crucial role in mitigating variability in sentiment

classification. As highlighted in Ji et al. (2025), epistemic and

aleatoric uncertainty significantly impact the trustworthiness

of LLM sentiment predictions. The study proposes uncertainty

estimation based on entropy, semantic consistency checks, and

confidence-aware calibration techniques, which help mitigate

inconsistencies by quantifying and adjusting model confidence in

uncertain sentiment classifications. These statistical methodologies

are especially relevant in high-risk sentiment-driven applications,

where even slight variations in LLM sentiment output could have

significant financial, legal, or societal implications.
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To counteract the effects of inference stochasticity and

enhance stability in sentiment classification, recent studies propose

multiple mitigation strategies. Atil et al. (2024) suggests integrating

ensemble-based averaging techniques, which aggregate the outputs

of multiple inference runs to reduce variability and reinforce

the stability of classification. Similarly, confidence calibration

techniques, as explored in Ye et al. (2024), provide mechanisms to

align model predictions with uncertainty quantification, reducing

the probability of sentiment fluctuations due to stochastic

effects. These findings reinforce the need for systematic stability-

aware evaluation frameworks in sentiment analysis, ensuring

that LLM-based models maintain consistency and reliability in

real-world applications.

3.4 Bias, scale, and multimodal
inconsistencies in LLM-based sentiment
classification

MVP in LLM-based sentiment analysis is deeply influenced

by a combination of factors including model scale, sentiment

label bias, architectural discrepancies across model versions,

and multimodal input conflicts. These interconnected sources

of variability compromise the consistency, interpretability, and

trustworthiness of sentiment classification systems, particularly in

high-risk domains.

On the one hand, larger LLMs typically achieve superior

linguistic performance, but they are also more prone to overfitting

on noisy or biased pretraining data, amplifying sentiment

prediction instability. Ye et al. (2024) demonstrates that as

model size increases, so does variance in sentiment output,

particularly in the presence of ambiguous or nuanced expressions

like sarcasm. This makes larger models more sensitive to

prompt phrasing and input context shifts, despite their enhanced

representational capacity. Simultaneously, Shorinwa et al. (2024)

identifies sentiment label bias in training data as a key driver of

systematic errors. When sentiment categories or linguistic styles

are unevenly distributed, models tend to inherit and amplify those

patterns, leading to skewed or unreliable sentiment predictions.

These challenges are compounded by considering bias and

variability between LLM versions and between modalities. As

Krugmann and Hartmann (2024) and Zhang et al. (2024) highlight,

different LLM variants (e.g., GPT-3.5 vs. GPT-4) often produce

divergent sentiment classifications for identical inputs due to

architectural differences and varied fine-tuning protocols. Such

inconsistencies compromise the reproducibility and comparability

of the model. Furthermore, Yang H. et al. (2024) reveals how

multimodal sentiment conflicts, especially between textual and

visual data, can result in conflicting sentiment interpretations when

LLMs do not align nonverbal signals with textual content. For

example, a sarcastic tweet paired with a cheerful image may be

misclassified due to a misalignment of the modality.

To address these intertwined issues, a multifaceted mitigation

strategy is required. First, bias-aware training and dataset balancing

must be prioritized to reduce inherited skew. Second, uncertainty

quantification (e.g., Bayesian modeling, temperature scaling) can

help assess prediction reliability. Third, cross-version calibration

protocols should be adopted to harmonize outputs across LLM

releases, while multimodal alignment techniques (e.g., cross-modal

attention tuning, sentiment fusion models) are necessary to ensure

coherent sentiment interpretation across inputs.

In conclusion, MVP in sentiment analysis arises not only

from model complexity and label bias but also from version-

specific discrepancies and multimodal misalignments. Resolving

these challenges will require integrated debiasing, stability-aware

training, and robust alignment frameworks that collectively

support consistent and interpretable sentiment predictions across

models and media types.

3.5 Implicit spectral instability and
self-regularization failure in LLMs

Recent advances by Martin and Mahoney (2021) and

Martin et al. (2021) uncover a fundamental source of model

variability rooted in the spectral properties of neural network

weight matrices. Their work demonstrates that deep models—

including LLMs—exhibit an implicit self-regularization effect,

wherein well-trained networks naturally develop heavy-tailed

singular value distributions. This phenomenon, known as Heavy-

Tailed Self-Regularization, is indicative of well-formed internal

representations and correlates strongly with generalization

robustness and output stability.

However, when spectral diagnostics reveal deviations from

these expected patterns—such as random-like spectra (under-

regularization) or overly sharp eigenvalue decay (rank-collapse)—

the model’s internal structure becomes unstable. These spectral

irregularities, though often invisible to traditional loss or

benchmark-based evaluations, lead to inconsistent outputs for

the same input and contribute significantly to the MVP. This is

particularly critical in sentiment analysis with LLMs, where small

perturbations in input or context can yield drastically different

sentiment predictions.

To quantify and track these structural instabilities, Martin

et al. introduce two scale-invariant metrics—the weighted-α and

α-Shatten norm—which provide robust, test-data-independent

indicators of a model’s internal quality. These metrics not only

correlate with fine-tuning effectiveness and out-of-distribution

(OOD) robustness but also enable proactive identification of brittle

or overfitted models before deployment.

Taken together, this spectral framework offers a powerful

diagnostic lens for understanding and mitigating MVP, advancing

toward a theory of interpretability grounded in random matrix

theory and applicable even in the absence of labeled data.

3.6 Prompt sensitivity

One of the primary factors contributing to the MVP in

LLM-based sentiment analysis is prompt sensitivity, where even

minor variations in input phrasing can lead to significant shifts

in sentiment classification. This phenomenon underscores the

nondeterministic nature of LLMs, which stems from the use of

stochastic decoding techniques such as temperature scaling and
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top-k sampling, whereas deterministic methods like beam search

produce variable outputs only when explicit randomness (for

example, stochastic tie-breakers) is introduced.

Although these techniques improve flexibility and adaptability,

they also introduce unpredictability in sentiment predictions,

making it challenging to achieve consistent and reproducible results

across inference runs. Addressing prompt sensitivity requires

careful prompt engineering, structured input standardization, and

fine-tuning approaches to reduce variability and ensure more stable

sentiment predictions.

Several studies have shown that prompt formulation

significantly impacts LLM output variability, leading to

inconsistent sentiment classifications in AI-driven applications.

The study (Yang J. C. et al., 2024) explores how prompt variation

affects voting behaviors in LLM, revealing that subtle changes in

the phrasing of questions or persona framing can shift collective

AI-generated decisions. This aligns with findings in sentiment

analysis, where slight modifications in a prompt can cause a

sentiment label to fluctuate between positive, neutral, or negative,

highlighting the instability introduced by linguistic framing in

LLM-based sentiment classification systems. This sensitivity not

only impacts reproducibility, but also raises concerns about the

reliability of AI-driven decision-making frameworks in high-risk

applications such as financial analysis, legal evaluations, and

policy making. As it was mentioned, recent studies confirm that

LLM decision-making behavior is highly susceptible to prompt

variation, further validating the claim that sentiment analysis

models exhibit inconsistency depending on input wording (Loya

et al., 2023).

A detailed analysis in Zhang et al. (2024) demonstrates

that sentiment polarity fluctuates significantly on prompt

construction, making model output highly unpredictable.

Even small changes in phrasing, word emphasis, or contextual

framing can lead to drastic sentiment classification changes,

emphasizing the importance of structured prompt formulation.

Similarly, Krugmann and Hartmann (2024) highlights

that models such as GPT-3.5 and GPT-4 produce varying

sentiment predictions based on prompt specificity, with

explicitly structured prompts yielding greater consistency,

while vague or ambiguous inputs amplify the variability of

sentiment classification.

Beyond sentiment analysis, research on human-LLM

interaction modes further illustrates the impact of different

prompting strategies on model output. The taxonomy proposed in

Gao et al. (2024) categorizes interaction techniques into standard

prompting, UI-enhanced interactions, context-driven inputs and

agent-facilitated prompting, each of which can contribute to

variability in LLM sentiment classification. Understanding these

structured interaction paradigms is essential to design consistent,

robust, and reproducible sentiment analysis methodologies that

reduce fluctuations in model output.

In addition, prompt sensitivity has been shown to introduce

significant uncertainty in AI-driven recommendation systems.

The recent study (Kweon et al., 2025) highlights that LLM-

based recommendation systems face substantial volatility and

uncertainty due to prompt sensitivity, variations in user history

length, and stochastic inference methods, even when identical

input conditions are maintained. To address this, they propose an

uncertainty quantification framework that measures reliability in

AI-generated recommendations and decomposes uncertainty into

two key dimensions:

• Recommendation uncertainty—intrinsic ambiguity due to the

complexity of the recommendation task itself.

• Prompt uncertainty—variability arising specifically from

differences in prompt formulations, reinforcing the need for

structured input standardization.

Prompt sensitivity is particularly critical in LLM-driven

collective decision-making tasks, where LLMs act as proxies for

individual opinions. Their responses can fluctuate significantly

based on prompt structure and contextual framing, leading

to inconsistencies in aggregated sentiment classifications. This

variability is especially concerning in applications where LLMs

aggregate diverse viewpoints to form a consensus, as different

prompt designs may yield divergent sentiment scores, ultimately

affecting overall model reliability. To minimize LLM sensitivity in

sentiment classification tasks, Jarrett et al. (2025) emphasize the

need for robust prompt engineering strategies and structured input

standardization techniques.

3.7 Domain-specific challenges

MVP is further amplified in domain-specific sentiment

analysis, where general-purpose LLMs struggle to adapt to

specialized fields such as legal, financial, and medical domains.

Domain-specific challenges arise from the inherent complexities,

constraints, and specialized requirements of a particular field.

These models are typically trained on broad and diverse corpora,

which may not provide sufficient coverage of the nuanced

vocabulary, terminology, and contextual cues specific to certain

disciplines. As a result, LLMs frequently misinterpret domain-

specific expressions, leading to inconsistent or unstable sentiment

predictions when applied to specialized tasks. This variability

underscores the need for domain-adapted training, fine-tuning

methodologies, and hybrid modeling strategies to improve the

accuracy, robustness, and reliability of LLMs in specialized

sentiment classification tasks.

A key issue in domain-specific sentiment analysis is domain

drift, where LLMs trained on general datasets fail to generalize

effectively to specialized applications. As highlighted in van der

Veen and Bleich (2025), LLMs exhibit greater instability when

applied to finance, healthcare, and legal analysis, as their

probabilistic nature often misinterpret technical language and

domain-specific sentiment cues. The study argues that lexicon-

based sentiment models, which rely on predefined sentiment

rules, provide greater stability in structured environments where

deterministic rules better capture sentiment classification nuances.

Similarly, Zhang et al. (2024) finds that LLMs trained in

mixed-domain datasets exhibit higher variability when performing

sentiment classification in specialized fields. The study reveals that

models trained without domain-specific adaptation struggle to

interpret context-dependent terminology, leading to fluctuations

in sentiment classification even when presented with semantically
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similar inputs. This suggests that cross-domain generalization

remains a persistent challenge, requiring adaptive fine-tuning,

domain-specific data augmentation, and lexicon-enhanced hybrid

models to stabilize LLM-based sentiment analysis.

One promising approach to mitigating domain-specific

variability is the integration of hybridmodels that combine lexicon-

based approaches with LLM-driven sentiment classification. Using

the interpretability of predefined sentiment rules with the

contextual flexibility of LLMs, hybrid frameworks can achieve

greater consistency and robustness across domain-specific

sentiment tasks. Furthermore, techniques such as adaptive training

strategies, few-shot domain adaptation, and reinforcement

learning-based fine-tuning can enhance LLM performance in

specialized fields by aligning model predictions with domain

knowledge and linguistic conventions.

In summary, addressing domain-specific sentiment variability

in LLMs requires a combination of domain-adapted training,

hybrid modeling strategies, and structured fine-tuning approaches.

Future research should focus on developing context-aware LLM

architectures that can dynamically adjust sentiment predictions

based on domain-specific linguistic cues, ensuring greater

stability, accuracy, and interpretability in specialized sentiment

classification tasks.

3.8 Reinforcement learning fine-tuning
and reinforcement learning from human
feedback

MVP is significantly influenced by Reinforcement Learning

Fine-Tuning, which introduces shifts in post-training model

predictions (Hamman et al., 2024). Reinforcement Learning from

Human Feedback (RLHF) methods (Christiano et al., 2017; Ziegler

et al., 2020; Ouyang et al., 2022) are widely used to align

LLM behavior with human preferences, ensuring that models

generate ethically sound, coherent, and contextually appropriate

responses. However, while RLHF improves alignment, it also

introduces new challenges in sentiment analysis, as fine-tuning

adjustments can make LLM outputs less predictable, leading

to inconsistencies across sentiment classifications. If alignment

updates are not properly calibrated, LLMs might develop biases

or unpredictable shifts in sentiment prediction over time, leading

to variability in model output for identical inputs (Atil et al.,

2024).

Recent research highlights how alignment-induced changes

introduce unpredictability in sentiment classification. In

Shorinwa et al. (2024), it is shown that RLHF models tend to

shift sentiment predictions unpredictably, as the fine-tuning

process modifies model behavior based on subjective human

feedback, leading to inconsistent sentiment classifications

across different prompts and contexts. Similarly, Beigi et al.

(2024) discusses how post-training alignment mechanisms,

such as safety filters, ethical constraints, and reinforcement

objectives, can unintentionally distort sentiment interpretations,

sometimes causing models to overcorrect or suppress certain

sentiment polarities. These findings highlight a critical

trade-off between model alignment and predictive stability,

emphasizing the need for robust calibration techniques to maintain

consistency in sentiment classification without introducing

systematic distortions.

Beyond alignment challenges, fine-tuning itself introduces

additional sources of model variability. Small variations in

fine-tuning configurations, including random seed initialization,

learning rates, training data variations, and slight modifications

in hyperparameters, can lead to fine-tuning multiplicity, where

multiple equally well-performing models generate conflicting

sentiment classifications for the same input. This phenomenon

is formalized in Hamman et al. (2024), which introduces

a prediction consistency measure that demonstrates that

different fine-tuned versions of the same base model can

significantly diverge in the sentiment classification results due to

subtle differences in training conditions. Such inconsistencies

undermine the reliability of sentiment models, raising

concerns about their stability, robustness, and reproducibility

in high-risk applications.

3.9 Human-AI interaction biases and
adaptation challenges

One of the key contributors to MVP in sentiment analysis

is the influence of human biases during interactions with LLMs.

Human users inherently interact with LLMs in a subjective way

and thus can introduce inconsistencies in the results of sentiment

classification. These biases arise from cognitive tendencies such as

automation bias and algorithm aversion, both of which influence

how users interpret and rely on AI-generated output.

• Automation bias occurs when users overtrust AI-generated

sentiment assessments, accepting outputs without critical

scrutiny (Parasuraman and Riley, 1997; Logg et al., 2019).

This overreliance can reinforce systematic inconsistencies

in model predictions, especially in ambiguous or context-

sensitive sentiment classification tasks.

• In contrast, algorithm aversion occurs when users develop

skepticism toward AI models after experiencing errors or

unexpected sentiment output. This can lead to unpredictable

interactions, where some users override model decisions even

when AI-generated sentiment assessments are accurate,

reducing reproducibility and stability in AI-assisted

decision-making processes.

As highlighted in Passerini et al. (2025), human users exhibit

distinct patterns of adaptation when engaging with LLMs, often

reinforcing biased interpretations. Users who consistently trust

AI-generated sentiment scores may unknowingly amplify model

biases, embedding systematic distortions into the analysis pipeline.

In contrast, users who frequently override AI decisions introduce

variability by resisting the model output, creating instability in the

consistency of sentiment assessment. This interaction-dependent

bias raises concerns in critical applications, such as financial market

sentiment analysis, healthcare sentiment evaluation, and policy-

oriented opinion mining, where stable and unbiased sentiment

predictions are essential for sound decision-making.
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3.10 Lack of calibration in confidence
scores

One of the critical factors contributing to MVP in LLM-

based sentiment analysis is the lack of proper calibration of

confidence scores. Confidence calibration refers to the alignment

between the predicted confidence level of a model and its actual

accuracy. LLMs often overestimate their confidence in incorrect

predictions while underestimating it in accurate ones, leading to

a disconnect between their perceived certainty and real-world

performance. This miscalibration is particularly problematic in

sentiment classification, where erratic confidence levels may cause

inconsistent sentiment assignments, ultimately compromising the

reliability of the model in decision-making processes. Without

proper calibration, LLMs can misrepresent their predictive

confidence, resulting in unstable sentiment scores on inference runs

and reducing trust in AI-driven sentiment analysis applications.

Empirical evidence is found in Xie et al. (2025), where the

discussion reflects how poorly calibrated models produce highly

variable sentiment predictions, as inconsistencies in confidence

estimation lead to overconfident but incorrect classifications or

fluctuating sentiment scores across inference runs. Similarly, Beigi

et al. (2024) highlights that LLMs often lack uncertainty-aware

calibration mechanisms, emphasizing that temperature scaling,

Bayesian confidence adjustments, and quantile-based methods can

improve model stability in sentiment analysis.

These studies reveal that uncalibrated confidence scores

introduce variability in model outputs, particularly in subjective

sentiment tasks. Calibration errors lead to low trustworthiness

in AI-generated sentiment classifications, which requires the

integration of uncertainty quantification frameworks to improve

LLM reliability in high-risk applications.

3.11 Evaluation metrics limitations and
sentiment evaluation benchmark

One of the fundamental challenges exacerbating MVP in LLM-

based sentiment analysis is the limitation of existing evaluation

metrics and sentiment benchmarks. Traditional accuracy-based

metrics, such as precision, recall, and the F1 score, fail to

capture the variability inherent in LLM-generated sentiment

classifications, as they primarily assess static performance without

accounting for prediction inconsistency between inference runs.

Similarly, existing sentiment benchmarks often oversimplify

sentiment classification, relying on rigid categorical labels such

as positive, negative, or neutral, which do not adequately reflect

the complexity of real-world sentiment expressions, including

sarcasm, contextual sentiment shifts, and mixed emotions. These

constraints lead to inconsistent model evaluations, where the

same model may yield different performance results depending on

the benchmark used, further compounding uncertainty in LLM

performance assessments.

Empirical evidences are found in the following two studies.

In Krugmann and Hartmann (2024), the authors critique existing

sentiment benchmarks, demonstrating that they often fail to

capture subtle sentiment transitions and contextual dependencies,

which are essential for accurate sentiment interpretation. In Ye

et al. (2024), the authors highlight leaderboard discrepancies,

showing that LLMs ranked highly in one evaluation setting may

perform poorly in another, emphasizing the need for more robust

benchmarking methods that account for sentiment stability and

prediction consistency.

These findings underscore the need for improved

benchmarking frameworks that incorporate uncertainty-

aware metrics, stability assessments, and real-world sentiment

variations to provide a more accurate evaluation of LLM

performance. Standard accuracy metrics do not assess intramodel

consistency, leading to fluctuating model rankings across

different datasets. Uncertainty-aware evaluation frameworks that

incorporate prediction confidence, sentiment stability metrics,

and context-aware assessments are needed to accurately measure

LLM performance.

3.12 The black-box nature of LLM
decision-making

One of the key challenges contributing to MVP in sentiment

analysis is the black-box nature of LLMs, which limits transparency

and interpretability. LLMs generate sentiment classifications

through complex neural architectures and large-scale statistical

modeling, making it difficult to trace how and why a particular

prediction is made. This opacity is problematic because

identical inputs can yield different outputs, and without clear

interpretability, debugging inconsistencies and mitigating

variability remain significant challenges. The inability to explain

these variations hinders trust in AI-driven sentiment models,

particularly in high-risk applications such as finance, healthcare

care and policy analysis.

A key source of interpretability challenges in LLMs is the

variability introduced by the grouping mechanisms used in

sentence-embedded representations. Different pooling techniques

determine how token-level embeddings are aggregated into a

single sentiment representation, leading to inconsistencies in

sentiment classification.Mean-pooling averages token embeddings,

producing stable but sometimes diluted sentiment representations

by smoothing out extremes. Max-pooling, on the other hand,

captures the strongest sentiment feature by selecting the highest

activation per dimension, emphasizing distinct sentiment features

but at the cost of higher variability in predictions. Weighted sum

pooling, which dynamically adjusts token importance based on

learned weights, improves classification accuracy but increases

interpretability challenges, as the influence of specific tokens is

difficult to trace (Zhang et al., 2024).

The pooling mechanisms directly affect the variability and

interpretability of sentiment. In Xing et al. (2024), the authors show

that the sentiment classification outcomes fluctuate significantly

depending on the grouping method used, highlighting how subtle

changes in the pooling selection can alter model predictions.

Similarly, Beigi et al. (2024) underscores that the lack of

interpretability in LLM intensifies the variability, making it

difficult to diagnose sentiment inconsistencies. Furthermore,

van der Veen and Bleich (2025) contrasts LLM-based sentiment
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classification with lexicon-based approaches, demonstrating that

lexicon models offer greater transparency and stability by relying

on explicit sentiment word mappings rather than opaque neural

representations. This suggests that hybrid models integrating

lexicon-based and LLM-based approaches may offer a balance

between accuracy and interpretability.

A related issue is overfitting to certain sentiment patterns

due to pooling biases. In multimodal sentiment tasks, for

example, weighted sum grouping can misallocate importance to

sentimentally neutral words, distorting the final classification.

In contrast, maximum pooling can amplify noise in sentiment

classification, as it over prioritizes extreme words, leading to

erratic output in cases where sentiment is ambiguous. These

findings highlight the need for explanation-driven pooling

selection methods, ensuring that LLMs prioritize stability and

interpretability alongside accuracy.

To address the black-box problem, integrating XAI techniques

is essential. Methods such as SHapley Additive Explanations

(SHAP) and Local Interpretable Model-Agnostic Explanations

(LIME) have been applied to sentiment analysis to clarify the role of

individual words in influencing sentiment classifications. Attention

visualization techniques have also been used to map out which

words contribute the most to sentiment decisions, offering a clearer

view of how sentiment shifts occur across inference runs.

Another promising direction is the development of

structured pooling calibration techniques that reduce the

interpretability-accuracy trade-off. Research in Xing et al. (2024)

suggests that hybrid pooling methods—combining mean and

weighted sum pooling—can achieve greater consistency while

preserving contextual depth, making sentiment predictions

robust and interpretable. Additionally, confidence calibration

strategies, such as temperature scaling and Bayesian uncertainty

modeling, can help align LLM predictions with actual model

confidence, improving reliability and mitigating unpredictability

in sentiment classification.

In summary, the black-box nature of LLM decision-making

remains a central challenge in sentiment analysis variability.

However, explainability-driven techniques, optimized pooling

strategies, and interpretability-aware hybrid models offer practical

solutions to improve transparency and stability. By integrating

these approaches, future sentiment analysis models can minimize

inconsistencies, enhance trust, and ensure that LLM-based

sentiment classification remains accurate and interpretable.

4 Analysis of the role of explainability

In this section, attention is given to XAI, a fundamental aspects

for LLMs for user understanding and analysis. First, we briefly

introduce XAI from a trust AI perspective in Section 4.1. In Section

4.2 we address the XAI role in LLMs. Finally, in Section 4.3 we

analyze the deep structures for LLM-based XAI.

4.1 Explainability and trust building

XAI (Arrieta et al., 2020; Ali et al., 2023; Longo et al., 2024) can

be considered an essential component of artificial intelligence. The

following definition, proposed in Arrieta et al. (2020), considers

the two fundamental elements when we discuss explanations:

understanding and audience.

Given an audience, an explainable AI (XAI) is one that

produces details or reasons to make its functioning clear or

easy to understand.

The field of Explainable AI has expanded rapidly, with a

wide range of technical approaches proposed to generate such

explanations. The ongoing work now questions the maturity of

these methods and maps the open challenges they face to support

AI trust and human AI collaboration. A comprehensive conceptual

reflection can be found in Herrera (2025).

The growing complexity of LLM has underscored the urgent

need for effective explainability frameworks. As discussed in

Herrera (2025), the shift to black-box models in recent years

has raised critical concerns about transparency, interpretability,

and ultimately trustworthiness of AI systems. Herrera emphasizes

that the increasing reliance on advanced AI models demands a

comprehensive approach to XAI, not only as a tool for clarifying

internal mechanisms but also as an essential factor for fostering

trust and informed human-AI interaction. This notion aligns

strongly with the identified need for robust interpretability in

sentiment analysis using LLMs, particularly given the high-risk

and potential consequences associated with variability in sentiment

output. Thus, the insights from Herrera’s reflections highlight

the imperative to develop contextually grounded user-oriented

XAI approaches capable of demystifying AI outputs and ensuring

reliable decision-making across various critical applications.

Rapid adoption and integration of LLMs across diverse sectors

underscores their transformative potential. However, despite their

impressive capabilities in natural language processing, thesemodels

inherently function as “black boxes," obscuring the decision-

making processes behind their outputs (Zhao et al., 2024).

This opacity presents critical challenges, particularly concerning

transparency, reliability, and ethical responsibility, that require the

rigorous exploration and development of XAI methodologies.

One of the fundamental motivations for explainability in

LLMs is trust building (Afroogh et al., 2024). As Luo and Specia

(2024) highlight, the confidence of end-users in AI-driven systems

is significantly dependent on their ability to understand the

reasoning behind specific predictions or classifications. Without

clear explanations, stakeholders cannot reliably calibrate model

performance, leading to the potential misuse or rejection of

valuable AI tools. This trust factor is especially critical in sensitive

domains like healthcare, finance, and legal decision making, where

misunderstood or inaccurate model predictions can have severe

consequences (Zhao et al., 2024).

Furthermore, as the study (Barman et al., 2024) argues, focusing

solely on transparency in the abstract may not adequately address

the practical needs of diverse user groups. They emphasize the

need for explainability methods that not only clarify why a

model made a particular decision but also provide actionable,

contextual guidance for users. Effective explainability, therefore,

should move beyond mere transparency toward enabling practical,

contextualized understanding that facilitates responsible AI use.

This perspective suggests a shift from purely technical explanations
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toward pragmatic guidelines tailored to specific use cases and user

proficiency levels.

4.2 XAI in LLMs

Addressing explainability in LLMs, Zhao et al. (2024)

introduces a comprehensive taxonomy of techniques, categorizing

them into local and global explanations based on their explanatory

objectives. Local explanations, such as feature attribution, attention

visualization and counterfactual explanations, elucidate the

reasoning of the model for specific predictions, directly supporting

user trust by providing concrete justifications for outputs. These

techniques enable users to precisely understand which inputs or

features most significantly influence individual decisions, making it

possible to validate or challenge predictions on a case-by-case basis.

In contrast, global explanations, which encompass approaches

such as classifier investigation, mechanistic interpretability, and

representation analysis, assist researchers in comprehending the

overarching behaviors and structural properties of the model.

These methods provide insight into internal mechanisms, hidden

biases, and general knowledge encoded within the models,

thus playing a crucial role in debugging, systematic model

improvements, and identifying vulnerabilities or systemic issues

such as embedded societal biases or the tendency of models to

generate misleading information. This taxonomy emphasizes the

complementary nature of local and global methods, highlighting

the necessity of integrating multiple explanation types to build

comprehensive, trustworthy, and interpretable LLMs.

However, current explainability methods still face significant

challenges, especially due to the unprecedented scale and

complexity of modern transformer-based LLMs such as GPT-

4 or LLaMA. As emphasized by Luo and Specia (2024),

traditional techniques such as SHAP or LIME, while valuable,

often struggle with computational scalability when applied

to models with billions of parameters. Moreover, existing

explainability metrics frequently fall short in capturing nuances

in model behaviors such as in-context learning and chain-of-

thought reasoning, highlighting the need for novel, efficient, and

scalable explanatory methods tailored explicitly to large-scale

generative models.

In addition, explainability plays a crucial role in mitigating

the ethical and social risks associated with LLM. In Zhao et al.

(2024), they point out that opaque decision-making processes

in models often lead to unintended biases, harmful content

generation, and hallucinations, outcomes that pose substantial

ethical and social implications. Robust explainability frameworks

enable proactive identification and mitigation of such risks,

fostering ethical alignment and responsible deployment of these

powerful technologies.

In summary, advancing explainability in LLMs is essential

not only to enhance user trust and model reliability but also

to ensure ethical and responsible use of AI technologies in

society. In the future, the development of more sophisticated,

context-sensitive, and user-oriented XAI frameworks, as

advocated in Barman et al. (2024), is crucial. Future research

and practical guidelines should aim to bridge theoretical

understandings and empirical methodologies with real-

world user-centric applications, ensuring that the profound

capabilities of LLMs can be channeled ethically, responsibly,

and effectively.

Integrating XAI techniques into LLM-based sentiment analysis

is crucial to enhance model transparency and reduce uncertainty.

By providing clear insights into how models arrive at their

predictions, XAI facilitates the identification and mitigation of

inconsistencies and biases inherent in LLMs. Techniques such

as attention mechanisms and visualization tools can highlight

which parts of the input text most influence sentiment predictions,

enabling users to understand and trust themodel’s decision-making

process. For example, employing attention-based explanation

methods can reveal how specific words or phrases contribute

to the overall sentiment classification, thereby offering a more

interpretable and reliable analysis. Furthermore, approaches

grounded in linguistic theory, such as construction grammar, can

further clarify how LLMs internalize complex linguistic patterns

and meanings, thus providing deeper explanatory insights into

model behavior and potential misunderstandings (Weissweiler

et al., 2023). By adopting these combined XAI strategies,

stakeholders can achieve a deeper understanding of model

behavior, leading to more consistent and trustworthy sentiment

analysis results (Mabokela et al., 2024; Weissweiler et al., 2023).

4.3 Deep structures for LLM-based XAI

As highlighted by Da et al. (2025), the reasoning processes

in LLMs are not always stable, with different paths leading

to the same or different final conclusions depending on how

the model structures its logical dependencies. This structural

uncertainty, when applied to sentiment analysis, can result in

divergent sentiment scores for the same input. Addressing this

challenge requires adopting structured methods for explanation-

based uncertainty quantification, such as reasoning topology

modeling, to systematically capture and mitigate variability in

sentiment interpretation.

Explainability in LLMs is not only about generating user-

friendly rationales but also about uncovering the deeper structures

and statistical signatures that govern model behavior. A key

contribution to this broader vision comes from Martin et al.

(2021) and Martin and Mahoney (2021), who propose a diagnostic

approach that bypasses traditional benchmarking. Their framework

introduces spectral metrics—such as heavy-tailed power-law

exponents and Shatten norms—to assess model generalization

and robustness without relying on labeled test data. These

insights are vital in dynamic or high-risk domains, such as

finance or healthcare, where labeled validation sets are unavailable

or infeasible. Spectral irregularities in weight matrices signal

deviations from the expected implicit self-regularization behavior

of well-trained models, offering a scalable and quantitative means

of identifying brittle or overfitted LLMs. By exposing these internal

statistical pathologies, this line of work provides a structural lens

for assessing the trustworthiness of black-box models and directly

addresses MVP rooted in hidden instabilities.
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At the same time, recent advancements in mechanistic

interpretability (MI)—as surveyed by Rai et al. (2025) and

operationalized by Anthropic (Ameisen et al., 2025; Lindsey

et al., 2025)—focus on reverse-engineering internal circuits and

causal pathways in LLMs. These bottom-up methods trace how

models arrive at decisions by isolating conceptual features, circuits,

and attribution graphs, moving explainability beyond surface

rationales toward faithful, structure-aware analysis. While spectral

diagnostics provide a global, model-level signal of risk, MI

techniques like activation patching and circuit tracing reveal

the fine-grained reasoning structures within models, enabling

developers to audit behaviors such as planning, hallucination,

or misalignment.

Building on this foundation, García-Carrasco et al. (2024)

and García-Carrasco et al. (2025) introduce a complementary

strategy that further operationalizes mechanistic interpretability

by extracting interpretable, task-specific circuits from LLMs.

Their work demonstrates that it is possible to isolate compact

subnetworks responsible for specific behaviors—such as acronym

prediction or sentiment detection—without retraining the model.

This modular interpretability not only enhances our ability to trace

causal pathways within the model but also significantly reduces

inference costs by pruning irrelevant components, yielding models

that are both faster and more transparent. Crucially, this approach

bridges the global-local interpretability divide: by first identifying

global model regions responsible for a task and then drilling

down to functional circuits, it supports stakeholder-specific views—

regulators, developers, and end-users alike—on model behavior.

In the broader interpretability landscape, these circuit extraction

techniques serve as mid-level interfaces that connect model-wide

spectral diagnostics with neuron-level interpretability, effectively

scaffolding a full-stack explainability architecture.

Together, these complementary approaches—statistical and

mechanistic—create a unified interpretability framework. This

integration enables scalable evaluation (via spectral diagnostics)

and localized causal validation (via circuit tracing), forming the

foundation for transparent, accountable, and safe deployment of

LLMs. As emphasized by Amodei (2025), such frameworks must

evolve from ad hoc analysis tools into essential infrastructure—

capable of detecting alignment risks, legal noncompliance, and

model deception—before frontier models are widely adopted in

governance-critical and safety-sensitive contexts.

Dimension frontiers. In summary, the exploration of

explainability plays a vital role in addressing the uncertainty

and variability inherent in LLM-based sentiment analysis. Given

that LLM sentiment predictions are particularly susceptible to

variability driven by stochastic inference, prompt sensitivity,

and training biases, it is crucial to incorporate robust and

interpretable explanation methods. Effective explainability not

only provides clarity on how and why sentiment classifications

vary, but also establishes trust and facilitates user validation of

AI-generated sentiments.

As a notable recent contribution within this frontier, Nguyen

et al. (2024) introduce the novel Sentiment Reasoning task

in healthcare care, demonstrating that rationale-augmented

sentiment classification significantly improves both interpretability

and performance, an approach that directly supports our goal

of improving model transparency and reliability in high-stakes

domains impacted by the MVP.

Aligning comprehensive XAI frameworks with methods for

uncertainty quantification and variability mitigation forms an

essential foundation for improving the stability, reliability, and

trustworthiness of LLM-based sentiment analysis systems, directly

addressing the central themes of this perspective study.

5 Challenges for model variability
problem in LLM-based sentiment
analysis

The evaluation of LLM-based sentiment analysis remains

deeply affected by the MVP, which undermines the consistency,

interpretability, and trustworthiness of model predictions across

different domains and use cases. In Section 3, we outline a

conceptual foundation by identifying a dozen fundamental reasons

for MVP. These underlying sources of variability provide a

theoretical lens through which the behavior of LLMs can be better

understood and scrutinized.

Building on that foundation, this section presents fourteen

key challenges that operationalize these theoretical insights into

specific problem areas within LLM-based sentiment analysis. Each

challenge is drawn from a synthesis of current literature and

corresponds directly to one or more of the previously identified

root causes. In doing so, we establish a clear analytical bridge

between high-level variability factors and actionable avenues for

mitigation. These challenges not only frame the practical impact

of MVP, but also highlight solution spaces, ranging from spectral

diagnostics to explainability frameworks, that may offer paths

toward reducing variability and improving the robustness of LLM-

based sentiment analysis systems.

5.1 Lack of standardized and
stability-aware benchmarking frameworks

The evaluation of sentiment analysis models is based primarily

on traditional performance metrics such as precision, accuracy,

recall, and the F1 score. However, these metrics are insufficient to

assess variability in LLM-based sentiment analysis, as they do not

account for fluctuations in model output over multiple inference

runs. Although standard sentiment benchmarks exist, they often

fail to measure stability and consistency, making it difficult to

determine whether an LLM can reliably classify sentiment in

different contexts and prompts.

One of the key issues is that models that rank in one

benchmark may perform poorly in another, as highlighted in

Ye et al. (2024), demonstrating benchmarking inconsistencies in

sentiment analysis. Furthermore, traditional evaluation metrics do

not consider how sentiment classification changes over time due to

model updates, prompt variations, or data set changes. This gap in

the evaluation leads to a misleading perception of the reliability of

the model, which prevents a proper assessment of the stability of

the prediction of sentiments.
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The instability of sentiment classification outputs in LLMs

is exacerbated by the model’s sensitivity to prompt construction

and hyper-parameter settings. Recent research demonstrates that

sentiment scores can vary significantly due to minor prompt

re-wording or changes in decoding parameters, reinforcing the

need for methods to improve stability and reliability in sentiment

classification (Loya et al., 2023).

5.1.1 Potential solution
A potential solution is to introduce stability-aware

benchmarking frameworks that incorporate uncertainty-aware

evaluation metrics, such as confidence scores based on entropy

and stability indices—the former is obtained by running the

model several times on the same input, averaging the predicted

class-probability vectors, and treating lower entropy as higher

confidence, while the latter measures the percentage of repeated

runs that agree with the most frequent label, thereby quantifying

run-to-run repeatability (Ye et al., 2024; Hamman et al., 2024).

Furthermore, cross-benchmark validation using multiple domain-

specific datasets could improve sentiment-classification robustness,

ensuring that evaluations reflect real-world performance variations

rather than over-fitting to specific benchmarks.

5.2 Sensitivity to prompt variability and
input reframing

LLMs are highly sensitive to variations in prompt phrasing,

which means that small changes in input wording can

lead to significantly different sentiment predictions. This

issue makes it difficult to replicate the results of sentiment

classification consistently, reducing trust in LLM-based sentiment

analysis applications.

Studies such as Zhang et al. (2024) and Krugmann and

Hartmann (2024) reveal that GPT-3.5 and GPT-4 generate different

sentiment scores based on prompt specificity, even when the

sentiment meaning remains unchanged. Furthermore, the lack

of standardized prompt design guidelines makes it difficult for

researchers to evaluate whether the sentiment output of a model

is a result of genuine contextual understanding or a by-product of

prompt sensitivity.

Recent work by Reveilhac and Morselli (2024) shows that

LLMs such as ChatGPT exhibit notable shifts in decision-

making behavior based on linguistic, cultural, and contextual cues

embedded within the prompts. The study highlights how model

outputs fluctuate depending on the ideological framing of political

prompts and the language in which queries are presented. This

variability aligns with our findings that sentiment analysis outputs

are highly prompt-sensitive, requiring standardized prompt

engineering strategies to mitigate inconsistencies.

5.2.1 Potential solution
Given the substantial impact of prompt sensitivity on the

variability of sentiment analysis, it is essential to develop systematic

techniques to mitigate its effects. Key strategies include:

• Standardization of prompt design to reduce linguistic

variability and improve consistency in model responses.

• Implement prompt optimization frameworks that ensure that

LLMs generate sentiment predictions with minimal deviation

across inference runs.

• Integrating uncertainty-aware modeling to detect whenmodel

predictions are likely to fluctuate due to prompt variations.

• Using ensemble-based sentiment evaluation methods, where

multiple prompt structures are tested to derive more robust

and consensus-driven sentiment scores.

By addressing prompt sensitivity through structured input

standardization and explainability-driven interventions, LLM-

based sentiment analysis can achieve greater stability, reliability,

and reproducibility, ensuring its effective deployment in high-risk

AI-driven decision-making environments.

5.3 Epistemic and aleatoric uncertainty in
the interpretability of the model

LLMs suffer from two major types of uncertainty: epistemic

uncertainty, which arises from knowledge limitations within the

model, and aleatoric uncertainty, which is caused by inherent noise

and ambiguity in training data. These uncertainties make it difficult

for LLMs to produce stable sentiment classifications, leading to

inconsistencies in sentiment predictions.

As discussed in Shorinwa et al. (2024), epistemic uncertainty is

the result of incomplete training data, causing LLMs tomisinterpret

sentiment in unseen or ambiguous contexts. Furthermore, aleatoric

uncertainty, as highlighted in Beigi et al. (2024), arises due to

human annotation errors, slang, sarcasm, and domain shifts,

leading to inconsistent sentiment classifications. This dual source

uncertainty problem reduces the reliability of sentiment analysis

models. In Reveilhac and Morselli (2024), the authors emphasize

how epistemic uncertainty affects decision making in LLM-

powered voting systems, and Passerini et al. (2025) explores how

mutual adaptation between humans and LLM can reduce or

amplify epistemic uncertainty.

The association of aleatoric and epistemic uncertainty with

the studies analyzed reveals that both sources of uncertainty are

the main contributors to LLM variability in sentiment analysis.

Aleatoric uncertainty arises from intrinsic linguistic ambiguities,

while epistemic uncertainty arises from knowledge limitations

within the model itself.

5.3.1 Potential solution
Effective mitigation requires a combination of context-aware

sentiment embeddings, structured fine-tuning methodologies,

confidence calibration frameworks and explainability-driven

feedback mechanisms. By addressing these uncertainties, we can

significantly improve the robustness, reliability, and interpretability

of sentiment classification in LLM-based systems.

To mitigate uncertainty in sentiment analysis, models should

be trained with uncertainty-aware learning techniques, such as

Bayesian deep learning or Monte Carlo dropout, which quantify

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1609097
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Herrera-Poyatos et al. 10.3389/frai.2025.1609097

and account for confidence levels in sentiment predictions.

Additionally, incorporating explainability methods (e.g., attention

visualization) can help researchers diagnose whether sentiment

shifts are due to knowledge gaps or data-driven noise, improving

interpretability and reliability.

5.4 Diagnosing and mitigating model
variability through structural and
mechanistic interpretability—without
ground truth

One of the central challenges in deploying LLMs is assessing

and controlling model variability in settings where labeled test

data is scarce or unavailable—a common scenario in high-risk

domains such as finance, healthcare, and legal analytics. This

MVP is exacerbated by the opaque black-box nature of LLMs,

their stochastic inference processes, sensitivity to prompt phrasing,

and susceptibility to training data biases. Traditional evaluation

techniques fall short under such constraints, calling for alternative

methods that offer reliable diagnostics without requiring access to

ground truth.

To address this, Martin et al. (2021) and Martin and

Mahoney (2021) propose a spectral diagnostic framework that

evaluates the quality of the model through the intrinsic statistical

properties of the weight matrices. Their analysis shows that well-

generalizing models exhibit Heavy-Tailed Self-Regularization—

a spectral pattern detectable through power-law exponents

(e.g., α-Shatten norms). When these spectral signatures deviate

from expected ranges (e.g., α > 2.3), it signals potential

instability, under-regularization, or overfitting. These indicators

can be monitored post hoc or during training to assess model

robustness, making them especially useful in environments where

traditional performance metrics are inaccessible. Integrating these

diagnostics into practice enables checkpoint selection, spectrum-

aware fine-tuning, and reproducible benchmarking in LLM-based

sentiment analysis.

In parallel, recent advances in mechanistic interpretability—

such as circuit tracing, attribution graphs, andmodular subnetwork

extraction—provide complementary tools to uncover causal

structures and internal reasoning paths within transformer-based

models (Rai et al., 2025; García-Carrasco et al., 2024, 2025; Ameisen

et al., 2025).

While spectral diagnostics offer a global perspective on

model stability, mechanistic methods enable localized analysis

of prediction pathways, facilitating a deeper understanding of

why and how variability arises in model outputs. Together, these

approaches offer a multilayered diagnostic framework—combining

global spectral insights with fine-grained causal tracing—to reliably

assess and mitigate model variability in LLMs, even in the absence

of labeled ground truth.

5.4.1 Potential solution
Fusing spectral and mechanistic approaches offers a unified

interpretability framework capable of diagnosing and mitigating

LLM variability without the need for labeled validation data.

In practice, tools like WeightWatcher can be used to monitor

spectral health during training or deployment, while mechanistic

techniques (e.g., circuit extraction or attribution analysis) help

verify reasoning consistency in specific tasks such as sentiment

classification. This combination enables proactive detection of

failure modes, structural risk, and misaligned reasoning in real-

time, thereby enhancing trust, reproducibility, and stability in

LLM-based applications.

5.5 RLHF-induced variability

RLHF and fine-tuning methodologies play a crucial role in

aligning LLM sentiment predictions, but they also introduce new

sources of variability that must be carefully managed. Future

research should focus on developing structured RLHF calibration

frameworks, stability-aware fine-tuning techniques, and ensemble-

based evaluation strategies to ensure consistency in LLM-based

sentiment classification tasks. By addressing these alignment-

induced inconsistencies, sentiment analysis models can achieve

greater reliability, reproducibility, and robustness, enabling more

effective deployment in real-world decision-making environments.

5.5.1 Potential solution
Addressing the variability introduced by RLHF and

the fine-tuning multiplicity requires the implementation of

structured calibration techniques and stability-aware optimization

frameworks. Key strategies include:

• Confidence-aware RLHF adjustments: fine-tuning alignment

strategies should incorporate confidence estimation

techniques that assess the impact of reinforcement learning

updates on prediction consistency before deployment.

• Fine-tuning stability protocols: employing stability-driven

retraining techniques, such as ensemble fine-tuning, iterative

feedback alignment, and controlled learning rate decay, can

reduce fluctuations in sentiment classification.

• Ensemble-based consistency evaluation: using multiple fine-

tunedmodel checkpoints and aggregating predictions through

voting mechanisms can increase robustness and reduce the

influence of alignment-induced shifts.

• Uncertainty quantification techniques: implementing

quantile-based calibration, epistemic uncertainty estimation,

and Monte Carlo dropout methods can help quantify

variability in fine-tuned sentiment models, ensuring more

reliable output.

5.6 Sensitivity to model updates and
fine-tuning variability

One of the major challenges in ensuring stability in sentiment

analysis is the variability introduced by iterative model updates

and fine-tuning strategies. Fine-tuned LLMs, even when trained

on similar datasets with minor modifications, may produce

contradictory sentiment predictions for identical inputs,
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introducing inconsistencies in high-risk applications like finance,

healthcare, or customer feedback analysis. This issue is exacerbated

by the need for frequent model retraining due to data drift,

evolving user language, and regulatory constraints such as GDPR’s

“right to be forgotten," which requires data removal and potential

model retraining.

Recent work by Hamman et al. (2024) systematically examines

the fine-tuning multiplicity, demonstrating that models fine-tuned

under slightly different conditions (e.g. random seed initialization,

additional training samples) can exhibit arbitrary sentiment

classification results. Their proposed prediction consistency metric

quantifies a model’s susceptibility to fine-tuning variability and

offers a probabilistic measure of prediction robustness. Addressing

this challenge requires developing stability-sensitive fine-tuning

protocols, uncertainty-sensitive retraining strategies, and adaptive

sentiment calibration techniques that mitigate inconsistencies

arising from iterative model updates.

5.6.1 Potential solution
Addressing the instability caused by the variability in

fine-tuning requires a combination of stability-aware training

protocols, such as variance-penalizing or checkpoint-agreement

losses (Hamman et al., 2024; Xie et al., 2025), uncertainty-

quantification techniques (e.g., predictive-entropy orMonte-Carlo-

dropout intervals that trigger selective retraining (Ye et al.,

2024; Kweon et al., 2025)), and adaptive calibration strategies,

notably temperature scaling or isotonic regression applied after

each fine-tuning cycle to keep class probabilities well-calibrated

(Beigi et al., 2024). Stability-aware training protocols, uncertainty

quantification techniques, and adaptive calibration strategies.

One approach is to implement ensemble fine-tuning, where

multiple instances of a fine-tuned model are trained with

different initializations and hyperparameters, and their outputs

are aggregated using consensus mechanisms to enhance prediction

robustness. In addition, regularization techniques, such as variance

penalization during training, can help reduce divergence among

fine-tuned models. Another promising method is progressive fine-

tuning, where model updates are applied in smaller, controlled

increments to minimize abrupt shifts in sentiment classification

behavior. Finally, continuous learning strategies that incorporate

past training checkpoints while adapting to new data distributions

can improve the consistency of model update, reducing the

likelihood of erratic sentiment classification shifts over time.

5.7 Reproducibility and stability in
sentiment analysis

One of the biggest challenges in the deployment of LLMs

for sentiment analysis is ensuring reproducibility and stability.

The lack of deterministic behavior in LLM introduces output

fluctuations that affect reliability in real-world decision-making

applications. Stability and reproducibility remain key unresolved

challenges in LLM-based sentiment analysis.

As highlighted in Atil et al. (2024), LLMs often generate

inconsistent responses even when the same input is provided under

supposedly deterministic settings (e.g., temperature = 0, fixed seeds,

identical prompts). This behavior significantly affects use cases

that demand repeatability, such as financial sentiment analysis

or healthcare AI applications. This unpredictability arises from

temperature variations, randomness in the decoding, and latent

model instabilities, which can cause the same sentiment query to

be interpreted differently between runs. The study further notes

that longer output sequences correlate negatively with stability,

meaning that models generating verbose explanations tend to

exhibit even greater variability.

5.7.1 Potential solution
To address this challenge, it is crucial to establish new

standardized benchmarking protocols that assess model

consistency over repeated runs. In addition, integrating ensemble

techniques or model voting mechanisms could improve decision

stability by averaging individual model fluctuations. Furthermore,

fine-tuning strategies that explicitly optimize for deterministic

behavior and constrain variance using regularization techniques

could mitigate these inconsistencies, fostering a more reliable

foundation for LLM-driven sentiment analysis.

On the other hand, regarding inference stochasticity in general,

and the temperature variations in particular, we can pay attention to

different actions. Among these tomitigate the temperature-induced

variability, several strategies can be considered:

• Use of low-temperature sampling (T ≈ 0): For tasks

requiring deterministic or audit-ready outputs, setting the

temperature to near zero can reduce stochasticity. However,

this may also increase the exposure to alignment flaws or

high-confidence errors.

• Multi-sample aggregation: Sampling multiple outputs

at varied temperatures and applying majority-vote or

confidence-based aggregation can smooth stochastic spikes.

• Temperature calibration curves: Tracking output divergence

across a range of temperature settings allows the identification

of robust operating zones for a given task or domain.

5.8 Human-LLM feedback loop and
confirmation bias

Another significant challenge in LLM-based sentiment analysis

is the reinforcement of feedback loops that arise from repeated

human-LLM interactions. This issue stems from confirmation

bias, where users unintentionally reinforce preexisting beliefs by

influencing how LLMs generate responses. Rather than acting as

neutral sentiment classifiers, models can gradually align with user

expectations, amplifying subjective biases rather than maintaining

objective sentiment analysis.

In Passerini et al. (2025), researchers discuss how mutual

adaptation between humans and LLMs can either enhance

decision-making synergy or exacerbate cognitive biases. In

sentiment analysis tasks, this manifests itself when users

consistently interact with an LLM in a way that skews its

responses toward a specific sentiment polarity. Over time, models
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may reinforce the user’s preferred sentiment interpretations,

leading to skewed sentiment scores that lack objective grounding.

This self-reinforcing loop compromises neutrality, particularly

in sensitive applications such as public opinion analysis, market

research, and policy evaluation. Another significant challenge is

the way human feedback loops influence LLM behavior, leading to

reinforcement of biased sentiment interpretations.

Human-LLM interaction can lead to a self-reinforcing feedback

loop, where model responses adapt to user expectations rather than

maintaining an objective stance. As users engage with sentiment

analysis systems over time, the likelihood of confirmation bias

increases, where the model prioritizes responses that align with

previously accepted sentiment patterns, rather than evaluating

text based on an independent, neutral linguistic framework. This

issue is exacerbated by the iterative fine-tuning of LLMs based

on user interactions, as models continuously learn from their

own outputs and user preferences, further embedding biases into

future predictions.

5.8.1 Potential solution
To mitigate this problem, adaptive bias correction techniques

and trust-based LLM calibration are essential. Possible

solutions include:

• Counter-bias mechanisms, where models periodically

introduce neutral or opposing perspectives to break

reinforcing feedback cycles.

• Diversity-driven sentiment prompts, encouraging users to

interact with varied perspectives, preventing model drift

toward biased sentiment outputs.

• Interactive explainability features, allowing users to assess

the reasoning behind sentiment predictions, thereby fostering

more balanced decision-making.

• Adaptive AI-human collaboration frameworks, where

LLMs dynamically adjust response strategies based on user

interaction patterns, ensuring more stable and objective

sentiment analysis outputs.

By integrating bias-aware interaction models, human-AI

collaboration can be optimized, ensuring higher reliability,

objectivity, and consistency in sentiment classification.

5.9 Bias-induced variability and domain
adaptation issues

LLMs inherit biases from their training data, leading to

systematic sentiment variations when analyzing content from

different demographics, industries, or social groups. This bias-

induced variability can cause sentiment misclassification, making

it difficult for models to maintain consistent results across

different domains.

A major concern in LLM-based sentiment analysis is bias and

inconsistency in sentiment aggregation, where models generate

contradictory sentiment scores for the same input text based on

prompt structure, response aggregation methods, or temperature

settings. Research on LLM-based voting mechanisms suggests

that aggregation inconsistencies are particularly pronounced in

multiwinner voting settings, where the ordering of options and

voting methodologies affects decision-making outputs (Yang J.

C. et al., 2024). These findings indicate that similar aggregation

challenges exist in sentiment analysis tasks, where ranking-based

sentiment scoring vs. binary sentiment classification can produce

conflicting results. This highlights the importance of structured

sentiment evaluation strategies, where results are normalized across

prompts and calibrated to mitigate sensitivity to order effects.

As shown in Krugmann and Hartmann (2024), GPT-3.5

exhibits positive sentiment bias, while GPT-4 leans more neutral or

negative, demonstrating how sentiment polarity can vary between

model versions. Furthermore, van der Veen and Bleich (2025)

highlights that LLMs struggle with domain-specific sentiment

tasks, making them unstable when applied to specialized fields like

finance or healthcare. These findings emphasize that bias-related

variability affects the reproducibility of sentiment classification.

As demonstrated by Reveilhac and Morselli (2024), differences

in the versions of the LLM model can lead to inconsistent

decision-making outcomes, even for politically relevant tasks

such as voting simulation. The study found that the ideological

positioning of ChatGPT changes between GPT-3.5 and GPT-4,

with version-dependent biases that affect the stance taken on

issues of direct democracy. In sentiment analysis, such model

drift raises concerns about reproducibility, making longitudinal

stability evaluations essential for benchmarking consistency in AI-

generated sentiment predictions.

5.9.1 Potential solution
A key strategy to mitigate bias-induced variability is to

incorporate fairness-sensitive training methods, such as bias-

correction techniques [temperature scaling, isotonic regression

and class-balanced re-weighting, each of which re-calibrates output

probabilities toward the empirical class distribution (Beigi et al.,

2024)] and adversarial debiasing methods that attach a gradient-

reversal discriminator so the encoder learns attribute-invariant

representations, reducing version-induced drift (Shorinwa

et al., 2024). Additionally, fine-tuning LLMs on domain-specific

sentiment data can improve stability and prevent misclassification

when the models are applied to specialized contexts.

5.10 Achieving consensus through
ensemble approaches among LLM in
sentiment analysis

One promising approach to mitigating MVP in sentiment

analysis involves leveraging ensemble methods, where multiple

LLMs independently evaluate the same textual input, subsequently

seeking a consensus or aggregated decision. Two studies (Agrawal

et al., 2024; Abburi et al., 2023) demonstrate that combining

multiple models can enhance robustness and predictive stability.

However, effectively achieving consensus among independently

operating LLMs for sentiment classification remains challenging, as

individual models may differ significantly in their predictions due
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to inherent architectural differences, different training procedures,

and varied inference strategies.

A primary issue is managing divergent outputs from multiple

models, as ensemble members can provide contrasting sentiment

scores due to differences in training data, biases, prompt sensitivity,

and stochasticity in token generation. In Agrawal et al. (2024), it

is highlighted that ensembles can sometimes amplify rather than

reduce variance if not appropriately managed, particularly when

member models differ substantially in reliability or calibration.

In Abburi et al. (2023), additional complexities are emphasized

in aligning and interpreting the probabilistic predictions generated

by each member of the ensemble, creating difficulties in

determining a classification of unified feelings. Without a

structured mechanism for aggregation and reconciliation,

ensemble approaches risk exacerbating interpretability challenges,

increasing computational costs, and potentially diminishing

user trust.

A significant challenge in sentiment analysis is to ensure

consistency when aggregating the outputs of multiple LLMs

to derive a final sentiment classification. This issue becomes

particularly relevant in LLM-based ensemble voting mechanisms,

where multiple models contribute to a collective decision.

In Jarrett et al. (2025), the authors explore how digital

representatives can effectively simulate human decision making

within collective settings, providing insights into how LLMs can

be aligned for more structured decision aggregation. However,

as our study highlights, variability in individual LLM predictions

complicates the consensus-building process, as slight variations

in model outputs can lead to significantly different aggregated

sentiment classifications. Addressing this challenge requires the

integration of consensus-driven voting algorithms, adaptive

weighting schemes, and trust-based model selection mechanisms

to enhance consistency across multi-LLM systems.

5.10.1 Potential solution
To address these challenges, a structured and adaptive ensemble

consensus strategy can be adopted. Specifically, methods such

as weighted aggregation, confidence-based voting, or adaptive

majority voting informed by uncertainty quantification metrics can

help effectively reconcile divergent sentiment scores into a unified

and trustworthy classification. Inspired by Agrawal et al. (2024),

incorporating token-level weighting or boosting mechanisms can

further enhance consensus stability. Furthermore, the integration

of transparent and explainable aggregation mechanisms, such

as visualization tools that explicitly illustrate how each model

contributes to the final sentiment decision, would significantly

improve interpretability and user trust. Such consensus-driven

ensemble methods not only promise more stable and reliable

sentiment predictions but also foster greater acceptance and

confidence in LLM-based sentiment analysis outcomes.

5.11 Applying knowledge distillation to
mitigate MVP in LLMs for sentiment analysis

LLMs have significantly advanced natural language processing

tasks, including sentiment analysis. However, their substantial

computational requirements and inherent model variability pose

challenges for practical deployment. Knowledge distillation (Gu

et al., 2024a,b)—a technique in which a smaller “student" model

learns from a larger “teacher" model— offers a potential solution to

these issues. The primary objective is to maintain the performance

of the original model while reducing its size and computational

demands. However, effective application of knowledge distillation

to LLMs, particularly in the context of sentiment analysis, presents

specific challenges that need to be addressed.

Training Smaller Language Models (SLM) through knowledge

distillation presents several challenges. Firstly, LLMs possess

intricate architectures capable of capturing nuanced language

patterns, making it difficult to transfer this sophisticated

knowledge to smaller models without significant performance loss.

Additionally, standard distillation methods may not be optimal

for generative language models due to differences in output

distributions between teacher and student models, leading to

suboptimal performance in the distilled models. Moreover, LLMs

often produce uncertain or ambiguous outputs, especially in tasks

like sentiment analysis that involve nuanced expressions; effectively

capturing and transferring this uncertainty during distillation is

complex, but crucial for maintaining model reliability. Recent

studies have explored methods to improve knowledge distillation

for small language models, aiming to address these challenges and

improve the efficiency and effectiveness of the distillation process

(Yam and Paek, 2024).

5.11.1 Potential solution
To enhance the performance and efficiency of SLM, researchers

have explored the integration of knowledge distillation and fine-

tuning techniques. For example, the MiniPLM framework (Gu

et al., 2024b) refines the distribution of training data using

the teacher’s insight, enabling the student model to achieve

competitive performance with reduced complexity. Additionally,

fine-tuning the distilled model on task-specific data allows it to

adapt to particular nuances, further enhancing its effectiveness in

applications like sentiment analysis. This combined approach not

only maintains robust performance but also ensures that smaller

models are more adaptable and efficient in real-world scenarios.

5.12 Ensuring consistency and robustness
in enhanced sentiment analysis crowd
decision making through prompt-based
LLM

A significant challenge in leveraging LLMs for crowd decision-

making involves ensuring consistency and robustness in sentiment

classification outputs derived from structured prompt interactions.

Despite the flexibility and effectiveness of prompt design strategies

with models such as ChatGPT, these approaches are highly

susceptible to variability, as small modifications in prompt

wording, context framing, or inference parameters can result in

substantial fluctuations in sentiment scores or classifications. The

problem is exacerbated when opinions aggregated from texts from

various users are sensitive to variations in language nuances,
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leading to uncertain or conflicting decisions (Herrera-Poyatos

et al., 2025).

Key issues associated with this challenge include the inherent

sensitivity of LLMs to slight prompt modifications, causing

unpredictable shifts in sentiment polarity assessments. As

highlighted in Herrera-Poyatos et al. (2025), this sensitivity leads

to inconsistencies that hinder stable decision-making processes,

undermining the reliability of ESA-CDM systems. Furthermore,

the complexity of aggregating multiple sentiment evaluations

from various crowd sources magnifies these inconsistencies,

complicating consensus formation, and potentially reducing

trustworthiness. Furthermore, without adequate transparency and

explainability mechanisms, stakeholders cannot readily identify

the rationale behind divergent model outcomes, intensifying the

uncertainty surrounding the final decisions.

5.12.1 Potential solution
To develop structured frameworks and standardize and

optimize prompt designs, minimizing variability through

well-defined linguistic templates. Additionally, employing

ensemble consensus methods, as suggested in recent literature,

can significantly stabilize LLM-based sentiment predictions

by aggregating outputs from multiple structured prompts or

diverse LLM instances, smoothing out variations and enhancing

robustness. Integrating uncertainty quantification metrics into

the CDM workflow could further help assess the reliability of

aggregated sentiment scores, allowing decision makers to explicitly

evaluate confidence levels. Finally, coupling these methodological

strategies with explainability tools, such as attention visualization

or token attribution methods, would increase the transparency

of decision-making processes, facilitating trust and acceptance

among stakeholders in ESA-CDM contexts utilizing LLM.

5.13 Model variability in the era of
open-source LLM proliferation

Rapid adoption of open-weight models such as DeepSeek-

R1 has fundamentally shifted the landscape of LLM research

and deployment. No longer lagging behind their proprietary

counterparts, open-source LLMs now offer state-of-the-art

reasoning and instruction-following abilities, with transparent

architectures and permissive licensing. These models are

increasingly chosen for cloud integration, mass-market

applications (e.g., Perplexity), and downstream fine-tuning.

However, this shift introduces new and urgent challenges in terms

of model variability, reproducibility, and trustworthiness.

Unlike proprietarymodels that are version-locked and centrally

maintained, open-source models such as DeepSeek-R1 and Falcon

are being adapted, compressed, and fine-tuned in thousands

of independent forks. This leads to substantial behavioral

drift, including variation in output under prompt rephrasing,

inconsistent refusal behavior, and degraded factuality due to

uneven fine-tuning practices. Compression techniques such as

CompactifAI (Tomut et al., 2024), although valuable for scalability,

can amplify these variabilities unless systematically controlled.

This fragmentation makes it difficult for researchers and

enterprise users to establish behavioral guarantees or audit model

decisions. Addressing the MVP in open-source ecosystems is

critical for a trustworthy deployment. This challenge requires

the development of evaluation protocols and mitigation strategies

to ensure stability, safety, and consistency, even across diverse

implementations, compression states, and usage contexts. As open

models begin to replace closed APIs in production systems, this

issue will become increasingly central to the future of reliable

open LLMs.

5.13.1 Potential solution
Addressing model variability in the context of open source

LLM proliferation requires a multifaceted strategy that combines

methodological standardization, ensemble stabilization, and

post-deployment monitoring. One promising direction is the

development of benchmarked prompt engineering templates

and shared inference protocols that reduce behavioral drift

between implementations. In parallel, ensemble-based approaches,

such as majority voting or confidence-weighted aggregation

across multiple fine-tuned instances, can improve stability by

smoothing out individual model fluctuations. Additionally,

incorporating calibration and consistency checking techniques,

such as response entropy tracking and top k divergence metrics,

can help identify and correct unstable behaviors. It is also crucial

to adopt reproducibility-aware practices, including model cards

and traceable configuration logs, to document the provenance

and training variations of open source forks. Lastly, open

models should integrate lightweight explainability modules or

behavioral validation tests (e.g., prompt response unit tests) during

compression or fine-tuning, to proactively detect and mitigate

variability. These strategies aim to preserve the flexibility of open

source LLMs while introducing essential reliability layers for

production- and research-grade applications.

5.14 Lack of explainability and
trustworthiness in the output of
sentimental polarity

As we have discussed in Section 4, one of the central

challenges in the analysis of sentiment with LLMs is their

lack of transparency and explainability, which undermines

trustworthiness and reliability. LLMs operate primarily as black-

box systems, obscuring the reasoning behind sentiment polarity

predictions and making it challenging for users to understand

how conclusions are reached. Unlike lexicon-basedmethods, where

explicit word-sentiment mappings allow transparent reasoning,

LLMs rely on intricate neural network representations. This

complexity impedes the ability of users and stakeholders,

especially in sensitive applications, to trust sentiment predictions,

as decisions based on unclear or inconsistent outputs pose

substantial risks.

The opaque nature of LLMs creates significant hurdles

for reproducibility and trustworthiness. Users cannot reliably

interpret why particular sentiment scores are assigned,
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especially when these scores fluctuate over multiple inference

runs, exacerbating the MVP. This lack of interpretability

not only compromises the transparency of the model, but

also undermines trust, as stakeholders cannot confidently

understand or justify sentiment predictions in critical scenarios.

Research such as van der Veen and Bleich (2025) explicitly

contrasts the interpretability benefits of lexicon-based approaches

with the inherent unpredictability and lack of transparency

of LLM-based sentiment analysis. Furthermore, as shown

in Beigi et al. (2024), LLM sentiment scores frequently

fluctuate with minor changes in model alignment methods

or training data nuances, highlighting how inherent black-box

characteristics amplify concerns about model trustworthiness

and reliability.

One of the key challenges in ensuring the interpretability

of LLM-based sentiment analysis is understanding how different

interaction paradigms influence sentiment classification decisions.

The taxonomy presented in Gao et al. (2024) categorizes the

interactionmodes that structure human-LLM exchanges, providing

insights into how structured prompting, UI-enhanced reasoning,

and agent-facilitated collaboration affect model transparency.

These structured approaches can improve explainability by making

LLM-generated sentiment scores more interpretable, reducing user

uncertainty, and fostering greater trust in AI-driven sentiment

analysis. In Da et al. (2025), the study introduces a reasoning

topology framework that decomposes LLM-generated explanations

into structured components, allowing for a more precise evaluation

of uncertainty. This approach is particularly relevant for sentiment

analysis, where model variability can often arise from subtle

differences in justification paths. Using structured uncertainty

quantification, models can be designed to provide more consistent

and interpretable sentiment predictions, reducing the overall

impact of stochastic variability.

5.14.1 Potential solution
To improve interpretability, reliability, and trustworthiness in

sentiment analysis, the integration of XAI techniques is crucial.

Methods such as SHAP (SHapley Additive Explanations) and

LIME (Local Interpretable Model-Agnostic Explanations) can be

utilized to visualize and quantify the contributions of input tokens,

enabling a clearer tracing of sentiment decisions. Another effective

approach involves creating hybrid sentiment analysis systems

that integrate LLM’s contextual awareness with transparent,

lexicon-based sentiment rules. Furthermore, structured uncertainty

quantification and calibration frameworks, such as confidence-

based prediction intervals or ensemble models, can further enhance

reliability, ensuring that users not only receive interpretable

outputs but also consistently reliable sentiment classifications. By

explicitly addressing interpretability and trustworthiness alongside

reliability, sentiment analysis models become better aligned

with stakeholder expectations, fostering greater acceptance and

integration in critical decision-making workflows.

The 14 major challenges discussed, benchmarking limitations,

prompt sensitivity, uncertainty in interpretation, bias-induced

variability, and impact of the pooling mechanism, underscore why

LLM-based sentiment analysis remains highly variable and difficult

to evaluate consistently. In summary, addressing these challenges

requires the following actions.

• To improve stability-aware sentiment evaluation metrics and

mitigation strategies.

• To standardize prompt design frameworks to reduce

sensitivity.

• To improve interpretability by means of uncertainty-aware

training techniques.

• To integrate bias mitigation strategies and domain-adaptive

fine-tuning.

• To achieve consensus through ensemble approaches among

LLMs in sentiment analysis.

• To achieve the reproducibility and stability in sentiment

analysis

• To apply knowledge distillation to mitigate MVP in LLMs for

Sentiment Analysis, to obtain SLMs.

• To ensure consistency and robustness in ESA-CDM via

prompt-based LLMs

• To enhance interpretability, reliability, and trustworthiness in

sentiment analysis with the integration of XAI.

• To promote open source development with reproducibility-

aware practices, including shared inference protocols, model

cards, and behavioral validation during compression and fine-

tuning.

By implementing these solutions, the reliability and

trustworthiness of LLM-based sentiment analysis can be

significantly improved, paving the way for more consistent

and interpretable AI-driven sentiment models.

6 Conclusions

Uncertainty andMVP in LLM emerge from a complex interplay

of several factors that significantly influence the performance of

sentiment analysis. These include stochastic inference mechanisms,

uncertainties embedded within training datasets, architectural

biases, and prompt sensitivity. A detailed review of the literature

confirms that despite notable advancements, LLMs continue

to exhibit instability in sentiment classification. This variability

presents significant challenges in high-risk applications that

demand exceptional accuracy, reliability, and reproducibility, such

as financial analytics, healthcare diagnostics, and strategic business

decision-making. These concerns highlight the pressing need for

robust and effective mitigation strategies.

Furthermore, the issue of sentiment analysis variability

is not exclusive to contemporary deep learning approaches

but is also deeply rooted in classical sentiment classification

methodologies. As highlighted in Wankhade et al. (2022), long-

standing challenges such as ambiguity, sarcasm detection, and

domain-specific nuances have historically hindered sentiment

classification reliability. Thus, an effective solution to sentiment

variability should integrate insights from both traditional lexicon-

based approaches and modern deep learning methodologies,

leveraging the complementary advantages each offers.

Addressing MVP requires a multidimensional approach

that incorporates advanced uncertainty quantification
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frameworks, structured calibration techniques, and interpretability

enhancement strategies. This study underscores the need to

systematically address uncertainty and variability to develop

stable, interpretable, and trustworthy AI-driven sentiment analysis

systems. Integration of uncertainty-aware learning methods,

ensemble-based consensus strategies, domain-adaptive fine-

tuning techniques, and robust explainability mechanisms is vital

to mitigating model variability. Collectively, these approaches

promise to enhance the reliability and consistency of sentiment

classification, promoting greater acceptance and practical

deployment in real-world decision-making contexts.

In summary, this study highlights how MVP, which is

based on factors such as prompt design, temperature, alignment

procedures, and compression, directly affects the consistency

and trustworthiness of the LLM output. These challenges are

particularly relevant in sentiment-driven applications, where even

minor instability can misguide decision-making. Our analysis

underscores the urgency of integrating stability-aware design,

structured prompt strategies, and uncertainty quantification

into the LLM development cycle. Looking ahead, addressing

model variability is not just a research priority, but a practical

requirement for responsible AI deployment, especially as LLMs

are increasingly used in regulated sectors such as healthcare,

finance, and public services. Establishing reproducibility standards,

interpretability audits, and calibration protocols will be essential to

ensure compliance with emerging governance frameworks and to

maintain public trust in LLM technologies.

6.1 Novel contributions

This review offers several contributions to the understanding

of model variability in LLMs: (1) a 12-factor taxonomy

of causes contributing to output inconsistency, (2) a

detailed analysis of temperature as a variability amplifier

in inference, (3) dual case studies demonstrating MVP in

real-world LLMs (GPT-4o and Mixtral 8x22B), and (4)

14 mitigation strategies aligned with explainability and

trust frameworks. Together, these provide both theoretical

grounding and actionable practices for developing more reliable

LLM pipelines.

Future work should prioritize formal benchmarks for

output consistency under varied temperature settings, as well

as develop general-purpose calibration frameworks for post-

training stabilization. As open-source LLMs like DeepSeek,

LLaMA, Mistral, or Falcon continue to proliferate, reproducibility

standards and compression-aware evaluation tools will be

essential in ensuring safe and reliable deployments across industry

and academia.
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