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Early and accurate detection of brain tumours using Magnetic Resonance 
Imaging (MRI) is critical for effective treatment and improved patient outcomes. 
This systematic review investigates the application of hybrid machine learning 
(ML) and deep learning (DL) models in enhancing the computational efficiency 
and diagnostic accuracy of brain tumour analysis from MRI images. The study 
synthesizes recent advances in combining traditional ML models such as Support 
Vector Machines (SVM) with deep neural networks like VGG-19 and YOLOv10n. A 
PRISMA-based literature search strategy was employed across major databases, 
including PubMed, Scopus, and IEEE Xplore, selecting 25 relevant studies published 
between 2019 and 2024. The review evaluates the performance of standalone and 
hybrid models using metrics such as Dice Similarity Coefficient (DSC), Intersection 
over Union (IoU), accuracy, precision, recall, and F1-score. Findings indicate that 
hybrid models, particularly those combining SVM with CNN-based architectures 
like VGG-19, demonstrate improved classification accuracy and reduced false 
positives, outperforming single-model approaches. Lightweight versions such as 
YOLOv10n offer faster inference times suitable for real-time applications while 
maintaining competitive accuracy. Despite these advances, challenges remain 
in model generalizability, lack of large, annotated datasets, and limited adoption 
of Explainable AI (XAI) for interpretability. This review highlights the potential of 
hybrid models for brain tumour detection and offers recommendations for future 
research to focus on scalable, interpretable, and clinically deployable solutions.
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1 Introduction

Clinical imaging is a valuable tool for diagnosing a variety of diseases. In 1895, Roentgen 
found that X-rays could examine the human body non-invasively, rapidly adopting X-ray 
radiography as the first diagnostic imaging method (Scatliff and Morris, 2014). Since then, 
various imaging modalities have been created, like MRI, CT, ultrasound, and positron 
emission tomography, as well as increasingly complicated imaging methods. Image 
information is crucial for the decision-making process in patient care, encompassing various 
stages, such as the identification, characterization, staging, evaluation of treatment response, 
surveillance of disease recurrence, and the direction of interventional procedures, surgical 
interventions, and radiation therapy (Einstein et al., 2014).
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Incorporating ML and DL approaches into the analysis of clinical 
images signifies a fundamental change in the healthcare sector, 
fostering transformative advancements in diagnostics, treatment 
planning, and overall patient care. The combination of advanced 
computer methods and medical imaging is changing healthcare by 
providing new insights and improving efficiency. The application of 
artificial intelligence to evaluate complicated clinical images, such as 
CT, MRI, and X-ray scans, provides evidence of this technology 
potential to enhance precision and streamline decision-making 
processes (Pugliesi, 2018).

Traditional medical image analysis methods have long relied on 
manual interpretation by trained professionals, fraught with challenges 
such as time consumption, subjectivity, and the potential for human 
error (Dekker, 2017). In stark contrast, ML and DL algorithms have 
emerged as formidable tools to learn complex patterns and features 
within medical images. The clinical application of Artificial 
Intelligence (AI) is not yet a common practice. AI presents potential 
applications in the future, but some issues must be faced (Alharbi 
et al., 2023).

The exploration of ML and DL applications in clinical image 
analysis encompasses a spectrum of activities, like image 
segmentation, classification, and anomaly detection (Castiglioni 
et  al., 2021). From the early identification of diseases to the 
customization of treatment strategies, these technologies facilitate a 
more personalized and precise approach to patient care (Manhas 
et  al., 2022). This comprehensive analysis highlights the 
technological advancements propelling these innovations and 
addresses critical considerations such as challenges, ethical 
implications, and the potential transformative impact on 
patient outcomes.

As we delve into the intricate details of clinical image analysis, 
it becomes evident that the fusion of cutting-edge technologies 
with traditional medical imaging practices is revolutionizing 
diagnostics and opening new avenues for research and 
development (Najjar, 2023). The promises, possibilities, and 
responsibilities associated with harnessing the potential of ML and 
DL in healthcare are central themes in this dynamic and evolving 
field. This exploration guides the promises and challenges, 
emphasizing the transformative function of technologies in 
influencing the forthcoming landscape of medical care (Aceto 
et al., 2018).

Although the research in medical image analysis has been 
increasing, very few have used traditional systems routinely in the 
clinic (Tumpa and Kabir, 2021). One of the major reasons may 
be that CAD tools developed with conventional machine learning 
methods may not have reached the high performance that can meet 
physicians’ needs to improve both diagnostic accuracy and 
workflow efficiency (Vankdothu and Hameed, 2022; Virupakshappa 
and Amarapur, 2020). With the success of deep learning in many 
machine learning applications such as text and speech recognition, 
face recognition, autonomous vehicles, chess and Go game, in the 
past several years, there are high expectations that deep learning 
will bring breakthrough in CAD performance and widespread use 
of deep-learning-based CAD, or artificial intelligence (AI), to 
various tasks in the patient care process. The enthusiasm has 
spurred numerous studies and publications in CAD using deep 
learning. This review explores the challenges of developing 
DL-based CAD systems for clinical imaging and outlines the key 

requirements for their effective implementation in future 
clinical practice.

1.1 Research question

	 1	 What are the different applications of improving the 
computational efficiency of MRI brain tumour analysis using 
hybrid machine learning models?

	 2	 What methods have been employed in the implementation and 
development of this model?

	 3	 What is the optimal MRI brain tumour analysis model using a 
hybrid machine learning approach?

1.2 Significance of the study

	 1	 This research will support the healthcare sector by allowing 
medical professionals and researchers to select a suitable 
diagnostic method for brain tumour cancer, thereby 
minimizing time and enhancing accuracy.

	 2	 This investigation will advance knowledge about the application 
of cancer images in medical clinics.

	 3	 The application of medical image processing in oncology has 
markedly enhanced patient outcomes, lowered treatment 
expenses, and improved the comprehensive standard of care 
provided to patients.

	 4	 This study can serve as a foundation for future research in 
related fields of data science.

2 Literature review

The integration of machine learning (ML), deep learning (DL), 
and hybrid approaches in medical imaging has transformed the 
landscape of brain tumour detection. This section thematically 
organizes and reviews relevant literature across five critical 
dimensions: general applications of ML and DL in medical imaging, 
advances in deep learning architectures, hybrid models for brain 
tumour segmentation and classification, explainable AI (XAI), and 
challenges in clinical implementation.

2.1 Machine learning and deep learning in 
medical imaging

ML and DL models have increasingly demonstrated their utility 
in analyzing clinical images, especially in tasks like segmentation, 
classification, and anomaly detection. Fatima and Pasha (2017) 
provided a comparative survey of ML algorithms including Decision 
Trees (DT), Support Vector Machines (SVM), and K-Nearest 
Neighbors (KNN), underlining their respective diagnostic strengths 
and limitations. De Bruijne (2016) traced the application of ML from 
traditional detection to diagnosis stages in clinical workflows, 
highlighting the transition from manual to automated 
decision-making.

Willemink et  al. (2020) stressed the importance of robust 
preprocessing—such as normalization and augmentation—for 
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optimizing ML model performance. Varoquaux and Cheplygina 
(2022) offered a meta-perspective on methodological challenges and 
ethical considerations in ML adoption for medical imaging.

2.2 Advances in deep learning architectures

Deep learning models, particularly Convolutional Neural 
Networks (CNNs), have gained prominence due to their high 
performance in feature extraction and pattern recognition. Zhou et al. 
(2023) explored various DL models including CNNs, Recurrent 
Neural Networks (RNNs), and Generative Adversarial Networks 
(GANs), revealing their effectiveness in multiple imaging modalities 
like MRI, CT, and histopathology.

Puttagunta and Ravi (2021) showcased the increasing 
adaptability of DL in tumor detection, while Xu et  al. (2014) 
proposed a hybrid of CNNs and multiple-instance learning to 
better handle complex feature spaces. Rashed and Popescu (2023) 
further emphasized DL’s dominance in classification and 
segmentation tasks.

2.3 Hybrid models for brain tumour 
segmentation and detection

The convergence of ML and DL has led to the emergence of hybrid 
models that exploit the strengths of both paradigms. Vadhnani and 
Singh (2022) surveyed the use of SVM variants with MRI images, 
noting high accuracy in segmentation and classification tasks. Hussain 
et  al. (2020) developed a hybrid approach incorporating curvelet 
transformation, ant colony optimization, and SVM to improve image 
quality and classification accuracy.

Rasool et al. (2022) proposed a hybrid CNN-based architecture to 
improve tumour classification, while Shahzadi et al. (2018) used a 
CNN-LSTM model and reported superior performance with features 
extracted from VGG-16. Khan et al. (2020) employed a comprehensive 
method using VGG-16/VGG-19 and extreme learning machines 
(ELM), attaining an accuracy of 92.5%.

Other hybrid efforts include Hashemzehi et  al. (2020), who 
combined CNN with neural autoregressive distribution estimation 
(NADE) for enhanced classification, and Sun et al. (2019), who used 
3D CNNs for both segmentation and survival rate prediction in 
glioma patients.

2.4 Explainable AI in brain tumour imaging

For AI models to be  clinically acceptable, they must offer 
transparency in decision-making. Park and Kim (2024) compared 
various CNN and Transformer architectures, using LIME and SHAP 
to visualize and explain prediction outputs. Their findings indicate 
that VGG-16 and ResNet-50, due to their architectural simplicity, 
produced clearer region-of-interest visualizations than ViT-Base-16.

Narayankar and Baligar (2024) and Mutkule et al. (2023) reviewed 
several XAI methods such as feature attribution, attention mapping, 
and rule-based systems. These approaches are gaining traction for 
their potential to foster clinician trust and regulatory compliance in 
AI-supported diagnostics.

2.5 Clinical limitations and challenges

Despite technical advancements, the deployment of these models 
in real clinical environments remains limited. Most studies rely on 
public datasets like BRATS, which lack diversity in patient 
demographics and imaging protocols (Senan et al., 2022). Additionally, 
real-time performance, data imbalance, and lack of annotated data 
limit model robustness (Liu et al., 2021).

Few studies provide comprehensive evaluations of inference time 
or hardware efficiency, critical for deployment in low-resource 
settings. Furthermore, regulatory and ethical issues such as data 
privacy, bias, and explainability remain under-addressed (Alharbi 
et al., 2023; Aceto et al., 2018).

This study explores the utilization of ML and DL approaches in 
medical images, particularly in healthcare imaging. One main ML and 
two DL techniques with Hybrid model are implemented to achieve this 
goal. We have analysed a range of papers on this subject, examining the 
techniques proposed and the obstacles encountered when analysing 
MRI brain tumours using ML, DL, and hybrid machine learning 
models. Moreover, the study assesses the strengths and shortcomings 
of the suggested approach to improving the computational efficiency 
of MRI brain tumour analysis using hybrid machine learning models, 
which have not been thoroughly examined before. In recent years, 
numerous studies have employed ML techniques like RNN, ANN, 
LSTM, SVR, and many more. This study evaluates the improvement in 
the computational efficiency of MRI brain tumour analysis using 
hybrid machine learning models, including SVM, VGG-19, YOLOv10, 
and the SVM + VGG19 Hybrid model.

3 Methodology

The systematic approach utilized in this review is consistent with 
the established guidelines specified by Xie et al. (2022) and Rashed 
and Popescu (2023). To meet the objectives of the survey, specific 
research questions were developed. A well-defined protocol was 
strictly followed, guaranteeing a thorough and detailed method for 
identifying relevant scientific literature.

3.1 Data collection process

Data from the full-text selected papers is called Brain MRI Images 
for Brain Tumour Detection, as its image data. We  extracted the 
following data: journal, publication year, databases searched, study 
period, setting/scenario, purpose, intervention type, number of 
studies, study design, main results, opportunities, and implementation 
challenges. The dataset was obtained from the Kaggle website.

This methodological framework included the subsequent 
essential elements:

	 1	 Definition of Research Questions and Search Queries: Relevant 
search queries were carefully crafted to align with the research 
questions and were systematically implemented across suitable 
research databases. This approach facilitated a comprehensive 
review of the available scientific literature.

	 2	 Inclusion and Exclusion Criteria: Clear and well-defined 
guidelines were set to determine the selection of studies, 
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specifying criteria for inclusion and exclusion. This structured 
approach ensured the relevance and quality of the chosen 
research while filtering out studies that did not meet the 
established standards.

	 3	 Study Selection Method: A methodical strategy was utilized to 
choose studies, which included extracting relevant information 
from each chosen study. This step facilitated the retrieval of 
valuable insights and data necessary for the subsequent 
analysis. Furthermore, the dataset is publicly available through 
multiple repositories such as Kaggle, GitHub, Roboflow, and 
other platforms.

	 4	 Analysis of Selected Studies: The chosen research underwent 
an in-depth evaluation, guaranteeing a thorough assessment of 
its methodologies, results, and contributions. This systematic 
method facilitated a detailed comprehension of the 
current literature.

Following this structured protocol, the review sought to deliver a 
meticulous, organized, and extensive synthesis of the pertinent 
scientific literature, providing significant insights into the field of 
study under consideration.

3.2 Search queries, analysis, and study 
selection

The search process involved querying multiple academic 
repositories, including Google Scholar, Papers with Code, 
ScienceDirect, and Springer. The search queries used included:

	•	 “Metrics of evaluation for segmenting and detecting 
medical images”

	•	 “Uncertainty quantification, segmentation, and detection of 
medical images”

	•	 “Hybrid models for segmentation and detection of 
medical images”

	•	 “Segmentation and detection of clinical images”
	•	 “State-of-the-art clinical image segmentation and detection”
	•	 “DL for segmentation and detection of medical images”

The initial search retrieved over 923 research articles. A systematic 
screening process was then applied, where articles were evaluated 
based on their titles and a brief review of their abstracts. Only studies 
that effectively addressed the research questions were chosen for 
further analysis, leading to a final selection of 31 articles; 537 were 
excluded, as shown in Figure 1.

3.3 Inclusion and exclusion criteria

A thorough selection procedure was implemented to guarantee 
the pertinence and excellence of the studies included. Papers aligned 
with the defined research objectives and met the specified criteria were 
included, while those not following the research scope were excluded. 
This systematic approach maintained the integrity and formal rigor of 
the study. The Criteria for Inclusion and Exclusion are as follows:

Table  1 presents the inclusion and exclusion criteria applied 
during the study selection process. Table  1 provides further 

clarification on what qualifies as a peer-reviewed source. As indicated 
in Table  1, only peer-reviewed literature such as journal articles, 
conference papers, and academic book chapters were considered 
for inclusion.

3.4 Preferred reporting items for systematic 
reviews and meta-analyses (PRISMA)

Prior to conducting the review, we  drafted a written protocol 
following the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) (Page et al., 2021; Stovold et al., 2014). The 
PRISMA statement includes the checklists, explanation and 
elaboration, and flow diagram.

The PRISMA flow diagram in Figure  1 outlines the study 
selection process conducted for this systematic review. Initially, 979 
records were identified, 923 through database searches and 56 from 
other registers. Prior to screening, 402 records were removed, 
including 201 duplicates, 136 records excluded by automation tools, 
and 65 removed for different reasons. This left 628 records for title 
and abstract screening, from which 537 were excluded due to 
irrelevance or failure to meet the inclusion criteria. Of the remaining 
72 reports sought for full-text retrieval, 54 could not be retrieved. 
Consequently, 49 full-text articles were assessed for eligibility. 
Among these, 31 were excluded as irrelevant, 16 were excluded for 
not being systematic reviews, and 2 were excluded due to lack of 
full-text access. Ultimately, 31 studies met the inclusion criteria and 
were incorporated into the review, represented by 27 
individual reports.

3.5 Quality assessment

Inclusion of quality assessment is a fundamental and critical 
component of any systematic review process (Salloum, 2018; Salloum 
et al., 2019; Alhashmi et al., 2019a; Alhashmi et al., 2019b; Alhashmi 
et  al., 2020). This study employed a quality assurance checklist 
comprising six evaluation questions to assess the methodological rigor 
of the 31 selected papers, as detailed in Table 2.

Table 2 outlines the quality assurance questions used to evaluate 
the methodological soundness and clarity of the selected studies. 
These questions assess key elements such as the clarity of research 
objectives, the adequacy of methodological explanations, the relevance 
of findings, and the logical consistency of conclusions. This checklist 
served as a structured framework to ensure that only studies meeting 
a minimum standard of academic rigor were included in the review.

3.6 Evaluation metrics for medical image 
segmentation (MIS)

Accurate evaluation metrics are crucial for ensuring the 
effectiveness of MIR brain tumour medical image segmentation in 
diverse clinical applications. These metrics quantify predicted 
segments’ similarity and corresponding ground truth annotations. 
Although the field of MIS has introduced a wide variety of metrics 
over the past three decades, only a select few have proven to be both 
appropriate and consistently adopted as standard practices.
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3.6.1 Accuracy
Accuracy, often called pixel accuracy, is a widely used statistical 

metric that measures the proportion of accurate predictions and the 
total number of predictions made. However, using MIS is not 
recommended because of the problem associated with class imbalance. 
Since accuracy includes true negatives in its calculation, it can produce 
deceptively elevated ratings, though a model incorrectly predicts the 
entire image as the background class (Popovic et al., 2007; Taha and 
Hanbury, 2015). Consequently, accuracy is deemed an unreliable 
metric for evaluating MIS models in scientific studies.

3.6.2 Metrics driven F-measure
The F-measure, commonly called the F-score, is an extensively 

used measurement unit in computer vision and MIS research. By 
combining sensitivity and precision, it evaluates the intersection 
between the anticipated corresponding ground truth and 

FIGURE 1

PRISMA flowchart.

TABLE 1  Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Studies were chosen according to the 

following criteria: they must 

be published in peer-reviewed 

journals, articles, or books, written in 

English, and no older than 2015.

Studies were excluded if they were 

written in a language other than 

English, published before 2015, or 

failed to address any of the research 

questions.

TABLE 2  Quality assurance questions.

Question Quality assurance question

1 Did the review clearly show the purpose of the research?

2 Is the information presented clear and concise?

3 Does the study provide enough explanation of its 

methodology?

4 Do the study findings add to the understanding of brain 

tumor detection models?

5 Are the conclusions clearly identified?

6 Are the conclusions logical and concise with the flow of the 

paper?
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segmentation. This metric is particularly effective in addressing the 
challenges posed by class-imbalanced datasets in MIS, as it penalizes 
false positives. Based on the F-measure, the Dice Similarity Coefficient 
(DSC) and Intersection-over-Union (IoU) are among the most 
popular metrics (Taciuc et al., 2025). Notably, DSC, introduced by 
Dice (1945), has become a fundamental metric due to its simplicity 
and effectiveness in managing class imbalances.

While the Dice score is widely adopted for assessing the overlap 
between predicted and ground truth segmentations, it is primarily a 
mathematical comparison. It does not fully capture the clinical 
relevance or quality of the segmentation as perceived by human 
experts (Weld et al., 2024). In many cases, a high Dice score may not 
necessarily reflect accurate tumor boundary delineation, especially in 
regions where clinical precision is critical. Moreover, the Dice score 
does not account for anatomical plausibility or the clinical 
consequences of misclassifications. Therefore, relying solely on Dice 
or similar metrics may present a skewed picture of model 
performance, particularly when comparing AI models to human 
radiologists (Vlasceanu et al., 2024). This highlights the need for 
complementary evaluation methods that incorporate˘ expert 
assessments, clinical relevance, and real-world applicability.

3.6.3 Specificity and sensitivity
In healthcare, specificity and sensitivity (recall) are key metrics for 

evaluating model effectiveness. Sensitivity emphasizes the detection 
of true positives, in the context of precision measures, the accurate 
recognition of true negatives, for instance, the context class. Although 
sensitivity is a commonly utilised metric in MIS, it is often less 
effective than F-score-based metrics for comprehensive evaluation. 
Specificity, conversely, plays a critical role in assessing the framework’s 
ability to distinguish the foundational course, ensuring its operational 
reliability. However, high specificity values may not always reflect the 
comprehensive efficacy of the model (Liu et al., 2021).

3.7 Impact of class imbalance on 
assessment metrics

Clinical images often exhibit class imbalances, presenting 
substantial challenges for image segmentation tasks. Standard 
metrics like specificity or accuracy, which treat true negatives and 
positives equally, can produce inflated scores even when any pixel 
is mistakenly identified as the Region of Interest (ROI). This skews 
evaluation and renders the metrics inappropriate for assessing the 
effectiveness of segmentation in MIS. Metrics that focus solely on 
true positive classifications, disregarding true negatives, provide a 
more accurate assessment for clinical context. Consequently, 
metrics such as the Dice Similarity Coefficient (DSC) and 
Intersection-over-Union (IoU) are widely preferred and suggested 
in MIS (Liu et al., 2021).

4 Results

This section presents the synthesized findings from 31 selected 
studies on hybrid machine learning models for brain tumour detection 
using MRI, with emphasis on performance, model types, and 
evaluation metrics.

4.1 Performance of hybrid models

Hybrid models, particularly combinations of Support Vector 
Machines (SVM) with Convolutional Neural Networks (CNNs) such 
as VGG-19, consistently outperformed traditional and standalone 
models. These combinations achieved higher accuracy, precision, and 
recall rates in classification tasks. For instance:

SVM + VGG-19 models exhibited enhanced classification 
performance, particularly in distinguishing benign from 
malignant tumours.

YOLOv10n, a lightweight object detection model, achieved near 
real-time performance with competitive accuracy, making it suitable 
for resource-constrained clinical settings.

4.2 Evaluation metrics used across studies

The most common metrics used for performance 
evaluation included:

Dice Similarity Coefficient (DSC) and Intersection over Union 
(IoU): Used to evaluate segmentation quality, particularly for handling 
class imbalance.

Accuracy, Precision, Recall, F1-score: Standard metrics for 
classification performance.

Specificity and Sensitivity: Employed to assess the model’s ability 
to detect tumour and non-tumour regions accurately.

4.3 Dataset characteristics

Most studies relied on publicly available datasets such as BraTS, 
Kaggle MRI datasets, and custom institutional collections. However, 
diversity in patient demographics and imaging protocols was limited, 
which may affect generalizability.

4.4 Classifications and analysis of studies

A classification framework was developed based on the analysis 
of all 31 research articles included in the systematic review, with each 
study evaluated in terms of its relevance to the research questions. 
Papers were marked accordingly when their primary focus aligned 
with a particular thematic category. For instance, while many articles 
briefly referenced various applications of brain tumour detection 
models, only those that provided an in-depth discussion or explicitly 
concentrated on a particular application were classified under the 
category segmentation tasks. Figure 2 illustrates the geographical 
distribution of the reviewed publications. There has been a growing 
interest in this area over the past two decades, evidenced by the 
increasing number of publications since 1990, with most 
contributions originating from the United States.

4.5 Clinical applicability and real-world 
impact

Hybrid machine learning models, particularly combinations 
such as SVM with VGG-19 or YOLOv10n, demonstrate significant 
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potential for clinical use in brain tumor diagnosis. These models 
reduce diagnostic time, minimize human error, and improve 
detection rates compared to traditional manual interpretations of 
MRI scans. For instance, the SVM + VGG-19 hybrid achieves high 
accuracy and precision, making it suitable for classification tasks 
that can assist radiologists in prioritizing cases with 
suspected malignancy.

Regarding real-world applicability, models like YOLOv10n are 
particularly notable due to their lightweight architecture, enabling 
deployment in resource-constrained environments such as rural 
clinics or mobile diagnostic units. Their real-time processing 
capabilities can support faster clinical decision-making and 
potentially reduce time-to-treatment.

However, despite promising results, significant gaps exist in 
clinical translation. Most studies utilize retrospective data and 
control experimental conditions that may not represent the 
variability and complexity found in real clinical workflows. 
Challenges include variability in MRI protocols across hospitals, 
lack of large multi-institutional datasets, integration with existing 
radiology information systems (RIS), and model explainability, a 
critical factor for adoption by medical professionals.

Moreover, regulatory and ethical considerations, such as the 
need for transparency in AI decision-making and the risks of 
algorithmic bias, remain key barriers. Explainable AI (XAI) 
techniques like LIME and SHAP can improve trust and 
interpretability but are still underutilized in current 
implementations. Therefore, while hybrid models offer high 
technical performance, successful clinical integration demands a 
focus on reliability, interpretability, interoperability, and 
compliance with healthcare regulations.

4.6 Comparison with existing studies

To demonstrate the competitiveness of the proposed paper, 
improving the computational efficiency of MRI brain tumour, a 
comparison is provided in Table 3 showing results from related recent 
studies whose experiments were conducted using the same or 
different methods.

4.7 Answers to research questions

	•	 RQ1: What are the various applications of improving the 
computational efficiency of MRI brain tumor analysis using 
hybrid machine learning models?

The research was pertinent to improving the computational 
efficiency of MRI brain tumor analysis utilising hybrid ML models. 
This question highlights its significance and reflects the extensive 
interest it garners within the field. The consensus was that improving 
the computational efficiency of MRI brain tumor analysis utilising 
hybrid ML models were best used for glioma, meningioma, and 
pituitary tumors, as suggested by Senan et al. (2022), Babu Vimala 
et al. (2023), and Rashed and Popescu (2023). In addition, hybrid 
machine learning models can be used for different cancer models 
(Babu Vimala et al., 2023; Rasool et al., 2022).

	•	 RQ2: What methods have been employed in the implementation 
and development of this model? All 20 papers in the systematic 
review described various Strategies for the execution and 
advancement of MRI brain tumor analysis using hybrid ML 
models. For instance, Senan et  al. (2022) outlines three 
implementation methods: AlexNet and ResNet-18 are used with 
the SVM.

	•	 RQ3: What is the optimal MRI brain tumor analysis model using 
a hybrid machine learning approach?

Most papers (62.5%) discuss SVM's implementation, limitations, 
and advantages. Specifically, Senan et  al. (2022) compared three 
different approaches and identified the combination of SVM and the 
hybrid model as the most promising.

5 Discussion

This section interprets the key findings and explores the 
implications of hybrid ML/DL models for brain tumour detection, 
structured across major themes such as technical efficacy, clinical 
relevance, interpretability, and implementation challenges.

5.1 Technical efficacy and diagnostic power

Hybrid models demonstrated superior performance compared to 
single-method approaches. Integrating traditional ML (e.g., SVM) 
with DL (e.g., CNNs like VGG-19 or YOLOv10n) enabled:

	•	 Improved feature extraction and pattern recognition from 
complex MRI data.

	•	 Higher resistance to false positives and class imbalance, 
enhancing diagnostic reliability.

	•	 Better computational efficiency in real-time environments, 
especially with models like YOLOv10n.

These benefits are particularly impactful in distinguishing 
between glioma, meningioma, and pituitary tumours, as reported by 
Senan et al. (2022) and Rasool et al. (2022).

FIGURE 2

Publication distribution country-wise.
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5.2 Clinical utility and real-world 
applications

Hybrid models showed promise in accelerating diagnosis, 
supporting radiologists, and reducing diagnostic errors. Their use is 
particularly viable in:

	•	 Triage systems that prioritize high-risk cases.
	•	 Mobile or rural diagnostic units due to their low computational 

requirements (e.g., YOLOv10n).
	•	 Supplementary decision support tools for improving detection 

sensitivity in early tumour stages.

However, clinical implementation remains limited due to gaps in 
integration with hospital systems and workflow interoperability.

5.3 Role of explainable AI in adoption

Interpretability remains a significant barrier to clinical 
acceptance. Few reviewed studies applied Explainable AI (XAI) 
techniques such as:

	•	 LIME (Local Interpretable Model-Agnostic Explanations)
	•	 SHAP (SHapley Additive exPlanations)

Models that incorporated XAI (e.g., VGG-19 + SHAP) produced 
more transparent decision pathways, allowing radiologists to 
understand why a tumour was classified as malignant or benign (Park 
and Kim, 2024).

5.4 Challenges and limitations

Despite promising results, several challenges persist:
Data Limitations: Most studies used homogeneous datasets with 

limited variability, reducing generalizability.
Lack of Standardization: Inconsistent evaluation metrics, training-

validation splits, and reporting practices hinder direct 
model comparison.

Limited Real-Time Testing: Most models were tested under 
controlled, retrospective conditions, with few deployed in prospective 
clinical settings.

Ethical and Regulatory Concerns: Few studies addressed data 
privacy, algorithmic bias, or compliance with medical 
device regulations.

5.5 Priority for the future of research

To enable broader adoption of hybrid models in clinical settings, 
future work should prioritize:

	•	 Standardized benchmarks and open annotated datasets for 
fair comparison.

	•	 Interdisciplinary collaboration between clinicians, radiologists, 
and AI researchers.

	•	 Integration of XAI tools to improve transparency and trust.
	•	 End-to-end deployment pipelines that include image acquisition, 

preprocessing, classification, and clinical feedback loops.

6 Conclusion

This review has highlighted hybrid machine learning models’ 
growing relevance and performance benefits in brain tumour 
detection from MRI images. By analysing various studies, it becomes 
evident that combining the strengths of conventional ML models like 
SVM with deep learning models such as VGG-19 and YOLOv10n 
significantly enhances classification accuracy, computational 
efficiency, and robustness. These hybrid systems outperform 
standalone models by leveraging CNNs’ feature extraction 
capabilities alongside the decision boundaries offered by 
traditional classifiers.

Among the evaluated models, the SVM + VGG-19 hybrid 
demonstrated superior diagnostic performance, while YOLOv10n 
offered real-time inference benefits for segmentation tasks. 
Nonetheless, the adoption of such models in clinical environments is 
limited by challenges including data scarcity, model overfitting on 
small or homogeneous datasets, and insufficient integration of 
explainable AI mechanisms for transparency and trustworthiness in 
decision-making.

This review provides valuable insights into the effectiveness of 
hybrid ML and DL models in MRI brain tumour detection, offering a 
structured evaluation of existing methodologies and future research 
directions. Nevertheless, clinical image analysis, particularly detecting 

TABLE 3  Existing work related to brain tumours.

Reference Proposed Methods Accuracy (%) Preprocessing Cross-
validation

Split

Hussain et al. (2020) NS-CNN + SVM 95.6 Yes – Yes

Leo (2019) VGG-19 CNN 90.7 Yes – Yes

Yafooz et al. (2022) K-NN + GLCM + Fusion 

Operator

90.9 Yes Yes Yes

Zulpe and Pawar (2012) GLCM + PCA + SVM 90.0 Yes Yes Yes

Lundervold and Lundervold (2019) K-mean + GLCM + k-NN 85.0 - – -

Khawaldeh et al. (2017) Alex-Net CNN 91.2 Yes – Yes

El-Dahshan et al. (2010) PCA + DWT + SVM 86.67 Yes – Yes
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structures within clinical images using computational methods, is a 
rapidly evolving and growing discipline. Image detection is central to 
identifying critical regions of interest for diagnosis and treatment 
planning. Despite significant advancements, challenges remain due to 
inherent anatomical variations. The emergence of deep neural networks 
has revolutionized the field, delivering cutting-edge results in medical 
image detection. However, these methods have limitations, including 
reliance on deterministic predictions, limited interpretability, and the 
need for large datasets. In the medical domain, where accuracy and 
reliability are vital, prediction errors can lead to serious consequences.

6.1 Clinical emphasis

Beyond performance metrics, the true value of hybrid machine 
learning models lies in their potential to enhance clinical workflows 
and support timely, accurate diagnosis of brain tumours. This review 
shows that these models can significantly reduce computational 
burden and improve diagnostic performance, but also emphasizes that 
clinical applicability requires more than just algorithmic success.

Future efforts must prioritize developing models that are accurate 
and generalizable across diverse populations, compatible with clinical 
systems, and transparent enough to gain the trust of clinicians. 
Collaborations with healthcare professionals during the model 
development process and pilot testing in real clinical environments 
will be essential to ensure usability, safety, and ethical compliance.

Adopting lightweight, explainable, and clinically validated hybrid 
models can ultimately contribute to earlier diagnosis, personalized 
treatment planning, and improved patient outcomes, particularly in 
under-resourced healthcare settings. As such, hybrid models are not 
just a technical advancement, but a potential catalyst for more 
equitable and efficient cancer care.

6.2 Future research directions

Future research should prioritize the development of standardized 
benchmark datasets, the integration of advanced explainable AI (XAI) 
frameworks such as LIME and SHAP, and the creation of end-to-end 
pipelines that are both accurate and resource-efficient while 
maintaining interpretability. In addition, exploring the prospects of 
hybrid models by incorporating transfer learning and ensemble voting 
strategies would be highly beneficial. These approaches can enhance 
model generalizability, robustness, and predictive performance, 
especially in scenarios with limited annotated medical data.

Moreover, interdisciplinary collaboration between medical 
professionals and data scientists remains crucial to ensure that 
developed models meet clinical standards, ethical guidelines, and real-
world usability requirements. By focusing on these areas, future work 
can contribute to advancing intelligent, transparent, and clinically 
viable solutions for brain tumour detection.
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