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Efficient waste management is crucial for urban environments to maintain 
cleanliness, reduce environmental impact, and optimize resource allocation. 
Traditional waste collection systems often rely on scheduled pickups or 
manual inspections, leading to inefficient resource utilization and potential 
overflow issues. This paper presents a novel approach to automate the 
detection of garbage container fullness from images using machine learning 
techniques. More specifically, we explore three transformer-based architectures, 
namely, vision transformer, Swin transformer, and pyramid vision transformer 
to classify input images of garbage bins as clean or dirty. Our experimental 
results on the publicly available Clean dirty containers in Montevideo dataset 
suggest that transformer-based architectures are effective in garbage fullness 
detection. Moreover, a comparison with existing methods reveals that the 
proposed approach using the vision transformer surpasses the state-of-the-
art, achieving a 96.74% accuracy in detecting garbage container fullness. 
In addition, the generalizability of the proposed approach is evaluated 
by testing the transformer-based classification frameworks on a synthetic 
image dataset generated using various generative AI models. The proposed 
approach achieved a highest test accuracy of 80% on this synthetic dataset, 
thereby highlighting its ability to generalize across different datasets. Synthetic 
dataset used in this work  can be found  at:  https://www.kaggle.com/datasets/ 
6df0652d2c4eb3b9f00043c40fba0afa0778b46d7c0685e212807c2f6967fe6f. 

KEYWORDS 

vision transformer, garbage classification, pyramid vision transformer, shifted window 
(Swin), garbage fullness detection 

1 Introduction 

Waste is one of the major factors in environmental pollution that the world faces. As the 
world’s population increases, the production and consumption of industrial products will 
increase significantly and contribute to environmental waste (Catania and Ventura, 2014). 
To overcome this, waste management focuses on the proper and timely management of 
waste without causing any harm to human health and environmental wellbeing (Arthur 
et al., 2024). To facilitate the waste management process, temporary locations are allotted 
at various public spaces to dump and collect waste. One of the conventional methods is to 
dump waste in the containers placed at those temporary locations. The garbage trucks are 
then rotated to collect the waste from these containers (Laguna and Moncecchi, 2021). In 
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this approach, the physical confirmation of waste collection 
personnel about the fullness of the containers is required by visiting 
its location (Lokhande and Pawar, 2016). Garbage collection from 
garbage containers is carried out first by manually checking the 
occupancy of each container, based on which the waste is then 
transferred to the garbage truck. Although it may appear to be a 
simple task, it is repetitive and mundane. It requires a significant 
amount of manual intervention to detect and evaluate a large 
number of containers throughout the city. 

As humans we are prone to making mistakes, it what makes 
us human. Exhaustion, lack of motivation and carelessness can 
make this task a lot more difficult to be carried out properly. Some 
of these challenges are addressed by developing technologically 
advanced tools to manage, monitor, and control cleanliness in the 
city (Donati et al., 2019). Smart waste management is a technique 
many smart city projects aim to integrate. Various sensors are 
deployed to collect data from different parts of the city, and artificial 
intelligence (AI) techniques are utilized to analyze this data through 
the internet of things (IoT) network (Sohag and Podder, 2020). 
Such a smart system can be very useful for creating smart waste 
management solutions for smart cities. Previous attempts have 
been made to make trash bins for the university campuses (Longo 
et al., 2021). The trash bins are equipped with camera sensors 
to segregate the waste, and the IoT network controls the waste 
collection by monitoring the waste-filled in trash bins. Several 
research works focus on the classification of various waste items 
such as plastic, glass, tins, etc. (Sidharth et al., 2020; Ahmad 
et al., 2020; Nahiduzzaman et al., 2025). The work introduced 
by O˘ guz and Ertu˘ grul (2023) focuses on the fullness of garbage
collection containers. In O˘ guz and Ertu˘ grul (2023), various deep-
learning-based models are explored to classify whether garbage 
containers are fully or partially occupied. The proposed approach 
focuses on exploring various transformer-based models for the 
classification task. 

The emergence of Vision Transformers (ViTs) marks a 
significant shift from conventional Convolutional Neural Networks 
(CNNs) in the field of deep learning (Dosovitskiy et al., 2021). 
Unlike CNNs, ViTs leverage the transformer architecture, originally 
introduced in natural language processing, to process images 
as sequences of patches. Through self-attention mechanisms, 
ViTs facilitate direct interactions among all patches, thereby 
enhancing global contextual understanding. This capability has 
led to state-of-the-art performance in a variety of computer 
vision tasks, including image classification. In this work, we 
demonstrate the effectiveness of ViTs in classifying images of 
garbage containers into clean and dirty categories, a problem 
domain that has received limited attention. We employ a pre-
trained ViT model and fine-tune it on the publicly available 
Clean dirty containers in Montevideo (CDCM) dataset, containing 
labeled images of clean and dirty garbage bins. Additionally, 
we incorporate two state-of-the-art transformer-based pre-trained 
models, namely, the shifted window (Swin) transformer and 
the pyramid vision transformer (PVT), and fine-tune them for 
the same classification task. On the CDCM dataset, the ViT 
achieves the highest classification accuracy, outperforming both 
Swin transformer and PVT. As a further contribution and a 
key novelty of this work, we create a synthetic dataset using 

cutting-edge generative AI models, including GPT-4.0, Gemini, 
and Meta’s frameworks GPT-4.0 (OpenAI, 2024; Gemini, 2025; 
AI, 2025). To assess the generalizability of the models on 
this dataset, we perform a cross-dataset analysis and evaluate 
all three fine-tuned transformers on the synthetic images. The 
satisfactory classification results affirm the robustness of the 
models across domains. Furthermore, we perform a comparative 
analysis with two existing deep CNN models and show that 
the ViT demonstrates superior performance. To enhance model 
interpretability, we conduct an analysis of intermediate layer 
outputs through heatmap visualizations and examine failure cases 
in detail. 

2 Related works 

In the context of standard dustbins, garbage is often observed 
to spill into the surrounding areas rather than being properly 
contained. This typically occurs due to several factors, such as 
the bin being full, the lid remaining closed or inaccessible, or 
poor disposal habits. While prior research has extensively explored 
various aspects of waste classification, such as dry vs. wet waste 
(Aravindaraman and Ranjana, 2019), metallic vs. non-metallic 
(Shamin et al., 2019), organic and recyclable landfill waste (Chhabra 
et al., 2024), biodegradable vs. non-biodegradable waste, and 
even hazardous waste such as poisonous gas emissions (Dubey 
et al., 2020), less attention has been given to the detection of 
bin fullness. In Sidharth et al. (2020), the authors focused on 
the classification of plastic, paper, cardboard, and metals. More 
recent studies have extended this scope to semantic segmentation 
and hybrid models. For example, In Qi et al. (2024), a semi-
supervised approach was proposed for pixel-level segmentation 
of waste materials, enabling the classification of various objects 
in a given scene. Similarly, Lilhore et al. (2024) introduced a 
hybrid deep learning model combining CNNs with long short-
term memory networks for categorizing waste into organic 
and recyclable types. Apart from this, multistage classification 
frameworks have also been explored to address the problem of 
recognizing various waste types. In Nahiduzzaman et al. (2025), the  
authors first performed binary classification between biodegradable 
and non-biodegradable waste, followed by a second stage of 
finer classification based on material characteristics. A real-time 
waste management system employing multiclass classification for 
various waste types, such as paper, glass, organic matter, plastic, e-
waste, and metals, was proposed In Abozahhad and Abo-Zahhad 
(2025). Additionally, Tian et al. (2025) presented a classification 
approach tailored for orchard waste, introducing a specialized 
dataset containing items like fertilizer bags, pesticide containers, 
and cigarette butts. 

Despite this progress, limited research efforts have focused 
specifically on detecting the fullness status of garbage containers. 
This is a crucial problem, especially in scenarios where resources 
are constrained, garbage collection is irregular, or manpower is 
insufficient. In this context, our work proposes a transformer-
based framework to detect the fullness of garbage containers 
by analyzing the spillage of the waste around them. More 
importantly, we formulate this task as a binary classification 
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problem, where the garbage bin images are categorized into either 
dirty or clean class. While previous studies (O˘ guz and Ertu˘ grul,
2023) have addressed this problem using traditional CNNs or 
basic classification techniques, this work is among the first to 
evaluate and compare advanced transformer-based architectures 
for this task. These models leverage self-attention mechanisms, 
which enable them to capture long-range dependencies and 
contextual relationships across the entire image. In contrast, 
CNNs typically process local neighborhood information in 
a sequential manner, limiting their ability to model global 
spatial interactions. Moreover, unlike LSTM-based architectures 
(Lilhore et al., 2024), which are inherently sequential and 
often struggle with parallelization and long-range context, 
transformers can process entire sequences simultaneously, 
making them more efficient and effective for high-resolution 
image analysis. 

3 Proposed approach 

In this section, we provide a detailed explanation of the various 
components and steps involved in the proposed transformer-
based classification framework. A block diagram representation 
of the overall framework is shown in Figure 1, which outlines 
the complete workflow for detecting the fullness of garbage 
bins. The system takes images of garbage bins as input and 
classifies them into two distinct categories: clean (not yet 
full) or dirty (full or overflowing). The framework leverages 
the strength of pre-trained transformer models, specifically 
ViT, Swin transformer, and PVT, which are fine-tuned using 
a labeled dataset of garbage bin images from the publicly 
available CDCM dataset. The use of pre-trained models allows 
us to utilize the rich visual representations learned from 
large-scale datasets such as ImageNet, thereby accelerating 
convergence and improving performance, especially in limited 
data scenarios. 

As illustrated in Figure 1, the first step in the pipeline 
involves a pre-processing block designed to prepare the images 
for model input. The pre-processing block resizes the images 
to match the input resolution required by each transformer 
architecture. In addition to resizing, we apply mean-standard 
deviation normalization to the pixel values of each image. This 
step ensures that the data distribution is consistent with the 
conditions under which the models were originally pre-trained, 
which helps in maintaining stable and effective learning. The 
pre-processed images, along with their corresponding binary 
labels, are then passed to the pre-trained transformer models. 
During the training phase, we adopt a transfer learning strategy 
(Zhu et al., 2011), wherein the base transformer weights are 
fine-tuned on the CDCM dataset while adapting the final 
classification layers to the specific task of garbage bin status 
prediction. This fine-tuning enables the models to learn task-
specific features that enhance their ability to distinguish between 
clean and dirty bins. During inference, the trained model 
takes unseen test images as input and predicts whether these 
images belong to either clean or dirty classes based on the 
learned patterns. 

3.1 Models 

3.1.1 Vision transformer (ViT) 
The ViT (Dosovitskiy et al., 2021) is a transformer encoder 

model trained using a large collection of images from the 
ImageNet-21k dataset (Ridnik et al., 2021) in a supervised manner. 
The block diagram of ViT is shown in Figure 2. Traditional image 
classification techniques rely mostly on CNNs, where convolution 
operators are used as filters on images. ViTs, on the other hand, 
utilize a novel approach. They use transformers to capture semantic 
information from the image to identify the relationship between 
different parts of an image. ViTs break down images into smaller 
patches, treating them as sequences similar to words in a sentence. 
These patches are then processed through multiple layers of self-
attention mechanisms, allowing the model to understand the 
relationship and context between different parts of the images. 
There are three important layers in ViT’s architecture: the pre-
processing layer, transformer encoder, and classification head 
(Dosovitskiy et al., 2021). The pre-processing layer splits the image 
into smaller regions called patches, which are then flattened into 
vectors and fed through a linear layer. The linear layer reduces 
their dimensions and converts the vectors into lower-dimensional 
representations. Positional embeddings are then added to the patch 
vectors in order to encode the relative position of each patch within 
the image. The transformer encoder layer captures the relationship 
of each patch with all other patches in the sequence. Thus, it 
captures dependencies and interactions between different parts of 
the image (Dosovitskiy et al., 2021; Aaraki, 2024). It also consists 
of a FFN layer, which introduces non-linearity into the model. The 
classification head takes the transformer encoder output as its input 
and generates class probabilities for the image. 

This unique architecture enables ViTs to capture global 
information and long-range dependencies within images effectively 
(Dosovitskiy et al., 2021; Aaraki, 2024). By utilizing ViT, we have 
leveraged their ability to analyze complex visual data and make 
accurate predictions about the occupancy status of garbage bins. 

We employed a combination of cross-entropy loss and 
L2 regularization for our training process. Cross-entropy loss, 
commonly used in classification tasks, measures the difference 
between the predicted probabilities and the actual labels. This loss 
function penalizes incorrect classifications more severely, thereby 
encouraging the model to make accurate predictions. This method 
is also used for the Swin transformer and PVT. 

3.1.2 Shifted window transformer 
The Swin transformer, similar to ViT, is a transformer-based 

deep architecture specifically designed for image processing 
tasks (Liu et al., 2021a,b). However, unlike ViT, the Swin 
transformer model used in this work was pre-trained on the 
ImageNet-1K dataset. Figure 3 presents the block diagram 
of the Swin model. Unlike traditional CNNs, Swin adopts a 
hierarchical processing strategy to effectively capture both 
local and global information within images. At its core, Swin 
operates by decomposing images into a series of patches, 
which are then processed through a series of transformer 
blocks. These transformer blocks work based on self-attention 
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FIGURE 1 

Block diagram of the proposed approach. During training, the pre-trained transformer model is fine-tuned using images of garbage bins and their 
corresponding labels. During inference, the fine-tuned model classifies whether a test image belongs to the class of clean or dirty. 

FIGURE 2 

Architecture of the vision transformer (ViT) model utilized in the proposed classification framework. * Refers to the extra learnable class embedding. 

mechanism enabling the model to attend to the relationship 
between different patches at various hierarchical levels. This 
hierarchical processing allows this transformer model to 
capture both fine-grained details and global context within 
the image. 

One distinguishing feature of Swin transformer is its 
hierarchical processing strategy, where patches are grouped into 
hierarchical stages. In each stage, patches are aggregated and 
processed to capture increasingly abstract features (Liu et al., 
2021a,b). This hierarchical approach enables Swin transformer to 
effectively handle large images while maintaining computational 

efficiency. Furthermore, Swin transformer incorporates a multi-
scale self-attention mechanism, which allows the model to capture 
both local and global dependencies within the image (Liu et al., 
2021a,b). This mechanism enables Swin transformer to effectively 
model long-range dependencies while also maintaining spatial 
locality. In addition to the self-attention mechanism, Swin 
transformer also employs FFNs within each transformer block 
to introduce non-linearity into the model, further enhancing its 
representative capacity. Finally, similar to ViT, Swin transformer 
includes classification heads that take the output of the transformer 
blocks and produce predictions for the input image. These 
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classification heads enable Swin transformer to perform tasks such 
as image classification (Huang et al., 2022), object detection (Gong 
et al., 2022), and semantic segmentation (Hatamizadeh et al., 2021). 

3.1.3 Pyramid vision transformer 
The PVT (Wang et al., 2021) architecture combines 

transformer-based modeling with hierarchical feature processing, 
making it well-suited for image understanding tasks (Wang et al., 
2021).1 The PVT model used in this study was pre-trained on the 
ImageNet-1K dataset. Figure 4 shows the architecture of PVT. 
Unlike traditional CNNs, PVT leverages transformers’ strengths in 
capturing long-range dependencies and global context in images 
(Wang et al., 2021) (see text footnote1 ). It begins by decomposing 
images into patches, akin to tokens in natural language processing 
tasks. However, PVT takes a step further by introducing a pyramid 
structure to capture features at multiple scales. This pyramid 
structure consists of multiple levels, each processing patches at 
different spatial resolutions. This enables the PVT to efficiently 
capture both local details and global context across the entire 
image (Wang et al., 2021) (see text footnote1 ). Within each level 
of the pyramid structure, PVT employs transformer blocks to 
process the patches. These transformer blocks utilize self-attention 
mechanisms to model dependencies between patches, allowing the 
model to understand relationships and context within the image. 
Additionally, PVT introduces positional embeddings to encode 
the spatial information of patches, ensuring that the model can 
distinguish between different regions of the image. 

One key aspect of PVT is its ability to aggregate information 
across different levels of the pyramid structure. By incorporating 
features from multiple scales, PVT can effectively capture 
hierarchical representations of the input image, leading to 
richer and more informative representations (Wang et al., 
2021) (see text footnote1 ). Furthermore, PVT includes 
classification heads that take the aggregated features from 
the pyramid structure and produce predictions for the 
input image. 

In the proposed work, we selected these three transformer-
based architectures based on their proven effectiveness and 
representativeness of different architectural paradigms in the 
vision transformer family. These models are widely cited in 
literature and offer a comprehensive comparison across flat 
(ViT), hierarchical (PVT), and shifted-window-based (Swin) 
transformer designs, allowing us to explore their relative strengths 
for the task of garbage bin fullness detection. ViT employs 
a flat structure and processes images as a sequence of non-
overlapping patches using global self-attention (Dosovitskiy 
et al., 2021). Its simplicity allows for faster inference, but 
it lacks inherent locality and multi-scale feature extraction, 
which may reduce performance on complex scenes without 
sufficient data or inductive biases. Swin transformer introduces 
a hierarchical design with shifted window-based attention, 
enabling local context modeling and efficient computation (Liu 
et al., 2021b). It balances accuracy and computational cost well 

1 Google colab. (2024). Available online at: https://huggingface.co/ 

Zetatech/pvt-medium-224. 

but can have slower inference due to window shifting and 
patch merging overhead. PVT, on the other hand, adopts a 
pyramid structure, with spatial reduction attention to reduce 
complexity while preserving performance across scales (Wang 
et al., 2021). It offers lower parameter count and better 
performance for dense prediction tasks but may be slightly less 
effective than ViT in capturing global dependencies for simpler 
classification problems. 

4 Dataset and experiments 

In this section, we briefly describe the dataset employed 
in this work. Apart from the dataset, we present the 
experimental protocols and performance measures utilized in 
the proposed approach. 

4.1 Dataset 

In this study, we have employed the Clean dirty containers 
in Montevideo (CDCM) dataset (Laguna, 2021). This dataset is 
created by Laguna and Moncecchi (2021) to automatically notify 
the authorities for collecting garbage accumulated during the 
pandemic, disturbing the environment. Platforms such as Google 
Street View, local complaint platforms of municipalities, and search 
engines were used while creating the dataset. There are 3,414 
images in the dataset, of which 1,806 and 1,608 images belong to 
clean and dirty classes, respectively. Additionally, the dataset has 
already been divided into train and test datasets. The train and test 
datasets consist of 2,217 and 1,197 images respectively. 

In the CDCM dataset, images labeled as “dirty” typically depict 
garbage bins that are fully occupied, often with additional piles 
of waste placed beside the containers. In contrast, images labeled 
as “clean” generally show bins that are not yet full. The sample 
images of the dataset are shown in Figure 5, where images from the 
dirty class clearly show overflowing bins and surrounding waste, 
indicating the need for prompt intervention. The images in this 
dataset are originally available in varying sizes and resolutions, 
ranging approximately from 600 × 600 to 10, 338 × 3, 168 pixels, 
as they were captured at different locations and over different time 
periods. Therefore, resizing and normalization of the data was 
important. The images were all converted to JPG and then resized 
as per the requirements of individual models. For ViT and PVT, 
the images were resized to have 224 × 224 pixels, whereas for Swin 
transformer, they were resized to the dimensions of 256 × 256. The 
dataset is already split into training and testing datasets. The images 
were then loaded into data loaders with a batch size of 16. 

4.2 Experimental protocol 

For the training process, we adopted a transfer learning 
approach utilizing pre-trained transformer models. The ImageNet 
pre-trained weights for ViT, SWIN transformer, and PVT were 
obtained from Aaraki (2024), Microsoft (2024); Liu et al. (2021a), 
and see text footnote1 , respectively. There exists a certain degree 
of visual similarity and feature correlation between the ImageNet 
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FIGURE 3 

Architecture of the Swin transformer (Swin) utilized in the proposed classification framework. 

FIGURE 4 

Architecture of the pyramid vision transformer (PVT) model utilized in the proposed classification framework. 

dataset and the CDCM dataset used in this study. Pre-training on a 
large and diverse dataset like ImageNet enables the model to learn 
robust and generalizable visual features, which can significantly 

enhance performance when fine-tuned on a domain-specific task 
such as garbage bin cleanliness classification. We have chosen 
particular model versions based on different factors such as window 
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FIGURE 5 

Sample images from the Clean dirty containers in Montevideo (CDCM) dataset. (a–c) Belong to clean class and (d–f) belong to dirty class. 

size and the dataset on which they were previously trained. These 
models have already been trained for image classification. We have 
fine-tuned the transformer models for the task of garbage bin 
fullness classification using the images from the CDCM dataset. 
For this purpose, layer freezing was used and only the last layer i.e., 
the classifier head, was fine-tuned on the new dataset with classes: 
“clean” and “dirty.” Freezing the layers except the classification 
head allows us to retain information and patterns learned by the 
model on the images it was initially trained on, while also allowing 
the model to learn new features for the required task (Goutam et al., 
2020). 

The training was carried out using Adam optimizer and binary 
cross-entropy loss function, defined in Equation 1. The initial 
learning rate (LR) for each model is kept at 10−5 . The LR was 
then decremented during the training stage using cosine annealing. 
Cosine annealing is a LR scheduling technique which dynamically 
adjusts the LR during training by gradually decreasing it in a cosine-
shaped manner (Gotmare et al., 2018). Decreasing the LR during 

the training process helps in overcoming the issue of flat plateau 
in optimizing the loss function and converge more smoothly near 
minimal loss point (LeCun et al., 1988). 

BCE = −  
 

y log(p) + (1 − y) log(1 − p) 
 

(1) 

Where, y is a binary indicator whose value is 1 in case of correct 
prediction i.e., when the observation o is correctly classified into 
class c and 0 otherwise. p is the probability of the observation o 
belonging to class c. 

Given the computational demands of transformer-based 
architectures, model training was performed using high-
performance graphics processing units (GPUs). Specifically, 
we utilized the freely available NVIDIA P100 GPU on the 
Kaggle platform.2 The experiments are performed on a Windows 
8-GB RAM system equipped with an Intel Core i5 CPU. 

2 Kaggle code. (2024). Available online at: https://www.kaggle.com/code. 
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TABLE 1 Summary of the hyperparameters used in the experiments. 

Model configuration ViT Swin transformer PVT 

Input dimension 224 × 224 256 × 256 224 × 224 

Pre-trained weights ImageNet-21k ImageNet-1k ImageNet-1k 

Number of encoder layers 12 24 8 

Number of attention heads 12 Range: [4–32] Range: [1–8] 

Patch sizes 16 × 16 4× 4 Range: [(4 × 4)–(32 × 32)] 

Training hyperparameters ViT Swin transformer PVT 

Train-test split As provided in Laguna and Moncecchi 
(2021) 

As provided in Laguna and Moncecchi 
(2021) 

As provided in Laguna and Moncecchi 
(2021) 

Dropout rate 0.4 0.2 0.4 

Loss function BCE BCE BCE 

Regularization L2 L2 L2 

Epochs 20 20 20 

Initial learning rate 10−5 10−5 10−5 

Optimizer Adam Adam Adam 

Batch size 16 16 16 

TABLE 2 Performance of the transformer-based classification frameworks on the CDCM dataset. 

Model 
Performance metrics Class-wise metrics (Class 0/1) 

Accuracy (%) Confidence interval Loss F1-score (%) AUC Precision (%) Recall (%) 

ViT 96.74 95%, [0.9574–0.9766] 0.121 96.60 0.97 95.00/99.00 99.00/95.00 

Swin 95.74 95%, [0.9457–0.9691] 0.117 95.60 0.96 95.00/97.00 97.00/95.00 

PVT 95.49 95%, [0.9432–0.9666] 0.131 95.50 0.95 96.00/95.00 95.00/96.00 

The implementation was carried out in Python using the 
PyTorch deep learning framework. To prevent overfitting and 
improve generalization to unseen data, we incorporated multiple 
regularization strategies. First, we applied L2 regularization by 
adding a penalty term to the loss function, discouraging the model 
from learning excessively large weights (Drucker and Le Cun, 
1992). Additionally, we employed dropout and early stopping to 
reduce the risk of overfitting. 

Dropout was applied in the final classification layer of each 
model, where a fraction of input units was randomly set to 
zero during training. This technique reduces co-adaptation among 
neurons and encourages the model to learn more robust and 
generalized features by training on varying subsets of the data. 
Specifically, dropout probabilities of 0.4, 0.2, and 0.4 were used 
for the ViT, Swin Transformer, and PVT models, respectively. 
These values were determined experimentally based on optimal 
classification performance during validation. Dropout was applied 
in the final classification layer of each model, where a fraction 
of input units was randomly set to zero during training. This 
technique reduces co-adaptation among neurons and encourages 
the model to learn more robust and generalized features by training 
on varying subsets of the data. Specifically, dropout probabilities 
of 0.4, 0.2, and 0.4 were used for the ViT, Swin Transformer, 

and PVT models, respectively. These values were determined 
experimentally based on optimal classification performance during 
validation. Early stopping was also implemented to halt training 
once performance on the validation set began to degrade or 
plateau, thereby preventing unnecessary training epochs and 
further reducing the risk of overfitting. Each model was initially 
trained for up to 20 epochs. Table 1 shows the summary of the 
hyperparameters used in our experiments. 

4.3 Performance metrics 

We have employed performance metrics such as accuracy, loss, 
and F1-score to measure the classification performance of the 
transformer models on the test set of the dataset. We have plotted 
receiver operating characteristics (ROC) curves corresponding to 
all three transformer models. The area under the ROC curve (AUC) 
is also computed as an important performance metric. 

F1-score is calculated as 

F1 − score = 2 × 
precision × recall 
precision + recall 

, (2) 
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FIGURE 6 

Confusion matrices corresponding to (a) ViT, (b) Swin transformer, and (c) PVT-based classifiers (best viewed in color). 

where precision and recall are given as: 

Precision = 
TruePositives 

TruePositives + FalsePositives 
, (3) 

Recall = 
TruePositives 

TruePositives + FalseNegatives 
. (4) 

The F1 − score ranges from 0 to 1, where a score of 1 
indicates perfect precision and recall, and a score of 0 indicates 
poor performance in either precision or recall. F1-score is useful 
when there is an imbalance between the number of positive 
and negative instances in the dataset, as it considers both false 
positives and false negatives. Additionally, we computed stratified 
performance metrics of all three transformer-based classifiers 
by calculating the class-wise precision and recall metrics as 

follows: 

PrecisionC = 
TruePositivesC 

TruePositivesC + FalsePositivesC 
, (5) 

RecallC = 
TruePositivesC 

TruePositivesC + FalseNegativesC 
. (6) 

Here, PrecisionC and RecallC correspond to the precision 
and recall metrics for class C ∈ {0, 1}. We have also added 
the confusion matrices for the models, which clearly show
the actual and predicted parameters. The area under the ROC 
curve allows us to visualize how sensitivity and specificity are 
traded off. Greater discrimination between positive and negative 
instances is typically exhibited by a model with a higher 
AUC score. 
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FIGURE 7 

Receiver operating characteristic (ROC) curves corresponding to 
ViT-, Swin transformer-, and PVT-based classifiers. 

5 Results and discussion 

In the proposed approach, we employed the transfer learning 
method to fine-tune the pre-trained ViT, Swin transformer, and 
PVT models for the task of garbage bin fullness detection. Table 2 
reports the classification performance of these models in terms of 
accuracy, loss, F1-score, and AUC. The results clearly demonstrate 
the effectiveness of the proposed method in classifying images 
into clean or dirty categories. From Table 2, it can be observed 
that the ViT-based classification framework outperforms both 
the Swin Transformer and PVT-based models. Specifically, the 
ViT model achieves the highest accuracy of 96.74%, F1-score of 
96.60%, and AUC of 0.97, indicating superior overall performance. 
We also observe that the ViT-based classifier achieves higher 
precision for Class 1 (dirty bins) and higher recall for Class 0 
(clean bins), signifying that this model is particularly effective at 
correctly identifying clean bins, thereby minimizing false positives. 
Furthermore, we performed statistical significance analysis using 
the confidence interval (CI) method. The results corresponding to 
this analysis are presented in Table 2. The ViT-based architecture 
achieved an accuracy of 96.74%, and at a 95% confidence level, its 
true accuracy is estimated to lie between 95.74% and 97.66%. This 
narrow confidence interval reflects a high degree of precision in 
the model’s performance estimate, further validating its robustness 
and reliability. 

Figure 6 shows the confusion matrices corresponding to 
the ViT-, Swin Transformer-, and PVT-based classification 
frameworks. As evident from the figure, all three models achieve 
comparable true positive and true negative rates. However, the ViT-
based framework demonstrates a significantly lower false negative 
rate, misclassifying only 7 out of 600 clean garbage bins as dirty. The 
ROC curves for all three models are shown in Figure 7, where the 
AUC for the ViT model is observed to be higher than those of the 
Swin transformer and PVT, indicating better overall classification 
performance. Furthermore, Figure 8 shows the intermediate layer 

heatmap visualizations (Selvaraju et al., 2017) of these models 
corresponding to true predictions. The left column represents true 
positive cases, while the right column shows true negatives. These 
visualizations indicate that the models are able to extract and 
utilize discriminative features to distinguish between clean and 
dirty bins. Notably, the ViT model demonstrates superior capability 
in attending to relevant spatial regions, leading to more accurate 
classification decisions. 

Additionally, we compared the computational complexity of 
all three models based on the number of parameters and the 
number of Giga multiply-accumulate (GMAC) operations. As 
shown in Table 3, the PVT model exhibits significantly fewer 
parameters and lower GMAC operations compared to the ViT and 
Swin Transformer models. However, due to its simpler and non-
hierarchical architecture, ViT achieves faster inference time per 
image (0.94 ms), outperforming both PVT (2.32 ms), and Swin 
Transformer (5.33 ms) in terms of speed. 

5.1 Performance comparison 

Table 4 presents a performance comparison of the proposed 
approach with the existing approach in this domain. Given the 
limited work explored in this field, we compare our proposed 
approach with the only available existing method (Oğuz and 
Ertu˘ grul, 2023). From Table 4, it can be observed that the proposed 
approach outperforms the existing method in detecting the fullness 
of the garbage container. More specifically, all transformer-based 
models employed in our work have consistently achieved higher 
accuracy with comparatively lower loss than the CNN models used 
in O˘ guz and Ertu˘ grul (2023).

To further evaluate the effectiveness of the transformer-based 
models, we performed experiments using conventional CNN 
models for the task of garbage bin fullness detection. Specifically, 
we employed two popular CNN architectures, ResNet50 (He et al., 
2016) and VGG-16 (Simonyan and Zisserman, 2014), and fine-
tuned their weights using the CDCM dataset. Both ResNet50 and 
VGG-16 were pre-trained on the ImageNet-1k dataset with an 
input resolution of 224 × 224. During fine-tuning, we replaced the 
original classification layer with a new output layer consisting of 
two neurons to accommodate the binary classification task. The 
models were fine-tuned using the Adam optimizer and binary 
cross-entropy loss, with a weight decay of 10−3 . A learning rate 
of 10−5 was employed, along with the cosine annealing learning 
rate scheduling technique to facilitate efficient convergence. The 
transformer models consistently outperformed the conventional 
CNN models on the same dataset. As reported in Table 5, ResNet50 
achieved a classification accuracy of 72.68%, while VGG-16 reached 
79.45%, both significantly lower than the accuracy obtained by the 
transformer-based models. 

5.2 Cross-dataset analysis 

To evaluate the generalizability of the transformer-based 
models under diverse imaging conditions, we conducted a 
cross-dataset analysis using a balanced dataset of synthetic 
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FIGURE 8 

Heatmap visualization of correct predictions corresponding to (a) ViT-, (b) Swin transformer-, and (c) PVT-based classifiers. 
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TABLE 3 Comparison of computational complexity of all three 
transformer-based models. 

Model # Parameters # GMAC  
operations 

Inference 
time 

ViT 85.6 million 16.8 billion 0.94 ms/image 

Swin transformer 87.9 million 19.9 billion 5.33 ms/image 

PVT 43.8 million 6.4 billion 2.32 ms/image 

TABLE 4 Performance comparison of the proposed approach with 
existing work. 

Model 
Performance metrics 

Accuracy (%) Loss 

Oğuz and Ertuğrul 
(2023) 

DenseNet-169 90.35 0.425 

EfficientNet-B3 90.18 0.515 

MobileNetV3-Large 88.89 0.424 

VGG19-Bn 94.93 0.382 

Our results 

ViT 96.74 0.121 

Swin transformer 95.74 0.117 

PVT 95.49 0.131 

Bold values indicates best achieved among other values. 

images comprising empty and full dustbins. We generated these 
images using state-of-the-art multimodal large language models, 
including GPT-4.0 (OpenAI, 2024), Gemini (Gemini, 2025), and 
Meta’s (AI, 2025) generative frameworks. The prompts used 
for image generation are presented in Figures 9d, h, and were 
carefully designed to reflect a wide range of real-world lighting 
conditions and regional characteristics, as illustrated in Figures 9a– 
c, e–g. The synthetic dataset3 consists of 50 images in total, 
with 25 samples per class. Table 6 presents the classification 
performance of the transformer-based models when evaluated on 
this synthetic dataset. All three models, which were fine-tuned 
on the publicly available CDCM dataset, achieved satisfactory 
classification results, demonstrating their ability to generalize 
across domains. Interestingly, the PVT- and Swin Transformer-
based classifiers outperformed the ViT model in this cross-dataset 
evaluation. This may be attributed to the focused composition of 
the synthetic images, which predominantly emphasize the garbage 
bin itself, unlike the more cluttered and varied scenes found in the 
CDCM dataset (see Figure 5). 

The proposed approach has significant potential for 
deployment across various real-world platforms aimed 
at enhancing urban sanitation infrastructure. Applications 
include integration into smart city waste management systems, 
where real-time monitoring of bin cleanliness can optimize 
collection schedules and reduce operational costs. Additionally, 
embedding the detection model into IoT-enabled smart bins or 

3 Synthetic dataset for garbage bin fullness detection. 

(2025). Available online at: https://kaggle.com/datasets/ 

6df0652d2c4eb3b9f00043c40fba0afa0778b46d7c0685e212807c2f6967fe6f 

(Accessed July 24, 2025). 

TABLE 5 Performance comparison of the proposed approach with 
standard convolutional neural networks (CNNs). 

Model 
Performance metrics 

Accuracy (%) Loss F1-score (%) AUC 

ResNet50 72.68 0.581 71.50 0.73 

VGG-16 79.45 0.449 79.10 0.79 

ViT 96.74 0.121 96.60 0.97 

Bold values indicates best achieved among other values. 

mobile applications can facilitate on-site decision-making for 
sanitation workers. 

6 Ablation studies 

We conducted a series of ablation studies to evaluate the 
effectiveness of the proposed ViT model in classifying garbage 
bin images into empty and full categories. To this end, we 
compared the classification performance of the model, fine-
tuned using the CDCM dataset, with its counterpart, where the 
training is performed from scratch. In the latter setting, the 
model weights were initialized randomly, in contrast to the fine-
tuned model, which leveraged pre-trained weights from ImageNet. 
The results of this comparison, reported in Table 7, show a 
significant improvement in performance due to fine-tuning, where 
the classification accuracy increased from 68.00% to 96.74% and 
the loss decreased from 0.617 to 0.121. These findings underscore 
the effectiveness of transfer learning in this context, likely due 
to the visual similarity and feature-level correlations between the 
ImageNet dataset and the CDCM dataset. 

Additionally, to study the effect of the number of 
encoder layers in the ViT model, we varied the number 
of encoder layers and fine-tuned its parameters using the 
protocol outlined in Section 3.1. Table 8 summarizes the 
performance of the proposed ViT-based framework and its 
ablated variants in terms of accuracy, loss, F1-score, and 
AUC. The results indicate that reducing the number of 
encoder layers leads to a decline in classification accuracy 
and F1-score, along with an increase in the loss value, 
highlighting the importance of architectural depth in achieving 
optimal performance. 

To evaluate the impact of the number of attention heads 
in the ViT architecture, we conducted additional experiments 
by varying this hyperparameter. As discussed in Section 3.1, 
we employed a pre-trained ViT model and fine-tuned its 
weights on the CDCM dataset for the classification task. It 
is worth noting that the default number of attention heads 
in a pre-trained ViT is 12. The default configuration of the 
pre-trained ViT includes 12 attention heads. To investigate the 
effect of modifying this setting, we trained ablated versions 
of ViT from scratch using different numbers of attention 
heads. For consistency, we also trained a ViT with the 
default 12-head configuration from scratch. Table 9 shows the 
performance comparison across these configurations. The results 
demonstrate that the ViT with the default number of attention 
heads consistently outperforms the modified versions, even 
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FIGURE 9 

Sample synthetic images generated using various generative AI models and the corresponding meta prompts. (a–c) Sample images from the clean 
class, (e–g) Sample images from the dirty class, (d) set of meta prompts to generate images from the clean class, and (h) set of meta prompts to 
generate images from the dirty class. 

TABLE 6 Effect of cross-dataset analysis: performance of the 
transformer-based classification frameworks fine-tuned on the clean 
dirty containers in montevideo (CDCM) dataset, evaluated on the 
synthetic dataset. 

Model 
Performance metrics 

Accuracy (%) Loss F1-score (%) 

ViT 70.00 0.615 67.00 

Swin transformer 80.00 0.350 79.00 

PVT 80.00 0.587 79.00 

TABLE 7 Effect of transfer learning on performance of the vision 
transformer (ViT) model. 

Model 
Performance metrics 

Accuracy (%) Loss F1-score (%) AUC 

ViT 
(Training 
from scratch) 

68.00 0.617 64.37 0.68 

ViT 
(Fine-tuning) 

96.74 0.121 96.60 0.97 

Bold values indicates best achieved among other values. 

when trained from scratch. This highlights the critical role 
of attention head configuration in maintaining the model’s 
representational capacity and classification performance for 
garbage bin fullness detection. 

TABLE 8 Effect of varying the number of encoder layers on performance 
of the vision transformer (ViT) model. 

Number 
of layers 

Accuracy (%) Loss F1-score (%) AUC 

12 (Default) 96.74 0.121 96.60 0.97 

10 94.90 0.223 94.50 0.95 

8 95.66 0.144 95.30 0.95 

6 93.90 0.167 93.90 0.94 

Bold values indicates best achieved among other values. 

TABLE 9 Effect of varying the number of attention heads on performance 
of the vision transformer (ViT) model. 

Number 
of heads 

Performance metrics 

Accuracy (%) Loss F1-score (%) AUC 

4 66.75 0.618 63.41 0.67 

8 67.00 0.626 66.77 0.67 

12 (Default) 68.00 0.617 64.37 0.68 

16 67.92 0.700 61.36 0.68 

Bold values indicates best achieved among other values. 

7 Discussion on failure cases 

Figure 10 illustrates example images showing failure cases 
from the CDCM dataset considered in our experiments. The 
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FIGURE 10 

Examples of failure cases, superimposed with heatmaps, corresponding to (a) ViT-, (b) Swin transformer-, and (c) PVT-based classifiers. 
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first column displays false positives, where images from the 
clean category were incorrectly classified as dirty. The second 
column shows false negatives, where images from the dirty 
category were misclassified as clean. Heatmaps are superimposed 
on each image to visualize the highlighted regions that may have 
contributed to the misclassification. As observed, false positives 
primarily occur in scenarios where the garbage bin is partially 
occluded, making it difficult for the model to assess its actual 
status. In contrast, false negatives are typically associated with 
images where the visible amount of trash is relatively low, 
leading the model to misinterpret the bin as clean. Overall, the 
heatmaps indicate that in both types of errors, the models tend 
to focus more on spurious features such as background regions 
rather than the garbage bin itself, which likely contributes to 
the misclassification. 

8 Conclusion  

Automated detection of the fullness of Garbage containers 
offers many advantages like reduced manual checks and efficient 
waste collection which in turn lead to reduced costs. In this 
paper, we developed an automated approach for detecting the 
fullness of garbage containers using vision transformers. Our 
approach has achieved the highest accuracy of 96.74% in detecting 
garbage fullness using ViT. Our experimental results on a publicly 
available CDCM dataset suggest that the proposed approach 
is effective in detecting garbage fullness, and it outperformed 
existing approaches. Additionally, the satisfactory classification 
performance on a synthetic dataset, reflecting various real-world 
lighting conditions, highlights the potential of this approach 
in practical applications such as smart city and sanitation. As 
part of future work, we plan to explore novel architectures 
to reduce the false predictions further. Additionally, we intend 
to leverage state-of-the-art generative models to create high-
quality synthetic data, which can augment the existing dataset 
and enhance the robustness and generalization capabilities of the 
proposed models. 
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