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With the advancement of information technology, the demand for efficient 
recognition and information extraction from paper documents in industrial 
scenarios has grown rapidly. In practice, business information is often 
secondarily printed onto pre-designed templates, which frequently leads to 
text misalignment or overlap with backgrounds and tables, thereby significantly 
impairing the accuracy of subsequent Optical Character Recognition (OCR). 
To address this issue, this paper proposes a preprocessing method for OCR 
recognition of secondary printed documents, specifically targeting the problems 
of text misalignment and overlap. In particular, we design a Text Overlap 
Restoration Network (TORNet) to restore document images affected by text 
overlap. Experimental results demonstrate that, compared to the latest image 
restoration models, TORNet achieves PSNR improvements of 0.17 dB and 0.12 
dB in foreground and background text restoration, respectively. Furthermore, 
to resolve residual misalignment issues after image restoration, a key-field 
alignment method is introduced. This method accurately locates the positional 
deviations of critical fields in the reconstructed image, enabling precise field-
level alignment and structural correction. Based on the proposed preprocessing 
framework, the recognition accuracy and field-matching accuracy are improved 
by 23% and 31%, respectively, compared to existing commercial OCR 
models, significantly enhancing the recognition performance on misaligned and 
overlapping documents. This study provides an effective solution for recognizing 
secondary printed documents with text overlap in industrial environments. 

KEYWORDS 

secondary printed document images, text overlap, OCR recognition, image restoration, 
key-field alignment 

1 Introduction 

With the advancement of information technology, the rapid and accurate recognition 
of printed paper documents has become increasingly important in industrial production. 
It is often necessary to automatically extract business-related information from these 
documents to improve workflow efficiency. In practice, a common approach involves 
secondary printed of business information onto pre-printed paper templates containing 
tables or form labels. However, due to various uncontrollable factors, this process can easily 
lead to misalignment or overlap between the newly printed text and the background text or 
table lines. This not only reduces the readability of the document but also severely hinders 
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the accuracy of Optical Character Recognition (OCR) 
systems (Lalwani and Ramasamy, 2024). As a result, some 
enterprises still rely on manual data entry to avoid the recognition 
errors introduced by OCR under such conditions. Nevertheless, 
manual entry is inefficient, costly, and prone to human error, 
making it unsuitable for large-scale, automated business scenarios. 

Traditional Optical Character Recognition (OCR) techniques 
have been widely applied in various text recognition tasks 
and have demonstrated satisfactory performance under standard 
conditions (Suzuki et al., 2003; Chen et al., 2022; Mei et al., 
2021). However, their text detection and recognition pipelines often 
rely on predefined layout regions, making them less adaptable to 
complex layouts involving misaligned or overlapping characters. 
In practical documents where text frequently overlaps with table 
lines or exceeds predefined field boundaries, conventional OCR 
methods struggle to accurately detect and reconstruct the intended 
characters, and they are also limited in establishing semantic 
relationships and spatial alignment between fields. 

As illustrated in Figure 1, commercial OCR systems such 
as PaddleOCR, Tencent OCR, and Youdao OCR exhibit clear 
limitations when handling complex documents containing 
overlapping characters and misaligned fields. Specifically, these 
systems often suffer from recognition errors, failure to detect 
certain text regions, and inaccurate key-field matching. Such issues 
significantly hinder the reliability and effectiveness of automated 
document recognition in practical applications. 

Although recent research on low-quality text recognition 
has achieved certain advancements, enhancing model robustness 
against issues such as blurred (Peng and Wang, 2020; Mou et al., 
2020; Wang et al., 2021; Albahli et al., 2021), distorted (Zhu et al., 
2020; Li et al., 2024; Zheng et al., 2024; Wu et al., 2022), incomplete 
characters (Niu et al., 2024; Villespin et al., 2024; Feng et al., 2023), 
and background noise (Wang et al., 2020; Yu et al., 2023; Yang et al., 
2022; Ping et al., 2019), these methods typically assume that each 
input contains a single, isolated text target. As a result, they face 
limitations in handling scenarios involving overlapping characters 
or misaligned fields, leading to challenges in character separation 
and incomplete recognition. Furthermore, misaligned fields often 
extend beyond predefined detection boxes, further reducing the 
accuracy of field-level matching. Meanwhile, with the emergence 
of large-scale pre-trained models, their strong capabilities in 
semantic understanding and reasoning have shown promising 

FIGURE 1 

Different business OCR models recognizing text-overlapped and misaligned document images. 

adaptability in complex document recognition tasks (Abdellatif 
et al., 2025; Bourne, 2025). For images with overlapping text, 
such models can partially recover semantic content and infer 
field-level information. However, field misalignment continues 
to disrupt the logical structure and semantic coherence between 
fields, leading to a decline in final matching accuracy and 
thus limiting their effectiveness in fine-grained information 
extraction tasks. 

In recent years, image preprocessing techniques leveraging 
deep neural networks have gained significant attention as a 
promising approach to enhance the recognition performance of 
complex document images. Unlike traditional image processing 
methods, deep learning models exhibit advanced capabilities in 
feature extraction and pattern recognition. These models can 
autonomously learn the structural distinctions between characters 
and backgrounds from large-scale datasets, without relying on 
manually engineered rules, thus providing more reliable and 
higher-quality image inputs for subsequent Optical Character 
Recognition (OCR) tasks (Lalwani and Ramasamy, 2024). Among 
these, Convolutional Neural Networks (CNNs) (Dong et al., 
2014; Shanthakumari et al., 2022) have been widely adopted in 
tasks such as image denoising, enhancement, and super-resolution 
reconstruction, owing to their advantages in local perception and 
parameter sharing. However, convolutional operations inherently 
rely on fixed receptive fields and are limited in capturing long-
range dependencies within an image. This becomes particularly 
problematic in scenarios involving cross-field overlaps or irregular 
spatial distribution of characters, where locally modeled features 
by CNNs often fail to recover complete semantic structures, thus 
constraining the effectiveness of image preprocessing. Recently, 
the Transformer architecture has offered a new paradigm for 
document image preprocessing tasks. By leveraging the self-
attention mechanism, Transformers enable feature interactions 
across arbitrary positions in the image (Kim et al., 2022; Oubah 
and Ener, 2024; Zhou et al., 2024; Lou et al., 2025), thereby 
capturing global dependencies and modeling holistic semantic 
structures. Nonetheless, their ability to capture fine-grained local 
details remains limited. 

To address the aforementioned challenges, this paper proposes 
a preprocessing method for OCR recognition of secondary printed 
documents, specifically targeting the issues of text misalignment 
and overlap. The aim is to systematically correct character 
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superposition and positional dislocation that frequently occur 
during the secondary printing process in industrial documents. 
The proposed method comprises two core components: (1) 
structural restoration of overlapped text images, and (2) precise 
alignment and positional correction of key fields within the 
restored images. Through these preprocessing steps, document 
images with complex misalignment and overlap issues can be 
transformed into well-structured, clearly separated inputs suitable 
for standard OCR systems, thereby significantly improving the 
accuracy of subsequent text recognition and field matching. To 
meet the demands of restoring heavily overlapped regions, we 
design a novel image restoration model named Text Overlap 
Restoration Network (TORNet). TORNet integrates the strengths 
of Convolutional Neural Networks (CNNs) in modeling local 
details with the capabilities of Transformer architectures in 
capturing global structural relationships. This hybrid architecture 
enables joint modeling of both local perceptual features and global 
semantic structures, facilitating accurate restoration of characters 
affected by secondary printing overlaps. Furthermore, to enhance 
structural alignment in the recognition process, we propose a 
key field alignment method that detects and analyzes spatial 
deviations of important fields within the reconstructed image. This 
enables precise field-level localization and structural correction, 
effectively compensating for residual positional errors after image 
restoration. The proposed method significantly improves the field-
level matching stability of OCR systems and enhances recognition 
performance for secondary printing documents in complex real-
world scenarios. 

Overall, the main contributions of this paper are summarized 
as follows: 

• To address the common issues of text overlap and field 
misalignment in secondary printed documents within 
industrial scenarios, we propose a systematic preprocessing 
pipeline. This framework restores and aligns character 
structures from complex document images, providing a more 
reliable input foundation for downstream OCR recognition. 

• The proposed Text Overlap Restoration Network (TORNet) 
integrates the local feature extraction strength of CNNs 
with the global context modeling ability of Transformers, 
enabling effective recovery of textual information in scenarios 
involving character-table overlaps and misalignments. 
TORNet demonstrates robust performance in restoring text 
under structurally complex document layouts. 

• We propose a key-field alignment strategy. This method 
performs precise localization and offset correction of 
critical fields, achieving field-level structural alignment and 
significantly improving the accuracy and robustness of field 
matching. 

2 Related work 

2.1 Optical character recognition for 
secondary printed documents 

In this section, we review the related work on OCR techniques 
for degraded or secondary printed documents. Several studies have 
explored innovative methods to enhance text extraction accuracy 

under challenging conditions such as noise, skew, and overlapping 
text. For instance, Zhao et al. (2020) proposed a robust OCR 
framework combining image preprocessing and deep learning 
to extract text from noisy documents, achieving significantly 
improved recognition accuracy. Similarly, Thorat et al. (2023) 
emphasized the importance of noise reduction and binarization in 
preprocessing, coupled with CNN and CRNN models, to effectively 
handle degraded inputs and improve OCR reliability. Lalwani 
and Ramasamy (2024) introduced a hybrid approach using CNNs 
and BiLSTMs, addressing both spatial and sequential features for 
handwritten and printed text extraction, which is especially relevant 
for secondary printing documents with alignment issues. Their 
model outperformed traditional techniques in terms of accuracy 
and adaptability. In another study, U et al. (2023) leveraged MSER 
algorithms for stable text region detection and combined them with 
CNN-based OCR, yielding better results on images with complex 
content and varied character sets. 

Despite these advances, there remains a gap in OCR systems 
specifically optimized for the characteristics of secondary printed 
industrial documents, especially handling repeated stamps, layout 
inconsistencies, and visual noise. The present work addresses this 
gap by proposing an image restoration and key field alignment 
method tailored to the OCR processing of secondary printing 
industrial bills. 

2.2 Image restoration 

The problem of restoring overlapping and misaligned text in 
secondary printing industrial documents lies at the intersection of 
image restoration and OCR. Recent progress in deep learning has 
introduced various model types that significantly advance these 
tasks. This section categorizes the related work based on model 
architectures. 

2.2.1 CNN-based image restoration models 
Convolutional Neural Networks (CNNs) have laid the 

foundation for most early developments in image restoration. 
Models such as SRCNN (Dong et al., 2014), DnCNN (Zhang et al., 
2016), and ARCNN (Dong et al., 2015) initiated a wave of research 
focused on learning mappings from low-quality to high-quality 
images using large paired datasets. Subsequent works improved 
these architectures by introducing advanced components, 
including residual blocks (Kim et al., 2016; Zhang et al., 2022), 
dense blocks (Zhang et al., 2021), attention mechanisms (Zhang 
et al., 2018b; Mei et al., 2021; Niu et al., 2020), and skip connections, 
greatly enhancing feature representation and image restoration 
capabilities. Models like Shift-Net (Yan et al., 2018), which 
shifts encoder features into decoder space for semantic filling, 
and PEN-Net (Zeng et al., 2019), which captures multi-scale 
contextual semantics, exemplify the success of CNN-based 
encoder-decoder architectures such as U-Net in repairing irregular 
or defect-laden image regions. Multi-stage models such as MPRNet 
(Zamir et al., 2021) and DGUNet (Mou et al., 2022) further 
address the limitations of single-pass restoration by progressively 
refining outputs across stages and scales. Additionally, Feng 
et al. (2021) proposed DocScanner, a progressive learning-
based framework for robust document image rectification. It 
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FIGURE 2 

Workflow of the proposed algorithm. 

achieves strong performance in handling complex distortions 
and irregular layouts, providing valuable insights for correcting 
secondary-printed document artifacts. 

2.2.2 Transformer-based models for image 
restoration 

Inspired by the success of Transformers in NLP, researchers 
have begun to explore their applications in image restoration. 
AOT-GAN (Zeng et al., 2023) employs an aggregated context 
transformer for structural inpainting, while SwinIR (Liang et al., 
2021) adapts the Swin Transformer to image restoration, balancing 
performance and model complexity. MAE (He et al., 2022), a 
masked autoencoder, enables self-supervised training for high-
fidelity restoration, and Restormer (Zamir et al., 2022) combines 
MDTA and GDFN modules to efficiently model long-range 
pixel dependencies while maintaining high-resolution detail. 
Zhang et al. (2024b) proposed STUNet, a Swin Transformer-
based U-Net for blind image restoration, demonstrating strong 
performance under complex and unknown degradations. Li 
et al. (2025) developed a memory-augmented Transformer 
for document stain removal, highlighting its effectiveness 
in handling background interference. Zhang et al. (2024a) 
introduced a dual-attention network combining convolution 
and Transformer modules, offering useful insights for degraded 
input restoration. 

In the context of integrating large language models (LLMs) 
for OCR post-processing, recent studies have increasingly explored 
combining LLMs with OCR refinement to enhance text extraction 
and structural understanding in complex document scenarios. 
PreP-OCR proposes joint image restoration and LLM-based 
correction to improve OCR quality (Guan et al., 2025); DocLayLLM 
integrates visual patch and spatial embeddings into LLM input 

for joint modeling of text and layout (Liao et al., 2025); LapDoc 
introduces rule-based layout prompts to enhance structural 
perception of LLMs (Lamott et al., 2024); and LayTextLLM encodes 
bounding boxes as tokens interleaved with text to unify content and 
layout representation (Lu et al., 2024). 

Despite advancements in both CNN- and Transformer-based 
restoration and OCR models, there remains a lack of specialized 
solutions for secondary printed industrial documents. These 
documents often contain repetitive stamps, visual degradation, 
and key-field dislocation, which are insufficiently handled by 
current approaches. Although large language models have shown 
strong performance in OCR correction and post-processing, they 
still struggle with complex cases such as character overlaps 
and misaligned field matching, often resulting in incomplete 
recognition or semantic misinterpretation. This study aims to 
address these challenges by proposing an integrated framework that 
combines document image restoration with key-field alignment, 
specifically designed to enhance OCR accuracy for industrial 
document digitization. 

3 Methods 

3.1 Algorithm flowchart 

The paper proposes an efficient preprocessing framework for 
OCR to address the common issues of character overlap and 
misalignment in industrial invoices during the secondary printing 
process, significantly improving the accuracy of subsequent 
text recognition. The method primarily consists of two stages: 
document image restoration and misaligned content correction 
with image fusion, as illustrated in Figure 2. 
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FIGURE 3 

The proposed text overlap restoration network (TORNet) structure. 

3.1.1 Document image restoration 
Industrial invoices often suffer from image degradation, 

such as character overlap and positional shifts, due to repeated 
printing, stamping, or multiple scans. These issues significantly 
hinder Optical Character Recognition (OCR) performance. To 
address this, we propose the use of a Text Overlap Restoration 
Network (TORNet) to recover the original document layout. This 
model reconstructs degraded images into two separate layers: a 
foreground image and a background image, both free from visual 
interference and redundant artifacts. The separation of these layers 
facilitates precise structural alignment in subsequent stages. 

3.1.2 Misaligned content correction and image 
fusion 

Initially, Hough line detection is employed on both the 
foreground and background restoration images, succeeded by 
affine transformation to rectify horizontal misalignments. After 
geometric correction, adaptive thresholding and morphological 
dilation are applied to extract text regions within key reference 
fields and determine their spatial coordinates. Based on the 
positional relationships among these reference fields, a translation 
matrix is constructed to adjust the foreground image, ensuring 
accurate alignment with the background. Finally, the corrected 
foreground is pixel-wise fused with the background image to 
produce a clear document image free from character overlap and 

misalignment. This refined image is then passed to the OCR system, 
significantly enhancing recognition accuracy and stability. 

3.2 Restoration of document images with 
overlapping text 

This paper introduces an efficient Transformer-based 
architecture specifically designed for the restoration of text-
overlapped document images. To overcome the limitations of 
multi-head self-attention (MHSA) in modeling local details and 
the insufficient global context representation of CNNs, we propose 
a hybrid mechanism that combines attention and convolution to 
enhance hierarchical feature extraction. Additionally, we design 
a multi-scale feedforward network to extract features across 
multiple resolutions, effectively reducing detail loss and structural 
ambiguity in overlapped regions, thereby improving restoration 
performance on complex document images. 

3.2.1 Overall pipeline 
The network model proposed in this paper is shown in Figure 3. 

Given a low-quality image I ∈ RH×W×3 , the model first constructs 
a Patch Embedding layer through a convolutional layer to divide 
the input image into small chunks and to obtain the low-level 
feature embedding F0 ∈ R

H×W×C , where H × W represents 
the spatial dimensions and C is the number of channels. Next, 
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FIGURE 4 

Architecture of the MixAttention mechanism, with a parallel dual-branch module for global and local feature extraction. 

the shallow features F0 are transformed into deep features Fd ∈ 
R
H×W×2C via an encoder-decoder. 
Each level of the encoder-decoder consists of multiple 

Hybrid Feature Extraction (HFE) blocks, which increase in 
number from shallow to deep to enhance efficiency. The 
encoder processes high-resolution inputs, reducing spatial 
dimensions and expanding channel depth, while the decoder 
gradually recovers high-resolution representations from low-
resolution latent features Fl ∈ R

H/8×W/8×8C . Each HFE 
block combines a Dynamic Position Encoding (DPE) layer, 
a MixAttention mechanism, and a Multi-scale Feedforward 
Network (MS-FFN) to jointly model local and global information. 
The DPE layer adapts positional encoding based on the local 
and global context of the image, improving flexibility. The 
MixAttention mechanism merges the strengths of self-attention 
and convolution, enabling dynamic focus across multiple 
scales. Finally, the MS-FFN extracts features at various scales, 
addressing detail loss and structural complexity, especially in 
text overlap and distortion, improving the model’s sensitivity 
and accuracy. 

Patch Embedding and pixel-shuffle (Shi et al., 2016) are applied, 
respectively. To enhance the restoration effect, the encoder’s 
features are fused with the decoder through skip connections, and 
the number of channels in all layers (except the topmost layer) is 
halved by a 1 × 1 convolution operation after skip-connections. 
At the topmost layer, the HFE block aggregates the low-level 
image features of the encoder with the high-level features of the 
decoder, preserving the fine structure and texture details of the 
restored image. 

Subsequently, a refinement stage at high spatial resolution 
further enriches the deep features Fd. Finally, a residual image 
R ∈ R

H×W×3 is generated through a convolutional layer and 
added to the input image I to obtain the final restored image: 
Î = I + R. 

3.2.2 MixAttention mechanism 
The MixAttention mechanism combines the advantages of 

global and local feature extraction, enabling it to capture both 
global and local information in images. Unlike traditional self-
attention mechanisms, which focus only on global relationships, 
MixAttention dynamically adjusts the attention focus, allowing the 
model to adaptively extract multi-scale features from the image. 
Specifically, MixAttention designs a parallel dual-branch feature 
extraction module for global and local features, as shown in the 
Figure 4. which not only focuses on the overall structure of the 
image but also captures local details accurately. This structure 
enhances the model’s adaptability to complex images, improving 
its feature extraction capability and making it more flexible and 
efficient in handling various visual tasks. 

For the extracted feature map X ∈ R
H×W×C, it is first  

divided into two sub-feature maps {X1, X2} ∈ R
H×W×C/2 , along 

the channel dimensions. These are then separately fed into the 
global feature extraction (GFE) module and the local feature 
extraction(LFE) module, generating the corresponding feature 
maps {X 

1, X

2} ∈  RH×W×C/2 . Finally, the two extracted feature 

maps are aggregated by combining a 3×3 depthwise convolution, 
1×1 channel squeeze-and-expansion convolutions, and a residual 
connection. The formula is as follows: 

X1, X2 = Split(X) (1) 

X = Concat(GFE(X1), LFE(X2)) (2) 

Y = Conv(C/r→(G×C)) 
1×1 

 
Conv(C→C/r) 

1×1 

 
DWConv3×3(X) 

 
+ X 

(3) 
Specifically, the Global Feature Extraction (GFE) module 

captures global information in the image by processing the input 
feature map X1, focusing on the overall structure and long-range 
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contextual dependencies. This module effectively represents the 
spatial structure near the patch boundaries. This approach not 
only avoids the problems associated with reducing token counts 
using non-overlapping patches but also prevents the destruction 
of the spatial structure of patch boundaries, thereby reducing the 
degradation of token quality.To achieve this, the query matrix Q 
is first generated by applying a linear transformation to the input 
feature map X1: 

Q = Linear(X1) (4) 

Next, the key and value matrices K and V are obtained 
by applying a linear transformation to the sum of a depthwise 
convolution (DWConv3×3) on  X1 : 

K, V = Split 
 
Linear 

 
DWConv3×3(X1) + LR 

 
DWConv3×3(X1) 

 

(5) 

X1 = Softmax 

 
QKT 

√ 
d 

+ B 

 

V (6) 

Where LR(·) denotes the local refinement module instantiated 
by a 3 × 3 depthwise convolution, B is the relative position bias 
matrix of the spatial relationships in the encoded attention map, 
and d is the number of channels for each attention head. 

In contrast, the LFE module focuses on extracting fine-grained 
local information by processing the local regions of the input 
feature map X2, aiming to capture important features related to 
the image details. Given the input feature map X2 ∈ RH×W×C/2 , 
adaptive average pooling is used to aggregate the spatial context, 
compressing the spatial dimensions to K2 , and then forwarding 
it to two consecutive 1 × 1 convolutions to obtain the attention 
map A ∈ R(G×C/2)×K2 , where G denotes the number of attention 
groups. Next, A is reshaped into R(G×C/2)×K2 

, and a Softmax 
function is applied along the G-dimension to generate the attention 
weights A ∈ RG×C/2×K2 . Finally, A is multiplied element-wise 
by a set of learnable parameters P ∈ RG×C/2×K2 

, and the output 
is summed over the G-dimension to obtain the input-dependent 
deep convolution kernel W ∈ RC/2×K2 . The deep convolution 
kernel W is convolved with the input feature map X2, capturing 
fine-grained feature details at multiple scales, thereby enhancing 
the feature representation capability. Specifically, the LFE operation 
can be expressed as: 

A = Conv(C/2r→(G×C/2) 
1×1 

 
Conv(C/2r→(G×C/2)) 

1×1 

 
AdaptivePool(X2) 

 

(7) 

A = Softmax(Reshape(A)) (8) 

W = 
G 

i=0 

PiAi (9) 

X2 = W ∗ X2 (10) 

where In which, * denotes the convolution operation. 

3.2.3 Multi-scale feedforward network (MS-FFN) 
Multi-scale feed-forward network (MS-FFN) uses four parallel 

deep convolutions of different scales to enhance the feature 
representation by cascading different scale convolutional layers 
with different feature information extracted; each convolution 
handles a quarter of the channels, which can efficiently capture the 
multi-scale information, and solves the problem that the number of 
channels in the implicit layer is larger, and the single-scaled token 
aggregation cannot be adequately represented; 

¯ X = σ (Conv1×1(X)) (11) 

X̄ 
i = Split(X̄) (12) 

Fsi = Convsi×si ( X̄ 
i) (13) 

F = Concat(F1, F3, . . . , Fsi) (14) 

MS-FFN(X) = σ (Conv1×1(F + X̄)) (15) 

Where σ (·) denotes the LeakyReLU activation function, i ∈ 
[1, 2, 3, 4], si represents the kernel size, si ∈ [1, 3, 5, 7], and 
Fsi corresponds to the output of the convolution layer with the 
respective kernel size. 

3.2.4 Optimizer and loss function 
The TORNet in this paper uses the Adam optimizer, which 

can adaptively match the learning rate for different parameters, 
effectively improving the network’s convergence speed and 
speeding it up to the optimum. In the image denoising and 
restoration task, the Charbonnier loss function is generally used 
for training. The Charbonnier loss is a smooth L1 loss, which has 
better numerical stability for small errors, especially when the error 
is close to zero, and can avoid the problem of gradient explosion. 
At the same time, the Charbonnier loss function is insensitive 
to outliers, so it has good robustness when dealing with data 
containing noise or outliers. 

LCharbonnier(pred, target) = (pred − target)2 +  2 (16) 

Where pred denotes the output predicted by the model, and 
target denotes the outcome in the model wanted to, i.e., the label. 

3.3 Alignment and the fusion of the 
restored misaligned content from 
secondary printing 

In the secondary printing of misaligned documents, the 
misalignment of field correspondences and form contents can cause 
accuracy problems for subsequent OCR recognition. Therefore, 
it is necessary to correct the recovered image and perform field 
matching alignment to ensure that the text information of the 
image does not overlap when the recovered foreground and 
background document images are image fused. 

Firstly, the overlapping misaligned document images are 
fed into the trained text misalignment overlap restoration 
network respectively to obtain text images containing only 
foreground text information and text images containing only 
background information; Next, the text tilt angle in the image is 
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detected using the Hough straight-line transform. The foreground 
and background text pictures are corrected horizontally by 
affine transform, respectively, and the corrected foreground 
and background pictures are obtained. Subsequently, adaptive 
thresholding and morphological expansion operations are used to 
extract the text regions of the reference fields in the Foreground 
and background images. Adaptive thresholding separates the text 
region by calculating the dynamic threshold of the local region with 
the equation: 

T(x, y) = mean(Nx,y) − C (17) 

Where, Nx,y is the neighborhood pixels around the current 
pixel (x, y), mean(Nx,y) is the mean value of the neighborhood 
pixels, and C is a constant to adjust the threshold value. Based on 
this threshold T(x, y), a pixel is labeled as foreground if I(x, y) ≥ 
T(x, y), and background otherwise.The morphological expansion 
operation expands the foreground region by structuring elements 
to fill in gaps that may exist after thresholding, with the formula: 

Idilated(x, y) = max 
(m,n)∈S 

I(x + m, y + n) (18) 

Where I(x, y) is the original image, S is a structuring element, 
usually a small rectangular or circular structuring element, and 
(m, n) is the displacement of the structuring element. The 
expansion operation expands the pixel values of the foreground 
region in the image into the neighborhood, thus filling the gaps in 
the text region and enhancing the connectivity of the text region 
in the foreground and background images. Through the above 
processing, the text regions of the reference fields in the front and 
back view images can be extracted. 

Through the above process, the text regions corresponding 
to the reference fields in the foreground and background images 
can be extracted. Assume a Cartesian coordinate system with 
the origin at the top-left corner, where the x-axis increases from 
left to right and the y-axis decreases from top to bottom (i.e., 
negative direction). The position of each reference field is recorded 
accordingly. 

Let xleft, fg and ybottom, fg denote the left and bottom boundaries 
of the foreground reference field, with length Lfg and height Hfg. 
Similarly, let xleft, bg and ybottom, bg represent the corresponding 
boundaries of the background field, with length Lbg and height 
Hbg. To avoid overlapping text during image fusion, the spatial 
offsets between the foreground and background reference fields are 
calculated with correction terms. The displacement in the x and y 
directions is given by: 

x = xleft, fg − xleft, bg + dx (19) 

y = ybottom, fg − ybottom, bg + dy (20) 

Where dx, dy are correction values used to maintain proper text 
spacing during fusion and to prevent overlapping of foreground 
and background images’ text areas. The values of dx and dy depend 
on the spatial distribution of the reference text fields. If the text 
fields are horizontally aligned, and the background reference text 
field is on the left while the foreground reference field is on the 
right, the correction values are defined as: 

dy = 0.1; dx = 0.1 + Lbg (21) 

Conversely, if the foreground field precedes the background 
field, the values are: 

dy = 0.1; dx = 0.1 − Lbg (22) 

For vertically aligned fields, where the background field is 
located above the foreground field, the corrections are set as: 

dx = 0.1; dy = 0.1 − Hbg (23) 

If the foreground field is above the background field, then: 

dx = 0.1; dy = 0.1 + Hfg (24) 

According to these, the offset in the X and Y directions is 
obtained. Construct the translation matrix Mtranslation. 

Mtranslation = 
1 0 x 
0 1 y 

(25) 

The foreground text image is translated by affine 
transformation to adjust its reference field position to the 
position of the background reference field while retaining the 
appropriate spacing. Finally, the corrected foreground and 
background text images are fused at the pixel level to generate 
a document image with non-overlapping text and corrected 
misalignment. This process effectively solves the recognition errors 
caused by text misalignment and provides accurate and reliable 
input for subsequent OCR. See Supplementary Material Section 1, 
Algorithm 1 and Figure S1 for the detailed Image Correction and 
Key Field Alignment algorithm and flow diagram. 

4 Experiment and analysis 

4.1 Experiment dataset 

In this study, a document image dataset was constructed 
specifically for the task of text overlap restoration. The dataset 
comprises 500 overlapping document images–including both real 
and synthetic samples–along with their corresponding foreground 
and background images. All three image types are precisely 
aligned in the pixel space, ensuring consistent annotation and 
high spatial registration accuracy. Real images were collected from 
actual printing scenarios, while synthetic images were generated by 
applying geometric transformations and image fusion techniques 
to simulate common text overlap patterns, thereby enhancing the 
diversity and coverage of the dataset.To improve training efficiency 
and the accuracy of detail restoration, all images were cropped into 
128 × 128-pixel patches. Invalid samples were removed through a 
cleaning process, resulting in a total of 127,017 valid image patches. 
The dataset was subsequently divided into training, validation, 
and test sets in an 8:1:1 ratio, covering the three categories of 
data: overlapping images (as model inputs), foreground images (for 
foreground supervision), and background images (for background 
supervision). An illustration of the dataset structure is shown 
in Figure 5. See Supplementary Material Section 3, Figure S3 for 
detailed dataset production procedures, including model input, 
foreground label, and background label. 
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FIGURE 5 

Schematic diagram of the dataset (model input, foreground label, background label). 

Based on this dataset, two subtasks were designed: foreground 
text restoration and background text restoration. Both subtasks 
take overlapping images as input, with the foreground or 
background images serving as supervision labels, respectively. 
These tasks are used to evaluate the model’s ability to separate and 
reconstruct text content under conditions of visual overlap. 

Although this study primarily focuses on the restoration of 
document images with text overlap, we further evaluate the 
generalization ability and robustness of the proposed model 
by applying it to a standard image denoising task involving 
uniformly distributed noise in color images. This auxiliary 
experiment serves two main purposes: (1) to demonstrate that 
the proposed architecture is not limited to document-specific 
degradations but is also effective for general-purpose image 
restoration; and (2) to showcase the model’s capability in handling 
various noise types, including the complex and uneven noise 
patterns commonly encountered in secondary printing scenarios. 
To evaluate performance on the denoising task, we utilize the 
publicly available DFWB dataset for training, which comprises 
four sub-datasets: DIV2K (Agustsson and Timofte, 2017) (800 
images), Flickr2K (Timofte et al., 2017) (2,650 images), BSD500 
(Arbelaez et al., 2010) (400 images), and WED (Ma et al., 2016) 
(4,744 images). For testing, we adopt four widely used benchmark 
datasets: CBSD68 (Martin et al., 2001), Kodak24 (Franzen, 1999), 
McMaster (Zhang et al., 2011), and Urban100 (Huang et al., 2015). 
Specifically, CBSD68 contains 68 color images of varying sizes; 
Kodak24 consists of 24 uniformly sized images featuring people 
and landscapes; McMaster provides 18 natural scene images; and 
Urban100 includes 100 images focusing on urban architectural 
structures. 

4.2 Experimental setup 

All experiments are conducted using the PyTorch framework 
on a single 24GB NVIDIA GeForce RTX 4090 GPU. During model 

training, the depth of each layer of Hybrid Feature Extraction 
(HFE) Block is set to [3, 3, 9, 3], and the number of final image 
optimization blocks is 4. The feature dimensions of the coding and 
decoding phases are [48, 96, 192, 384], and the size of the Local 
Feature Extractor Branch (LFE) convolution kernel is uniformly 
[7, 7, 7, 7]. The different layers use the MixAttention mechanism 
with the number of attention heads set to [1, 2, 4, 8]. For training, 
the input training single document image size is 128 × 128, the 
optimizer uses Adam to minimize the loss function for parameter 
updating, and the optimizer parameters β1 and β2 are set to 0.9 and 
0.999, respectively. The initial learning rate is set to 2 × 10−4 . 

4.3 Evaluation indicators 

In the foreground and background restoration experiments for 
document images, we adopt Peak Signal-to-Noise Ratio (PSNR) 
and Structural Similarity Index Measure (SSIM) as evaluation 
metrics to assess the quality of image restoration. 

To comprehensively evaluate the effectiveness of document 
image restoration and alignment, this study introduces two 
performance metrics grounded in OCR recognition results: 
Character Accuracy Rate (CAR) and Field Matching Accuracy 
Rate (FMAR). These indicators are designed to quantitatively 
assess the precision of OCR outputs, particularly with respect to 
the recognition and localization of critical textual fields following 
alignment. 

The Character Accuracy Rate (CAR) measures the proportion 
of correctly recognized characters by the OCR system, The 
calculation formula is as follows: 

CAR = 
Ccorrect 

Ctotal 
× 100% (26) 

where Ccorrect denotes the number of correctly recognized 
characters, and Ctotal represents the total number of characters. 
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TABLE 1 Quantitative comparison of foreground and background image restoration performance. 

Model Params (M) FLOPs (G) Foreground Background 

PSNR SSIM PSNR SSIM 

DnCNN 0.671 11.01 35.81 0.973 35.92 0.975 

RRDB 16.624 252.00 35.93 0.974 36.12 0.978 

DPIR 32.640 35.893 35.98 0.976 36.29 0.979 

SwinIR 11.504 197.00 36.06 0.977 36.31 0.981 

Restormer 26.112 38.721 36.13 0.978 36.32 0.981 

STUNet 17.79 34.27 36.21 0.978 36.31 0.982 

TORNet (Ours) 17.342 30.777 36.38 0.979 36.43 0.982 

Bold values indicate the best performance for each column. 

Field Matching Accuracy Rate (FMAR) evaluates the structural 
accuracy of key field recognition and alignment. It is calculated as: 

FMAR = 
Number of correctly matched fields 

Total number of fields 
× 100% (27) 

FMAR is particularly critical in application scenarios where 
structured data extraction is required, such as in industrial 
document processing involving batch numbers, dates, brands, 
and quantities. A higher FMAR indicates that the aligned 
document exhibits clearer layout structures and more reliable 
textual segmentation, facilitating both accurate OCR recognition 
and dependable downstream data analytics. Conversely, a lower 
FMAR implies the presence of residual misalignment or field 
confusion, which may hinder effective information retrieval. 

4.4 Image restoration results 

Table 1 presents the performance of each model in 
reconstructing and restoring tobacco document images with 
texts overlapping two different colors. To validate the proposed 
models’ effectiveness, we compare them with the classical 
restoration models DnCNN (Zhang et al., 2016), RRDB (Ma 
et al., 2020), DPIR (Zhang et al., 2022), SwinIR (Liang et al., 2021), 
Restormer (Zamir et al., 2022), and STUGNet (Zhang et al., 2024b). 

As shown in Table 1, the proposed TORNet exhibits superior 
performance in reconstructing foreground text in secondary-
printed documents. Specifically, it outperforms SwinIR and 
Restormer by 0.32 dB and 0.25 dB in PSNR, respectively, and 
shows a PSNR improvement of 0.40–0.57 dB compared to 
DnCNN, RRDB, and DPIR. It also surpasses STUNet by 0.17 dB 
in PSNR and achieves a slightly better SSIM. 

For background text restoration, TORNet also achieves 
competitive results, surpassing SwinIR (Liang et al., 2021) and 
Restormer (Zamir et al., 2022) by  0.12 dB and 0.11 dB, respectively, 
and outperforming DnCNN, RRDB, DPIR, and STUNet by 
margins ranging from 0.12 dB to 0.51 dB. 

In terms of model complexity, under an input resolution of 
128×128, TORNet strikes a favorable balance between parameter 
count (Parameters/M) and computational cost (FLOPs/G), while 
achieving the highest PSNR performance across all evaluated 
models. 

Figure 6 shows the visual effect of restoring the foreground and 
background information image of a tobacco document. It can be 
seen that DnCNN (Zhang et al., 2016) and RRDB (Ma et al., 2020) 
models show more obvious text loss during denoising; the other 
models, including STUNet, perform slightly better, though some 
shadowed or sticky artifacts remain. 

4.5 Gaussian color image denoising results 

Table 2 demonstrates the results of color image denoising. 
To verify the effectiveness of the proposed method in this paper, 
we compared the proposed model with several denoising models 
[DnCNN (Zhang et al., 2016), FFDNet (Zhang et al., 2018a), DSNet 
(Peng et al., 2019), RPCNN (Xia and Chakrabarti, 2020), and 
BRDNet (Tian et al., 2020)] at noise levels of 15, 25 and 50. As can 
be seen from the data in the table, the model in this paper exhibits 
superior image-denoising results in most PSNR evaluation metrics. 
In particular, on the Urban100 (Huang et al., 2015) dataset, the 
PSNR is improved by 0.83 dB, 0.82 dB, and 0.66 dB at noise levels of 
15, 25, and 50, respectively, compared with the BRDNet (Tian et al., 
2020) model. Figure 7 illustrates the color image denoising results 
for noise level σ = 50. The figure shows that the first three models 
still have noise after denoising and unsharp corners in the edge 
part. Despite the improvement of RPCNN (Xia and Chakrabarti, 
2020) and BRDNet (Tian et al., 2020) the edges of the windows of 
the distant buildings are still blurred. The method proposed in this 
paper successfully avoids these problems, and the denoising effect 
is significantly better than other models. 

4.6 OCR recognition results 

Table 3 presents the quantitative evaluation of OCR 
performance across different preprocessing stages using three 
mainstream OCR engines: PaddleOCR, Tencent OCR, and 
Youdao OCR. The evaluation is conducted on a dataset of 
100 document images featuring various degrees of character 
misalignment and overlap, thereby ensuring a comprehensive and 
realistic benchmark for OCR under challenging conditions. Three 
progressive configurations are assessed: (1) no preprocessing, 
(2) image restoration only (TORNet), and (3) combined image 
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FIGURE 6 

Visual comparison of foreground and background restoration results. 

restoration and text field alignment fusion (TFAF). In the baseline 
scenario without any preprocessing (Test IDs 1-3), recognition 
accuracy remains relatively low, ranging from 67% to 69%, while 
field match accuracy fluctuates between 58% and 60%. This 
outcome suggests that severe character overlap and misalignment 
in the raw images substantially hinder OCR performance. When 
image restoration is applied independently (Test IDs 4-6), both 
metrics improve significantly. Recognition accuracy increases to 
81%–83%, and field match accuracy rises to 73%–74%, indicating 
that enhanced visual clarity facilitates more accurate character 
identification. The most substantial performance gains are 
observed when both image restoration and field alignment fusion 
are applied (Test IDs 7-9). PaddleOCR, for example, achieves 93% 
recognition accuracy and 94% field match accuracy. Tencent OCR 
and Youdao OCR exhibit comparable improvements, reaching 
93%/92% and 92%/91%, respectively. These results highlight 
the complementary benefits of field-level semantic structuring in 
further boosting recognition consistency and precision. Overall, the 
proposed multi-stage preprocessing pipeline consistently improves 
OCR performance across all tested engines, demonstrating strong 
generalizability and effectiveness in enhancing both low-level text 
recognition and high-level field-level extraction accuracy. 

Figure 8a illustrates the OCR recognition results without 
applying any preprocessing, while Figure 8b presents sample 
results after employing the proposed method. As observed, the 
unprocessed images lead to chaotic OCR outputs, with frequent 
character recognition errors and misaligned field matching, making 
accurate information extraction difficult. In contrast, the images 
processed by our method exhibit clear improvements, with 
correctly recognized characters and accurately matched key fields, 
demonstrating the effectiveness of the proposed preprocessing 
pipeline. See Supplementary Material Section 2, Figure S2 and 
Table S1 for a more intuitive comparison of text recognition results 
and benchmark model performance. 

4.7 Ablation experiments 

4.7.1 Effectiveness of individual components in 
TORNet 

Table 4 presents the quantitative results of foreground and 
background image restoration using different variants of the 
proposed TORNet. The analysis focuses on evaluating the 
contribution of each individual component to the overall 
performance. The baseline model employs a plain U-shaped 
Transformer as the backbone, serving as a reference for subsequent 
module comparisons. 

4.7.1.1 Effect of multi-scale feature fusion network 
(MS-FNN) 

Introducing the MS-FNN module enables the model to 
effectively capture and integrate multi-resolution features. This 
results in a significant improvement in restoration performance. 
Compared to the baseline, MS-FNN enhances the model’s 
capacity to recover fine-grained foreground structures and spatial 
background consistency. 

4.7.1.2 Effect of mixed attention mechanism 
(MixAttention) 

Integrating the MixAttention module further boosts the 
model’s representational capacity by jointly modeling local detail 
and global context. With MixAttention alone, the model achieves 
a foreground PSNR of 36.14 dB and SSIM of 0.976, while the 
background PSNR and SSIM reach 36.31 dB and 0.979, respectively. 
These results highlight the role of diverse attention mechanisms in 
improving restoration fidelity. 

Furthermore, When both MS-FNN and MixAttention are 
combined, the complete TORNet model achieves the best 
performance across all metrics, with a foreground PSNR of 36.38 dB 
and SSIM of 0.979, and a background PSNR of 36.43 dB and SSIM 
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of 0.983. These results demonstrate the complementary nature of 
the two modules and validate their joint effectiveness in enhancing 
restoration quality. 

Furthermore, Figure 9 presents the restoration results of 
different methods on typical samples. It can be observed that 
while the baseline model can restore the general contour, 
it suffers from significant blurring in the details and edges. 
After introducing MS-FNN, the local structures of the 
image are clearer, and the edge transitions become more 
natural. The combination with MixAttention further improves 
texture restoration and noise suppression. Ultimately, the 
TORNet restoration results visually align closely with the 
original images, highlighting the significant advantages of the 
proposed network. 

4.7.2 Downsampling schemes for document 
image restoration 

The selection of downsampling strategies is crucial in 
balancing a model’s parameter complexity, computational cost, 
and restoration quality. To systematically evaluate the impact 
of different downsampling modules on document foreground 
restoration, we compare two commonly employed techniques: 
Patch Embedding and Pixel-Unshuffle. With all other architectural 
components held constant, only the downsampling module is 
varied. We assess each configuration based on the number of 
parameters, floating-point operations (FLOPs), and peak signal-to-
noise ratio (PSNR). As presented in Table 5, the Pixel-Unshuffle 
method results in a reduction of ∼ 0.655 M parameters relative 
to Patch Embedding, making it a more lightweight option for 
scenarios with stringent model size constraints. However, the 
computational cost shows negligible difference between the two 
methods. In terms of restoration quality, Patch Embedding yields 
a marginally higher PSNR (36.38 vs. 36.23), suggesting that its 
patch-based representation facilitates richer feature extraction 
during downsampling, thereby enhancing document restoration 
performance. 

4.7.3 Effect of initial patch embedding kernel size 
To investigate the effect of kernel size in the initial Patch 

Embedding layer, we compare multiple configurations—3×3, 5×5, 
7 × 7, and 9 × 9—while keeping all other components of the 
model unchanged. The quantitative results are presented in Table 6. 
Notably, the kernel size used in the initial convolutional projection 
directly determines the patch size fed into the Transformer. 
Therefore, these experiments essentially evaluate the impact 
of different patch sizes (i.e., spatial granularity) on the final 
performance. Smaller kernels correspond to finer patch division, 
allowing the model to focus on local texture variations, whereas 
larger kernels aggregate wider context in each patch. As shown in 
the table, increasing the kernel size from 3 × 3 to 7  × 7 yields 
a PSNR gain of 0.16 dB, with negligible increases in parameter 
count and computational cost. Introducing the 5 × 5 kernel results 
in an intermediate improvement of 0.07 dB over the baseline, 
while the 9 × 9 configuration slightly underperforms compared 
to 7 × 7, indicating a potential saturation or decline beyond 
a certain receptive field size. This improvement suggests that a 
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FIGURE 7 

Color image denoising results at σ = 50. 

larger kernel facilitates more effective global context capture at 
the early feature extraction stage, thereby enhancing the quality 
of image reconstruction. However, excessively large kernels such 
as 9 × 9 may introduce redundant context or over-smooth 
local patterns, leading to marginal degradation. These findings 
underscore the importance of initial receptive field size (i.e., patch 
size) in tasks involving complex spatial patterns such as overlapping 
text restoration. 

4.7.4 Dimensional changes on model 
performance 

Table 7 compares different feature dimension configurations 
in terms of reconstruction performance and computational cost. 
The configuration [48, 96, 224, 448], despite having higher model 
complexity with 22.565 M parameters and 34.037G FLOPs, 
yields a lower PSNR of 35.93 dB. In contrast, the configuration 
[48, 96, 192, 384] achieves a superior PSNR of 36.38 dB while 
maintaining a more compact model with only 17.342 M parameters 
and 30.778G FLOPs. These results indicate that increasing feature 
dimensions beyond a certain threshold may introduce redundancy, 
leading to diminished performance.The lower-dimensional 
configuration not only provides better reconstruction of fine image 
details but also exhibits enhanced suppression of background 
interference. Conversely, the higher-dimensional model tends 
to generate more visual artifacts and text degradation, further 
confirming the trade-off between model complexity and effective 
feature representation. 

4.7.5 Inference speed evaluation under varying 
input resolutions 

To evaluate the practical applicability of the proposed 
document restoration and alignment system, we assessed 
its end-to-end processing efficiency under varying input 
resolutions. All experiments were conducted using PyTorch 
1.13 on a single NVIDIA GeForce RTX 4090 GPU with 24 GB 
of memory. 

The complete pipeline comprises two primary stages: (1) 
document image restoration, and (2) key-field matching with 
alignment and fusion. We measured the average runtime (in 
seconds) for each stage using two representative input sizes (128 × 

TABLE 3 Quantitative evaluation of OCR performance improvements 
across progressive preprocessing stages. 

Test ID TORNet TFAF OCR API CAR (%) FMAR (%) 

1 × × Paddle OCR 69 59 

2 × × Tencent OCR 68 60 

3 × × Youdao OCR 67 58 

4  × Paddle OCR 81 74 

5  × Tencent OCR 81 73 

6  × Youdao OCR 83 74 

7   Paddle OCR 93 94 

8   Tencent OCR 93 92 

9   Youdao OCR 92 91 

128 and 512 × 512), and the results are summarized in Table 8. The  
impact of different input sizes on model performance is provided 
in Supplementary Material Section 3.1 and Table S2. 

The results demonstrate that our system achieves fast 
inference on low-resolution inputs, with a total average 
processing time of only 0.14 s per sample. For high-
resolution inputs (512 × 512), the processing time increases 
to ∼1.22 s, which remains acceptable for practical deployment 
in industrial scenarios. These findings confirm that the 
proposed method effectively balances restoration quality and 
computational efficiency. 

It is worth noting that actual runtime performance may vary 
depending on hardware specifications and input resolution. 
Therefore, system parameters can be flexibly adjusted to 
accommodate specific deployment requirements. 

5 Conclusion  

This paper presents a preprocessing framework for addressing 
text misalignment and overlap issues in secondary-printed 
documents, aiming to enhance OCR performance. The proposed 
method consists of two main components: (1) restoration of 
document images with overlapping and misaligned text, and (2) 
position alignment of content after restoration. To tackle the image 

Frontiers in Artificial Intelligence 13 frontiersin.org 

https://doi.org/10.3389/frai.2025.1616007
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wang et al. 10.3389/frai.2025.1616007 

FIGURE 8 

Visual results of OCR recognition before and after preprocessing. (a) OCR recognition on raw input image (PaddleOCR). (b) OCR recognition after 
preprocessing pipeline (PaddleOCR). 

restoration problem caused by secondary printing, we propose a 
specialized network named TORNet (Text Overlap Restoration 
Network). TORNet is designed to extract and restore structural 
and textual features in degraded industrial document images. 
Experimental results demonstrate that TORNet outperforms 
existing methods on industrial document datasets, achieving 
notable improvements in PSNR and qualitative performance. 
Furthermore, the proposed approach effectively separates 

overlapping textual information and reconstructs clear, standard 
document images with minimal misalignment. By correcting 
and aligning dislocated content through image processing 
techniques, the method significantly improves OCR accuracy in 
both character recognition and field-level matching. It addresses 
critical challenges arising from overlapping and misaligned 
text, providing a practical solution for robust OCR in complex 
real-world scenarios. 
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6 Discussion 

6.1 Comparison with commercial OCR 
solutions and industrial deployment 
outlook 

Our proposed TORNet framework focuses specifically 
on restoring and aligning overlapped and misaligned text in 
secondary printed industrial documents, which distinguishes 

TABLE 4 Quantitative comparison of different methods on foreground 
and background image restoration. 

Method Foreground 
image 

Background 
image 

PSNR SSIM PSNR SSIM 

BaseLine 35.26 0.967 35.45 0.971 

BaseLine + MS-FNN 35.63 0.971 35.74 0.975 

BaseLine + MixAttention 36.14 0.976 36.31 0.979 

TORNet (Ours) 36.38 0.979 36.43 0.983 

Bold values indicate the best performance for each column. 

it from many commercial OCR engines. While commercial 
systems such as PaddleOCR, Tencent OCR, and Youdao OCR 
offer robust text recognition, they often underperform when 
faced with severely degraded or overlapped inputs without prior 
image enhancement. TORNet integrates advanced image 
restoration with key-field alignment to convert complex 
document images into cleaner OCR inputs, significantly 
improving recognition accuracy as demonstrated in our 
experiments. Regarding industrial deployment, the method 
has been successfully integrated into backend processing pipelines 
of tobacco industry document digitization systems, proving 
its practical viability. See Supplementary Material Section 3.2, 
Figures S4–S8 for practical deployment cases in industrial 

TABLE 5 Comparison of downsampling methods for foreground 
restoration. 

Downsampling 
method 

Parameters 
(M) 

FLOPs 
(G) 

PSNR 

Pixel-unshuffle 16.687 30.777 36.23 

Patch-embedding 17.342 30.778 36.38 

Bold values indicate the best performance for each column. 

FIGURE 9 

Comparison chart of ablation experiments. 
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TABLE 6 Effect of initial patch embedding kernel size on foreground 
restoration performance. 

Kernel size Params (M) FLOPs (G) PSNR 

3× 3 17.336 30.684 36.22 

5× 5 17.338 30.721 36.29 

7× 7 17.342 30.778 36.38 

9× 9 17.347 30.854 36.36 

Bold values indicate the best performance for each column. 

TABLE 7 Effect of feature dimension configuration on restoration quality. 

Dimensions Parameters (M) FLOPs (G) PSNR 

[48, 96, 224, 448] 22.565 34.037 35.93 

[48, 96, 192, 384] 17.342 30.778 36.38 

Bold values indicate the best performance for each column. 

TABLE 8 Average runtime per sample (in seconds) under different input 
resolutions. 

Image size Restoration 
time (s) 

Alignment 
time (s) 

Total time 
(s) 

128 × 128 0.13 0.012 0.14 

512 × 512 1.18 0.038 1.22 

systems. Nonetheless, real-time performance and robustness 
under varying acquisition conditions remain to be improved. 
Future work will focus on enhancing efficiency and 
expanding adaptability to diverse industrial document types 
and scenarios. 

6.2 Limitations and future work 

Despite the promising results, several limitations exist. 
First, the current implementation does not fully meet real-
time processing requirements for high-throughput industrial 
environments. Second, the restoration accuracy is affected by 
external factors such as variable lighting conditions and non-
ideal camera angles; in particular, colored lighting (e.g., red or 
blue) can degrade character visibility and feature extraction. Third, 
while our model performs well on industrial printed documents, 
its generalization to other document types (e.g., handwritten 
forms, multilingual documents) requires further investigation and 
potential adaptation. Addressing these challenges will be the focus 
of our future research to improve the model’s robustness, efficiency, 
and generalizability. 
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