
Frontiers in Artificial Intelligence 01 frontiersin.org

Three-dimensional visualization 
and navigation for 
micro-noninvasive uterine fibroid 
surgery based on MRI and 
ultrasound image fusion
Ting Wang 1, Yingang Wen 2, Zhibiao Wang 2,3 and Xi Li 1*
1 Foundation Department, Chongqing Medical and Pharmaceutical College, Chongqing, China, 
2 National Engineering Research Center of Ultrasonic Medicine, Chongqing, China, 3 State Key 
Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, 
Chongqing Medical University, Chongqing, China

Objective: To address the challenges of low surgical precision and poor 
consistency in focused ultrasound ablation surgery (FUAS) for uterine fibroids, 
which are often caused by variations in clinical experience and operator fatigue, 
this study aims to develop an intelligent three-dimensional (3D) visualization and 
navigation system by integrating magnetic resonance imaging (MRI) with real-
time ultrasound (US) imaging, thereby improving the accuracy and efficiency of 
uterine fibroid surgery.

Methods: MRI and US images from 638 patients were annotated by experienced 
clinicians. The nnU-Net algorithm was used for preoperative segmentation and 
3D reconstruction of MRI images to provide detailed visualization of fibroid 
morphology. The YOLACT model was applied to achieve rapid delineation of 
the uterus and key anatomical structures in real-time US images. To enhance 
the accuracy of lesion localization and navigation, the Iterative Closest Point 
(ICP) algorithm was employed for the registration of preoperative MRI with 
intraoperative US images.

Results and discussion: Experimental results demonstrated that the system 
achieved a Dice Similarity Coefficient (DSC) exceeding 90% for the segmentation 
and identification of anatomical structures such as the uterus and fibroids. 
The YOLACT model achieved an accuracy greater than 95% in identifying key 
structures in real-time US images. In 90% of the cases, the system enabled efficient 
and precise tracking; however, approximately 5% of the cases required manual 
adjustment due to discrepancies between patient anatomy and preoperative 
MRI data. The proposed intelligent navigation system, based on MRI–US image 
fusion, offers an efficient and automated solution for FUAS in treating uterine 
fibroids, significantly improving surgical precision and operational efficiency. 
This system demonstrates strong clinical applicability. Future research will 
focus on enhancing the adaptability of the system, particularly in addressing 
challenges such as significant tissue deformation and occlusion, to improve its 
robustness and applicability in complex clinical scenarios.
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1 Introduction

Uterine fibroids are among the most prevalent benign tumors of 
the female reproductive system. In recent years, their incidence has 
steadily increased, posing a significant threat to the physical and 
psychological well-being of women of reproductive age (Sparic et al., 
2016; Okolo, 2008). FUAS has emerged as a widely adopted 
therapeutic approach due to its non-invasive nature, absence of 
ionizing radiation, and ability to preserve uterine structure and 
function (Wang et al., 1997; Ziglioli et al., 2020; Kashyap and Kashyap, 
2001). Ultrasound and MRI are two complementary imaging 
modalities that, when integrated, provide synergistic anatomical and 
functional information (Ries et al., 2010; Lovegrove, 2006). Ultrasound 
offers real-time imaging, low cost, portability, and widespread clinical 
accessibility, making it well-suited for intraoperative guidance. In 
contrast, MRI provides high-resolution, three-dimensional soft-tissue 
contrast, which is critical for preoperative planning but lacks real-time 
imaging capabilities (Zhao et  al., 2013; Wang et  al., 2024). The 
differences in uterine fibroid visualization between MRI and US are 
illustrated in Figure 1.

For accurate identification and registration of uterine fibroid 
regions in ultrasound and MR images, Luo et al. (2021) proposed a 
method for automatic segmentation and registration of uterine fibroid 
ultrasound images. First, ReFineNet was used to segment the complete 
fibroid contour in handheld ultrasound images, and the upper 
boundary of the fibroid in the guidance ultrasound image was 
manually annotated. Then, the two ultrasound images were registered. 
Zhang et al. (2023) proposed an attention-based deep learning method 
for automatic segmentation of uterine fibroids in preoperative MR 
images. The proposed method is based on a U-Net architecture, 
incorporating channel attention through squeeze-and-excitation 
blocks with residual connections, as well as spatial attention via a 
pyramid pooling module. This method achieved good segmentation 
results but is limited to two-dimensional images. Boneš et al. (2024) 
developed an automated system for uterine shape segmentation and 
alignment based on 3D ultrasound data. First, deep learning 
techniques were used to automatically segment the uterus in 3D 
ultrasound scans. Then, standard geometric methods were applied to 
align the segmented shapes, enabling the extraction of the normal 
uterine shape for further analysis.

During FUAS procedures, real-time ultrasound plays a pivotal 
role in intraoperative navigation. However, its relatively low spatial 
resolution and susceptibility to acoustic shadowing and reflection 
artifacts often hinder the precise delineation of fibroid boundaries. 
Conversely, preoperative MRI provides clear, three-dimensional 
anatomical visualization of the uterus and fibroids, allowing accurate 
assessment of their morphology, size, and spatial distribution. 
Integrating preoperative MRI with intraoperative US through image 
registration and fusion techniques enhances the intraoperative 
visibility of fibroid margins in real-time, thereby improving surgical 
accuracy and procedural efficiency. To meet these clinical demands, 
we have developed a 3D visualization model based on MRI–US image 
fusion. This model supports the entire FUAS treatment workflow, 
including preoperative planning, intraoperative navigation, and 
postoperative evaluation. It allows surgeons to anticipate anatomical 
challenges, assess procedural risks, and manage potential 
complications more effectively, thus reducing intraoperative 
uncertainty and enhancing surgical success rates and patient safety. 
Moreover, 3D visualization plays a crucial role in postoperative 
follow-up by enabling comprehensive comparisons between pre- and 
post-operative anatomical structures. This capability improves the 
assessment of ablation efficacy, facilitates lesion monitoring, and 
supports early detection of recurrence, contributing to long-term 
treatment optimization and patient management.

In 2019, Chongqing Haifu Medical Technology Co., Ltd. 
introduced a prototype MRI–US fusion and navigation system. 
However, its clinical application has been limited by several technical 
challenges. Physiological changes during surgery and spatiotemporal 
discrepancies between preoperative MRI and intraoperative US often 
necessitate repeated manual registration, significantly increasing the 
clinical workload and reducing procedural efficiency. Thus, the 
development of intelligent algorithms capable of real-time, automated 
image registration and tracking is crucial for improving clinical 
usability. Nevertheless, achieving accurate MRI–US registration in the 
context of uterine fibroid treatment remains a formidable challenge 
due to several factors: differences between imaging modalities, 
non-rigid tissue deformation during surgery, and poorly defined 
fibroid boundaries. These challenges are further compounded by the 
need for real-time performance and the differing demands of 
radiological diagnosis versus surgical navigation. Consequently, the 

FIGURE 1

Comparison of imaging effect between US image (a) and MRI image (b). (a) US image of uterine fibroids; (b) MR image of uterine fibroids.
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development of a robust, intelligent, and clinically adaptable 
navigation system remains a critical research objective in the field of 
medical image processing.

Conventional MRI segmentation and ultrasound image 
interpretation techniques exhibit significant limitations in FUAS 
applications. Their inability to accommodate the dynamic nature of 
the intraoperative environment and lack of real-time tracking and 
registration capabilities severely restrict their utility in surgical 
planning and navigation. To address these challenges, this study 
proposes a comprehensive, integrated solution that incorporates MRI 
segmentation, ultrasound image analysis, multimodal image fusion, 
and real-time lesion tracking. By closely aligning system development 
with clinical requirements, we aim to create a fully automated MRI–
US image registration and tracking system specifically designed for 
real-time guidance during FUAS procedures. Ultimately, this system 
seeks to significantly improve the precision, safety, and operational 
efficiency of minimally invasive FUAS treatment for uterine fibroids.

2 Methods

2.1 Patients

A database of 638 patients diagnosed with UF at Chongqing Haifu 
Hospital from January 2021 to January 2023 was collected for this 
study. This research was conducted with the approval of the hospital’s 
ethics committee and had no implication on patient treatment.

2.2 Image segmentation

2.2.1 MR image segmentation
Segmentation of MR images of uterine fibroids plays a critical role 

in medical image analysis, directly influencing the accuracy and 
effectiveness of subsequent image registration and fusion. 
Traditionally, manual segmentation by clinicians is time-consuming, 
prone to low accuracy, and often lacks consistency, thus limiting its 
clinical applicability. Therefore, the development of automated or 
semi-automated segmentation methods has become imperative. MR 

images of uterine fibroids present numerous challenges due to their 
high resolution, complex anatomical structures, relatively small lesion 
areas, ambiguous boundaries, diverse textural features, anisotropy, 
and irregular shapes, as illustrated in Figure  2. Conventional 
segmentation techniques such as level-set methods, region growing, 
and active contour (snake) models have been previously applied to 
uterine MRI image analysis (Yao et  al., 2006). However, these 
approaches fall short in terms of precision and efficiency, making 
them unsuitable for clinical implementation. With the advent and 
continuous advancement of deep learning technologies, medical 
image segmentation has seen groundbreaking progress. Nonetheless, 
their application in the context of uterine fibroid treatment remains 
insufficiently validated. While deep learning methods have achieved 
promising results across various segmentation tasks, challenges such 
as small sample sizes and heterogeneous data still hinder their 
widespread adoption in clinical environments. This study aims to 
establish a reliable and efficient segmentation framework that meets 
clinical demands and improves therapeutic outcomes.

Our research team has explored several deep learning models, 
including V-Net (Milletari et al., 2016) and U-Net (Tang et al., 2020; 
Norman et al., 2018), and has collaborated with Southeast University 
to co-develop the HIFUNET model (Zhang et al., 2020). These efforts 
have led to significant improvements in segmentation accuracy, with 
precision rates exceeding 85%, outperforming traditional algorithms. 
However, these results still fall short of meeting the stringent accuracy 
requirements of clinical practice.

The nnU-Net (Isensee et  al., 2018) architecture, based on the 
classical U-Net structure, is an adaptive convolutional neural network 
framework that incorporates an advanced, automated pipeline for 
medical image segmentation. The combination of both architectures 
offers strong complementarity in model integration. Owing to its 
simplicity, flexibility, and adaptability to diverse biomedical image 
datasets, nnU-Net was selected as the segmentation network for 
this study.

To enhance segmentation accuracy, a channel attention module 
(CAM) and a pyramid fusion module(PFM) were integrated into the 
original nnU-Net architecture, as illustrated in Figure 3. The structure 
of the CAM is shown in Figure 4. Specifically, global average pooling 
is first applied to the input feature map to obtain a channel-wise global 

FIGURE 2

MR images of uterine fibroids. The yellow area is the spine, the red area is the fibroid, the blue area is the uterus, the pink area is the endometrium, and 
the green area is the bladder.
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descriptor. This descriptor is then passed through two fully connected 
(FC) layers with a ReLU activation in between to capture the inter-
channel dependencies. Subsequently, a Sigmoid activation function is 
used to generate attention weights for each channel. These weights are 
multiplied with the original feature map in a channel-wise manner to 
enhance informative features and suppress irrelevant or redundant 
ones, thereby improving the model’s sensitivity to key regions. The 
CAM effectively models channel-wise dependencies and adaptively 
adjusts the importance of each feature channel, enabling the network 
to emphasize features that are more relevant to the segmentation task 
while reducing the influence of less important information. This 
enhances the representational capability of the model, improves the 
recognition of target regions and boundaries, and contributes to 
higher segmentation accuracy.

The structure of the pyramid fusion module (PFM) is shown in 
Figure  5. It first extracts multi-scale information from the input 
feature map using average pooling operations with three different 
kernel sizes, enabling the capture of local features at various levels. 
Next, Con1 × 1 is applied to the pooled feature maps, followed by 
upsampling through bilinear interpolation to restore the spatial 
resolution to match that of the original feature map. Finally, features 
from different scales are concatenated to form the output of the 
PFM. The PFM effectively extracts and integrates multi-scale features, 

enhancing the model’s ability to perceive objects of varying sizes. By 
performing pooling, convolution, and fusion at multiple spatial scales, 
the module captures both fine-grained details and global contextual 
information, thereby improving the model’s capability to recognize 
object boundaries and complex structures. This leads to improved 
segmentation accuracy and enhanced robustness in diverse scenarios.

nnU-Net employs a two-stage training strategy to optimize model 
performance. In the first stage, the model is trained on downsampled 
images to obtain preliminary segmentation results. In the second 
stage, these initial segmentation outputs are upsampled to the original 

Copy and concat
Conv 3x3
Max pooling 2x2
Deconv 3x3
Conv 1x1

Input

Output

CAM
PFM

FIGURE 3

Network architecture.

FIGURE 4

Channel attention module (CAM).

FIGURE 5

Pyramid fusion module (PFM).
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voxel spacing and used as inputs for further training under full-
resolution conditions. This approach not only enhances the model’s 
ability to capture fine image details but also improves segmentation 
accuracy when handling large-scale or complex structural data. The 
design of nnU-Net enables automatic adjustment of network 
parameters across different layers to ensure no spatial information is 
lost when processing images of varying resolutions. Specifically, the 
network architecture is first adapted according to the input image size 
to optimize processing efficiency. Subsequently, the number of 
convolutional layers and kernel sizes are selected based on data 
characteristics to optimize feature extraction. The positions and 
quantities of pooling and upsampling layers are then adjusted to 
preserve image resolution and information integrity. Finally, 
depending on the task complexity and available computational 
resources, the number of channels in each layer is tuned to balance 
computational cost and model performance.

The total loss function is defined in Equation 1:

 = +ltota dice CEL L L  (1)

Where, Ldice and LCE are shown in Equations 3 and 4:
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Where, u is the softmax output of the network, and v is the true 
label of the segmentation map. The shapes of u and v are both N × K, 
where i ∈ N represents the number of pixels in the training block/
batch, and k ∈ K represents the number of categories.

2.2.2 US image segmentation
Real-time US images of uterine fibroids exhibit several unique 

characteristics, including:

 (1) Low signal-to-noise ratio: real-time ultrasound images are 
highly susceptible to speckle noise, which compromises image 
clarity and hinders accurate analysis.

 (2) Grayscale inhomogeneity: the internal tissues of uterine 
fibroids often display significant grayscale variability, making 
consistent segmentation challenging.

 (3) Distinct membrane boundaries: the surface of uterine fibroids 
is typically enclosed by a membranous structure with markedly 
different acoustic impedance from the underlying tissues, 
resulting in strong interface reflections and a relatively clear 
contour. However, due to lesion-specific influences, the 
boundaries—especially the deeper ones—may appear blurred 
and difficult to discern.

In the current ultrasound image segmentation network, Mask 
R-CNN (He et al., 2017) achieves a processing speed of approximately 
10 frames per second (FPS), whereas YOLACT (Bolya et al., 2019) can 
reach 30 FPS while maintaining the same level of accuracy. Given the 
real-time performance requirements of clinical applications, both 

speed and accuracy are essential. Therefore, YOLACT was selected as 
the ultrasound image segmentation network for subsequent research. 
The parameters of the YOLACT model were first adjusted to construct 
an automatic segmentation model specifically tailored to the uterine 
fibroid region, enabling efficient and automated processing of 
ultrasound images. The model was then applied to analyze dynamic 
changes in ultrasound images in real time, accurately segmenting the 
target region and seamlessly integrating the results into the FUAS 
3D-assisted imaging system. This enabled real-time tracking and 
visualization of tissue changes. The segmentation workflow is 
illustrated in Figure  6. To further improve the efficiency and 
adaptability of the YOLACT approach—particularly to achieve real-
time performance on devices with lower computational power—the 
image size was reduced to half of its original dimensions while 
preserving essential image information. This optimization ensured 
that real-time processing requirements could also be met on standard 
computing systems.

2.3 Registration algorithm

Three-dimensional point cloud registration is a core component 
of the 3D reconstruction process. Its objective is to align point cloud 
data obtained from multiple perspectives and various reference 
coordinate systems into a unified coordinate system. This alignment 
is achieved through precise rotational and translational 
transformations, thereby capturing complete object information and 
laying the technical foundation for subsequent visualization and 
analysis. Among point cloud registration algorithms, the Iterative 
Closest Point (ICP) algorithm is widely adopted due to its high 
efficiency and accuracy. ICP refines registration results iteratively and 
typically achieves higher precision compared to traditional methods. 
However, since it relies primarily on Euclidean distance to compute 
nearest-point correspondences, its performance may be limited when 
applied to deformable biological tissues such as soft organs. To further 
enhance the performance of ICP in this study, we  implemented 
targeted optimizations that comprehensively account for the ICP 
characteristics of key anatomical structures, the dynamic behavior of 
surrounding tissues, and the correlation between motion and 
deformation. These optimizations improve registration accuracy for 
complex, deformable biological structures and ensure the reliability 
and precision of 3D reconstruction. Accurate representation of 
anatomical structures is fundamental for effective treatment and is 
particularly critical for preoperative planning and 
intraoperative navigation.

The core of the ICP algorithm lies in establishing initial 
correspondences between two point clouds, which directly impacts 
the number of iterations, runtime, and registration accuracy. An 
ideal initial correspondence significantly reduces iteration count, 
shortens computation time, and enhances precision. In this study, 
we selected the uterus as the primary target for ICP registration to 
fully leverage its anatomical stability and maximize registration 
performance. The process begins by applying the YOLACT model to 
real-time ultrasound images to accurately identify uterine 
boundaries, especially those near the abdominal wall. The ICP 
algorithm is then applied to refine the initial correspondences 
established by YOLACT and optimize registration through iterative 
processing. The main workflow is illustrated in Figure  7. By 
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combining YOLACT-based boundary detection with ICP-based 
precision registration, we  significantly improved the accuracy of 
uterine segmentation and alignment in real-time ultrasound images, 
thereby ensuring the robustness and fidelity of the 3D reconstruction. 
This workflow satisfies the stringent requirements of FUAS 
surgical navigation.

The specific registration steps are as follows:

 (1) YOLACT is used to detect the boundaries of the uterus, skin, 
and bladder in real-time ultrasound images. Uterine boundary 
reliability is assessed, and any boundary data falling below a 
predefined confidence threshold is excluded.

 (2) The uterine boundary is extracted and validated by checking 
for intersection lines at junctions with the bladder and skin. 
Boundaries without valid intersections are excluded from 
further tracking.

 (3) The lower half of the uterine boundary is extracted from both 
the ultrasound and MRI images. The ICP algorithm is applied 
to these boundaries to compute a transformation matrix 

(Mat1). If Mat1 deviates from the expected probe motion 
trend, it is excluded from the registration and tracking process.

 (4) Using Mat1, spatial transformation is performed on the 
reconstructed MRI volume to determine the positions of the 
uterus and tumor within the treatment field. The MRI volume 
is sliced and resampled to match the real-time ultrasound 
image sequence.

 (5) MRI and real-time ultrasound images are fused for display. 
Tumor boundaries extracted from MRI are overlaid onto the 
real-time ultrasound images to guide treatment.

Following the fusion process, tumor boundaries from MRI are 
accurately superimposed on the real-time ultrasound images as 
needed, providing precise treatment guidance and ensuring both 
safety and efficiency during FUAS procedures. The real-time 
intraoperative tracking results are shown in Figure 8. These results 
demonstrate that the tracking system can maintain synchronization 
with the target even under conditions involving tissue deformation 
and displacement caused by probe movement.

FIGURE 6

The process of uterine fibroid segmentation in ultrasound images.
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2.4 3D visualization

3D visualization refers to the process of converting two-dimensional 
medical image sequences into 3D models, as illustrated in Figure 9. As 
shown in Figure 10a, once the surface structures of various organs are 
accurately segmented, the anatomical boundaries can be determined 
and subsequently applied to a 3D surgical navigation system. By 
integrating automatic recognition techniques, the system achieves 3D 
surface reconstruction of the segmented results, as demonstrated in 
Figure 10b. For MRI, the system can accurately identify anatomical 
structures such as the uterus, fibroids, and bladder, and perform 

corresponding 3D reconstructions. From Figure 10b, it is evident that 
the initial surface reconstruction yields a satisfactory level of visual 
presentation. To further enhance the visualization quality of FUAS 
procedures, surface smoothing techniques were applied to eliminate the 
stair-step artifacts. In addition, texture mapping methods were 
employed to optimize the 3D representation, as shown in Figure 10c.

Given the large number of anatomical structures involved and the 
potential for visual occlusion, we optimized the visualization modes 
based on clinical usage patterns and physician preferences. A set of 
innovative animated display modes was designed, including Organ 
Reconstruction Mode, Treatment Scene Mode, and Irradiation Mode, 
as shown in Figure 11. These modes support automatic display and 
adjustable transparency, allowing specific tissues and structures to 
be selectively hidden as needed. They also enable automatic viewpoint 
adjustment to accommodate the visualization requirements of various 
clinical scenarios. Furthermore, a 3D Preoperative Planning Simulation 
Module was developed to enable surgeons to meticulously plan and 
simulate the entire surgical process prior to the actual operation. This 
functionality significantly enhances both the precision and safety of 
FUAS interventions. The effectiveness of this feature is illustrated in 
Figure 12. The implementation of this visualization framework also 
lays a solid technical foundation for subsequent MRI–ultrasound 
image fusion tasks.

2.5 Trend analysis module

In clinical practice, changes in patient posture can lead to 
significant organ deformation, making it difficult to automatically 
register and track intraoperative ultrasound images with preoperative 
MR images. As a result, clinicians are often required to perform 
manual adjustments and rely on conventional analytical methods for 
comprehensive assessment. To address this challenge, we developed a 
Trend Analysis Module to eliminate erroneous data that deviate from 
expected patterns during image registration and tracking. This module 
conducts trend analysis based on the anticipated motion and 
deformation patterns of anatomical structures, enabling the 
identification and exclusion of data points that fall outside the 
acceptable range. The detailed workflow is illustrated in Figure 13.

With the integration of this module, the system’s false recognition 
rate was effectively reduced, and the accuracy and robustness of tracking 
were significantly improved. The combination of automated registration 
and tracking with clinician-guided decision-making facilitates the 
construction of a more reliable and precise intraoperative guidance 
system. This contributes to improved patient outcomes and enhances 
the efficiency and safety of the surgical procedure. Moreover, the Trend 
Analysis Module enhances the generalization capability of the system’s 
automatic recognition algorithm, thereby improving the reliability of 
data used in clinical decision-making. As a result, it effectively supports 
higher-quality treatment and better clinical outcomes for patients.

3 Results

3.1 Image segmentation results

To objectively evaluate and compare the segmentation effectiveness 
of FUAS in the treatment of uterine fibroids, we used the DSC to assess 

FIGURE 7

Flow chart of ICP algorithm registration.
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the segmentation quality. The DSC measures the similarity between the 
automatic segmentation results and the ground truth data, with values 
closer to 1 indicating higher consistency with the actual boundaries. 
By adopting this scientific and rigorous evaluation method, we can 
more accurately assess the performance of FUAS in uterine leiomyoma 
MRI segmentation. Precision, recall and DSC are represented by 
Equations 4–6, respectively.

 
=

+
TPPrecision

TP FP  
(4)

 
=

+
TPrecall

TP FN  
(5)

 

∗
= ∗

+
precision recallDSC 2
precision recall  

(6)

We will compare and analyze the segmentation results of nnU-Net 
with those of the HIFUNet model developed by the Southeast 
University team, as shown in Table  1, nnU-Net significantly 
outperforms HIFUNet in the segmentation tasks using same data and 

FIGURE 8

Ultrasonic video stream tracking image.

FIGURE 9

Visualization steps of 3D reconstruction of medical images.
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labels. Additionally, nnU-Net demonstrated excellent performance in 
segmenting labels not covered by HIFUNet. Based on the 
comprehensive evaluation by FUAS clinicians, we have determined 
that the overall segmentation performance of nnU-Net surpasses that 
of HIFUNet.

The DSC of uterus, leiomyoma, spine, endometrium, bladder 
and urethral orifice segment were 93.83, 96.27, 93.45, 90.82, 
98.37 and 91.84%, respectively. These values are detailed in 
Table 1. Compared with HIFUNet, our approach demonstrates 
significant advantages in DSC results for uterus, fibroids and 
spine. Additionally, we  are competitive in the endometrial, 
bladder and meatus segmentation tasks which HIFUNet has not 
yet explored.

An ultrasound image-assisted diagnosis model for FUAS 
treatment of uterine fibroids was developed based on the YOLACT 
network. This model assists physicians in preoperative surgical 
planning and enables accurate intraoperative localization of lesion 
areas, significantly improving the accuracy of lesion identification and 
thereby reducing uncertainties caused by human factors. The real-
time ultrasound image segmentation model, when combined with 
MRI segmentation techniques, serves as a valuable auxiliary tool for 
clinical treatment planning. The model not only maintains high 
accuracy in clinical real-time ultrasound video diagnosis but also 
achieves a processing speed of up to 30 frames per second, fully 
meeting the clinical requirements for real-time ultrasound image 
segmentation. The segmentation results are shown in Figure 14.

FIGURE 10

3D visualization process. (a) Schematic representation of uterine fibroid segmentation, (b) reconstructing 3D models, (c) the 3D model was 
reconstructed and smoothed.

FIGURE 11

3D surgical navigation system. (a) Opaque, (b) 50% transparency, (c) local magnification of uterine fibroid.

TABLE 1 Quantitative comparison of DSC of different segmentation methods on testing dataset.

Labels method Uterus Fibroids Spine Endometrium Bladder Urethral orifice

HIFUNET 83.55% 84.12% 87.33% 83.87% 90.46% 86.76%

nnU-net 87.63% 91.01% 88.98% 87.32% 95.34% 88.11%

Proposed 93.83% 96.27% 93.45% 90.82% 98.37% 91.84%
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3.2 Clinical testing and results

The tracking system has been tested in Chongqing Haifu Hospital, 
Qinhuangdao Port Hospital and Taiwan Guangtian Hospital, with the 

results that are generally satisfactory. Table  2 shows the clinical 
application results from Chongqing Haifu Hospital.

Figure 15 illustrates the tracking of real-time surgical images 
aligned with the treatment interface, demonstrating the system’s 
ability to maintain accurate tracking during the procedure. 
Figure  16 shows the real-time tracking of FUAS treatment, 
highlighting the effectiveness of the system in providing 
continuous guidance and monitoring throughout the entire 
therapeutic process.

The tracking and navigation system demonstrated excellent 
applicability and stability in clinical practice, with its actual 
performance fully meeting the standards and requirements of 
surgical procedures. As shown in Figure 17, the system maintained 
accurate tracking performance even in challenging surgical scenarios 
involving uterine fibroids with significant deformation. These results 
fully validate the system’s reliability and efficiency in real-world 
clinical applications. Its robust performance under various 
demanding surgical conditions highlights its strong potential for 
widespread clinical adoption, providing continuous and precise 
guidance throughout the surgical process. The tracking and 
navigation system effectively enhances surgical precision and offers 
a solid foundation for broader clinical implementation 
and promotion.

4 Discussion

FUAS is increasingly favored by both physicians and patients for 
the treatment of uterine fibroids due to its minimally invasive nature. 
However, the lack of intuitive 3D visualization during surgery 
continues to pose challenges for surgical planning and precise 
targeting. This study enhances the application of FUAS in uterine 

FIGURE 12

3D plan simulation module.

FIGURE 13

Flow chart of probe movement trend analysis.

https://doi.org/10.3389/frai.2025.1613960
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Wang et al. 10.3389/frai.2025.1613960

Frontiers in Artificial Intelligence 11 frontiersin.org

FIGURE 14

YOLACT Network segmentation results.

TABLE 2 The clinical application in Chongqing Haifu Hospital.

Type Patient condition Evaluation by physicians Number 
of cases

Solitary 

fibroid

The lesion volume is moderate and the image is clear. Achieve fully automatic registration and localization. 36

The lesion is relatively large and the images are clear. The 

morphological matching between MRI and ultrasound is relatively 

high, but there are certain spatial discrepancies.

The accuracy of automatic registration and localization is relatively 

high, but the left and right boundaries of the lesion occasionally 

deviate from the target.

12

Multiple 

uterine 

fibroids

Both the lesion and the uterus are relatively large, and the images are clear. The automatic registration and tracking perform well. 10

There is a significant angular deviation between the MRI and 

ultrasound images.

Manual adjustment is required in combination to achieve the target 

registration and tracking.

50

The lesions are numerous, large in volume, and widely distributed. The automatic registration and tracking performance is poor. 2

Subserosal fibroids, with lesions prone to displacement. The automatic registration and tracking results are unsatisfactory. 2

FIGURE 15

Real-time surgical images tracked the treatment interface.

https://doi.org/10.3389/frai.2025.1613960
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Wang et al. 10.3389/frai.2025.1613960

Frontiers in Artificial Intelligence 12 frontiersin.org

fibroid treatment by integrating multiple advanced technologies, 
including nnU-Net, YOLACT, ICP, and trend analysis. Through 
intelligent processing of preoperative MRI data, a 3D surgical scene 

is reconstructed to support preoperative planning. In addition, the 
fusion of preoperative MRI with intraoperative real-time ultrasound 
images significantly improves the accuracy of fibroid localization.

FIGURE 16

FUAS surgical treatment was followed in real time.
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This study addresses two key issues: (1) Achieving intelligent 3D 
scene visualization based on MRI to assist in preoperative planning; 
(2) Proposing a multimodal image registration method for 
intraoperative FUAS navigation based on the recognition of local 
features in real-time ultrasound images.

The proposed method not only enhances the accuracy of 
preoperative localization but also enables continuous intraoperative 
tracking of uterine fibroids, effectively addressing the challenges of 
3D visualization and navigation in minimally invasive surgery and 
greatly improving clinical efficiency. The integration of these 
technologies simplifies the clinical workflow and elevates the level of 
surgical intelligence and automation. In approximately 90% of cases, 
the method demonstrated excellent tracking performance, 
comparable to manual registration by experienced clinicians. 
Nonetheless, this study has several limitations, including its single-
center design, a relatively small sample size, and potential subjectivity 
in clinical assessments. The system’s tracking performance also 
declines to some extent in cases involving large-scale 
tissue deformation.

When the position or shape of the uterine fibroid changes 
significantly, such as due to the patient’s posture or large 
morphological changes in the fibroid itself, these deformations lead 
to inconsistencies in shape and structure between images, reducing 
the accuracy of registration and target tracking. In the future, a 
deeper analysis of tissue deformation patterns will be conducted, 
and real-time tracking techniques, such as motion tracking 
algorithms, will be employed to maintain image consistency and 
improve the system’s accuracy under large deformations. 
Furthermore, further optimization of the fusion between 
preoperative MRI and intraoperative ultrasound images will provide 
doctors with more comprehensive lesion information, allowing for 
the development of more scientifically-based and efficient FUAS 
treatment plans, thus shortening the learning curve and reducing 
localization time.

5 Conclusion

In this study, the preoperative MRI images were first segmented and 
reconstructed in 3D using the nnU-Net framework, enabling detailed 
visualization of the morphology of uterine fibroids and their spatial 
relationships with adjacent anatomical structures to support surgical 
planning. Subsequently, the YOLACT network was employed for rapid 
identification of the uterus and other critical anatomical structures. 
Finally, the ICP algorithm and trend analysis method were introduced to 
register preoperative MRI with intraoperative ultrasound images, thereby 
enhancing the accuracy of lesion localization and navigation during 
FUAS procedures. The proposed approach achieves automatic 
segmentation, fused navigation, and dynamic tracking of lesion areas in 
both MRI and ultrasound images, demonstrating strong practical 
applicability. This method effectively reduces the operational burden on 
clinicians and improves the intelligence and automation of the surgical 
workflow. By integrating nnU-Net, YOLACT, and ICP techniques, the 
proposed system successfully addresses the challenges of 3D visualization 
and navigation in minimally invasive uterine surgeries, showing 
particularly strong performance in cases with minimal lesion deformation.
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