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High-resolution image inpainting
using a probabilistic framework
for diverse images with large
arbitrary masks

G. Sumathi* and M. Uma Devi

Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur,

Chengalpattu, Tamil Nadu, India

Addressing inpainting challenges in high-resolution images remains a complex

task. The most recent image inpainting techniques rely on machine learning

models; however, a major limitation of supervised methods is their dependence

on end-to-end training. Even minor changes to the input often necessitate

retraining, making the process ine�cient. As a result, unsupervised learning

approaches have gained prominence in image inpainting. State-of-the-art

methods, particularly those using generative adversarial networks (GANs), have

achieved promising results. However, generating photorealistic outputs for

high-resolution images with arbitrary large-region masks remains di�cult.

Inpainted images often su�er from deformed structures and blurry textures,

compromising quality. Additionally, building a model capable of handling a

diverse range of images presents further challenges. These challenges are

addressed by proposing a novel probabilistic model that utilizes picture priors

to learn prominent features within StyleGAN3. The priors are constructed using

cosine similarity, mean, and intensity, where intensity is computed using the

improved Papoulis–Gerchberg algorithm. The image is reconstructed using

the probabilistic maximum a posteriori estimate. Variational inference is then

applied to obtain the optimal solution using a modified Bayes-by-Backprop

approach. The model is evaluated on 70,000 images from the Flickr-Faces-HQ,

DIV2K, and brain datasets and surpasses state-of-the-art techniques in

reconstruction quality.

KEYWORDS

image inpainting, probabilistic framework, generative adversarial network, prior
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1 Introduction

Reconstructing images from incomplete or degraded data is a challenging and

important problem in computer vision. This issue is solved by the process of inpainting,

the goal of which is to fill in the degraded or damaged areas that may be caused due to

degeneration or manipulation. Inpainting makes an effort to fill those damaged areas with

pixels from the same or a related image, ensuring that the newly created pixels blend

seamlessly with the current image and give the image a realistic appearance. Since the

filling is not performed randomly, image inpainting is often viewed as an imputation

task, where missing data are estimated based on observed content. Imputation is an

approach for restoring the unavailable data with some alternative value to maintain

the data in its complete form. The inpainting approaches are basically classified as

diffusion, patch and learning-based methods and other methods, such as the Naive Stokes

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1614608
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1614608&domain=pdf&date_stamp=2025-07-11
mailto:sg2717@srmist.edu.in
https://doi.org/10.3389/frai.2025.1614608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1614608/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sumathi and Uma Devi 10.3389/frai.2025.1614608

method, Fast-Marching method, etc. (Ghorbanzade et al., 2020;

Nabizadeh et al., 2020). Diffusion or patch-based inpainting aims

to fill the empty portions with the pixel values of the surrounding

regions because images are truly a spatial collection of pixel

values (Goodfellow et al., 2014; Nazeri et al., 2019; Zhang et al.,

2018). In the Naive Stokes method, the edges of the images are

recognized as continuous, and so the pixels near the edges are

taken into account while reconstructing the missing portions. The

Fast-Marching method, which used the weighted sum of the pixels

from a nearby pixel, was another method that sought to solve the

reconstruction problem.

Although the Naive Stokes and Fast-Marching methods

produced conceptually sound results, the outputs were often

affected by noise and lacked clarity (Goodfellow et al., 2014;

Nazeri et al., 2019; Zhang et al., 2018). The easiest way to handle

this problem is to map a single image to numerous images that

are accessible as external data. A perfect match for the missing

areas is sought by searching a sizable library of diverse photos.

This approach, introduced by Hays and Efros (2007), enabled the

retrieval of the most suitable patch from a large image database for

accurate filling of the missing region. The reconstruction appeared

realistic since it was done using semantic reconstruction of the

image. Finding databases containing a variety of photographs is

a difficulty with this endeavor, though. These techniques require

significant computer resources to find the missing pixels without

any prior knowledge of the image. This suggests that these

techniques might help handle photos with fine lines. Therefore, due

to the heavy computation and semantic filling, the usual approach

may disastrously fail when it comes to inpainting larger regions.

This necessitates a technique that will solely populate the image

depending on the comprehension of the one that is provided.

As a result, learning-based approaches can now be used in the

inpainting problem.

Learning-based methods focus on replacing the missing pixels,

often known as “mask pixels,” with the surrounding pixels.

The most pertinent neighboring pixel can only be fitted to the

masked pixels using this procedure. Since the invention of the

generative adversarial network (GAN; Zhang et al., 2020), image

reconstruction has been done using many methods with various

goals. The results of the inpainting study for replacing the objects

are clear from Zeng et al. (2020); Bau et al. (2020); Ntavelis

et al. (2020b); Yu et al. (2018); Zhang et al. (2021). Similarly,

employing supervised or unsupervised techniques, the goal of

filling landscapes or altering the content of a particular picture

has produced notable results. A big part of choosing the best

pixel for the masked regions was played by encoders. Different

variations of variational autoencoders, such as VQ-VAE (Higgins

et al., 2017) and VAE (Van den Oord et al., 2016b), have shown

good results when it comes to image generation tasks in the quest

for a superior inpainting image. The use of various auto-regressive

models, such as PixelCNN, PixelRNN, NeutralODE, Glow, and

RealNVP, yielded positive results for inpainted high-resolution

images (Van Den Oord et al., 2016a; Chen et al., 2018; Kingma

and Dhariwal, 2018). The training distribution has a significant

impact on the quality of the high-quality images produced by

the autoregressive models. These results, which were produced

using several types of GANs, are acceptable in terms of how

effectively they handle tiny mask regions and produce high-quality

images. The robustness and need for retraining of conventional

and learning-based techniques, however, is the real problem.

The difficulties mentioned above, in general, are more narrowly

focused, and the reconstruction is a model-specific inversion.

Given these challenges, a comprehensive technique that can handle

any corruption process and a mask that is not constrained to

a narrower or rectangular region are required. Along with this,

there is also a continuous shifting of input that might occur

very often in specific domains and may become troublesome

because of the limited computational resources. Leveraging the

pre-trained models to carry out the reconstruction tasks becomes

a mandate. Despite the remarkable success of deep generative

models, particularly GANs and diffusion models, a common

drawback observed in high-resolution inpainting is the averaging

effect (Ledig et al., 2017). This phenomenon arises when the

generator attempts to reconstruct missing content by minimizing

a global loss across multiple plausible completions, often resulting

in blurry, semantically diluted outputs. Such averaging effects are

particularly pronounced in the case of large, irregular, missing

regions, or complex textures. Pre-trained models are inherently

limited in their capacity to generate diverse inpainted results under

such conditions due to their single-point inference mechanism.

To address this, the proposed study introduces a probabilistic

framework for image inpainting that treats the task as a Bayesian

inverse problem, thereby explicitly modeling uncertainty over

the latent space. By leveraging meaningful priors constructed

from cosine similarity, mean intensity, and directional features

and optimizing over the posterior distribution using a modified

Bayes-by-Backprop approach, the model can sample from a

structured latent space and produce sharper, contextually accurate

reconstructions without relying on mode averaging. This approach

directly mitigates the averaging problem and leads to robust results

across diverse datasets.

The theory of considering inpainting as an inverse problem

and solving it using priors has been tested in several studies (Pan

et al., 2021; Asim et al., 2020; Lugmayr et al., 2020; Jalal et al.,

2021a,b). The vast majority of methods rely on Langevin dynamics,

which emphasizes single-point losses and sluggish mixing, to find

solutions. There are questions about using GANs to compile a

distribution of patches for a corrupted image and using models in

a probabilistic framework to do inpainting. This research suggests

a probabilistic technique for inpainting using StyleGAN3. The

following are some of the study’s key contributions:

• To estimate meaningful prior images by using cosine

similarity, mean and intensity as prior terms.

• To minimize the maximum a posteriori (MAP) estimate,

image inpainting is carried out in a principled probabilistic

framework utilizing StyleGAN3 and the corrupted

image as input.

• In order to estimate the Gaussian distribution over the

latent vector, the Bayes-by-Backdrop approach is used

with a modification.

• Along with the typical state-of-the-art techniques, the method

is validated using the Flickr Face dataset, the DIV2K dataset,

and a brain medical dataset.
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The remaining study is structured as follows: the goal of Section

2 is to provide a general overview of the inverse problem and how

it is addressed in inpainting. A thorough literature review of the

various deep learning and generative methods that aid in creating

a better-reconstructed image is provided in the next section.

Section 4 deals with problem formulation. The system model

and architecture are both framed in Section 5. The experimental

setup, result analysis using the inpainted results, and quantitative

assessment are all covered in Sections 6 and 7, respectively. The

final section brings the study to a close.

2 Preliminaries

2.1 Background: inverse problem

As the inverse problem pertains to something that cannot be

measured directly, inpainting, when considered the recovery of

missing pixel values in an image, is synonymously correct. Let

there be an image with a total of Ipixels and Mpixels . The Mpixels

are the total number of missing pixels from the image. Unknown

Mpixels require the discovery of data obtained by calculations

known as Cpixels . There is a relationship betweenMpixels and Cpixels

that can be formally stated as shown in Equation 1:

Cpixels= H (Mpixels) (1)

The “forward operator” is the operator that connects the known

and unidentified quantities. Since the smaller variance in missing

pixels does not affect its missing values, the forward operator is

now well-posed. Since Cpixels is an image, the forward operator H

is a measurement matrix that could be formed because of some

operation like downsampling. This poses a dimension reduction,

so an ill-posed problem is posed, which needs to be addressed

using certain techniques. If inpainting is done carefully, it can be

used to restore any missing or damaged portions of an image.

An inpainting operation should provide a reconstruction that

closely resembles the original pixels. Most often, mathematically,

the reconstruction of the corrupted images is best described as a

linear inverse problem, as shown in Equation 2:

y = F (x)+n (2)

where x is the ground truth image, F is the forward operator

or measurement process (e.g., masking, blurring, transformation),

y is the observed corrupted image or measurement, and n is

the additive noise. Here, xεX represents the original (clean)

image in the image domain, and yεY is the observed corrupted

image obtained via the forward mapping F:X→ Y, which models

the corruption process (e.g., masking, blurring). The term n

denotes measurement noise or degradation artifacts introduced

during acquisition. This formulation reflects a general inverse

problem setup, where the task is to recover x from the corrupted

observation y.

As a result, it is simple to draw a comparison between the

inverse problem and the problem of inpainting. Understanding the

many methods used to tackle the inverse problem is crucial for

formulating the proposed problem. The goal of this part is to give a

general overview of the background information for the numerous

inverse problem solutions that can be utilized to control inpainting.

2.1.1 Inverse problem-solving using an analytical
approach

Analytical operation, as its name suggests, seeks to define

the forward operator given in Equation 1 as a well-known

mathematical operator and thereafter employ the proper inversion

operator. Let there be a 2D image represented as f (x,y) and the

corrupted image as g(x′,y′), then the forward relation between these

two can be mentioned as a convolution operator. The relation

between the forward and inverse operators can be mathematically

represented, as shown in Equation 3:

g
(

x′,y′
)

= H
[

f (x, y)
]

+n(x′,y′) (3)

where g(x′,y′) is the corrupted image, f (x,y) is the original

image, H is the forward operator representing the inpainting

process, and n(x′,y′) represents noise or artifacts introduced during

the inpainting process.

Fourier methods are the well-known mathematical operators

utilized in an analytical approach. The inverse Fourier transform,

alone or in combination with other transform techniques, is

frequently used to tackle the issues. The difficulty here is the

applicability of the forward model in real-world scenarios if it is

referred to as either of the Fourier transforms. This strategy appears

to be practically impossible because it can only produce better

outcomes if the data are accurate and full (Jackson et al., 1991).

2.1.2 Inverse problem-solving using a generalized
approach

In this case, it is presumable that the inverse problem can

be solved by more than one forward model. This method is

comparable to the analytical method, which transforms the full

image first and then approximately approximates the resulting

image. The key elements of the image are contained in the

modified image matrix representation, which can be utilized to

recreate the missing sections roughly. A variety of techniques can

be employed to create this approximation matrix, but principal

component analysis, singular value decomposition, and the least

squares method are the most widely used techniques (Huan et al.,

2010).

This method calls for the definition of a set containing

every potential solution, from which one potential solution is

chosen to use a predetermined set of criteria. The applied

criteria are as straightforward as obtaining the bare minimum

normalized solution. The employment of an iterative algorithm

to optimize the established criteria is the primary distinction

between the analytically based and generalized techniques. This is

the general concept underpinning the deep learning architectures

that contribute to a larger degree to the resolution of the

inpainting problem.

g(x′, y′) = { f
(

x, y
)+

:Hf+} (4)

As mentioned in Equation 4, if g
(

x
′
, y

′
)

is the corrupted image

which requires the best possible solution for the original image,

f (x, y) is a potential solution for the original image, Hf+ denotes

the forward operation applied to the potential solution f (x, y), and
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so the solutions for this type of inverse problem can be obtained, as

shown in Equation 5:

f+=H+g (5)

where f + represents the reconstructed version of the original

image f. It is the result of applying the inverse operation H+ to the

corrupted image, g. H+ This is the inverse operator of the forward

operator H. It is responsible for undoing the effects of the forward

operation and attempting to recover the original information and g

is the corrupted image.

2.1.3 Inverse problem-solving using model-based
approach

This approach again gets its roots from the classical analytical

approach where a corrupted image g(x′, y′) is obtained with

the assistance of the forward model H and the original image

f (x, y). Since this is a model-based approach, the prediction of

the unknown particles in the image g(x′, y′) can be deduced

with a deterministic or probabilistic approach. The most

common deterministic approach is regularization, which adds

up a regularization parameter along with the general inverse

problem framework.

fr= argfmin

[

1

2

∥

∥g−I�f
∥

∥

2
]

+ λ9(f ) (6)

where fr is the reconstructed image (final solution), f is

the candidate solution in the image space, g is the observed

corrupted image, I� is the binary mask operator that selects the

known (non-missing) pixels, ‖·‖ denotes the ℓ2-norm, 9(f ) is the

regularization function or prior (e.g., smoothness, sparsity) and λ

is the regularization parameter controlling the strength of the prior.

In this energy minimization framework, the goal is to estimate

a plausible reconstruction fr by minimizing a cost function Φ(f,

g), which balances data fidelity and regularization. The first term
∥

∥g − I�f
∥

∥

2
enforces consistency between the reconstruction f and

the known pixels in the observed image g. The operator I� acts

as a binary mask, selecting only the observed (non-missing) pixel

locations. The second term λ9(f ) imposes a prior or regularization

(e.g., smoothness or semantic coherence), with λ controlling the

trade-off between fidelity and prior constraints. Finding a unique

solution is challenging since the regularization term can only be

limited to smoothness or sparsity. The extremely limited knowledge

that is available to present an absolute answer to the missing pieces

is another issue to be concerned about when attempting to employ

a deterministic approach.

The drawbacks of the deterministic approach force us, then, to

view the solution to the inverse problem from a new angle. Having

an account of the prior estimations that enable the computation

of uncertainty is the perspective that can be particularly helpful in

addressing the problem of inpainting. The priors can be effectively

used to obtain a meaningful fill rather than just some values to

fill in the vacant pixels by guessing the hyperparameters. Exactly

this is what is frequently done when probabilistic methods are

used to construct a posterior, which internally combines priors and

FIGURE 1

Forward and inverse operations as convolution and deconvolution.

DIV2K Dataset by Timofte et al., licensed under CC BY 4.0, https://

data.vision.ee.ethz.ch/cvl/DIV2K/.

likelihood. The base idea in the probabilistic approach is derived

from the Bayes theorem that is mentioned in Equation 7:

P(f |g,H) = P(g|f ,H)P(f |H) / P(g|H) (7)

where P(f|g,H) is the conditional probability of the original

image, f given the corrupted image, g and the forward operator,

H. P(g|f,H) is the likelihood of the data, P(g|H) is the maximum

likelihood and P(f|H) is the prior. The prior knowledge has

provided us with a general understanding of how the inverse

problem can be resolved. The probabilistic technique appears to

be adequate and can yield superior results after analyzing all the

approaches and realizing that the inpainting can be considered an

inverse problem.

3 State-of-the-artworks: neural
networks and inverse problem

From the background information, irrespective of the method

chosen, it is evident that multiple solutions are at hand. The

procedure that will help to extract the specific solution is to identify

what can be fitted into the problem for visualizing and identifying

if the decision was made correctly or not. As mentioned, the

flow involves the combination of several steps that are depicted

in Figure 1.

To fill in the missing pixel in the corrupted image from the

original image, numerous solutions are generated, from which just

the interesting solution needs to be selected, as shown in Figure 2.

Here, f ’ represents the initial intermediate reconstruction obtained

before prior-guided optimization. It serves as the starting point in

the inverse problem pipeline. Interpreting the chosen solution and

improving predictions calls for some prior knowledge. In order to

bring things together, segmentation, interpretation, and decision-

making are required. With the aid of artificial intelligence and

machine learning, all these steps can be completed simultaneously.

A literature review is thus offered in this section to pinpoint the

precise neural network model that may be applied to resolve the

inpainting problem.
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FIGURE 2

Incorporating automated models into inverse problems. Facial images reproduced from Flickr-Faces-HQ (FFHQ) Dataset by NVIDIA Corporation,

licensed under CC BY-NC-SA 4.0, https://github.com/NVlabs/�hq-dataset.

3.1 Deep neural networks

When a single-layer neural network is used to try to solve

inpainting as an inverse issue, it takes the easier route without

even having a forward model. A collection of inputs S: (f,g)k

= [1,2,3; K] and outputs S: (f,g)k = [1,2,3; K] make up the

model. The neural network learns this full set of inputs using an

iterative learning method, which is then applied to build a new

solution with a new instance of image (Ciresan et al., 2011; Gilton

et al., 2019; Gong et al., 2020). After defining a loss function, the

neural network generally uses an optimization method to try and

optimize the loss function. Although this approach can be extended

to numerous layers of neural networks, its main drawback—

the lack of a forward model—means that it is only effective for

smaller datasets.

3.2 GANs and inpainting

The development of GANS (Goodfellow et al., 2014)

significantly contributed to the improvements made in the area

of picture inpainting. As indicated in Pathak et al. (2016), a

context encoder is employed to obtain semantically accurate

image inpainting. Initially, the encoder–decoder architecture was

used as the generator. Semantic image regeneration takes the

image’s surroundings into account in order to come up with a

good theory for the missing pieces. When it comes to semantics

and conditioning the image with its surroundings, some similar

experiments (Hui et al., 2020; Liu et al., 2020; Ntavelis et al.,

2020a) have produced encouraging results. Diverse types of

bespoke convolution approaches are incorporated within the

reconstruction pipeline to inpaint a photo-realistic image, ensuring

the generation appears authentic. In order to properly direct the

inpainting according to the mask, various convolutions, including

dilated (Iizuka et al., 2017), partial (Liu et al., 2018), and gated (Yu

et al., 2019), are accessible in the pipeline. When these approaches

were examined attentively, the outcomes appeared photorealistic

and generated outstanding outcomes in the context of temporal

synthesis. The results, however, are not particularly unique when it

comes to meaningfully synthesizing the image.

Building not only photorealistic but also sane semantic

reconstructions is another way to use GANS in the context

of inpainting. Various studies focus on meaningful picture

reconstruction when inpainting is viewed as an inverse problem.

A general Bayesian framework was offered in this study (Adler

and Öktem, 2018) for solving the painting inverse problem both

with and without a loss function. The number of projections is a

key factor in determining how successfully to recreate the mask

conceptually. In some cases, especially when trying to recreate the

medical images, defining a broader projection set is impossible.

This is simply handled in Bora et al. (2018), which mentions
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a variation of GAN that labels measurements as genuine or

synthetic rather than focusing on differentiating between real and

created images.

To prevent the variance seen between the generated and

observed images, a different GAN variant called MimicGAN

(Anirudh et al., 2020) has been utilized. This kind of variation

is feasible because some photographs have unneeded cropping,

etc. This necessitates optimizing the latent vector, which is

essentially the focus of this study. The latent projections are initially

obtained by Mildenhall et al. (2021) and Abdal et al. (2020) using

Image2StyleGAN++, and these projections are then used to tackle

a variety of image editing issues, such as inpainting.

The diffusion model is another model that is frequently

employed in the context of inpainting to find precise pixels for the

missing regions. Diffusion models used in inpainting attempt to

obstruct the training image by adding noise. The noise eventually

obliterates every aspect of the image until it is entirely noise.

Then, using the diffusion model to help with denoising, the reverse

procedure is carried out until a clear image is obtained. In Sohl-

Dickstein et al. (2015); Song et al. (2020), the issue of inpainting

is addressed with the aid of diffusion models and differential

equations. Meng et al. (2021) makes the case for the application

of a denoising diffusion model. The frequency information directs

the fundamental concept of synthesizing the input image using a

diffusion model. The inpainting task cannot be completed using

this frequency-based picture synthesis since the missing regions do

not have any frequency-related data. Reverse diffusion is another

type of guidance. RePaint (Lugmayr et al., 2022) introduced a novel

iterative denoising diffusion process with resampling, enabling

it to fill in large and arbitrary missing regions by stochastically

resampling intermediate states during inference. This strategy

improves sample diversity and fidelity while maintaining global

coherence in the generated image.

Recent advances in latent diffusion models (LDMs; Rombach

et al., 2022; Yang et al., 2023) have shown remarkable promise in

generating high-fidelity, semantically rich inpainting results.

Unlike pixel-space diffusion models, LDMs operate in a

compressed latent space using a pre-trained autoencoder,

making them both computationally efficient and semantically

aware. These models benefit from being trained on large-scale

image-text datasets, such as LAION-5B, and can generalize well

across a wide range of inpainting tasks.

LDMs have indeed demonstrated impressive capabilities in

image generation, classification, and detection. However, when

applied to image inpainting, particularly with large and irregular

masks, they are still subject to certain limitations. Despite being

pre-trained on rich datasets, the semantic averaging effect is

a prominent issue, as the model tends to generate blurry or

contextually ambiguous reconstructions for large missing regions.

This is primarily because LDMs often rely on surrounding pixel

context and global priors learned during pretraining, which may

not be sufficient to capture the fine-grained structural and semantic

details necessary to accurately fill large holes. This issue is also noted

in VIPaint (Agarwal et al., 2024), where the authors attempt to

mitigate this limitation through variational inference over the latent

diffusion process.

To overcome this issue, the proposed study explicitly addresses

this challenge by formulating inpainting as a Bayesian inverse

problem and incorporating image-specific priors (cosine similarity,

mean, and intensity) derived from the corrupted input itself.

Although perceptual loss from pre-trained generative models (e.g.,

StyleGAN3) is utilized to shape the priors, the method does

not rely solely on pre-trained latent representations. Instead,

the reconstruction is guided through a posterior distribution

that captures uncertainty and facilitates the sampling of diverse,

coherent outputs. This approach helps overcome the averaging

effect and achieves better reconstructions, particularly for large or

semantically complex masked regions.

Another notable method, LaMa (Resolution-robust Large

Mask inpainting; Suvorov et al., 2022), focuses on handling

large and irregular holes with high-resolution input images.

LaMa incorporates Fast Fourier Convolution (FFC) layers and

a perceptual discriminator that guides the model to produce

structurally and visually consistent completions. While LaMa

performs well on inpainting tasks with large missing regions,

its reliance on heavy architectural components and adversarial

training can limit flexibility across domains.

To inpaint high-resolution images, Aggregated cOntextual-

Transformation (AOT) GAN is employed in Zeng et al. (2022)

to improve the content interpretation from far-off contexts and

intensify the texture and composition of massively degraded

regions. A pyramid of content and texture GANs are engaged

in Cao et al. (2020) to fill the missing regions in low resolution

and then improvise the textures in high resolution, respectively.

To reconstruct arbitrarily damaged regions (Wang et al., 2021)

incorporates a dynamic selection network and discriminates the

known pixel regions from the damaged regions all around the

network, thereby applying the knowledge in the known region to

the fullest.

Inpainting studies involving explicit priors are also available in

the literature, as mentioned in Xu et al. (2020), where a pre-trained

holistically nested edge detection (Xie and Tu, 2015) is used to

derive an incomplete edge map from the damaged image, which

is then fully reconstructed using an edge inpainting network. This

fully constructed edge map acts as a prior to reconstructing the

completed image. The use of frequency domain priors (Roy et al.,

2021) is another prior-based inpainting model, where frequency-

related deconvolution is used to grasp the surrounding context,

thereby restoring the high-frequency elements using a discrete

Fourier transform. To inpaint images with complex structures

and highly damaged regions, a semantic prior-based integrated

contextual transformation network is deployed (Li et al., 2023).

The strategy to perform better inpainting has its roots in GAN

and diffusion methods after a thorough analysis of numerous

methodologies. A probabilistic strategy, in contrast to the methods

discussed above, is employed in the proposed study with the aid

of GAN. The technique can produce freeform inpaintings with

high-quality images. Although any model, regardless of GAN or

diffusion, can be imbued by the probabilistic approach that is

used for reconstruction, the projected study focuses exclusively on

StyleGAN and checking the same by utilizing the diffusion model

is retained as a future scope.
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4 System model

4.1 Problem formulation

The motivation for the proposed framework stems from

a fundamental limitation observed in conventional pre-trained

inpainting models: their tendency to produce averaged outputs

when encountering multiple plausible completions. This arises due

to deterministic inference and loss minimization over ambiguous

latent representations. To address this, the inpainting task is

formulated as a probabilistic inverse problem, where the objective

is not to retrieve a single best guess, but rather to approximate

the posterior distribution over possible clean images given the

corrupted input g:

p
(

z|g
)

∝p
(

g
∣

∣z
)

·p(z) (8)

This equation represents the posterior distribution over the

latent variable z, conditioned on the corrupted image g, and

is derived from Bayes’ theorem. Here, p
(

z|g
)

is the posterior

distribution, expressing how likely each latent code z is, given the

observed corrupted image g. p
(

g
∣

∣z
)

is the likelihood, representing

the probability of observing g if z is the true latent representation.

p(z) is the prior over the latent space [which may later be adapted

to p (z|P) using structured priors]. Since p
(

g
)

(the marginal

likelihood) is constant with respect to z, the equation is expressed

in proportional form. This formulation enables the model to

reason probabilistically about multiple possible reconstructions

rather than collapsing to an average output, which is common in

deterministic GAN-based methods.

In a direct problem, the objective is to predict the output

of a system given complete knowledge of the input and model.

In contrast, inverse problems start from observed outputs and

aim to infer the underlying causes or inputs that generated them.

Both inpainting and reconstruction fall under this inverse problem

category, as they require estimating missing or latent information

based on partial observations. Specifically, image inpainting refers

to the process of filling in missing or corrupted regions of an image

using contextual information from the surrounding known pixels.

This task involves reasoning about the most plausible content that

could occupy the missing region based on image structure, texture,

and semantics—making it a classic example of an inverse problem.

Image reconstruction, on the other hand, typically involves

recovering an image from its transformed representations,

such as projections in computed tomography or compressed

measurements in MRI. The goal here is to infer the original

image from indirect observations, which again involves solving an

inverse problem. In both scenarios, the underlying challenge is

the same: deducing unknown or lost information from available

measurements. The probabilistic framework adopted in this

study aligns naturally with this formulation. We assume the

reconstructed image is generated by a pre-trained model G(z),

where z is a latent code:

x = G(z) (9)

To obtain the best reconstruction, we optimize a variational

approximation of the posterior q
(

z|g
)

by minimizing:

Lpost= KL(q(z|g)|
∣

∣p (z|P)
)

+ Lperc(G (z) , x∗) (10)

where, Lpost is the posterior-guided variational loss, KL(•) is the

Kullback–Leibler divergence between the approximate posterior

and a prior p (z|P) constructed from perceptual features P, Lperc
is the perceptual loss, x∗ is the ground truth image available

during training.

To realize this, a Bayesian formulation using StyleGAN3 is

proposed as the generative backbone, enhanced with carefully

designed priors that encode semantic similarity, intensity structure,

and mean consistency. These priors guide the variational inference

over the latent space to favor coherent and realistic reconstructions.

This probabilistic framework not only supports uncertainty

modeling and diverse sampling but also avoids the collapse of

blurred outputs that result from deterministic averaging. The

design choices, from prior construction to MAP inference and

optimization via Bayes-by-Backprop, are all motivated by this

central goal, which is to eliminate semantic averaging and improve

fidelity in large-region inpainting tasks.

If one attempts to solve the problem of inpainting using a

probabilistic framework, the system model put forth is the general

configuration that is used. Though originality is demonstrated

in the previous generation process, the dependence of GAN on

the pre-trained models is the main issue that is to be focused

on. The Bayesian version of GAN reconstruction focuses on

particular prebuilt datasets, such as FFHQ, DIV2K, brain, etc.

Utilizing the probabilistic framework is still in its early stages for

a diverse set of images. The following list of issues is the focus

of attention:

• Apply inpainting to a variety of image sets and add a

generative model into the suggested probabilistic framework.

• With an arbitrary mask, a better reconstruction

must be accomplished.

The proposed study suggests a probabilistic architecture

made up of numerous components that aid in better picture

reconstruction and inpainting. Figure 3 displays the broad

perspective of the systemmodel. The system employs a StyleGAN3,

which serves as a forward model and implements a straightforward

process to produce a corrupted image. Let the real image have

the dimensions H and W, which represent the height and width

of the image, respectively. The real image and the arbitrary mask

are combined to create the corrupted image using the Hadamard

approach. The damaged images produced by the processing of

the forward model are then used as input for reconstruction to

guarantee the accuracy of the inpainting results. The likelihood is

formed by this Hadamard product. Then, meaningful picture priors

are framed considering the cosine similarity, mean and intensity as

prior terms. The intensity is obtained by customizing the Papoulis–

Gerchberg algorithm. Furthermore, the reconstructed images are

obtained through the MAP estimate, which is followed by the

Bayes-by-Backprop for an optimal reconstruction solution.

4.2 Proposed probabilistic framework

Having formulated the problem, this section briefs the

proposed probabilistic framework general flow and the
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FIGURE 3

System model. DIV2K Dataset by Timofte et al., licensed under CC BY 4.0, https://data.vision.ee.ethz.ch/cvl/DIV2K/.

mathematical formulations of the method. Figure 4 shows

the flow of the probabilistic framework.

Consider an image that is first exposed to noise, which

causes the image to become corrupted. In this case, both the

image and the noise parameters are known. It is described as

Iimage, ηpixel , ηpercept . Iimage is the ground truth image, ηpixel

and ηpercept are the pixel noise and perceptual noise, respectively.

Knowing the image and the conditions that result in a corrupted

image are created as Icorrupt using the forward model. To effectively

perform inpainting, this distorted image needs to be rebuilt

with the correct pixels. To achieve this, the prior terms, such

as the cosine similarity, mean and intensity written as α, β, γ,

respectively, are required to construct the prior latent vector space,

ω. After performing this process, the transformation is obtained as

IClean. The StyleGAN model’s guidance is used to determine the

variational parameters for approximating the Gaussian posterior,

indicated as αv, βv, and γv, which are then combined with

the latent vector ω to carry out the reconstruction process.

The inpainting results are referenced using the latent vectors

Iimage and IClean. Algorithm 1 shows the overall working of the

probabilistic framework.

4.2.1 PRIOR modeling and estimation
As stated earlier, StyleGAN3 is not a prerequisite for using the

probabilistic methodology suggested in the proposed work. This

framework is being included since StyleGAN is only applicable to

a subset of pre-trained models, which limits the type of data that

can be used to evaluate the proposed model. The objective is to

evaluate the framework using a variety of datasets so that it may be

utilized with various generator models that can flow via gradients.

Since the latent space of the StyleGAN, ω, which was previously

mentioned, is known, it is necessary to mention this dimension

to obtain IClean. The StyleGAN3 is trained with R
512∗18 in which

the latent space comprises 18 latent vectors. These vectors form

18 resolution levels. Thus, the input specification of StyleGAN3

is R
512∗18 which forms the ω when passed to a function that

generates the output for the Flickr Face dataset is 1,024 × 1,024.

Thus, the G(ω) forms the IClean. Therefore, if the probability density

function of the preceding term needs to be mentioned, it can be

INPUT: Corrupted Image Icorrupt, Noise model

parameters (ηpixel, ηpercept), Prior parameters

(α, β, γ)

OUTPUT: Clean Image Iclean

ALGORITHM:

1. Prepare the corruption model:

• Compute the corrupted image using the

Hadamard product:

• Icorrupt = M ⊙ Iclean

2. Initialize the Framework:

• Initialize the latent space ω with random

Gaussian values.

• Extract initial priors (α, β, γ) based on

cosine similarity, mean, and intensity.

3. Compute likelihood for each corrupted Image:

• Use the forward model to simulate corruption

• P(Icorrupt |ω) = Gaussian
(

ηpixel, ηpercept
)

4. Prior computation:

• Compute meaningful priors

• Pω = Pcosine. Pmean.Pintensity

5. Define loss function:

• Compute total Loss

• Loss ω = Lossprior + LossCosine + Losspixel

+Losspercept

6. Optimize using Bayes-by-Backprop:

• Iteratively update ω using probabilistic

backpropagation

• ω
∗
= Loss

7. Reconstruct the image:

• Generate the clean image, where G is the

styleGAN3 model

• Iclean = G
(

ω
∗

)

Algorithm 1. Probabilistic framework.

represented as indicated in Equation 11. The Jacobian determinant

is used to describe the degree of transformation on the 18 levels

with rotating, stretching, or morphing. The Jacobian determinant
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FIGURE 4

System workflow. Facial images reproduced from Flickr-Faces-HQ (FFHQ) Dataset by NVIDIA Corporation, licensed under CC BY-NC-SA 4.0, https://

github.com/NVlabs/�hq-dataset.

is the greatest way to explain the change in magnitude because it

enforces 18 layers of a function within the resolution.

P(IClean ) = P(G(ω)) = p(ω)[∂G(ω1,ω2,ω3....ω18)]/∂ω] (11)

The various resolution levels are obtained with the Jacobian

determinant; now, the priors that are constructed need to

be appropriate. This styleGAN3 latent vector space ω : =

{ω1,ω2,ω3....ω18} needs to have meaningful priors. So, for this

purpose, α, β, γ are defined by applying relaxation to the

StyleGAN3. The prior terms defined are as follows:

• Cosine similarity prior, as mentioned in Menon et al.

(2020), relaxes the default idea of StyleGAN3, which

is that every vector is the same. This directional

prior thus can bring significant differences between

the ω1 and ω2, ω2, and ω3, etc. So, the two vectors

are collinear.

• Mean prior to ensure that these latent vectors lie in

the same region.

• Papoulis–Gerchberg, which is related to the intensity values,

is another prior.

With the mention of the priors, now the probability density

function is defined in Equation 12:

Pω=Pcosine.Pmean.Pintensity (12)
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Here, the cosine similarity measures the angle between two

vectors ωi and ωj and is defined as:

Pcosine=
cos−1

(

ωi ωj
)

‖ωi‖
∥

∥ωj

∥

∥

(13)

Additionally, µ, σ, and Σ represent the mean, standard

deviation, and covariance of the latent variables, respectively. A

normal distribution of the data is defined over the directional

coordinates [0,2π], represented as K. Algorithm 2 outlines the

computation of these priors.

Input: Icorrupt → Corrupted Image

M→ Mask

ω, µ, σ, Σ→ Latent variables

α, β, γ → Prior Parameters

Output: Pω → Meaningful Prior

Algorithm:

1. Find the target area:

• Identify the masked region (M) and set the

corresponding pixels in Icorrupt to zero.

2. Setting Meaningful Prior:

• Compute Pcosine:

Pcosine =
cos−1

(

ωi ωj

)

‖ωi‖
∥

∥ωj

∥

∥

• Compute Pmean: Ensure consistency using a

Multivariate Normal Distribution:

∀i ωi ∼ N (µ,6)

• Compute Pintensity using the modified

Papoulis–Gerchberg Algorithm:

◦ Iterate over the entire image

� Make masked region zero

� Increase the known pixel value in the

spatial domain

3. Output the computed prior:

• Pω = Pcosine. Pmean.Pintensity

Algorithm 2. Computation of priors.

4.2.2 Likelihood estimation
The inpainting problem is defined as an inverse problem and a

probabilistic framework for the same is created that includes the

prior and probability in the process of finding a solution to this

inverse problem. It is necessary to produce the likelihood, as it

is defined in Equation 6. The forward model for the corrupting

process allows to create the likelihood model for inpainting. In this

instance, all that is required is to multiply the clean image and

mask pixels by pixels. Thus, the likelihood can be defined as in

Equation 14:

P (I|Iclean )= P (I|G (ω)) (14)

where G(ω), as specified in prior, is a Jacobian. Two types are

used when considering the noise. Gaussian noise both at the pixel

level and for perceptual perception. After the incorporation of the

noise and likelihood, the likelihood model can be defined as in

Equation 15:

P(I|op o G(ω) ) = P(I|f o ηpixel nf x nf ), P(I|8 ηpercept nf x nf ) (15)

4.2.3 Image inpainting estimation
It is now time to do the inpainting in order to produce a clear

image after defining inpainting as an inverse problem using the

prior and likelihood. Four loss terms are used in this definition of

the objective function.

• Lossprioris defined to be the prior loss on the latent vector, ω

obtained by
(

ω −
µ
σ

)2
.

• LossCosine is defined to be the collinearity loss on the latent

vector, ω obtained by
cos−1(ωi ωj )
‖ωi‖‖ωj ‖

.

• Losspixel is defined to be the pixel-wise loss on the latent

vector, ω obtained by P(I|f o ηpixel nf x ñf ).

• Losspercept is defined to be the perceptual loss on the latent

vector, ω obtained by P(I|8 ηpercept nf xñf ).

Therefore, the Bayesian MAP estimate can be used to recover

a clean image from a damaged one. Now that the likelihood

and previous have been instantiated, the vector ω must be

optimized. Alternating optimization is utilized for meaningful

inpainting, and the main principle is to make the most of the data

in ω.

With a distorted input image, the Bayesian estimate thus

produces a clean image. Consequently, the goal function can be

described in Equations 16, 17:

Loss ω = Lossprior + LossCosine +Losspixel +Losspercept (16)

Iclean = argmax P(I|Iclean)P(IClean) (17)

Probabilistic by Backprop is now applied as many samples

are collected for reconstruction. The posterior distribution over

the weights P(θ|D) is what you wish to estimate in Probabilistic

by Backprop. The network weights have a unique posterior

distribution, and it is distinct from any specific data point. The

probabilistic Backprop approach chooses to estimate this cost

term by sampling, which has the benefit of supporting previous

distributions with more complex priors. The modification done

with the probabilistic Backprop method is used to estimate every

data point. Gaussian estimation is done for every data point

on the latent vector, which, in turn, can directly optimize the

mean, covariance and standard deviation. Sampling is performed

with noise, mean, covariance and standard deviation. Thus, the

variational samples are computed by P(θ|D) in which θ are learning

parameters to the true posterior to the latent vector ω. So, the

variational samples are obtained using the Equation 18:

variation = P(D)=(ω|θ)||(P (ω|I) ) (18)
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where P (ω|I)=
P(ω|θ) logP(ω|θ )

P(ω)(P(I|ω)
Through this, the variational parameters αv, βv, and γv are

computed, in which the γv is a gamma distribution with the

priors included.

5 Experimental setup

Having defined the framework for image inpainting this section

briefly discusses the implementation details in terms of the dataset,

model training, and optimization.

5.1 Dataset

The FFHQ dataset, the brain dataset, and the DIV2k dataset

are used to assess the framework that has been proposed. Flickr-

Faces-HQ (FFHQ) is a widely used benchmark dataset for GANs,

consisting of high-quality images of human faces. The collection

has 70,000 high-quality PNG photos, a size of 1,024 × 1,024 and a

wide range of age, ethnicity, and image background. Additionally,

it does a fantastic job of covering accessories like hats, sunglasses,

and eyeglasses. The DIV2K dataset (Timofte et al., 2017), a high-

quality dataset for image enhancement tasks with a 2K resolution, is

employed to investigate the framework for a variety of image types.

There are 800 photos in total in the training set. The brain dataset is

taken into account to assess the framework in the most challenging

medical imaging dataset. The five brain datasets included in this

collection are ABIDE (Heinsfeld et al., 2018), PPMI (Marek et al.,

2018), OASIS (Marcus et al., 2010), AIBL (Ellis et al., 2009), and

ADNI (Jack Jr et al., 2008). A 90:10 split is employed for the FFHQ

and brain dataset to train the StyleGAN3, with 90% of the data used

for training and the remaining 10% for testing.

The test dataset comprises samples from three domains:

• Flickr-Faces-HQ (FFHQ): a 90:10 split was used, with 7,000

images (10% of 70,000) for testing

• DIV2K natural images: 100 standard test images were used.

• Brain MRI images: derived from five public datasets, ABIDE,

PPMI, OASIS, AIBL, and ADNI, with a 90:10 split used for

training and testing the StyleGAN3-based model.

Each mask type was applied to ∼25% of the total test samples

per dataset to ensure a balanced representation of occlusion

scenarios. This balanced mask distribution allows us to assess the

performance of the proposed method of varying levels of occlusion

complexity and semantic structure. The average image area covered

by each mask is as follows:

• Mask 1: covers∼15%

• Mask 2: covers∼25%

• Mask 3: covers∼50%

• Mask 4: covers∼50% of the image area

Although pre-trained models for StyleGAN3 supporting

FFHQ, DIV2K, and brain datasets are available, they are not

considered, and learning is performed on the Titan GPU using

the StyleGAN3Config.

5.2 StyleGAN3 training

The training accuracy of the configured GAN is verified for

any artifacts on all three datasets. The StyleGAN3 generator

developed was trained on the brain dataset to produce uncrated

images. Figure 5 shows the actual image on the left-hand side,

taken at random from datasets along with the generated images of

StyleGAN3 on the right-hand side. This training accuracy was very

good considering all three datasets. It did not show any noticeable

artifacts in the StyleGAN3-generated images. The picture quality

is decent.

The proposed method employs between 32 and 34 s for 500

iterations of MAP inference on a 1,024 × 1,024 image, while it

takes ∼2.5min for 500 iterations of fitting variational posterior

parameters. After fitting the variational posterior, the model can

instantly produce any arbitrary number of samples.

5.3 Model optimization

To optimize the loss function specified in Equation 12, the

Adam Optimizer is used with a learning rate of 0.001. The

answer to the inverse problem is acquired by gradually tweaking

and optimizing the loss until a satisfactory solution is obtained,

starting with the inversion produced by StyleGAN3. The inpainting

output of the original StyleGAN was inadequate. omparison

to the most recent techniques, the process of inpainting could

be accomplished quite well by including the cosine, mean and

intensity metrics into the latent space and removing noise fromω+.

The smooth reconstruction of the images was made possible by the

addition of cosine and perceptual loss, which made the inpainting

appear realistic.

6 Results and discussions

Compared to state-of-the-art approaches, the inpainting

inverse issue can achieve very impressive results when tested in a

probabilistic environment. The outcomes from all three datasets are

analyzed using the inpainting and analytical results. Let us go over

the findings in more depth.

6.1 Reconstruction analysis

The framework can deliver improved inpainting outcomes

in most circumstances when the model is optimized. The

proposed method is evaluated using different masks across

multiple datasets. To ensure correct inpainting, the input image is

cropped appropriately. The outcomes according to the dataset are

discussed below.

6.1.1 Inpainting using FFHQ dataset
6.1.1.1 Mask 1

Mask 1 is designed to understand how the face reconstruction

of the chin occurs so that the inpainting appears realistic. This
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FIGURE 5

Reconstructed Images of brain dataset.

result is compared to the results of the SN-Patch GAN for a state-

of-the-art comparison. Figures 6a, b show a few iteration samples

of the reconstruction results with the comparison of the original

image. Here, each row represents a sample iteration. An image

from the Flickr face dataset is used to analyze the results, and

their outcomes are evaluated to see how closely the reconstruction

resembled the images on which it was trained. The image labeled

as original is the actual image, followed by the input-masked image

and corresponding reconstruction sample results. It can be viewed

that there are not many variations between the original image and

some of the reconstructed results.

6.1.1.2 Mask 2

The nextmask,Mask 2, is square-shaped. Figures 6c, d show the

inpainting results for the square mask for the image from the FFHQ

dataset and the real-time image. The outcomes of the original and

inpainted processes can be compared.

6.1.1.3 Mask 3

The inpainting results when there is an extremely large mask

is one of the significant achievements in this study, so the next

mask, Mask 3, that has been tried is a large vertical rectangular

mask that covers almost half of the image. As shown in Figures 7a,

b, this framework has outperformed even in the extremely larger-

sized mask.

6.1.1.4 Mask 4

Like Mask 3, the next mask, Mask 4, is extremely large, but

it covers the bottom half of the image. Figures 7c, d show the

sample iterations of Mask 4 applied on the FFHQ image and the

real-time image.

With different kinds of masks applied to the FFHQ dataset,

the model performed exceptionally well. No matter how big or

small the area, it had no impact on the inpainting. Even though

we continued to attempt an arbitrary mask, the findings from the

model were more advanced. The comparison results for arbitrary

masks with the state-of-the-art models are displayed in Figure 8.

Compared to the SNPatch GAN, which has demonstrated

excellent performance in the inpainting challenge, the results

produced for inpainting by the probabilistic framework are quite

good.When trying to inpaint an image that contains more than one

face (say two faces), as shown in the second row of Figure 8, the

state-of-the-art models fail, whereas the probabilistic framework

comparatively produces a quite acceptable result.

6.1.2 Inpainting using brain dataset
On the brain dataset, the model with several mask pattern

patterns was also successfully recreated. For all the different types

of masks, the framework performed well, and the state-of-the-

art comparison also showed good results for this dataset as well.

Figure 9 shows the comparative results on the brain dataset with

the PatchGAN and deep prior models.

The next part of the comparison is carried out with the DIV2K

dataset to showcase the proposed framework performance with

various types of images. The validation of DIV2k is conducted on

various types of masks, and its reconstruction results are seen. The

inpainting outcomes for the diverse collection of photos from the

DIV2k dataset are shown in Figure 10.

So, three separate datasets with every conceivable mask were

subjected to a full inpainting study. As can be seen from Figures 6–

10, the inpainting performed admirably both on its own and when

compared to the state of the art.

6.2 Quantitative evaluation

To compute the difference between the original image and

the inpainted image, RMSE and PSNR metrics are chosen for

evaluation. A smaller RMSE and a higher PSNR reflect a closer

similarity between the original and the inpainted image. The RMSE

and PSNR values of the proposed probabilistic framework (PF) are

confirmed with the SNPatchGAN (SNP GAN; Yu et al., 2019), deep

prior (Xie and Tu, 2015), RePaint (Lugmayr et al., 2022), and LaMa

(Rombach et al., 2022) after 50 unseen photos of varying resolutions

used for the quantitative evaluation. When the resolutions are

higher than 64, the overall observation of RMSE and PSNR shows a

lower value. When given unseen photos, the performance of the

model degrades just a little; however, the styleGAN3 generator

is unable to produce high-resolution images for unseen images.

Results are good even at this early level because the model created
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FIGURE 6

Sample iteration results: (a) image in FFHQ dataset with Mask 1, (b) real-time image with Mask 1, (c) image in FFHQ dataset with Mask 2, and (d)

real-time image with Mask 2. Facial images reproduced from Flickr-Faces-HQ (FFHQ) Dataset by NVIDIA Corporation, licensed under CC BY-NC-SA

4.0, https://github.com/NVlabs/�hq-dataset.

is not particular to any mask or corrupting process. Table 1 shows

the comparative results of the RMSE and PSNR values for all

three datasets when four different masks are applied and evaluated.

The probabilistic framework consistently outperforms and remains

competitive with diffusion-based and other models, particularly

under large and irregular mask scenarios.

To evaluate the structural similarity and perceptual similarity

between the original and inpainted images, SSIM and LPIPS

metrics are chosen. Table 2 shows the comparative results of the

SSIM and LPIPS values for all three datasets. The higher the SSIM

and the lesser the LPIPS represent better inpainting.

Following a thorough quantitative analysis, it was discovered

that the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

Index Measure (SSIM), Root Mean Square Error (RMSE), and

Learned Perceptual Image Patch Similarity (LPIPS) values for all

three datasets were highly excellent and outperformed the other

comparison models. These values are better with the probabilistic

technique, regardless of the type of mask. The training and

validation plots for the brain data in Figure 11 consider each loss

that made up the overall loss. The training and validation phases

clearly differed when observed with values, and the curve was

stable after it reached the point of stability, demonstrating the

success of the two phases. There were no overfitting or underfitting

difficulties, and the results for each dataset looked to be the same.

Though the training and validation plots for other

datasets, such as FFHQ and DIV2K, are available, their
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FIGURE 7

Sample iteration results: (a) image in FFHQ dataset with Mask 3, (b) real-time image with Mask 3, (c) image in FFHQ dataset with Mask 4, and (d)

real-time image with Mask 4. Facial images reproduced from Flickr-Faces-HQ (FFHQ) Dataset by NVIDIA Corporation, licensed under CC BY-NC-SA

4.0, https://github.com/NVlabs/�hq-dataset.

training trends were observed to be similar, making

additional plots redundant. This similarity is achieved

because, despite the differences in image characteristics

across datasets, the model effectively learns meaningful

representations through prior and likelihood-based

inpainting, ensuring stable convergence. The use of well-

defined loss functions and hyperparameters across datasets

further contributes to the uniform training behavior.

This consistency indicates that the model generalizes

well across diverse image domains, demonstrating

its robustness in handling various inpainting tasks.

This selection ensures clarity and conciseness without

compromising the analysis. However, the results for all

datasets have been thoroughly evaluated and discussed in the

quantitative analysis.

6.3 Advantages of the proposed
probabilistic framework

The probabilistic framework offers several distinct advantages:

• Probabilistic modeling: by adopting a Bayesian framework,

the proposed method models uncertainty and captures

multiple plausible reconstructions.

• Latent priors: the use of cosine similarity, mean, and intensity

priors ensures the reconstructed features are semantically and

structurally coherent.

• Model generalizability: unlike most inpainting methods that

retrain for each domain, the proposed framework generalizes

across FFHQ, DIV2K, and brain datasets without model-

specific tuning.
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FIGURE 8

Qualitative comparison of the proposed and the state-of-the-art works, PatchGAN (Yu et al., 2019), deep prior (Ulyanov et al., 2018), LaMa (Rombach

et al., 2022), and RePaint (Lugmayr et al., 2022) with arbitrary masks. Facial images reproduced from Flickr-Faces-HQ (FFHQ) Dataset by NVIDIA

Corporation, licensed under CC BY-NC-SA 4.0, https://github.com/NVlabs/�hq-dataset.

FIGURE 9

Comparative analysis of a probabilistic framework with PatchGAN (Yu et al., 2019), deep prior (Ulyanov et al., 2018), LaMa (Rombach et al., 2022), and

RePaint (Lugmayr et al., 2022) on brain dataset.

• Flexible integration: although StyleGAN3 is used for

evaluation, the framework is agnostic to the generator and can

be adapted to other architectures, including future diffusion-

based GAN hybrids.

• Inference speed and applicability: while the proposed

framework avoids retraining across domains and mask types,

it relies on iterative optimization during inference via Bayes-

by-Backprop. This results in longer inference times (e.g.,

∼8–10 s per 512 × 512 image) than single-pass GAN or

diffusion models. However, this trade-off is offset by the

flexibility to handle diverse and unseen image types without

any model-specific adjustments. Future studies may explore

amortized inference or hybrid approaches to reduce latency

for interactive applications.

These characteristics enable the proposed method to

outperform both traditional and state-of-the-art models in

terms of both perceptual quality and structural integrity.

6.4 Ablation study

Two criteria are used to conduct the ablation analysis. The

use of hyperparameters is appropriate because this technique is

a crucial design component. The sensitivity to hyperparameters

for the probabilistic model was determined during ablation. The

losses specified in Equation 13 are modified along with the prior,

pixel, perception, and cosine parameters to assess their sensitivity

to the model’s performance. The corresponding LPIPS and MSE
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FIGURE 10

Inpainting results for images from the DIV2K dataset. DIV2K Dataset by Timofte et al., licensed under CC BY 4.0, https://data.vision.ee.ethz.ch/cvl/

DIV2K/.

values are computed after one of the values is changed, while the

other parameters are held constant in order to determine this. This

ablation study is performed using 10 images from the brain dataset

with a resolution factor of 64. These hyperparameters are set to

constant values, and a single parameter is varied and obtained. The

results are tabulated in Table 3. It is inferred that the parameters are

not sensitive enough to affect the performance of the model after

thoroughly analyzing the LPIPS and RMSE.

6.5 Discussion on mode collapse and
output diversity

A common limitation in generative inpainting, particularly

with GAN-basedmethods, is mode collapse, where the model tends

to generate repetitive or homogeneous textures across different

reconstructions. This issue becomes particularly significant when

repairing large or semantically complex masked regions, leading to

a loss in output diversity and realism.

The proposed probabilistic framework mitigates this issue

by treating the inpainting task as a Bayesian inverse problem,

enabling the estimation of a posterior distribution over the

latent space. Rather than producing a single fixed reconstruction,

the model performs variational sampling through a modified

Bayes-by-Backprop approach, allowing for multiple plausible

and semantically valid outputs. The incorporation of structured

priors—based on cosine similarity, intensity, and mean—ensures

that each sampled solution is guided by both local structure and

global context.

This mechanism effectively reduces the risk of convergence

to limited patterns or repeated textures. The diversity across

sample reconstructions is clearly illustrated in Figures 6a, b,

where multiple iteration outputs show perceptually different but

semantically consistent completions. Furthermore, in Figure 8,

the model demonstrates superior handling of multi-object scenes

(e.g., two-face example), where competing models collapse to

incomplete or incoherent reconstructions, while the proposed

approach maintains output variability and semantic integrity.

To support the claim of improved output diversity, we

computed the intra-sample LPIPS score, which measures

perceptual differences between multiple reconstructions of the

same input. The analysis was conducted on 10 masked test images,

covering all four mask types. Each input was inpainted using five

different latent samples, and the average LPIPS diversity score was

0.312 ± 0.03. This demonstrates that the proposed framework

produces perceptually diverse outputs and effectively mitigates

mode collapse.

7 Conclusion and future study

Several strategies for resolving the problem of inpainting were

researched and determined when it was successfully defined as

an inverse problem. It was determined that the probabilistic

framework is the best option for resolving the issue since it

offers us the freedom to select the previous models and the

choice to consider all the hyperparameters. With different masks

and different data, multiple inpainting tasks were carried out

using the suggested probabilistic framework. On three different

datasets, the task of inpainting was illustrated using arbitrary

masks. A unique advantage is that the proposed probabilistic

framework is independent of StyleGAN3, thereby enabling the

proposed framework to be executed with other generative and

deep learning models. One of the main challenges in inpainting is

reconstructing images with large and arbitrarily shaped damaged

regions. Adopting the prior instances generated by StyleGAN3 to

estimate the probability of obtaining the clean image assists in
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TABLE 1 Evaluation of probabilistic framework using RMSE and PSNR metrics with other popular models for inpainting.

RMSE PSNR

Dataset PF SNP GAN Deep prior RePaint LaMa PF SNP GAN Deep prior RePaint LaMa

FFHQ 24.28 30.75 33.62 26.12 25.91 20.32 19.05 17.36 19.74 19.86

DIV2k 14.82 22.56 18.43 16.90 17.04 25.64 21.01 19.27 23.22 22.97

Brains 9.25 26.74 25.32 10.80 11.52 29.97 20.47 20.38 27.60 26.42

TABLE 2 Evaluation of probabilistic framework using SSIM and LPIPS metrics with other popular models for inpainting.

SSIM LPIPS

Dataset PF SNP GAN Deep prior RePaint LaMa PF SNP GAN Deep prior RePaint LaMa

FFHQ 0.86 0.8 0.8 0.82 0.81 0.17 0.26 0.28 0.21 0.23

DIV2k 0.95 0.83 0.81 0.89 0.88 0.11 0.22 0.24 0.18 0.20

Brains 0.86 0.78 0.75 0.82 0.80 0.07 0.2 0.22 0.12 0.14

FIGURE 11

The (a) training and (b) testing loss plot for the brain dataset.
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TABLE 3 Ablation study of hyperparameters.

Pixel Loss Percept Loss Cosine Loss Prior Loss

Set values LPIPS RMSE Set values LPIPS RMSE Set values LPIPS RMSE Set values LPIPS RMSE

10−7 0.69 49.75 107 0.6 38.96 10−4 0.55 31.52 10−4 0.53 33.69

10−6 0.5 35.23 106 0.55 34.56 10−3 0.5 33.08 10−3 0.52 35.82

10−5 0.6 38.93 105 0.58 36.67 10−2 0.59 37.67 10−2 0.55 39.17

10−4 0.57 36.33 104 0.52 34.19 10−1 0.63 43.92 10−1 0.73 63.92

10−3 0.58 36.78 103 0.59 36.52 100 0.68 73.21 100 0.78 82.21

inpainting largemasked regions. The proposed framework achieves

promising results compared to state-of-the-art methods. The

ablation study reveals the importance of the hyperparameters in

the probabilistic methodology, thereby insisting on the sensitivity

of the hyperparameters when tuning.

Extending the study to more intricate corruption models

will be the focus of future efforts. Furthermore, the proposed

probabilistic framework can be extended by incorporating LDMs

as the generative backbone. LDMs operate in a compressed latent

space and leverage pre-trained knowledge from large-scale datasets,

offering powerful priors for high-fidelity generation. By integrating

LDMswithin the current Bayesian formulation, it would be possible

to jointly model uncertainty and semantic consistency in a more

scalable and expressive manner. This fusion could enable diverse

and perceptually rich inpainting, particularly for complex and high-

resolution image domains, while still preserving the benefits of

posterior-guided reconstruction.
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