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This study explores the potential for artificial agents to develop core

consciousness, as proposed by Antonio Damasio’s theory of consciousness.

According to Damasio, the emergence of core consciousness relies on the

integration of a self model, informed by representations of emotions and

feelings, and a world model. We hypothesize that an artificial agent, trained via

reinforcement learning (RL) in a virtual environment, can develop preliminary

forms of these models as a byproduct of its primary task. The agent’s main

objective is to learn to play a video game and explore the environment.

To evaluate the emergence of world and self models, we employ probes–

feedforward classifiers that use the activations of the trained agent’s neural

networks to predict the spatial positions of the agent itself. Our results

demonstrate that the agent can form rudimentary world and self models,

suggesting a pathway toward developing machine consciousness. This research

provides foundational insights into the capabilities of artificial agents in mirroring

aspects of human consciousness, with implications for future advancements in

artificial intelligence.
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Introduction

In light of the increasing capabilities and presence of intelligent systems in our daily

lives, determining whether machines can become conscious is an increasingly urgent

question. Moreover, the exact nature of consciousness remains an unsolved problem, with

various contradictory theories about its origins and mechanisms.

As modern computers emerged and their capabilities grew, the idea of machines

becoming conscious was already being contemplated, alongside the challenge of how such

a condition might be evaluated. One of the earliest and most well-known proposals in

this context is the Turing Test (Turing, 1950), in which a human judge interacts with

an unknown partner—either another human or a machine. If the machine’s responses are

indistinguishable from a human’s, it is said to have passed the test. While often cited in

discussions of artificial consciousness, it is important to note that Turing originally framed

this test as a criterion for intelligence, not for consciousness. Nonetheless, some modern

large language models (LLMs), starting with GPT-4, have arguably passed this behavioral

threshold of indistinguishability (Jones and Bergen, 2024).

However, does this behavioral success imply that such models are conscious? John

Searle’s famous Chinese Room thought experiment (Searle, 1980) challenges this notion.

In the scenario, a person who does not understand Chinese manipulates symbols using a

rule book to produce valid responses in Chinese, creating the illusion of understanding.
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Yet, there is no semantic comprehension—only syntactic

manipulation. This illustrates a key limitation of behavioral tests:

sophisticated output does not guarantee internal understanding or

conscious awareness.

While Searle’s critique is primarily directed at claims of

understanding, not consciousness per se, it underscores the broader

concern that externally observable behavior may not reveal what

internal processes, if any, are taking place. This issue becomes

even more salient when considering artificial consciousness, where

internal access is limited and the risk of over-attribution is

high. As discussed in the article “Understand AI Sentience?

First Understand It in Animals” (Andrews and Birch, 2023),

attributing consciousness based on performance alone is especially

problematic in systems that lack biological grounding.

This distinction between external behavior and internal

representation lies at the heart of many debates in consciousness

research. Does behavioral mimicry imply genuine understanding or

awareness? More targeted proposals, such as the so-called Garland

Test, aim to evaluate artificial consciousness directly by probing

for internal models, self-awareness, and subjective-like responses.

Our work follows this more structural line of inquiry: rather

than assessing agents purely on behavior, we investigate whether

reinforcement learning agents trained in virtual environments can

develop internal models that resemble those hypothesized to be

necessary for consciousness.

Among the prominent theories of consciousness, three stand

out for their influence and relevance to artificial systems:

Integrated Information Theory (IIT) (Tononi et al., 2016), Global

Workspace Theory (GWT) (Baars, 2013), and Damasio’s model of

consciousness (Damasio and Damasio, 2022; Damasio and Meyer,

2009; Man and Damasio, 2019). IIT conceptualizes consciousness

as the capacity of a system to integrate information, quantified by

a measure called 8. While theoretically rigorous, IIT’s reliance on

full system causal modeling makes it challenging to implement in

scalable machine learning systems. GWT, in contrast, proposes that

consciousness arises when information becomes globally available

to multiple cognitive processes via a central workspace, often linked

to attentional control and symbolic reasoning. However, typical

reinforcement learning agents lack the architectural mechanisms—

such as attention-based competition or global broadcasting—

needed to instantiate GWT faithfully. Damasio’s theory of

consciousness stands apart from many mainstream accounts by

emphasizing subcortical and embodied processes, in particular by

emphasizing the role of bodily states, emotions, and homeostatic

regulation in generating a core self through the integration of

self- and world models. Crucially, its layered structure (protoself,

core consciousness, extended consciousness) aligns well with

the embodied, goal-directed nature of RL agents, offering a

conceptually grounded yet computationally tractable framework

for exploring the emergence of conscious-like representations in

artificial systems.

Moreover, only Antonio Damasio’s theory of consciousness

(Damasio and Meyer, 2009) provides a detailed mechanistic

explanation of how consciousness arises, its attributes, and its

possible embodiment in the human brain. In Krauss and Maier

(2020) it is argued that this theory is uniquely well-suited for

application to artificial intelligence (AI) and machine learning

FIGURE 1

Simplified representation of Damasio’s model of consciousness

(taken from Krauss and Maier, 2020). The protoself operates at an

unconscious level, processing emotions and sensory input. Core

consciousness emerges from the protoself, creating the initial self

and world models, allowing the self to relate to its environment.

Projections of emotions evolve into higher-order feelings. With

access to memory and the integration of complex functions such as

language processing, extended consciousness develops, further

enhancing the self and world models.

(ML) systems. Damasio structures consciousness into three

hierarchical levels: Firstly, the protoself, the neural representation

of the body state. Secondly, the core consciousness, a higher-

level representation of the self, the world, and their mutual

relations, leading to a transient core self, and thirdly, the extended

consciousness, which includes memory, language, planning,

and other high-level mental activities enabling the continuous

autobiographic self. In this theory, emotions and feelings play

a crucial role. Emotions are unconscious reactions to stimuli,

and feelings are neural representations of these emotions. Objects

can induce emotions, leading to changed feelings and a changed

protoself. The combined neural representation of the perceived

object and the changes in the protoself due to it forms the

core consciousness and creates a core self, a sense of perception

belonging to oneself. The autobiographic self, built on top of the

core self, includes memories of one’s past, consistent characteristics,

and future plans. This requires extended consciousness and

its functions like memory and planning. From simple reactive

emotions to complex plans enabled by extended consciousness,

these systems aim to regulate homeostasis, keeping the internal

state in a safe range to ensure continued existence and increase

the chance of survival. A simplified overview of Damasio’s model

is illustrated in Figure 1.

The concept of emotions, and thus the entire theory, can be

applied to AI systems as reactive changes in their embodiment

due to stimuli. For robots, this could mean changes in battery

levels, actuator positions, or angles, while for smart factories, it

might involve changes in cooling systems or production facilities.

In computer games, which simulate the world, the agent has a

simulated body. Depending on the game, changes in hit points,

levels, attributes, resources, or scores can be considered emotions.

This framework allows us to assess whether an AI meets the

criteria for different levels of consciousness. Krauss and Maier

(2020) argued that modern algorithms might already be close to

achieving “core consciousness.” Emotions that move the internal
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state of the embodiment toward or away from an optimal region

can be seen as positive or negative emotions, aligning with the

concept of regulating homeostasis. This translates directly to

positive and negative rewards in reinforcement learning (RL). RL

has demonstrated considerable success in training robots (Gu et al.,

2017), machines (Degrave et al., 2022), and game agents (Mnih

et al., 2013), making it a natural choice for training embodied AI

systems based on emotions.

In applying Damasio’s theory to artificial systems, one key

advantage lies in the accessibility of the agent’s internal processing:

within the reinforcement learning architectures used in this study,

all “brain” activity—such as neural activations, hidden states, and

memory traces—is fully observable and can be systematically

manipulated. This level of transparency enables fine-grained

analysis of internal neural representations1 and their functional

relevance to behavior. We note, however, that this accessibility is

specific to the relatively compact and controlled agent architectures

used here. In contrast, large-scale systems such as LLMs (e.g., GPT-

4) are often treated as black boxes due to their vast parameter spaces

and emergent behaviors, making it considerably more difficult to

trace or interpret their internal dynamics.

We can increasingly narrow down our research questions to

testable hypotheses:

1. Can a machine become conscious?

2. Can a machine possess core consciousness as defined by

Damasio?

3. Can a machine develop models of the world, itself, and their

mutual relations?

4. Can an agent in a computer game develop models of the game

environment, itself, and their mutual relations?

In this context, a world model refers to a neural network

that maps external perceptions to an internal/neural representation

containing essential structures and dynamics2 for the agent. A self

model similarly processes perceptions of its internal state. A model

sufficient for core consciousness must include both and further

1 In the context of this study, we define a neural representation as a

pattern of activity across a population of units (biological neurons or artificial

nodes) that systematically encodes information about an internal or external

feature of the environment. Such representations allow an agent to retain,

manipulate, or simulate relevant aspects of the world, including its own

internal state, even when those features are not currently observable. This

concept aligns with established views in neuroscience and cognitive science,

where neural representations are considered foundational for perception,

memory, and decision-making processes (Kriegeskorte et al., 2012).

2 By “essential structures and dynamics,” we refer to regularities in

the environment that are critical for competent agent behavior. These

include spatial layouts (e.g., room geometry or object locations), transition

patterns (e.g., how specific actions a�ect the agent’s state), and interaction

contingencies (e.g., consequences of collisions, rewards for reaching goals).

For an internal representation to be considered meaningful, it must capture

these underlying patterns in a way that enables the agent to predict

outcomes, adapt to changes, and make informed decisions based on partial

observations. In our experiments, the ability to localize oneself or infer future

states from limited visual input andmemory serves as an operational indicator

of whether such structural regularities have been internalized.

model their relationship, such as the boundary between the self and

the external world and how changes in the world affect the self and

vice versa.

In Li et al. (2022) it is demonstrated that a transformer trained

on sequences of Othellomoves developed a worldmodel, effectively

modeling the entire board state. Following this idea, we train

probes, small classifiers, on the activations of the trained agent to

determine if it understands its position in the world. The approach

is summarized in Figure 2.

Methods

Reinforcement learning

Reinforcement Learning (RL) tries to solve the problem

of (optimal) sequential decision making. The basic framework

assumes that at every time step t ∈ N0 the agent acts on the

environment with an action at ∈ A and the environment returns

a state/observation st/ot ∈ S/O and a reward rt ∈ R to the agent

based on transition probabilities P(St+1 = s′|St = s,At = a) and

a reward function R : S × A → R. A denotes the action space,

S the state space and O the observation space, which depend on

the chosen environment and agent. They can be either continuous

or discrete, but for simplicity we focus on the discrete case and

assume an episodic setting. The agent learns via this feedback loop

to improve its behavior. The basic RL cycle is illustrated in Figure 3.

This notion can be further formalized as a (partially observable)

Markov decision process. For this we refer to the literature on RL

e.g., Sutton and Barto (2018).

The actions of an agent are characterized by a policy which can

be either deterministic

π : S → A via π(s) = a

or probabilistic

π : S → [0, 1]|A| via π(a|s) = P(A = a|S = s).

We denote a policy realized as neural network with weights θ

as πθ .

In this setting the objective is to maximize the expected return,

i.e. the expected discounted cumulative reward achieved in an

episode,

J(πθ ) : = Eπθ
(R(τ )) =

∑

τ∈τ

P(τ |θ)R(τ ) (1)

with

R(τ ) : =

T
∑

i=0

γ iR(st , at) (2)

for trajectories

τ = (s0, a0, r0, s1, a1, r1..., sT+1) ∈ τ ,

the space of trajectories, a discount factor γ ∈ [0, 1] and a reward

function R : S× A → R with the probability

P(τ |θ) : = (3)

ρ(s0)
∏T

t=0 P(St+1 = st+1|St = st ,At = at)πθ (at|st),
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FIGURE 2

Schematized overview of the approach. (A) An agent is trained with RL. (B) A dataset of the trained agent’s position and neural network’s activations is

sampled. (C) Using this dataset on each layer’s activations a probe is trained to predict the true position. (D) If one of the probes can predict the true

agent position (with an accuracy significantly higher than chance), it shows that the necessary information is contained in the activations. Thus the

agent developed a world model.
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FIGURE 3

The basic agent-environment interaction cycle. The agent observes

the current state/observation st/ot, decides on an action at based

on its policy and the environment reacts to this action by returning a

reward rt and the next state/observation st+1/ot+1 beginning the

next cycle.

starting state distribution ρ and episode length T.

The discount factor γ < 1 ensures mathematical convergence

for T = ∞, meaning that the sum of discounted future rewards

converges to a finite value even when considering an infinite

horizon. This discount factor can be interpreted as modeling

uncertainty about the future, as it reduces the impact of rewards

that are further away in time, effectively placing more weight

on immediate rewards. As a result, the agent prefers closer and

more certain rewards compared to those that are further and more

uncertain.

In RL, approaches to optimize the objective defined in Equation

1 can be categorized into model-based and model-free. In model-

based RL, a model of the environment is given or learned e.g.

modeling transition dynamics and rewards. This model can be

used to directly optimize the objective with planning algorithms

like MCTS (Chaslot et al., 2008) as has been successfully used

with a given model in AlphaGo (Silver et al., 2016) or with

a learned model in MuZero (Schrittwieser et al., 2020). The

second way is to use the model as a simulator to train a

model-free agent on the environment model instead of the real

environment e.g. as in dreamer (Hafner et al., 2023) or world

model (Ha and Schmidhuber, 2018). Model-free RL can be

further divided into policy optimization and Q-learning based

algorithms. Policy optimization algorithms directly optimize the

policy e.g., by gradient ascent as in Reinforce (Sutton et al.,

1999). Q-Learning algorithms estimate the value of each state-

action pair and a policy can be derived e.g., by acting (epsilon)

greedy on these value estimates as in DQL (Mnih et al.,

2013). Combining these two ideas leads to the class of actor-

critic algorithms such as PPO (Schulman et al., 2017) or SAC

(Haarnoja et al., 2018). Model-based approaches are more sample

efficient and computationally intensive andmodel-free approaches,

especially policy-based ones, are sample inefficient, but require

much less computation as discussed e.g. in Gao and Wang

(2023). Different exploration strategies enhance an agent’s ability to

explore the environment and encounter novel situations. Entropy-

based methods sample actions from an action distribution and

regularize the distribution’s entropy to avoid premature collapse

(Williams and Peng, 1991). Prediction-based exploration measures

the novelty of a state and adds an exploration reward based on

it, involving predicting forward dynamics (Schmidhuber, 1991),

inverse dynamics (Pathak et al., 2017), or random features (Burda

et al., 2018). In memory-based exploration, the agent remembers

interesting states and attempts to reach them again (Ecoffet et al.,

2019).

Proximal policy optimization
In PPO the objective J defined in Equation 1 is improved

via gradient ascent. If the state transition dynamics and reward

function were known, gradient ascent could be applied directly, but

since this is usually not the case the (policy) gradient

∇θ J(πθ ) = Eπθ
(

T
∑

t=0

∇θ logπθ (at|st)Gt) (4)

with the reward to go

Gt =

T
∑

i=t

γ i−tR(st , at) (5)

needs to be estimated from sampled trajectories. The simplest way

is to use a Monte Carlo estimate

Ĝt =

T
∑

i=t

γ i−tri. (6)

This is an unbiased estimate, but has very high variance. To

reduce the variance, a baseline can be subtracted and an estimator

of the expected return trained, although the estimation induces

some bias. The choice in PPO is to estimate the value function

(represented as neural network)

Vπθ
(s) : = Eπθ

(

T
∑

k=t

γ k−tR(st , at)|St = s). (7)

The value function is usually trained with an n-step Bellman

equation

V̂πθ
(st) : = (

n−1
∑

i=0

γ iri)+ V̂πθ
(st+n). (8)

The Bellman equation (Bellman, 1954) defines a fix point

operator and it can be shown, that it is guaranteed to converge for

linear approximators (Melo and Ribeiro, 2007), but not necessarily

for non-linear ones as demonstrated in Tsitsiklis and Van Roy

(1997). The value function is used to estimate the advantage

function

Aπθ
(st , at) : = (9)

EP(St+1=st+1|St=st ,At=at)(R(st , at)+ γVπθ
(st+1))− Vπθ

(st),

which indicates how much better or worse an action is compared

to the mean and can be generalized to take into account multiple

future steps via the generalized advantage estimator (Schulman

et al., 2015)

Âπθ
(st , at) : = δt + (λγ )δt+1 + · · · + (λγ )T−tδT (10)

with parameter λ ∈ [0, 1] and

δt = rt + γ V̂πθ
(st+1)− V̂πθ

(st) (11)
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setting the value estimate of terminal states V̂πθ
(sT+1) = 0. This

leads to the gradient estimate

∇θ Ĵ(πθ ) = (12)

1
B

∑B
b=0

∑Tb
t=0 ∇θ logπθ (at,b|st,b)Âπθ

(st,b, at,b).

for a batch of trajectories

τb = (s0,b, a0,b, r0,b, s1,b, a1,b, r1,b..., sTb+1,b)

with b = 0, 1, ...,B. Tomitigate the fact that the policy piθsample
under

which the samples/trajectories were collected is not equal to the

current policy πθ the advantage estimate is weighted by the policy

ratio

prt(θ) : =
πθ (at|st)

πθsample
(at|st)

. (13)

Furthermore, to ensure that the new policy does not diverge

too much from the old one, which improves the stability, the ratio

prt(θ) is clipped. This leads to the PPO surrogate loss

LPPO(πθ ) : = (14)

Eτ∼πθ
(
∑T

t=0 min[prt(θ)Âπθ
(st , at), (clip(prt(θ), ǫ)Âπθ

(st , at)])

with the clipping function defined as

clip(x, ǫ) : =











1− ǫ x < 1− ǫ

x 1+ ǫ ≤ x ≤ 1− ǫ

1+ ǫ 1+ ǫ < x

(15)

and a clip rate ǫ ∈ (0, 1). A regularizer based on the entropy of the

policy is used as an exploration bonus to encourage the exploration

of unseen states. Furthermore, the method works analogously for

observations ot instead of states st , since they only lead to changes

in the part estimated by samples and are thus automatically taken

into account. A more detailed explanation about PPO can be found

in the original paper Schulman et al. (2017) and about RL in general

e.g. in Sutton and Barto (2018).

Probes

Probes, a technique from the mechanistic explainability area

of AI, are utilized to analyze deep neural networks (Alain and

Bengio, 2018). They are commonly applied in the field of natural

language processing (Belinkov, 2022). Probes are typically small,

neural network-based classifiers, usually implemented as shallow

fully connected networks. They are trained on the activations of

specific neurons or layers of a larger neural network to predict

certain features, which are generally believed to be necessary or

beneficial for the network’s task. If probes achieve accuracy higher

than chance, it suggests that the information about the feature, or

something correlated to it, is present in the activations.

Implementation

We trained our agents in the NetHack environment using

the NetHack Learning Environment (NLE) and MiniHack, a

sandbox editor for custom scenarios in NetHack (Küttler et al.,

2020; Samvelyan et al., 2021). NetHack provides a complex,

discrete environment with low computational cost. It was first

used as a benchmark at the NeurIPS 2021 NetHack challenge,

where symbolic methods led by a wide margin (Hambro et al.,

2022). Subsequently, NLE and MiniHack have been used for

benchmarking reward modeling with large language model

feedback (Klissarov et al., 2023), automatic curriculum design

(Parker-Holder et al., 2022), internet query usage (Nottingham

et al., 2022), skill transfer (Matthews et al., 2022), and planning

with graph-based deep RL (Chester et al., 2022). It is also part of

a benchmark platform for continual RL (Powers et al., 2022).

In this paper, we use the MiniHack-Room-Random-15x15-

v0 (random), MiniHack-Room-Monster-15x15-v0 (monster),

MiniHack-Room-Trap-15x15-v0 (trap), and MiniHack-Room-

Ultimate-15x15-v0 (ultimate) maps from MiniHack. The random

map consists of a 15 × 15 grid room with random start (staircase

up) and goal (staircase down) positions. The monster map adds

3 monsters, and the trap map adds 15 teleportation traps. The

ultimate map includes both features and is unlit, limiting the agent’s

view to a 3 × 3 window centered on itself (compare Figure 4).

Teleportation traps are invisible until activated and move the agent

to a random free location. All entities and monsters are randomly

placed.

The agent can move in all cardinal and ordinal directions and

observes the entire map and a 9×9 centered crop as glyphs, unique

IDs for every game entity. Later, the action space was restricted to

cardinal directions and observations to a 5 × 5 or 3 × 3 centered

crop. Rewards are given as+1 for reaching the goal and−0.001 per

step taken, with a maximum episode length of 300. Further details

are in the MiniHack paper (Samvelyan et al., 2021).

Architecture of the agent

The basic agent architecture is a simplified version of their

baselinemodel without Long Short-TermMemory (LSTM) cell and

the parts to process the message and bottom line status as input e.g.

the whole map and a centered crop of the map is given as input, the

processing is done by an embedding layer, 5 Conv2D layers and 2

Linear layers followed by two parallel Linear layers with an action

(distribution) and the estimated value function of the current state

as final output, respectively. The embedding dimension was chosen

as 64, each convolution layer contains 16 filters of size 3 besides the

last one having only 8 filters. The hidden dimension of the linear

layers is 256. From the second experiment onwards the LSTM cell

was added back between the 2 Linear layers and the action and

value heads. The cell and hidden state size was chosen as 512. The

architectures are illustrated in Figure 5.

Training

RLlib (Liang et al., 2018) was used as the RL training framework

and the agents were trained with their PPO implementation until

convergence. The hyperparameters have been chosen similar to

those recommended in the Minihack environment. An agent was
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FIGURE 4

An example of the ultimate type map. The small figure is the agent, the staircases up and down are the start and goal, respectively, the eyes show

uncovered teleportation traps and the bones are remains of a defeated monster. The dark gray areas have already been visited by the agent and the

light gray 3× 3 crop around the agent is the area he just discovered.

trained only on a single map without any restriction of the random

seeds.

Results

Subsequent investigations employed probes to infer the spatial

coordinates of the agent within the environment, predicated on

the neural activations from a single network layer. For this

purpose, a comprehensive dataset was compiled, encompassing

230, 000 instances per trained agent. These instances were derived

by operationalizing the agent within its respective environment,

during which both neural activations and corresponding spatial

coordinates were documented. The dataset was apportioned into

200, 000 samples for training and 30, 000 for testing purposes.

Training of the probes was oriented toward generating a predictive

score for each possible coordinate across a 15×15 grid (both x and y

axes). During the evaluation phase, the predicted coordinates with

the highest scores were juxtaposed against the actual positions to

assess the predictive accuracy of the probes.

In the initial experiment, a basic agent model without an LSTM

cell was used to process inputs from the entire map and a localized

9 × 9 crop. The tests were conducted on two maps: the ultimate

map and the trap map, using probes with a single linear layer.

The results in Table 1 show mean accuracies exceeding random

chance, especially on the ultimate map, suggesting that the agent’s

neural activations encode positional information. This pattern is

stable across repeated probe trainings, with low standard deviations

indicating consistent performance. However, the simplicity of the

environment raises questions about whether this is due to direct

observations or an internal model. This indicates the need for

more complex architectures like RNNs or Transformers. Future

experiments should train agents with an LSTM cell using a

minimal central crop or usemore intricate environments to prevent

straightforward observation-based predictions.

In the subsequent experiment, the agent architecture included a

5× 5 crop as the sole input and an LSTM cell, tested across various

maps. The agent’s actions were limited to cardinal directions,

and map edge positions were excluded to prevent deducing the

agent’s location from visual input. This setup emphasized the

agent’s ability to use historical data. Probes, both linear (single

layer) and non-linear (three layers with ReLU activation), analyzed

the memory aspect by training on the LSTM’s hidden and

cell states.
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FIGURE 5

A simplified illustration of the agent architecture. The map (dashed

circle) was only included as input in the first experiment and the

LSTM cell (dotted rounded rectangle) became part of the

architecture from the second experiment onward.

The results in Table 2 show mean accuracies exceeding

chance, more so than in the first experiment, with low standard

deviations indicating consistent performance across repeated probe

TABLE 1 First experiment’s results.

Layer (output size) \map Ultimate Trap

1. Conv2D (26544) 33.4± 0.92 8.8± 0.05

2. Conv2D (26544) 35.1± 0.34 8.8± 0.06

3. Conv2D (26544) 34.4± 0.17 8.7± 0.07

4. Conv2D (26544) 33.9± 0.37 8.7± 0.06

5. Conv2D (13272) 34.1± 0.15 8.8± 0.04

1. Linear (256) 28.1± 0.79 8.1± 0.24

2. Linear (256) 25.2± 1.27 8.0± 0.10

Mean accuracy and standard deviation (%) collected over 10 runs of the probes trained on the

corresponding activations in predicting the correct x and y values of the position (separately).

Chance is 6.7%. The basic agent architecture with map and 9 × 9 crop as input and without

LSTM cell was used. The probes consist of one linear layer.

trainings. Given the limited 5 × 5 crop input and exclusion of

wall observations, positional information must come from the

agent’s memory and internal representations. Traps and monsters

improved accuracies individually but not on the ultimate map,

suggesting the need for more quantitative analysis to understand

these effects.

The third experiment mirrored the second, except the crop size

was reduced to 3 × 3. Probes were trained for 50 epochs using the

Adam optimization algorithm, with learning rates set to 0.00005

for linear probes in the first experiment, and 0.001 for linear and

0.0001 for non-linear probes in the second and third experiments.

Each setting was run 10 times with unconstrained random seeds

to estimate the mean and standard deviation. Increased training

epochs and advanced learning strategies could potentially enhance

performance.

The findings from the third experiment, shown in Table 3

corroborate prior results, with mean accuracies significantly above

random chance and low standard deviations indicating consistent

performance across repeated probe trainings. However, the highest

accuracies were on the simplest randommap, and the smaller 3× 3

crop led to lower accuracies on the monster and trap maps. This

indicates that a smaller observational input may hinder the agent’s

ability to accurately infer its position in complex environments.

These results align with preliminary experiments that varied

crop sizes, embedding dimensions, hidden/cell state sizes, and

convolutional layers across different maps. Accuracies ranged from

17% to 67%, consistently above chance levels. The specific agent

configuration and the baseline chance level also influenced the final

accuracy outcomes.

Discussion

Evidence of world model

Our initial findings suggest that the hidden layer activations

encapsulate information regarding the agent’s position.

Nevertheless, given the simplistic nature of the environment,

it remains ambiguous whether this information is directly

extracted from observations or assimilated by the agent through a

world model. To enhance the efficacy of the method, implementing
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TABLE 2 Second experiment’s results.

Input
(type)
\map

Random Monster Trap Ultimate

Hidden (linear) 25.6± 0.17 58.5± 0.22 40.6± 0.29 25.1± 0.08

Hidden

(non-linear)

31.3± 0.19 64.0± 0.17 44.5± 0.43 27.7± 0.09

Cell (linear) 29.9± 0.25 62.2± 0.67 42.6± 0.68 26.5± 0.16

Cell

(non-linear)

37.4± 0.17 67.4± 0.11 47.3± 0.31 30.4± 0.10

Mean accuracy and standard deviation (%) collected over 10 runs of the probes trained on

the hidden and cell states of the LSTM cell in predicting the correct x and y values of the

position (separately). Chance is 9.1%. Two rows on the left, right, top, and bottom of the map

were excluded from the dataset. The agent architecture with only a 5 × 5 crop as input and

including the LSTM cell with hidden/cell size 512 was used. The linear probes consist of one

linear layer and the non-linear probes of 3 linear layers with ReLUs in between.

TABLE 3 Third experiment’s results.

Input
(type)
\map

Random Monster Trap Ultimate

Hidden (linear) 54.8± 0.08 49.5± 0.08 34.0± 0.10 27.6± 0.16

Hidden

(non-linear)

58.1± 0.30 53.3± 0.14 35.4± 0.15 28.9± 0.20

Cell (linear) 57.5± 0.30 50.3± 0.27 34.2± 0.20 28.3± 0.24

Cell

(non-linear)

59.7± 0.16 54.7± 0.15 36.3± 0.12 30.4± 0.12

Mean accuracy and standard deviation (%) collected over 10 runs of the probes trained on

the hidden and cell states of the LSTM cell in predicting the correct x and y values of the

position (separately). Chance is 7.7%. One row on the left, right, top, and bottom of the map

was excluded from the dataset. The agent architecture with only a 3 × 3 crop as input and

including the LSTM cell with hidden/cell size 512 was used. The linear probes consist of one

linear layer and the non-linear probes of 3 linear layers with ReLUs in between.

a more expressive agent architecture, such as a recurrent neural

network (RNN) or transformer, coupled with observations that

provide less direct information (e.g., a centered crop), is essential.

Consequently, in our subsequent experiments, we trained

agents equipped with an LSTM cell, utilizing a narrowly centered

crop for observation. Alternatively, introducing a more complex

environment could be considered. We also constrained the action

space, anticipating that this limitation would foster simpler and

more precise latent representations. The findings from our second

and third experiments robustly confirm that the agent’s position is

encoded within the network’s activations and indicate that the agent

has developed a world model. To rigorously evaluate the impacts

and influences of various architectures, environmental settings, and

training methodologies, a more detailed and extensive quantitative

study is required.

Reducing the crop size complicates the learning challenge

but highlights the importance of the agent’s ability to infer its

position for efficient map navigation. Teleportation traps further

obscure the agent’s positional accuracy, indicating that lower

accuracy might still reflect a more refined world model. A

direct comparison of agents could be facilitated by evaluating

all agents on a uniform random map, a logical progression

for future research. Analysis suggests that the cell state may

contain slightly more information than the hidden state, with

a non-linear representation enhancing accuracies with non-

linear probes. A more comprehensive investigation is needed to

thoroughly understand these impacts. However, this paper provides

evidence supporting the existence of a world model, with detailed

exploration reserved for future studies.

Environment choice and possible
extensions

The inclusion of teleportation traps and monsters in the

virtual environment was an intentional design choice aimed at

testing the robustness and memory dependence of the agent’s

internal representations. In particular, teleportation traps—which

instantaneously relocate the agent to a random free position on the

map—introduce discontinuities that violate standard assumptions

of spatial and temporal coherence. While this mechanism may

appear artificial compared to physical displacements in real-world

environments, it serves as an effective stress test: the abrupt loss of

positional continuity forces the agent to rely on internal memory

and world modeling capabilities rather than immediate visual

input. This allows us to assess whether the agent has formed a

persistent, coherent representation of the environment or whether

its behavior is strictly reactive. Similarly, the presence of monsters

introduces dynamic elements that require agents to generalize

across different local contexts and adapt to moving obstacles. In

future experiments, we plan to compare these results with setups

involving structured displacements or more biologically plausible

perturbations to better understand their differential impact on the

development of self and world models.

We acknowledge that the environments used in our

experiments are intentionally simplified, with limited spatial

structure and relatively constrained task complexity. This design

choice was made to enable controlled probing of the agent’s

internal representations, allowing us to isolate whether and how

self- and world models emerge under basic reinforcement learning

conditions. Simple environments help reduce confounding factors

and allow for clearer interpretation of results, particularly when

assessing the influence of architecture, memory, and observational

scope on positional encoding. However, we agree that such

settings do not fully capture the challenges of more realistic or

dynamic contexts. Future work will extend these experiments

to richer environments featuring complex spatial topologies,

delayed rewards, stochastic dynamics, and possibly multi-agent

interaction, thereby testing whether the emergence and robustness

of internal models scale with environmental complexity. Diverse

challenges, and multifaceted objectives—such as long-term

planning, problem-solving, social interactions, and adaptive

learning—will rigorously test agents’ potential for consciousness.

This will improve evaluation of their ability to form complex

internal representations and understand the scalability and

generalizability of the models, enhancing the reliability of the

findings.

Extending model evaluations to various environments or real-

world scenarios is essential for assessing generalizability. While

current virtual environments provide controlled settings, real-

world applications are more complex. Testing agents in settings

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1610225
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Immertreu et al. 10.3389/frai.2025.1610225

like real-time robotics, social simulations, and dynamic ecological

systems will offer a comprehensive understanding of their cognitive

and adaptive capabilities. This broader evaluation will determine

if insights from virtual environments apply to practical scenarios,

enhancing relevance and identifying areas for improvement,

guiding the development of more robust AI systems.

From LSTMs to more advanced
architectures

Exploring advanced architectures like transformers and

sophisticated RNNs holds potential for investigating mechanisms

relevant to machine consciousness. While the current architectures

are sufficient for initial experiments, they may fall short in

modeling the temporal depth and structural complexity required

for higher-order cognitive processes. Transformers, with their

ability to capture long-range dependencies and parallelize

training, and advanced RNNs, which offer improved handling of

sequential dynamics, may enable the emergence of more stable

and expressive internal models. These capabilities could facilitate

more nuanced self- and world modeling, providing a richer

foundation for studying how artificial agents form and exploit

internal representations—an essential step toward probing the

computational prerequisites for consciousness-like functionality.

Relation between consciousness and
intelligence

While increasing the complexity of an agent’s environment

and architecture often fosters the development of more advanced

cognitive capacities—such as planning, generalization, or long-

term memory use—it is important to emphasize that this does

not necessarily imply a corresponding increase in consciousness.

Intelligence and consciousness are categorically distinct constructs:

intelligence refers to an agent’s ability to solve problems and

adapt effectively to its environment, whereas consciousness

involves the presence of integrated, subjective experience or

self-referential processing. Our work does not assume a direct

or causal relationship between these domains. Rather, we use

complex environments as experimental scaffolds to assess whether

the structural or functional precursors for consciousness—

as articulated in Damasio’s theory—can emerge under more

demanding conditions. Any further inference about consciousness

from observed intelligence must be supported by both empirical

evidence and theoretical justification, not presumed based on task

performance alone.

Self vs. world models

An agent’s ability to discern its position may suggest basic

core consciousness, but this is not conclusive. Differentiating

between a world model and a self model is crucial. According to

Damasio, a self model is based on stable internal sensations, while a

world model relies on variable external observations (Damasio and

Meyer, 2009). However, Damasio and Damasio (2022) focuses on

differentiating homeostatic feelings and external inputs, which may

not directly address internal vs. external models.

Future research will have to distinguish between self and

world models to advance machine consciousness understanding. In

addition to an agent consistently appearing in the middle of a crop

as a stable element while other fields are chaotic, this might involve

incorporating internal state variables into the agent’s input and

reward structure to observe how these fluctuations affect behavior

and decision-making. This will reveal if an agent can develop a

true self model, characterized by stable internal sensations, distinct

from variable external observations forming the world model.

Analyzing the interplay between these representations is crucial for

validating core consciousness per Damasio’s framework, laying the

groundwork for more sophisticated AI systems.

A key direction for future research lies in moving beyond the

detection of internal models toward evaluating their functional

and causal role in agent behavior. Specifically, the ability to

actively exploit internal representations—such as those encoding

position, goals, or internal state variables—to guide decisions

is more closely aligned with notions of agency and Damasio’s

concept of a functional self. For agents with an interpretable world

model, one promising approach is to systematically intervene on

neural activations—e.g., perturbing units correlated with spatial

localization or internal “feelings”—and observe whether such

manipulations alter the agent’s policy or trajectory in context-

sensitive ways. For agents with an interpretable world model,

modifying specific neural activations—such as those representing

the agent’s position—not only allows for examining their influence

on actions, but also provides a more rigorous test of whether

internal models are actively and intentionally used, aligning with

methods in Li et al. (2022). Such experiments would offer a stronger

foundation for evaluating the emergence of goal-directed control

and self modeling, thereby contributing to a deeper computational

understanding of proto-consciousness and machine agency.

Limitations

It is important to emphasize that our findings should not be

interpreted as evidence for the instantiation of consciousness in

artificial agents. Rather, our work explores whether structural and

functional precursors—such as integrated self- and world models

grounded in internal state representations—can emerge within

standard reinforcement learning frameworks. These features are

modeled after the components that Damasio’s theory identifies

as necessary for core consciousness, but their presence does not

imply the existence of subjective experience. What we observe

are simulations or functional analogs of conscious processes, not

consciousness itself. We adopt a deliberately cautious stance: our

goal is to investigate whether architectures and learning dynamics

in artificial systems can give rise to mechanisms that resemble

those found in theories of consciousness—not to claim that

such systems possess phenomenality or sentience. This distinction

between simulating and instantiating consciousness is critical, and

it frames our contribution as a step toward mechanistic insight, not

metaphysical assertion.
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In line with Damasio’s theory, we frame the development

of internal world and self models as necessary—but not

sufficient—conditions for the emergence of core consciousness.

Our experimental setup investigates whether such structures can

arise in artificial agents as a byproduct of reinforcement learning,

particularly through interactions that simulate basic homeostatic

regulation and environmental navigation. Specifically, Damasio’s

concept of core consciousness involves the dynamic mapping of

the relationship between a protoself (a representation of internal

bodily states) and a changing world, resulting in a transient sense

of self situated in context. In our implementation, the agent’s self

model is implicitly formed through memory representations of

internal state trajectories (e.g., hidden and cell states in the LSTM),

while the world model is approximated by the agent’s learned

ability to encode and predict spatial features of the environment.

However, we acknowledge that critical components of Damasio’s

framework—such as complex affective feedback, fine-grained

interoception, and higher-order autobiographical memory—are

not fully captured. Our goal is not to claim completeness, but to

show that structurally relevant precursors to core consciousness, as

defined by this theory, can begin to emerge under suitable training

conditions in artificial systems.

It is worth noting that Damasio’s terminology—such as proto-

self, core consciousness, and extended consciousness may be seen

by some critics as a rebranding of well-established neurocognitive

functions, including bodily state representation, perception-action

integration, and executive processes like memory and planning.

However, the value of Damasio’s framework lies in how it organizes

these functions into a coherent, hierarchically structured model

of consciousness. This process-oriented narrative facilitates not

only theoretical interpretation but also practical implementation in

artificial agents. In our work, we adopt this terminology not as a

literal assertion of consciousness in machines, but as a conceptual

scaffold for operationalizing and probing the emergence of self- and

worldmodels. Framing these internal structures throughDamasio’s

lens enables the formulation of testable hypotheses about how

such representations might arise through interaction with a virtual

environment.

A well-known point of contention in Damasio’s theory

concerns the relationship between neural representations of

emotional states—termed “feelings”—and the emergence of

subjective experience. While the theory posits that consciousness

arises in part from the internal mapping of bodily-emotional

states, it remains philosophically and scientifically unresolved

how or why such representations would yield phenomenological

awareness. This explanatory gap has been criticized as leaving

the hard problem of consciousness intact. Nonetheless, from

a computational standpoint, the distinction between emotions

(as reactive behavioral programs) and feelings (as internalized

representations of those reactions) offers a useful functional

architecture. In artificial agents, this mapping allows for the

modeling of self-monitoring mechanisms that respond to changes

in internal or environmental states. Even without invoking

subjective experience, this layered structure supports testable

hypotheses about how agents might regulate behavior, adapt to

uncertainty, or form persistent self-world representations—core

components in the operational study of machine consciousness.

Our current approach treats scalar reward signals as a simplified

proxy for affective states, aligning with the basic reinforcement

learning framework in which rewards guide adaptive behavior.

However, we acknowledge that this reductionist mapping does

not capture the full richness or diversity of biological feelings.

In affective neuroscience, emotional experience is often modeled

either categorically—as distinct systems such as seeking, fear,

rage, and play (Panksepp, 2004; Solms, 2021)—or dimensionally,

across axes such as valence and arousal. Both perspectives

suggest that real emotional states involve multiple interacting

components beyond a single numerical value. While scalar rewards

may approximate rudimentary signals of homeostatic success or

failure, modelingmore complex emotional architectures in artificial

agents would likely require multiple internal state variables,

competing motivational systems, and structured feedback loops.

Future work could explore such multi-dimensional frameworks to

better emulate the functional diversity of affective processes and

investigate their role in the emergence of self models and adaptive

behavior. Furthermore, agents should be trained with inputs related

to physiological states, like hitpoints or experience levels, using

changes in these inputs as rewards.

While our use of reward signals as proxies for emotions

aligns with Damasio’s functional distinction between emotions

(reactive behaviors) and feelings (internal representations of those

behaviors), it is essential to acknowledge a fundamental difference

between biological and artificial agents. In living organisms,

emotions are tightly coupled to survival and homeostatic

regulation; they reflect evaluative attitudes shaped by evolutionary

pressures and are experienced as meaningful because the organism

has a stake in the outcome. Artificial agents, by contrast, operate

within externally defined reward structures and lack any intrinsic

motivation or existential concern. The reward signals they receive

carry no inherent significance beyond their instrumental role

in optimizing behavior. Thus, our implementation should be

understood as a heuristic framework—one that enables the

modeling of internal state monitoring and adaptation, but without

implying any ontological equivalence to biological emotion. This

distinction is central to any rigorous inquiry into artificial

consciousness, and we emphasize that our goal is to explore

functional architectures, not to claim artificial sentience.

It is important to emphasize as well that our study does

not claim to model or detect subjective experience in artificial

agents. Instead, we focus on probing whether structural and

functional elements identified by Damasio as prerequisites for core

consciousness—such as the integration of self- and world models

grounded in affect-like internal signals—can emerge through

reinforcement learning. This approach reflects a theoretical stance

rather than a metaphysical one: we adopt Damasio’s framework

not because it offers a definitive account of consciousness, but

because it provides a structured, biologically informed model

that can be operationalized in artificial systems. Compared

to alternative theories such as IIT, which demands a high-

resolution causal analysis, or GWT, which presupposes symbolic

broadcasting and attentional architectures, Damasio’s model is

more readily applicable to embodied agents interacting with

dynamic environments. That said, we fully acknowledge the

diversity of views in the consciousness literature and view our
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work as a computational instantiation of one such perspective—

not a claim of theoretical superiority. Future research should

explore similar operationalizations of alternative theories to better

understand their respective implications for machine-basedmodels

of consciousness.

The relationship between neural representations and

consciousness remains a central topic in theoretical neuroscience

and philosophy of mind. According to Seth and Bayne (2022),

consciousness is not merely correlated with the presence of neural

representations, but may depend on specific representational

structures—such as integrated, multimodal content that is

accessible for cognitive use. Similarly, Kuhn’s landscape of

consciousness framework (Kuhn, 2024) categorizes theories of

consciousness based on how they interpret the role of neural

encoding, from purely information-theoretic to biologically

embodied models. Within Damasio’s theory, core consciousness

emerges not simply from the presence of representations, but

from their integration—particularly of self- and world-related

content—and their modulation by homeostatic and emotional

signals. In our study, we adopt this view by treating internal

representations as functionally meaningful substrates that

may support core consciousness when sufficiently structured

and coupled to behavior. While we do not claim that these

representations instantiate phenomenality, their emergence within

reinforcement learning agents offers a testable proxy for assessing

the development of consciousness-relevant internal architecture.

While Damasio’s theory emphasizes the emergence of core

consciousness through ongoing interactions between self and

environment, it does not reduce consciousness to purely reactive

processes. In his broader framework, extended consciousness

encompasses a range of internally driven, endogenous functions

such as autobiographical memory, planning, imagination, and

internal narrative construction. These processes allow conscious

experience to persist even in the absence of immediate external

stimuli. This view aligns with neuroscientific findings on

spontaneous brain activity, such as those observed in resting-

state networks, which support internally generated thought and

perception (Raichle et al., 2001; Christoff et al., 2016). Although

our current experiments focus on externally oriented, task-driven

behavior to probe for structural elements of core consciousness,

future work could incorporate memory systems, generative models,

or predictive coding mechanisms to explore how artificial agents

might simulate or generate internal experiences independent of

immediate sensory input.

While our study focuses on the emergence and interaction

of self- and world models—key components of Damasio’s

conception of core consciousness—it is important to note that

such integration may already correspond to a relatively advanced

stage within the broader spectrum of conscious phenomena.

More rudimentary or “selfless” forms of consciousness, such

as raw sensory registration, momentary arousal, or affective

salience without self-referential modeling, may precede the

development of a distinct core self. Damasio’s own framework

accommodates this gradation, beginning with the protoself and

ascending through increasingly complex layers of conscious

processing. Our experimental focus on position inference and

memory-based representation reflects an intermediate level

where self-related information is actively modeled and used.

We acknowledge that this excludes simpler conscious states and

reinforces the need for graded, theory-informed approaches

when evaluating artificial systems for consciousness-like

properties.

Conclusion

Our results show that constructing an internal model is

crucial for efficiently solving certain tasks. This suggests that

even model-free reinforcement learning approaches might develop

implicit internal models, making them not truly model-free.

Additionally, some RL exploration strategies require predictions

about environmental dynamics, highlighting the practicality of

such models. Using this internal model for exploration could

further integrate it into the agent’s functionality. In our approach,

we used a discount factor for RL to ensure mathematical

convergence over an infinite horizon by reducing the impact of

distant rewards and emphasizing immediate rewards, effectively

modeling future uncertainty. Remarkably, in the context of

successor representations (SR) (Stachenfeld et al., 2017; Gershman,

2018), the discount factor plays a similar role by determining

how much future states influence the representation of the current

state. In particular, in SR the discount factor adjusts the expected

discounted future state occupancy, shaping the cognitive map of

the environment enabling agents (including humans and animals)

to plan and make decisions based on their expectations of future

states (Stoewer et al., 2022, 2023c,a,b; Surendra et al., 2023). This

concept bridges reinforcement learning theories with cognitive

science, providing insights into how intelligent behavior emerges

from the interaction with the environment. In particular, SR can be

seen as a bridge between model-free and model-based approaches

(Momennejad et al., 2017; Botvinick et al., 2019). Cognitive maps

may offer a possible way to more directly simulate world and self

models.

Beyond its theoretical appeal, Damasio’s model of

consciousness offers practical insights that can inform the

design of reinforcement learning systems. Structuring agents in

alignment with the model’s hierarchical architecture—protoself,

core consciousness, and extended consciousness—suggests a

pathway for integrating layered internal representations that reflect

bodily state, situated experience, and memory-based reasoning.

Such a framework can introduce beneficial inductive biases for RL:

self models may promote interpretability and modularity in policy

learning, while world models can support counterfactual reasoning

and planning. Moreover, Damasio’s emphasis on homeostatic

regulation naturally aligns with current approaches in intrinsic

motivation and curiosity-driven exploration, where internal state

dynamics shape the learning signal. Embedding these principles

into agent design could lead to more robust learning in sparse

or deceptive environments, and may enhance adaptability by

fostering agents that learn to self-monitor and maintain internal

equilibrium. Thus, while our current work probes whether such

structures emerge spontaneously, Damasio’s theory also provides

computational heuristics for developing next-generation RL

architectures.
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Our study underscores the capabilities of AI methodologies,

particularly RL, in exploring theories of consciousness and

advancing explainable AI. Considering AI consciousness is crucial

for understanding AI’s goal-directed behavior and ensuring AI

safety. While unconscious AIs can impact outcomes, their lack

of awareness means they can’t be classified as friendly or evil.

Exploring AI consciousness is vital for evaluating the risks and

opportunities in AI. Through this work, we aim to contribute to

the discourse on whether machines can achieve consciousness.
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