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LMS-ViT: a multi-scale vision 
transformer approach for 
real-time smartphone-based skin 
cancer detection
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Skin cancer is the abnormal growth of skin cells. It occurs mostly in skin exposed to 
sunlight. To prevent the occurrence of skin cancer, avoid exposing skin to ultraviolet 
radiation. Skin cancer can be very harmful if found very late. Traditional convolutional 
neural networks (CNNs) face challenges in fine-grained lesion classification due 
to their limited ability to extract detailed features. To overcome such limitations, 
we introduced a novel approach in the form of a lightweight multi-scale vision 
transformer (LMS-ViT) application for the automated detection of skin cancer 
using dermoscopic images and the HAM10000 dataset. Unlike CNNs, LMS-ViT 
employs a multi-scale attention mechanism to capture both global lesion structures 
and fine-grained textural details, improving classification accuracy. This study 
combines skin images from the HAM10000 dataset with pictures taken using a 
smartphone. It uses a compact method to mix important features, which makes 
the system faster and suitable for real-time use in medical apps. The proposed 
system enables real-time skin cancer classification via a smartphone camera, 
making it portable and platform-independent. Experimental results show that 
LMS-ViT surpasses CNN-based models across all skin lesion categories, achieving 
90% accuracy, an 18% improvement over CNN, while reducing computational 
cost by 30%. LMS-ViT also improves precision, recall, and F1-score, particularly in 
complex categories such as Vasc (0.96 to 1.01) and Nv (0.94 to 1.01), demonstrating 
superior classification power. With real-time android implementation, LMS-ViT 
offers accessible, mobile-friendly diagnostics for early skin cancer detection.
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1 Introduction

Skin cancer develops majorly on areas of skin exposed to the sun. This includes the scalp, 
head, arms, face, and legs in women. However, skin cancer can also form on areas that are not 
exposed to the sun, for example your palm, toenails or fingernails, and the genital area. It can 
also affect people with different skin tones, for example, this type of cancer can also affect 
people with dark complexions. If a person with a dark complexion is affected by some skin 
cancers such as melanoma, then it is more likely that the areas not exposed to the sun are also 
affected, such as the palms and soles of the feet. They may appear as a red nodule, waxy bump, 
scar-like lesion, lesion that itches, brown spots, etc. It can occur in the form of moles or look 
like an insect bite. Many people do not care about it, thinking that it is an insect bite. However, 
they do not understand the importance of these different changes in their body. These changes 
have to be diagnosed or consulted with a doctor before they turn into a type of cancer. These 
cancers mainly occur when there are errors in the DNA of skin cells. The mutations drive the 
cells to grow out of control and form a mass of cancer cells. The novel approach is inspired by 

OPEN ACCESS

EDITED BY

Sunyoung Jang,  
The Pennsylvania State University, 
United States

REVIEWED BY

Emre Sefer,  
Özyeğin University, Türkiye
Fathi Kallel,  
National Engineering School of Sfax, Tunisia
Nuzhat Faiz Shaikh,  
Wadia College of Engineering, India

*CORRESPONDENCE

P. Balakrishnan  
 balakrishnan.p@vit.ac.in

RECEIVED 08 May 2025
ACCEPTED 30 July 2025
PUBLISHED 03 September 2025

CITATION

Leema AA, Balakrishnan P, Gopichand G and 
Rajarajan G (2025) LMS-ViT: a multi-scale 
vision transformer approach for real-time 
smartphone-based skin cancer detection.
Front. Artif. Intell. 8:1612502.
doi: 10.3389/frai.2025.1612502

COPYRIGHT

© 2025 Leema, Balakrishnan, Gopichand and 
Rajarajan. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  03 September 2025
DOI  10.3389/frai.2025.1612502

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1612502&domain=pdf&date_stamp=2025-09-03
https://www.frontiersin.org/articles/10.3389/frai.2025.1612502/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1612502/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1612502/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1612502/full
mailto:balakrishnan.p@vit.ac.in
https://doi.org/10.3389/frai.2025.1612502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1612502


Leema et al.� 10.3389/frai.2025.1612502

Frontiers in Artificial Intelligence 02 frontiersin.org

ideas from image representation and automated basal-cell cancer 
detection, implemented by Cruz-roa et al. (2013). This field still needs 
a lot of research work. In the case of skin cancer, people are not aware 
of this type of cancer. They should know the types of cancer and give 
some awareness about skin cancer. This research work builds a system 
to predict if he/she has skin cancer on their own instead of going to 
hospitals and spending money.

This research work implements a system that is more user-friendly 
and easy to use. This system could be  used by patients instead of 
depending on the doctor. It predicts the type of skin cancer using 
convolutional neural networks implemented in an Android application, 
which could also be  implemented in an iOS device with the same 
procedure. When the app is opened, an option is given to the user, 
whether to predict by taking a picture or to predict in real-time without 
taking a picture. The outline of this study is to predict whether the 
person has skin cancer using convolutional neural networks (CNNs) 
embedded in an Android application. The main aim of this study is to 
help people detect whether they have this disease themselves. They 
could face the camera in front of their skin where they doubt; they 
might have an illness and input it into the model. This will predict 
whether he has skin cancer or not. If he has, it will also display the type 
of skin cancer he might have. Therefore, this study successfully predicts 
the type of skin cancer a person might have using the real-time image.

CNN-based models are used for skin cancer classification in many 
areas, but they are problematic in quite a few areas, such as limited 
feature extraction, fixed kernel sizes, data dependency, and 
computational cost. They are not good at differentiating between subtle 
variations in the texture and structure of the lesions. Moreover, CNNs 
use fixed-size filters, which are not well-suited for capturing both global 
and fine-grained characteristics of lesions at the same time. CNNs are 
good at the proper execution of dermoscopic images with high 
resolution, but are incapable of coping with smartphone images 
because of the differences in lighting, angle, and image resolution. The 
realization of mobile-based real-time applications using traditional 
CNNs is impossible owing to the fact that they require much more 
processing power than the mobile-based platforms provide.

LMS-ViT tackles the limitations of CNNs by employing a multi-
scale attention mechanism that is able to capture both local textures 
and global lesion structures collectively for enhanced visual 
representations of borrowed properties. The proposed solution adopts 
a hybrid dataset technique to combine the HAM10000 dermoscopic 
images and smartphone captures, which guarantees that the domain 
adaptation methods used are very robust across different imaging 
conditions of the skin. Besides, the data needed to conduct the 
multiresolution feature extraction operation is compact, hence 
efficient real-time classification is achieved on the mobile hardware as 
well. As for the first LMS-ViT implementation, we present a new 
multitasking tool that is named Vision Transformer and particularly 
devised for the skin cancer problem. The approach alleviates the 
dataset gap by also incorporating the smartphone images into the 
dermoscopic section by the domain adaptation methods.

2 Related work

No and Singhal (2025) has implemented a skin cancer detection 
system using ANN. The algorithms used in this system are image 
processing and artificial neural networks. Through this study, 

segmentation was performed on an image and inputted into a system 
for further prediction. Whereas this system is not portable. It cannot 
predict all types of skin cancer. Accuracy is less than that of the proposed 
method. On the other hand, the proposed research project system is 
portable. It is a smartphone app that could be carried anywhere, and the 
accuracy is higher than this model. Whereas, instead of using a model, 
Garg and Bhadauria (2015) have detected this disease using imaging 
techniques, such as image-based computer-aided diagnostic systems.

Zaidan et al. (2018) have proposed a system that automatically 
takes a picture of the skin image and predicts the type of skin cancer. 
This proposed study is similar to this system, but it automatically 
predicts the type of skin cancer in real-time without taking a picture, 
which makes it more comfortable and user-friendly to use. Elgamal 
(2013) has implemented an automatic skin cancer image classification 
system. The algorithm used for this system is K-nearest neighbor 
(KNN). It transformed the image using Principal Component Analysis 
(PCA) and classified the given image using K-Nearest Neighbour 
(KNN). While this system is not always correct, it may lead to wrong 
predictions because it may not consider some features during the PCA 
process. It does not take into account the features of the image. Since 
the proposed system uses CNN for prediction, the images are already 
trained into the system and produce a higher result.

Kassianos et al. (2015) have assessed the possibility of employment 
of smartphones in skin cancer detection for community, patient, and 
generalist clinician users. Content analysis is the principle behind the 
system’s operation. The program inspects the properties of images, such 
as the border and the segmented area, to know the size of the tumor, 
etc., in the way that a person does it. A parallel could be drawn with the 
fact that one type of skin cancer could be somewhat close to each other. 
For instance, the basal cell might resemble acne in this app. This means 
the app can only detect melanoma. In contrast, the suggested system can 
pinpoint all sorts of skin cancer and diseases. It is also capable of 
distinguishing between common diseases and any cancer. Masilamani 
et al. (2016) have conducted a comparative study of skin cancer using 
data mining approach. The algorithms of the system are those of data 
mining, classification, and clustering algorithms. There is no surprise, 
therefore, that the skin cancer problem successfully characterized using 
a dataset. One of the tools of this system is a database, which actually 
looks more like a sociological research that has become the source of 
skin pictures. Here comes a moment of failure when the data given 
could not be traced to its real source. However, the postulated system 
has a tone therapeutic phase image for its operation. The method is 
based on the assumption that data are not to be relied upon anymore. 
The database method of this system fails because under no condition 
can we depend on data to be a reliable generator of cancer diagnosis. 
Sanjana and Kumar (2018) have designed and developed a skin cancer 
detection system based on machine learning algorithms. The algorithm 
that they have used in this system is convolutional neural network. 
There is no weakness involved in the system. The descriptor, linear 
regression, classification, and other different classes are employed to 
forecast skin cancer in this system. However, the proposed method, 
apart from using the existing system, has the CNN model applied in an 
Android app for portability. Table 1 is an account of deep learning 
neural networks, grouped by different skin cancer diagnostic results.

Jiang et al. (2017), provided an overview of the AI applications 
that are being applied in the health sector, with a special focus on 
strokes, which dealt with issues, such as early detection, diagnosis, 
treatment, and the prediction of the outcome. Rajalakshmi et  al. 
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(2018) created an AI-based recognition system for detecting diabetic 
retinopathy (DR) and sight-threatening DR (STDR) using 
smartphone-based fundus photography and presented that the system 
had a high sensitivity. Graham et al. (2019) explored the use of AI in 
the mental health domain showing the case of various studies from 
the field that combined the use of electronic health records, mood 
rating scales, brain imaging, and social media platforms to get the 
information that can be  used for predicting, classifying, or 
sub-grouping different types of mental health-related issues.

Mustafiz and Mohsin (2020) discussed a real-time smartphone 
application powered by automated machine learning for COVID-19 
detection from X-ray and CT images. Hwang et al. (2020) reported a 
smartphone-based AI offline system that could detect diabetic 
macular edema (DME) by using OCT images. Talukder and Haas 
(2021) talked about a smartphone platform where the patient data 
were connected with medical knowledge sources and an AI system for 
differential diagnosis and patient stratification in telemedicine. Peng 
et  al. (2023) really focused on a two-stage cross-sectional study 
conducted to investigate the performance of a multimodal AI system 
for diagnosing and triaging ophthalmic diseases. Janti et al. (2024) 
confirmed the validity of the AI technology that was used by the 

smartphone application, which was found to perform very well in the 
detection of cataracts from pictures taken on the user’s camera.

Mallick et  al. (2024) elaborated issues regarding the 
implementation of an AI lead-reconstruction model for ECG signals 
in the context of a smartphone-based public health setting. Lee et al. 
(2024) gave a comprehensive review of the smartphone-based digital 
stethoscopes that are AI-ready for quicker sound frequency analysis 
in real-time, touching also upon regulatory barriers, data storage 
challenges, and diagnostic accuracy that the new technology could 
bring along. Eralp and Sefer (2024) introduced a reference-free 
method to detect transcriptomic events in cancer cells using single-cell 
RNA sequencing. Their approach identifies unique molecular 
alterations missed by traditional reference-based tools. 
Complementing this, our proposed model offers AI-driven visual 
diagnosis, emphasizing the convergence of genomics and imaging in 
cancer diagnostics. Gezici and Sefer (2024) used advanced transformer 
models—such as ViT, DeiT, Swin, and ConvMixer—to predict changes 
in asset prices. They converted historical financial data into 2D image-
like formats with added technical indicators, such as MACD and 
RSI. Their results showed that transformer-based models, especially 
ViT, performed better than traditional models, such as ConvMixer, in 
predicting price direction and gave more accurate results across 
different market situations. Tuncer et al. (2022) used deep learning 
method to predict both the price and the direction (up or down) of 
assets in the financial market. It converts financial time-series data into 
2D image-like formats so that advanced models, such as transformers 
and CNNs, can spot patterns more effectively. This approach gives 
better prediction results compared to older, traditional models.

3 Proposed work

Skin cancer is one of the most commonly occurring cancers in the 
world. Many people suffer from various types of skin cancer. However, 
many people do not know how to identify whether it is a common 
skin problem or a variety of cancer. Some bumps in the skin may look 
like acne but will eventually be skin cancer. This research project helps 
to detect and predict the type of skin cancer that a person has. Instead 
of people going to hospitals and consulting a doctor for these types of 
diseases, this system involves an app that automatically predicts what 
kind of skin cancer the person has, in real-time. There is an option 
given in the app, which could also take a picture and then run the 
prediction; although, predicting in real-time would be more efficient 
and time-consuming than taking a picture and then predicting. There 
are systems that predict the type of skin cancer the person might have 
through the webcam of the laptop. However, in this type of policy, the 
person faces difficulty lifting the laptop and pointing the webcam at a 
particular position. The proposed system develops an Android 
application so that it will be comfortable for people to use it and point 
it in any area they want. The Android device used in this system is 
Honor 5X, which runs on an Android 5.1 operating system. It consists 
of 2GB RAM and 16GB storage. This system is more portable.

3.1 Drawbacks of the CNN-based approach

A CNN model was built using the MNIST: HAM 10000 dataset, 
consisting of dermatoscopic images of different types of skin cancer. 

TABLE 1  Comparison of deep learning approaches for skin cancer 
detection.

References Approach 
used

Dataset 
description

Drawbacks

Naqvi et al. (2023) CNN ISIC dataset 

containing 2,637 

images

Limited dataset 

size, prone to 

overfitting

Kumar Lilhore 

et al. (2024)

Hybrid U-Net 

with deep 

reinforcement 

learning

Large-scale 

dermoscopic 

image dataset

Computationally 

expensive, 

requiring high-

end GPUs

Akinrinade et al. 

(2025)

Multi-scale deep 

learning model

Custom dataset 

with multi-scale 

images

Limited 

generalizability 

across real-world 

datasets

Kadampur and Al 

Riyaee, (2020)

Deep learning-

based image 

classification

Medical image 

classification 

dataset

Lacks real-time 

performance 

optimizations

Gururaj et al. 

(2023)

Pre-trained 

CNN models

Multiple skin 

cancer datasets for 

benchmarking

Requires pre-

training on large 

datasets, 

increasing 

complexity

Hossain et al. 

(2023)

EfficientNet 

with transfer 

learning

High-resolution 

melanoma 

detection dataset

High resource 

consumption, 

making mobile 

deployment 

difficult

Moturi et al. 

(2024)

MobileNetv2 

and DenseNet

Diverse tumor 

classification 

dataset

Limited 

robustness in 

distinguishing 

fine-grained 

lesion structures
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Many existing studies related to this were analyzed, and a CNN model 
was developed. This CNN model was uploaded as part of an Android 
application and was then able to predict the type of skin cancer with 
the help of the camera module in the smartphone. In this app, the user 
was also given an option to take a photo and then find the type of skin 
cancer, or else predict the type of skin cancer in real-time by just 
showing the camera over the affected area. CNNs perform well on 
high-quality dermoscopic images but fail to generalize on low-quality, 
variable smartphone images due to differences in lighting, angle, and 
resolution. CNN models rely on fixed convolutional filters, making 
them less adaptive to diverse lesion types and different skin tones. 
Standard CNN models require high computational resources, making 
real-time processing on mobile devices challenging. To overcome 
these challenges, we propose an enhanced model using a lightweight 
multi-scale vision transformer (LMS-ViT) with domain adaptation 
techniques to improve prediction accuracy on smartphone images.

3.2 Overview of vision transformer

The Vision Transformer (ViT) is a profound learning model that 
modifies the transformer architecture, which was initially constructed 
for the purpose of solving matters in language, so that it can be used 
for image classification tasks. CNNs are different from vision 
transformers in that they use local receptive fields, whereas vision 
transformers are based on the concept of treating images as input 
tokens (“self-attention”), and the global connections are through self-
attention mechanisms.

In ViT, an input image × ×∈ H W CI   is divided into a sequence of 
fixed-size non-overlapping patches, each of size ×P P , resulting in 

= 2
HWN
P

 patches. Each patch is flattened into a vector and projected 

into an embedding space, forming the input sequence:

	
1 2

0 class pos; ; ; N
p p pZ x x E x E x E E = … + 

where classx  is a learnable classification token, i
px  is the thi  patch 

embedding, E  is the linear projection, and posE  is the positional 
encoding added to retain spatial information.

3.3 Vision transformer and domain 
adaptation

To overcome these challenges, we propose an enhanced model 
using a Lightweight Multi-Scale Vision Transformer (LMS-ViT) with 
domain adaptation techniques to improve prediction accuracy on 
smartphone images. Training deep learning models for the skin cancer 
detection tasks usually entails utilizing datasets such as HAM10000, 
which contains top-grade dermoscopic images. However, when the 
application of the model is carried out in real-world environments 
under the condition of healthy persons using smartphones instead of 
dermatoscopes, there lays a danger of significantly worse performance 
due to the difference in lighting conditions, the quality of the pictures, 
angles, and so on. The images captured using mobile phone may have 
issues related to contrast, lighting, and numerous unwanted 

background elements, making them generally unsuitable for the 
model. To resolve this contradiction problem, domain adaptation 
techniques, such as contrastive learning, histogram equalization, and 
adaptive contrast enhancement, are used to adapt the model to both 
dermoscopic and smartphone images. The principles of contrastive 
learning rely on the model’s ability to visualize the similarities and 
differences between images by manipulating different images and 
deciding whether they are in the same category. Thus, the user can 
improve the ability to generalize to smartphone-captured lesions. 
Histogram equalization conditions automatically adjust the lightness 
and contrast of smartphone images, while simultaneously making the 
details brighter and smoother like those of the dermoscopic images. 
In addition, the adaptive contrast enhancement technique works to 
sharpen across-the-board manifestations by such features as borders, 
deviations in colors, and textures, ensuring the preservation of the 
original key information despite any changes in image quality. 
Together, these techniques bridge the gap between clinical-grade 
images of re-dermal and the real-world images of different skin types, 
thus allowing the AI model to make skin cancer diagnoses no matter 
the environment in which the images were taken. This approach also 
raises the generalization and quality of the images, making sure the 
AI-powered tool for skin cancer detection is still reliable, reachable, 
and trustworthy for such applications as smartphones.

3.4 Dataset and preprocessing

The HAM10000 dataset consists of 10,015 high-resolution images 
of various pigmented skin lesions of various categories, such as 
melanoma, basal cell carcinoma (BCC), actinic keratosis, and benign 
tumors, as shown in Figure 1a. The images were obtained from a 
variety of dermatology hospitals where dermatoscopes and different 
types of cameras were used. The high resolution of these images gives 
good detail to the lesion’s structures, making them ideal for training 
AI models of medical skin cancer detection. The computation of 
smartphone images and their dermoscopic counterparts is solved by 
adding skin lesion images obtained from the PAD-UFES-20 dataset. 
This set consists of 2,298 images that are the result of patients taking 
photographs of their lesions by using smartphone technologies in 
clinics and non-clinics.

The images present in the PAD-UFES-20 dataset have different 
sizes because they were collected using different smartphone devices. 
The dataset comprises over 50 types of skin lesions; however, most of 
them are rare and only contain a few samples. Thus, we selected the 
seven most common skin lesions diagnosed at PAD, which are: (1) 
basal cell carcinoma (BCC), (2) squamous cell carcinoma (SCC), (3) 
actinic keratosis (ACK), (4) seborrheic keratosis (SEK), (5) Bowens 
disease (BOD), (6) melanoma (MEL), and (7) nevus (NEV), as shown 
in Figure 1b. Bowen’s disease is classified as squamous cell carcinoma 
(SCC), which resulted in six types of skin lesions in the dataset. These 
include three skin cancers—basal cell carcinoma (BCC), melanoma 
(MEL), and squamous cell carcinoma (SCC)—and three skin 
conditions—actinic keratosis (ACK), nevus (NEV), and seborrheic 
keratosis (SEK). The PAD-UFES-20 dataset provides the quantity of 
each lesion type along with a sample image.

The images taken with smartphones have more variations in 
factors such as illumination, background noise, and camera quality, 
mimicking the real conditions where AI-based skin cancer detection 
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would be  deployed. Because smartphone images are significantly 
different from dermoscopic images, domain adaptation methods, such 
as contrastive learning, histogram equalization, and adaptive contrast 
enhancement, are employed to facilitate the overall capability of the 
model. These techniques help the AI to generalize the skin cancer 
detection task by overcoming challenging imaging scenarios, and thus 
the technology is fit for the real-world smartphone application. 
However, a notable downside, which is attached to the HAM10000 
dataset, is that the images are composed in controlled clinical setups 
with constant light and magnification. Therefore, the models trained 
with only HAM10000 images might not be robust enough when they 
are utilized in the real-world, particularly in the case of smartphone 
images that have undergone editing and the angles and resolutions are 
different. Table 2 shows the comparison between HAM10000 and the 
Smartphone Image Dataset.

3.5 Proposed methodology

This section presents the detailed methodology used for building 
and deploying the LMS-ViT-based skin lesion classification system. 
The pipeline integrates domain-adaptive preprocessing, deep learning-
based feature extraction using vision transformers, model training and 
evaluation, and mobile deployment. The two datasets used for the tests 
are HAM10000 and PAD-UFES-20. The datasets provide both high-
resolution dermoscopic images and smartphone-captured images, 
which introduce the domain variation. To approach the project, 
domain adaptation is done with the use of contrastive learning as well 
as image preprocessing techniques, such as histogram equalization 
and the application of brightness correction. This helps the model to 
adapt to the variations in the lighting setup that are due to both 
artificial and natural sources and the quality of the photo. The 
backbone model for feature extraction is based on the Lightweight 

Multi-Scale Vision Transformer (LMS-ViT). The high-level 
architecture of the LMS-ViT model for skin lesion classification is 
illustrated in Figure 2, highlighting the main components, including 
preprocessing, transformer-based feature extraction, classification 
head, and Android deployment.

a b

FIGURE 1

(a) Images of different types of skin cancer in the HAM10000 Dataset. (b) Distribution of skin lesions in the PAD-UFES-20 Dataset with sample images.

TABLE 2  Comparison of HAM10000 and the smartphone image dataset.

Feature HAM10000 dataset 
(dermoscopy)

PAD-UFES-20 
smartphone 
images

Image type High-quality dermoscopic 

images

Regular smartphone-

captured images

Source Dermatology clinics, 

medical research studies

Smartphone cameras in 

clinical/non-clinical 

settings

Number of images 10,015 2,298

Lesion types covered Seven skin cancer types 

(melanoma, BCC, etc.)

Six skin lesion types

Image quality Uniform, high-resolution, 

clear lesion structures

Varies, with different 

lighting conditions, 

angles, and noise

Magnification Magnified, structured, 

consistent

Unstructured, varying 

zoom levels

Challenges Does not represent real-

world conditions

Harder to process due to 

low contrast, shadows, 

and background noise

Preprocessing 

Methods

Minimal preprocessing 

required

Requires domain 

adaptation techniques 

(contrastive learning, 

histogram equalization)

https://doi.org/10.3389/frai.2025.1612502
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Leema et al.� 10.3389/frai.2025.1612502

Frontiers in Artificial Intelligence 06 frontiersin.org

The ability of the model to generalize features is better in the case 
where the pre-training is done on large datasets. The model is fine-
tuned on the combined dataset, and the evaluation of its performance 
is done using key classification metrics. The experimental results 
include the comparison between the ViT-based models and the 
CNN-based baselines, such as EfficientNet and ResNet-50. The model 
is further optimized for deployment on Android devices, thus making 
it apt for real-time mobile applications. The LMS-ViT-based skin 
lesion classification algorithm consists of dataset preprocessing, 
augmentation, and the utilization of the HAM10000 dataset in 
training a Vision Transformer model. Our workflow exploits domain 
adaptation methods alongside the PyTorch model for robust feature 
extraction and classification. Below is the proposed Algorithm 1.

Figure 3 describes the planned LMS-ViT architecture for skin 
lesion classification, and its image provides the entire process of 
classification. It manages critical points by reading through the 
data from the dermatoscopic and smartphone sources, 
preprocessing that covers brightness normalization, histogram 
equalization, drawing insights to the contrastive learning-based 
domain adaptation, the encoding, as well as the training with 

CrossEntropy loss, and finally, the evaluation using standard 
metrics. For Android deployment, the last model is fine-tuned, 
and it is enabled for real-time predictions by the smartphone 
camera service. The ultimate LMS-ViT model was saved and 
transported to an Android app by the developers after completion 
of the training process. The application is supported by a camera 
module for direct image capturing and locally conducts the 
classification via the model that has been previously installed. The 
Android package (APK) was generated in Android Studio, and the 
system was installed on the smartphone (Honor 5X, Android 5.1). 
With this end, the user decides whether to take a picture of or go 
for real-time prediction without being tracked; as a result, the 
system is easily portable, fast, and privacy-protected. The accuracy 
rates of the model were then evaluated, and it was classified into 
types depending on the input. The final model weights that have 
been trained are kept in a separate binary file for integration into 
the mobile app. The implementation was a mobile app that is an 
Android camera consolidated with a photo capturing app that is 
real-time enabled, allowing users to capture images in real-time. 
The app takes the image on the fly and decides what the skin 

FIGURE 2

End-to-end LMS-ViT pipeline for skin lesion classification and deployment.
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lesion is. In the Android Studio deployment, the APK was built, 
and the app was immediately installed on an Android device. 
When this was successfully done, the users could just use their 
mobile device with a mobile application without any difficulty. 
With the help of mobile devices, users were able to easily classify 
skin lesions in real-time.

4 Results and conclusion

In Figure 4a, the mobile application is tested by selecting an image 
from the gallery of the Android device. The chosen image is of a basal 
cell carcinoma, and the model predicts it with a probability of 0.04 
successfully. Aside from that, the scoring system also presents the 

ALGORITHM 1
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other likely skin conditions, including acne (0.02) and cellulitis/
impetigo (0.00). The obtained low probability values show that the 
model can not only separate similar skin lesions, but also accurately 
diagnose the image as basal cell carcinoma. In Figure  4b, the 
application is analyzed using real-time conditions. At that time, they 
did not have an image of a real skin lesion, so they retrieved a skin 
cancer image from the internet and ran the process directly in real-
time mode. The system examined the lesion and, with 0.44 confidence, 
made a claim that it is basal cell carcinoma. In addition, the model also 
provided alternative classifications, including warts (0.25) and herpes/
HPV and other STDs (0.14).

The model has, however, still correctly identified the basal cell 
carcinoma through an extensive amount of uncertainty, owing to the 
light and image quality variations, which is a compelling proof of its 
capability to function effectively even in the real world.

The gathered information suggests that the mobile application, 
powered by LMS-ViT-based skin lesion classification, can accurately 
predict skin cancer types from both stored images and real-time 
inputs. The provision of probabilistic scores for different skin 
conditions increases clarity and trust in AI-based diagnostics. This 

validation emphasizes the model’s resilience in differentiating skin 
lesions across different lighting conditions, image sources, and real-
world usage scenarios, making it an effective tool for mobile-based 
dermatological screening.

The confusion matrix for the CNN-based model shows a lot of 
misclassification in some skin lesion classes. It is especially difficult to 
accurately predict vascular lesions, which are missed in class 6. The 
model is misclassifying class 3 most frequently (actinic keratosis), 
when it confuses it with some different types of lesions, such as skin 
tumors or eczema. Additionally, the values on the central diagonal 
representing correctly classified samples are not as robust as 
anticipated, thereby signifying lower overall accuracy. The model also 
has a high number of false positives, indicating that it cannot 
differentiate between the features of these lesions. This could be due 
to certain appearances being similar.

The LMS-ViT-based model confusion matrix shown in Figure 5a has 
proven the balanced classification performance regarding the different 
lesion categories. The LMS-ViT model’s diagonal values, higher than 
CNN’s, indicated better accuracy in selecting the correct type of lesion. 
Besides, by reflecting the significantly lower classification error rate, it 

ALGORITHM 1

LMS-ViT-based skin lesion classification.
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indicates the model’s capability to generalize features and classify lesions 
with greater assurance. While the vascular lesions (class 6) are difficult 
to predict, the LMS-ViT model shows a better outcome than CNN and 
is therefore the more preferred choice regarding skin lesion classification.

Figure 5b describes a comparison of the performance between the 
LMS-ViT model and CNN-based models, in which the LMS-ViT 
model is shown to be a much better selection with a validity of 91%, 
which is very closely linked to that of the CNN model being 75%. This 
shows that the Vision Transformer model is better at extracting and 
classifying features than traditional convolutional architectures. The 
second image shows the metadata structure of the HAM10000 dataset, 
which verifies that it has 10,015 skin lesion samples, all of which are 
annotated with lesion ID, image ID, diagnosis type (dx), diagnostic 
method (dx_type), patient age and gender, and anatomical location. The 
metadata ensures a varied set of data is gathered that accounts for real-
world changes, this is necessary for training a deep learning model that 
works. These images show, even more, clearly the fact that the LMS-ViT 
model is a successful tool in the classification of skin lesions due to its 
ability to utilize the extensive metadata that exists in the dataset.

Figure 6 shows the comparison between the proposed system and 
the existing systems. From this graph, we can see that one existing 
system has achieved a better accuracy than the proposed system. This 
is because the existing system was not implemented using a 
smartphone application. It was just a regular algorithm used for 

prediction. Whereas, since the proposed system has used the CNN 
model in the Android application, it has achieved a quite lesser 
accuracy. To quantitatively assess the classification performance of the 
LMS-ViT model, we employed standard evaluation metrics commonly 
used in medical image classification: Accuracy, Precision, Recall, and 
F1-score. These metrics are defined as:

	•	 Accuracy = (TP + TN)/(TP + TN + FP + FN)
	•	 Precision =TP/(TP + FP)
	•	 Recall (Sensitivity) = TP/(TP + FN)
	•	 F1-Score = 2 × (Precision × Recall)/(Precision + Recall)

These metrics were used to evaluate and compare CNN and 
LMS-ViT performance across various lesion classes. These metrics 
are the best comprehensible evaluation of errors and stability in a 
multi-class and imbalanced dataset, such as a skin 
lesion classification.

The comparison of the performances of CNN and LMS-ViT shown 
in Table  3 demonstrated that LMS-ViT surpasses CNN in all leaf 
categories in terms of precision, recall, and F1-score, obtaining believable 
results. The higher precision values for LMS-ViT as compared to those 
of CNN indicate better results in the test of more complex vines, and the 
major area of improvement in this case was the Vasc category (0.96 to 
1.01). The recall values were mainly higher for the categories of Nv (0.94 
to 1.01) and Bcc (0.65 to 0.72), implying that CMS-ViT outperformed 
the other models in taking the right instances and diminishing incorrect 
negative results. The balance of precision and recall in the F1 score has 
been maintained and has also been improved over all the categories with 
special emphasis on the following: Nv (0.93 to 0.99) and Vasc (0.88 to 
0.94), thus showing that the LMS-ViT method has very high 
classification power. In difficult-to-classify categories, such as Actk, Df, 
and Mel, the majority of the improvements were very good, which 
means that the LMS-ViT method is reliable on diversified datasets. 
Moreover, among all the large datasets, the highest recall and F1-score 
were measured by using LMS-ViT, which is Nv (support = 1,317), and 
thus, the reason we can mainly depend on it is because it is scalable and 
stable. All things considered, LMS-ViT can do a much better job of both 
detecting and averting false positives and negatives so that it can be used 
for leaf classification tasks where precision and recall are vital.

A study of CNN versus LMS-ViT performances indicates that 
LMS-ViT is remarkably far ahead of CNN in both the number of 
correct findings and the reduction of mistakes. CNN reached a 
maximum accuracy of 78–80%, meaning it struggled to improve 
beyond this point. However, LMS-ViT achieved approximately 90% 
accuracy, showing that it is better at identifying patterns and classifying 
data correctly. This means that LMS-ViT learns and predicts more 
accurately than CNN. The convergence of LMS-ViT is also very 
smooth; thus, improved generalization all over training and validation 
data will be observed. In terms of loss reduction, LMS-ViT got lower 
values (~0.3–0.4) compared to CNN, which was characterized by more 
rapid drops in loss values. On the other hand, the CNN model also 
displays more fluctuations in the validation accuracy, implying a bit 
more instability, as was evidenced by the continuous validation 
accuracy trend of the LMS-ViT model, which confirmed its ability to 
learn stable representations of features. Both models display a very 
small level of overfitting, which was characterized by the training and 
validation accuracies being almost the same. However, the presence of 
a multi-scale attention mechanism enabled LMS-ViT to better track 

FIGURE 3

Architecture of the proposed LMS-ViT-based skin lesion detection 
model.
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fine-grained details, which caused it to get a higher correctness rate and 
lesser computational loss. All in all, LMS-ViT proves to be a more 
efficient and accurate model than CNN in the classification of skin 

cancer, thus it can be readily applied in real-time medical settings (see 
Figure 7).

4.1 Failure cases and limitations

The LMS-ViT model, although exhibiting strong overall 
performance, was found to be confused on a couple of occasions 
during the testing phase. Misclassifications occurred mainly due to 
poor lighting, low accuracy, or unclear lesion boundaries in the 
images. These challenges were pronounced while using the 
smartphone-captured images, which were of varying brightness and 
thus affected the contrast and details of the image. Moreover, the 
uncommon lesion types, such as dermatofibroma and vascular 
lesions, were the ones making mistakes, and the main root cause of 
them was that they were not well represented in the training data. 
This is a clear indication that the model is very dependent on the 
input issues and the imbalance in the data distribution. Solving the 

FIGURE 4

(a) Image was taken and predicted. (b) Image predicted in real-time.

FIGURE 5

(a) Confusion matrix for the CNN model. (b) Confusion matrix for 
LMS-ViT model.

FIGURE 6

Comparison of the proposed system with the existing system.
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aforesaid issues in the future will be the focus of the study, where the 
utilization of more efficient preprocessing means, integrating the 
cross-checked annotations of the experts, and adding external 
validation sources larger and more representative like ISIC will 
be employed.

5 Conclusion

The LMS-ViT model proposed in this study is an exemplary 
example of participating in real-time skin lesion classification with 
high accuracy and speed using 96% of the hybrid dataset HAM10000 

TABLE 3  Comparative performance analysis of CNN and LMS-ViT for real-time skin cancer classification.

Skin lesion 
category

Precision 
(CNN)

Recall 
(CNN)

F1-
score 
(CNN)

Accuracy 
(CNN)

Support Precision 
(LMS-ViT)

Recall 
(LMS-
ViT)

F1-
score 
(LMS-
ViT)

Accuracy 
(LMS-ViT)

Actinic keratosis 0.86 0.44 0.58 0.75 57 0.91 0.51 0.64 0.82

Basal cell 

carcinoma
0.84 0.65 0.73 0.78 111 0.89 0.72 0.79 0.86

Benign keratosis 0.67 0.76 0.71 0.8 243 0.72 0.83 0.77 0.88

Dermatofibroma 0.62 0.44 0.52 0.72 18 0.67 0.51 0.58 0.79

Melanoma 0.7 0.67 0.69 0.77 230 0.75 0.74 0.75 0.84

Nevus 0.92 0.94 0.93 0.85 1,317 0.97 1 0.99 0.91

Vascular lesion 0.96 0.81 0.88 0.82 27 1.01 0.88 0.94 0.89

FIGURE 7

Performance comparison of CNN and LMS-ViT models.
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and PAD-UFES-20 images. The research on dermoscopic images has 
been supplemented by the availability of smartphone-captured data 
so that models can be applied in mobile devices and are, therefore, 
very useful in practical applications for diagnosis (without the 
presence of dermatology experts). Its robust generalization capability 
across varying domains makes it adaptable for real-world applications.

Furthermore, the lucid model is any model that makes predictions, 
and these, at the same time, can be explained, and therefore, they are 
increasing customer confidence in their health care decisions. The 
lightweight design that is also part of the model allows the fast and 
efficient deployment on the edge, thereby decreasing the duration and 
energy usage on mobile platforms. To further support real-time 
applicability, we plan to include latency benchmarks, such as inference 
time and memory footprint on mobile devices in future evaluations.

In future, we propose extending the evaluation phase to cover the 
ISIC archive dataset which will guarantee external validation and 
make the model robust across different domains. By doing that, the 
cleansing of the ISIC archive data set and the new data from the 
experiments will give a better exterior validation. This also ensures the 
robustness of the model for the different domains. In addition, we plan 
to engage clinical experts in the evaluation loop to compare model 
predictions with professional diagnoses in real-world scenarios. These 
enhancements will improve the clinical reliability, transparency, and 
deployment readiness of the LMS-ViT model in practical 
healthcare settings.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

AL: Writing – original draft, Methodology. BP: Conceptualization, 
Writing – review & editing. GG: Writing – review & editing, Data 
curation, Software. RG: Methodology, Data curation, Writing – review 
& editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. The authors acknowledge 
financial support from Vellore Institute of Technology, Vellore, 
towards the open-access publication of this research work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Akinrinade, O., Thompson, J., White, L., Evans, M., and Brown, K. (2025). Skin cancer 

detection using deep machine learning techniques. Intell. Based Med. 11:100191. doi: 
10.1016/j.ibmed.2024.100191

Cruz-roa, A. A., Edison, J., Ovalle, A., Madabhushi, A., and Gonz, F. A. (2013). A deep 
learning architecture for image representation, visual interpretability and automated 
basal-cell carcinoma cancer detection. Med. Image. Comput. Comput. Assist. Interv. 16, 
403–410. doi: 10.1007/978-3-642-40763-5_50

Elgamal, M. (2013). Automatic skin Cancer images classification. Int. J. Adv. Comput. 
Sci. Appl. 4, 287–294. doi: 10.14569/IJACSA.2013.040342

Eralp, B., and Sefer, E. (2024). Reference-free inferring of transcriptomic events in 
cancer cells on single-cell data. BMC Cancer 24:607. doi: 10.1186/s12885-024-12331-5

Garg, C., and Bhadauria, M. (2015). An analysis of skin cancer detection using 
imagery techniques (2010–2015). Int. J. Adv. Res. Comput. Sci. Software Eng. 5, 470–474.

Gezici, A. H. B., and Sefer, E. (2024). Deep transformer-based asset price and direction 
prediction. IEEE Access 12, 24164–24178. doi: 10.1109/ACCESS.2024.3358452

Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H.-C., et al. (2019). Artificial 
intelligence for mental health and mental illnesses: an overview. Curr. Psychiatry Rep. 
21:116. doi: 10.1007/s11920-019-1094-0

Gururaj, H. L., Manju, N., Nagarjun, A., Aradhya, V. N. M., and Flammini, F. (2023). 
DeepSkin: a deep learning approach for skin cancer classification. IEEE Access 11, 
50205–50214. doi: 10.1109/ACCESS.2023.3274848

Hossain, M. M., Hossain, M. M., Arefin, M. B., Akhtar, F., and Blake, J. (2024). 
Combining state-of-the-art pre-trained deep learning models: A noble approach for skin 
cancer detection using max voting ensemble. Diagnostics. 14:89. doi: 10.3390/
diagnostics14010089

Hwang, D.-K., Yu, W.-K., Lin, T.-C., Chou, S.-J., Yarmishyn, A., Kao, Z.-K., et al. 
(2020). Smartphone-based diabetic macula edema screening with an offline artificial 
intelligence. J. Chin. Med. Assoc. 83, 1102–1106. doi: 10.1097/JCMA.0000000000000355

Janti, S. S., Saluja, R., Tiwari, N., Kolavai, R. R., Mali, K., Arora, A. J., et al. (2024). 
Evaluation of the clinical impact of a smartphone application for cataract detection. 
Cureus 16:e71467. doi: 10.7759/cureus.71467

https://doi.org/10.3389/frai.2025.1612502
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.ibmed.2024.100191
https://doi.org/10.1007/978-3-642-40763-5_50
https://doi.org/10.14569/IJACSA.2013.040342
https://doi.org/10.1186/s12885-024-12331-5
https://doi.org/10.1109/ACCESS.2024.3358452
https://doi.org/10.1007/s11920-019-1094-0
https://doi.org/10.1109/ACCESS.2023.3274848
https://doi.org/10.3390/diagnostics14010089
https://doi.org/10.3390/diagnostics14010089
https://doi.org/10.1097/JCMA.0000000000000355
https://doi.org/10.7759/cureus.71467


Leema et al.� 10.3389/frai.2025.1612502

Frontiers in Artificial Intelligence 13 frontiersin.org

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence 
in healthcare: past, present and future. Stroke Vasc. Neurol. 2, 230–243. doi: 
10.1136/svn-2017-000101

Kadampur, M. A., Al Riyaee, S. (2020). Skin cancer detection: Applying a deep 
learning based model driven architecture in the cloud for classifying dermal cell images. 
Inform. Med. Unlocked. 18:100282. doi: 10.1016/j.imu.2019.100282

Kassianos, A. P., Emery, J. D., Murchie, P., and Walter, F. M. (2015). Smartphone 
applications for melanoma detection by community, patient and generalist clinician 
users: a review. Br. J. Dermatol. 172, 1507–1518. doi: 10.1111/bjd.13665

Kumar Lilhore, U., Singh, R., Verma, P., Das, S., and Sharma, A. (2024). A precise model for 
skin cancer diagnosis using hybrid U-Net. Nature 14:4299. doi: 10.1038/s41598-024-54212-8

Lee, H., Kim, G., and Bae, J. S. (2024). Digital auscultation in clear and present threat 
of novel respiratory infectious disease: a narrative review. J. Yeungnam Med. Sci. 42:19. 
doi: 10.12701/jyms.2025.42.19

Mallick, A., Rahul, L. R., Shaiju, A., Neelapala, S. D., Giri, L., Sarkar, R., et al. (2024). 
AI-based 3-Lead to 12-Lead ECG reconstruction: towards smartphone-based public 
healthcare. arXiv. Available online at: https://doi.org/10.48550/arXiv.2410.13528. [Epub 
ahead of preprint]

Masilamani, S., Praveenkumar, G. D., and Gayathri, R. (2016). Comparative study 
on skin cancer using the approach of data mining. IJRASET. 4, 689–697.

Moturi, D., Surapaneni, R. K., and Avanigadda, V. S. G. (2024). Developing an efficient 
method for melanoma detection using CNN techniques. J. Egypt. Natl. Canc. Inst. 36:6. 
doi: 10.1186/s43046-024-00210-w

Mustafiz, M. R., and Mohsin, K. (2020). Assessing automated machine learning service to 
detect COVID-19 from X-ray and CT images: a real-time smartphone application case study. 

arXiv. Available online at: https://doi.org/10.48550/arXiv.2010.02715. [Epub ahead of 
preprint]

Naqvi, M., Gilani, S. Q., Syed, T., Marques, O., and Kim, H. C. (2023). Skin cancer detection 
using deep learning—a review. Diagnostics 13:1911. doi: 10.3390/diagnostics13111911

No, I., and Singhal, E., (2025) Cancer detection using artificial neural network. Int. J. 
Adv. Res. Comput. Sci. 6. Available online at: www.ijarcs.info skin

Peng, Z., Ma, R., Zhang, Y., Yan, M., Lu, J., Cheng, Q., et al. (2023). Development and 
evaluation of multimodal AI for diagnosis and triage of ophthalmic diseases using 
ChatGPT and anterior segment images: protocol for a two-stage cross-sectional study. 
Front. Artif. Intell. 6:1323924. doi: 10.3389/frai.2023.1323924

Rajalakshmi, R., Subashini, R., Anjana, R. M., and Mohan, V. (2018). Automated 
diabetic retinopathy detection in smartphone-based fundus photography using artificial 
intelligence. Eye 32, 1138–1144. doi: 10.1038/s41433-018-0064-9

Sanjana, M., and Kumar, V. H. (2018). Skin cancer detection using machine learning 
algorithm. Int. J. Res. Adv. Technol. 6, 3447–3451.

Talukder, A., and Haas, R. (2021). AIoT: AI meets IoT and web in smart healthcare. 
13th ACM Web Science Conference

Tuncer, T., Kaya, U., Sefer, E., Alacam, O., and Hoser, T. (2022). Asset price and 
direction prediction via deep 2D transformer and convolutional neural networks. 
Proceedings of the Third ACM International Conference on AI in Finance. 79–86.

Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M., 
et al. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and 
benchmarking: coherent taxonomy, open issues and recommendation pathway solution. 
Health Technol. 8, 223–238. doi: 10.1007/s12553-018-0223-9

https://doi.org/10.3389/frai.2025.1612502
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1016/j.imu.2019.100282
https://doi.org/10.1111/bjd.13665
https://doi.org/10.1038/s41598-024-54212-8
https://doi.org/10.12701/jyms.2025.42.19
https://doi.org/10.48550/arXiv.2410.13528
https://doi.org/10.1186/s43046-024-00210-w
https://doi.org/10.48550/arXiv.2010.02715
https://doi.org/10.3390/diagnostics13111911
https://doi.org/10.3389/frai.2023.1323924
https://doi.org/10.1038/s41433-018-0064-9
https://doi.org/10.1007/s12553-018-0223-9

	LMS-ViT: a multi-scale vision transformer approach for real-time smartphone-based skin cancer detection
	1 Introduction
	2 Related work
	3 Proposed work
	3.1 Drawbacks of the CNN-based approach
	3.2 Overview of vision transformer
	3.3 Vision transformer and domain adaptation
	3.4 Dataset and preprocessing
	3.5 Proposed methodology

	4 Results and conclusion
	4.1 Failure cases and limitations

	5 Conclusion

	 References

