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Introduction: The integration of large language models (LLMs) into healthcare
holds immense promise, but also raises critical challenges, particularly regarding
the interpretability and reliability of their reasoning processes. While models
like DeepSeek R1-which incorporates explicit reasoning steps-show promise in
enhancing performance and explainability, their alignment with domain-specific
expert reasoning remains understudied.

Methods: This paper evaluates the medical reasoning capabilities of DeepSeek
R1, comparing its outputs to the reasoning patterns of medical domain experts.

Results: Through qualitative and quantitative analyses of 100 diverse clinical
cases from the MedQA dataset, we demonstrate that DeepSeek R1 achieves
93% diagnostic accuracy and shows patterns of medical reasoning. Analysis of
the seven error cases revealed several recurring errors: anchoring bias, di�culty
integrating conflicting data, limited consideration of alternative diagnoses,
overthinking, incomplete knowledge, and prioritizing definitive treatment over
crucial intermediate steps.

Discussion: These findings highlight areas for improvement in LLM reasoning
for medical applications. Notably the length of reasoning was important with
longer responses having a higher probability for error. The marked disparity in
reasoning length suggests that extended explanations may signal uncertainty
or reflect attempts to rationalize incorrect conclusions. Shorter responses (e.g.,
under 5,000 characters) were strongly associated with accuracy, providing
a practical threshold for assessing confidence in model-generated answers.
Beyond observed reasoning errors, the LLM demonstrated sound clinical
judgment by systematically evaluating patient information, forming a di�erential
diagnosis, and selecting appropriate treatment based on established guidelines,
drug e�cacy, resistance patterns, and patient-specific factors. This ability to
integrate complex information and apply clinical knowledge highlights the
potential of LLMs for supporting medical decision-making through artificial
medical reasoning.
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1 Introduction

The accelerating adoption of artificial intelligence (AI) in healthcare, particularly

large language models (LLMs), presents unprecedented opportunities to augment clinical

decision-making and potentially improve patient outcomes. Clinical reasoning, the

cornerstone of medical practice, is a complex cognitive process where practitioners

integrate heterogeneous data streams, apply specialized knowledge frameworks, and

navigate uncertainty to arrive at diagnostic and therapeutic decisions (Jay et al., 2024;

Sudacka et al., 2023). This high-stakes process remains vulnerable to systemic failures, as

evidenced by research suggestingmedical errors contribute to over 250,000 deaths annually
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in the US, making it the third leading cause of death. Medical error

includes unintended acts, execution failures, planning errors, or

deviations from care processes that may cause harm (Makary and

Daniel, 2016).

These challenges are exacerbated as healthcare systems

worldwide face mounting pressures from workforce shortages

(World Health Organization, 2023) and increasing diagnostic

complexity. In this strained environment, LLMs have emerged as

potential aids to support clinical decision-making by potentially

reducing cognitive burdens and mitigating error risks. However,

the integration of these systems into medical workflows demands

rigorous examination of their reasoning capabilities—not just

their factual knowledge, but their ability to emulate the nuanced

cognitive processes of expert clinicians while addressing systemic

vulnerabilities in care delivery.

1.1 Clinical reasoning in healthcare

Clinical reasoning is an essential skill for healthcare

professionals, particularly physicians (Crescitelli et al., 2019;

Durning et al., 2024). It encompasses all aspects of clinical

practice, including patient management, treatment decisions, and

ongoing care (Crescitelli et al., 2019). While extensive research

has focused on this area, challenges remain in understanding and

implementing effective clinical reasoning (Yazdani and Abardeh,

2019).

A tension exists between explicit, quantitative approaches

and the inherent limitations of human cognition, leading to

the recognition that clinical reasoning involves both analytical

and non-analytical processes, as described in dual-process theory

(Pelaccia et al., 2011; Ferreira et al., 2010). Understanding how

clinicians utilize both System 1 (intuitive) and System 2 (analytical)

reasoning is crucial for evaluating whether LLMs can replicate this

nuanced cognitive process.

1.1.1 Theoretical models and cognitive processes
Several theoretical frameworks have shaped our understanding

of clinical reasoning:

• Hypothetico-deductive reasoning: Clinicians generate and

test hypotheses using clinical data (Nierenberg, 2020). This

model, while foundational, has been refined as research

indicates clinical reasoning is more domain-specific and

knowledge-dependent than initially thought.

• Script theory: Medical knowledge is organized into “illness

scripts"–cognitive frameworks that integrate clinical findings,

risk factors, and pathophysiology (Gee et al., 2017; Charlin

et al., 2000). Evaluating LLMs requires assessing their ability

to form and utilize analogous script-like structures.

• Dual process theory: This influential framework describes

two systems of thinking: a fast, intuitive system (Type 1) and

a slower, analytical system (Type 2) (Gold et al., 2022; Custers,

2013). Clinicians flexibly switch between these modes based

on experience and situation (Boushehri et al., 2015). This

highlights the need to evaluate LLMs on both rapid, pattern-

recognition tasks and more complex, analytical scenarios.

• Situated and distributed cognition: Clinical reasoning is

influenced by environmental factors, patient interactions, and

team dynamics (Gold et al., 2022; Durning and Artino, 2011).

Factors like fatigue and time pressure can impact the process

(Torre et al., 2020). This suggests that evaluating LLMs

should consider their performance under various contextual

constraints.

Clinical reasoning operates through both rapid, intuitive

(System 1) and slower, analytical (System 2) cognitive processes.

System 1 relies on pattern recognition and experience to

generate immediate diagnostic hypotheses, while System 2 involves

deliberate, systematic evaluation of information (Shimozono et al.,

2020; Barbosa Chaves et al., 2022). Clinicians flexibly switch

between these modes depending on case complexity (Shimizu and

Tokuda, 2012; Olupeliyawa, 2017).

1.1.2 Development of expertise
The development of clinical reasoning expertise involves a

progression from deductive reasoning to the refinement of illness

scripts, enabling more efficient diagnostic processes (Shin, 2019;

Radović et al., 2022; Lubarsky et al., 2015). This involves mastering

data gathering, hypothesis generation, differential diagnosis, and

management planning (Weinstein et al., 2017). Assessing an LLM’s

ability to simulate this developmental trajectory could provide

insights into its potential for clinical reasoning.

1.1.3 Diagnostic errors
Diagnostic errors, often linked to reasoning failures, contribute

significantly to preventable adverse events (Mettarikanon and

Tawanwongsri, 2024; Zwaan et al., 2010). Cognitive errors,

particularly biases in information processing, are implicated in a

majority of diagnostic errors (Graber et al., 2005; Mukhopadhyay

and Choudhari, 2024; Schiff et al., 2013). Common biases include

representative heuristic, availability heuristic, and anchoring (Kim

and Lee, 2018). This underscores the importance of evaluating

LLMs for susceptibility to similar cognitive biases.

Structured reflection and deliberate analysis can improve

diagnostic accuracy (Moroz, 2017). However, the optimal balance

between intuitive and analytical reasoning depends on various

factors (Welch et al., 2017). This suggests that evaluating LLMs

should involve tasks that require both rapid, intuitive responses and

more deliberate, analytical reasoning.

The theoretical frameworks of clinical reasoning will inform

the evaluation of DeepSeek R1 by providing a basis for analyzing

its reasoning chains, identifying potential cognitive biases, and

assessing its ability to navigate complex clinical scenarios analogous

to human experts.

1.2 Bridging clinical-cognitive theory and
LLM computation

• Hypothetico-deductive reasoning: Similar to the step-wise

“chain-of-thought prompting (Wei et al., 2022) now used to

force models into enumerating intermediate inferences before
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committing to an answer; tokens in the hidden state act as

provisional hypotheses that are pruned or strengthened as new

context is ingested.

• Illness-script theory: Maps onto the Platonic representation

hypothesis arguing that large language modules appear to

learn the same representations independent of model (Huh

et al., 2024): every clinical vignette is pulled toward a stable,

cross-modal “ideal” embedding representing the prototypical

presentation and guideline-recommended next steps. In this

sense, both LLM knowledge and human knowledge of the

same concept can be argued to be stored in the same

conceptual place.

• Dual-process theory: Mirrored in the coexistence of fast,

implicit completions (Type 1: zero-shot or few-shot inference)

and slow, explicit reasoning traces (Type 2: deliberate chains

or tree-of-thought sampling).

• Situated/distributed cognition: Corresponds to retrieval-

augmented generation (RAG) (Lewis et al., 2020) andmixture-

of-experts (MoE) (Li and Zhou, 2024) systems, where external

knowledge bases or specialist subnetworks are dynamically

routed in–much like clinicians consult colleagues, guidelines,

or point-of-care tests when confronted with diagnostic

uncertainty.

1.3 Clinical reasoning by LLMs

The rapid evolution of LLMs presents both unprecedented

opportunities and profound challenges for healthcare applications.

While models like GPT-4 demonstrate remarkable performance

on medical licensing examinations, achieving 87.6% accuracy

on USMLE-style questions (Nori et al., 2023), performance

metrics alone provide insufficient evidence for clinical deployment.

Modern medicine requires reasoning that extends beyond factual

recall to encompass contextual adaptation, probabilistic weighting

of competing hypotheses, and adherence to evolving clinical

guidelines (Rajpurkar et al., 2022). A critical gap persists between

LLMs’ capacity to generate clinically plausible text and their ability

to replicate the disciplined reasoning processes that underlie safe

patient care (Singhal et al., 2023). Reasoning models such as

DeepSeek R1 (DeepSeek-AI et al., 2025) output reasoning tokens,

a chain of thought process of thinking in text before giving a text

response. By evaluating reasoning tokens we can evaluate whether

DeepSeek R1’s (DeepSeek-AI et al., 2025) reasoning aligns with

that of medical experts, particularly in complex clinical scenarios.

DeepSeek R1 is designed to generate explicit inference chains

through chain-of-thought prompting (DeepSeek-AI et al., 2025),

offering a degree of interpretability that is crucial for medical

applications. This paper focuses on DeepSeek R1 because its

architecture, which emphasizes explicit reasoning steps, provides a

unique opportunity to analyze the fidelity of its medical reasoning

in comparison to human experts. The model is available open

source which makes it possible to deploy on site for potential

handling of sensitive clinical data.

The urgency of this research stems from the accelerating real-

world deployment of medical LLMs despite unresolved limitations.

A 2023 survey found 38% of U.S. health systems piloting

LLM-based tools (Healthcare Information and Management

Systems Society , HIMSS), while regulatory approvals for AI

diagnostics increased 127% annually since 2020 (Benjamens et al.,

2020). The potential risks of deploying LLMs without a thorough

understanding of their reasoning abilities underscore the need for

this research. Our work bridges critical gaps by:

• Establishing validity metrics beyond answer correctness,

focusing on medical reasoning ability. We evaluate not

just *what* the LLM answers, but *how* it arrives at that

answer, analyzing the steps in its reasoning process. This

goes beyond simple accuracy metrics to assess the quality and

appropriateness of the reasoning itself.

• Identifying high-risk error patterns requiring mitigation,

such as anchoring bias, protocol violations, and

misinterpretations of lab values. Our analysis of DeepSeek

R1’s errors reveals specific cognitive biases and knowledge

gaps that could lead to patient harm. Identifying these

patterns is crucial for developing mitigation strategies.

• Providing a foundation for medically-grounded

architectures and training paradigms. By understanding

the strengths and weaknesses of current LLM reasoning,

we can inform the design of future models that better align

with clinical reasoning processes. This includes exploring

techniques like retrieval augmented generation (RAG) and

fine-tuning on medical reasoning data.

As LLMs transition from experimental tools to clinical assets,

it is imperative for reasoning transparency equivalent to human

practitioners. Through systematic evaluation of reasoning chain

fidelity, we lay the groundwork for AI systems that complement

rather than conflict with clinical judgment, harnessing LLMs’

potential while safeguarding evidence-based medicine.

One key benefit of reasoning models over previous LLMs

is the reasoning as a solution to the black box problem of

LLM outputs (Wang Y. et al., 2024). By following the models

reasoning we can evaluate their solutions and see what errors

in thinking or knowledge led to incorrect outcomes. This has

great potential both from a medical and a technical perspective.

From a medical perspective, the information can be valuable if

common LLM reasoning errors mimic errors that humans make.

If so we can use LLM reasoning errors to understand how we

can better train physicians to have robust medical reasoning

skills. From a technical perspective, medical reasoning outputs and

medical reasoning errors can be used for reasoning fine-tuning and

reinforcement learning training (DeepSeek-AI et al., 2025) as well

as understanding what data sources might need to be added to the

model to improve performance.

By evaluation reasoning we get a more granular understanding

of both what the model knows and doesn’t know and its reasoning

process and the errors within that reasoning process.

1.4 Current research on medical reasoning
by LLMs

Research has looked into techniques for improving medical

reasoning in LLMs. Lucas et al. (2024) showed that prompt

techniques could improve the reasoning capabilities of LLMs in
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the medical domain while, Wang J. et al. (2024) showed that RAG

joint training techniques reduced hallucinations and improved

reasoning capabilities. Maharana et al. (2025) found misaligned

between prediction and reasoning with LLMs predicting correctly

with faulty reasoning. Li et al. (2024) built a multi turn system for

medical evaluation of LLMs helpful for assessing clinical reasoning

ability. Recently Open AI releases HealthBench (Arora et al., 2025)

a structured evaluation of LLMs in the medical domain focusing

on the quality of outputs. Lai et al. (2025) trained and evaluated

a Medical Reasoning Vision Language models in a similar style to

DeepSeek R1. Similarly, Yu et al. (2025) fine tuned a LLM model

specifically for Medical Reasoning and Wu et al. (2025) created a

dataset for medical reasoning and fine-tuned a LLM for improved

medical reasoning.

On the relationship between use of LLMs and reasoning skills

(Goh et al., 2024) found no improvement in reasoning skills

by physicians when using LLMs as a tool in comparison to

conventional resources. In contrast, Borg et al. (2024) found that

a social robot powered by an LLM was useful in clinical training.

2 Methodology

2.1 Dataset

2.1.1 Evaluation corpus
The study utilized 100 clinically diverse questions from the

MedQA benchmark (Jin et al., 2021), a rigorously validated

dataset derived from professional medical board examinations

across multiple countries. MedQA’s questions follow the United

States Medical Licensing Examination (USMLE) format, testing

diagnostic reasoning through clinical vignettes requiring:

• Interpretation of patient histories and physical findings.

• Selection of appropriate diagnostic tests.

• Application of therapeutic guidelines.

• Integration of pathophysiology knowledge.

Questions were selected through random sampling to ensure

a cover of a range of specialties within medicine. The amount of

questions (n = 100) was selected to facilitate human analysis of

reasoning outputs.

2.2 Model implementation

We evaluated DeepSeek-R1 (DeepSeek-AI et al., 2025), a 671B

parameter mixture of expert reasoning-enhanced language model

built through a novel multi-stage training pipeline that combines

reinforcement learning and fine-tuning on reasoning data.We used

the DeepSeek-Reasoner model available through the DeepSeek API

with default params. The code used for calling the model including

data used and model outputs is available open source on Github.1

1 https://github.com/BirgerMoell/medical-reasoning

2.2.1 System prompt
Please analyze this medical question carefully. Consider

the relevant medical knowledge, clinical guidelines, and logical

reasoning needed. Then select the single most appropriate answer

choice. Provide your answer as just the letter (A, B, C, or D).

2.3 Error classification protocol

• Step 1: Ground truth alignment check

– Compare final answer to MedQA reference

• Step 2: Reasoning chain decomposition

– Break down into diagnostic/treatment decision points

– Map to clinical reasoning taxonomy

• Step 3: Expert validation

– Clinician review all errors and compared them to medical

reasoning best practice.

3 Results

Author S.A who is a active medical professional performed

analysis of the medical reasoning of the model. Additional analysis

focused on model performance and cognitive errors was done by

authors B.M and F.S. The model achieved an overall accuracy of

93% on the 100 MedQA questions. Our analysis focused on the

seven cases where the model made an error to identify patterns and

mechanisms of reasoning failures.

3.1 Reasoning analysis by medical
professional

3.1.1 Error case 1: neonatal bilious vomiting
The model’s reasoning is hampered by anchoring bias,

difficulty integrating conflicting data, limited consideration of

alternative diagnoses, overthinking, and a somewhat incomplete

understanding of the embryology involved. It struggles to efficiently

process the information and prioritize the most relevant clues,

hindering its ability to confidently reach the correct diagnosis.

3.1.2 Error case 2: respiratory failure
The model correctly identifies key information such as age,

risk factors, recent surgery and findings in the pulmonary artery.

It excessively focuses on histological composition and fibrous

remodeling, leading it to weighing other options as more likely.

3.1.3 Error case 3: acute limb ischemia
Limb ischemia is correctly identified. The model recognizes

atrial fibrillation as a key risk factor for arterial emboli, and

discusses Rutherford classifications and possible interventions
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(surgery vs. thrombolysis). It emphasizes the urgency of

revascularization and reasons that surgical thrombectomy

should be done because the patient’s presentation suggests an

embolic source and immediate threat to the limb. It incorrectly

weighs the definitive treatment as the answer and skips the

important “next" step of heparin drip.

3.1.4 Error case 4: porphyria cutanea tarda (PCT)
Recognizes porphyria cutanea tarda (PCT) based on

photosensitive blistering, dark urine, and hyperpigmentation. It

explains that treatment typically involves phlebotomy or low-dose

hydroxychloroquine. It dismisses invasive or less relevant options

(liver transplantation, thalidomide) and incorrectly concludes

that hydroxychloroquine (alternative first line treatment) is the

best next step, largely because the patient’s ferritin level is normal.

Normally, a professional would reason that phlebomoty (first-line

treatment) can induce remission even with normal iron stores and

hydroxychloroquine is used if patient cannot tolerate phlebotomy.

3.1.5 Error case 5: enzyme kinetics
Recognizes hexokinase and glucokinase properties as

candidates for an enzyme found inmost tissues that phosphorylates

glucose. It also correctly identifies it as hexokinase rather than

glucokinase, noting that hexokinase has a low Km (high affinity).

However, it concludes that this enzyme also has a high Vmax,

leading it to pick the incorrect answer (“Low X and high Y”). The

LLM’s final reasoning step confuses hexokinase’s lower capacity

(lower Vmax) with a higher capacity, thereby arriving at the wrong

choice.

3.1.6 Error case 6: preterm PDA management
It rightly identifies the continuous murmur as PDA-related

and distinguishes between drugs that keep the ductus open

(prostaglandin E1) and those that close it (indomethacin).

However, it overestimates how age limits indomethacin’s use,

leading it prematurely to favor surgical ligation. In actual clinical

practice, a stable 5-week-old would still warrant a trial of

pharmacologic closure before considering surgical options.

3.1.7 Error case 7: niacin flushing
Correctly identifies that the patient experiences niacin-induced

flushing after statin intolerance. It recognizes niacin as a likely cause

of her evening flushing and pruritus, and appropriately considers–

but rules out–alternative explanations such as carcinoid syndrome

and pheochromocytoma, given hints of cancer in the patient’s

history. However, it departs from a typical medical approach by

concluding that switching to fenofibrate (which primarily targets

elevated triglycerides rather than LDL) is the best next step,

rather than attempting to mitigate the flushing (for example,

with NSAIDs) while maintaining niacin therapy. This oversight

highlights a gap in its reasoning compared to standard clinical

practice, where controlling niacin’s side effects is usually preferred

before abandoning a therapy that addresses the patient’s elevated

LDL cholesterol.

3.1.7.1 Risk scale

High: Foreseeable life- or limb-threat within hours-days.

Moderate: Appreciable morbidity or accelerated disease

progression, but sub-acute. Low: Negligible immediate harm;

effects felt only over the long term or not at all, forensic question.

3.2 Detailed error analysis

3.2.1 Error case 1: neonatal bilious vomiting
• Pathway of reasoning:

Bilious Vomit→ Duodenal Atresia
︸ ︷︷ ︸

Model’s Focus

→ Emergency Laparotomy← Annular Pancreas

← Delayed Presentation + Normal Prenatal US

• Critical failure: Anchoring bias on classic duodenal

obstruction pattern while ignoring:

1. 3-week delayed presentation (incompatible with complete

atresia)

2. Absence of prenatal ultrasound findings

• Clinical impact: Risk of delayed annular pancreas diagnosis

(24–48 h window for surgical intervention)

3.2.2 Error case 2: respiratory failure
• Pathway of reasoning:

DVT→ PE→ Fibrosis→ Actual Cause→ CTEPH
︸ ︷︷ ︸

Model’s Focus

• Critical failure: Attributed wall remodeling (effect) as primary

pathology

• Risk amplification: Increased mortality from missed

vasculitis diagnosis

3.2.3 Error case 3: acute limb ischemia
• Pathway of reasoning:

Ischemic Limb→ Direct Surgery
︸ ︷︷ ︸

Model’s Focus

→ Reperfusion Injury

← Heparin Bridge← Imaging Guidance

• Critical failure: Bypassed essential anticoagulation and

imaging steps

• Risk amplification: Increased limb loss probability with

delayed anticoagulation

3.2.4 Error case 4: porphyria cutanea tarda (PCT)
• Pathway of reasoning:

PCT→ Phlebotomy Required→ Normal Iron Stores
︸ ︷︷ ︸

Model’s Focus

→ Hydroxychloroquinine
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• Critical failure: Equated serum ferritin with total body iron

stores

• Risk amplification: Increased risk of cirrhosis from persistent

iron overload

3.2.5 Error case 5: enzyme kinetics
• Pathway of reasoning:

Tissue Distribution→ Low Vmax Assumption
︸ ︷︷ ︸

Model’s Focus

→ Metabolic Dysregulation

← Hexokinase Signature← Low Km/High Vmax

• Critical failure: Confused hexokinase (high-affinity/high-

capacity) with glucokinase kinetics

• Risk amplification: Error in predicting glucose utilization

rates

3.2.6 Error case 6: preterm PDA management
• Pathway of reasoning:

Preterm Birth→ PDA→ Surgical Ligation
︸ ︷︷ ︸

Model’s Focus

← Indomethacin Window← 5-Week Age

• Critical failure: Overestimated surgical urgency in stable

infant

• Risk amplification: Higher complication rate vs medical

management

3.2.7 Error case 7: niacin flushing
• Pathway of reasoning:

Niacin Use→ Flushing→ Fenofibrate Switch
︸ ︷︷ ︸

Model’s Focus

PGD2 Pathway
←−−−−−−−− Aspirin Prophylaxis

• Critical failure: Misattributed prostaglandin-mediated

flushing to rare neoplasms

• Risk amplification: Reduced lipid control efficacy with

unnecessary agent switch

3.3 Analysis of diagnostic reasoning errors

We found recurring patterns of diagnostic reasoning errors. A

key finding across multiple cases was anchoring bias, with fixation

on an initial diagnosis (e.g., duodenal atresia in Case 1, CTEPH

in Case 2) and subsequently failed to adequately incorporate

conflicting evidence. This was often compounded by confirmation

bias, with selectively attending to information supporting the

initial impression while dismissing contradictory data (e.g., normal

ferritin in the context of suspected PCT in Case 4).

Several cases demonstrated errors related to disease pathway

understanding. In Case 2, feature binding led to misattributing

wall remodeling as the primary pathology rather than recognizing

it as a consequence of another underlying condition (vasculitis).

A similar error in Case 5 involved confusing enzyme kinetics,

misidentifying hexokinase as glucokinase, highlighting a lack of

understanding of the specific biochemical pathways.

Omission bias was evident in Case 3, where crucial steps like

anticoagulation and imaging were bypassed in the rush to surgery

for acute limb ischemia. This suggests a failure to consider all

necessary elements of the diagnostic and treatment pathway. In

contrast, Case 6 demonstrated potential commission bias with the

overestimation of surgical urgency in a stable infant with a PDA,

potentially exposing the patient to unnecessary risk.

Finally, Case 7 illustrated an error in attribution, misattributing

niacin-induced flushing to rare neoplasms instead of recognizing

it as a prostaglandin-mediated effect. This misattribution led to an

unnecessary and detrimental change in lipid-lowering medication.

These findings emphasize the importance of recognizing and

mitigating cognitive biases and ensuring a thorough understanding

of disease pathways to improve diagnostic accuracy and patient

safety. The quantified risk amplifications associated with each error

underscore the potential clinical impact of these reasoning flaws.

Another error we think is important to address is the one

found in the first Case E1. If you follow the reasoning trace

of the model it actually decides on A Abnormal migration of

ventral pancreatic bud (correct) but outputs B, Complete failure of

proximal duodenum to recanalize (false) . The model first reason

and then outputs the answer. Although this only happened a single

time, we want to highlight this because it shows that the reasoning

might differ from the response. This means that in a clinical setting

it is wise to have both model reasoning and model output in order

to minimize the risk of errors. If a clinician would have access to

both reasoning and output, the reasoning might help the clinician

find the right diagnosis but having only access to the model output

would lead to a potential misdiagnosis. This highlights the benefit

or R1, which shows reasoning patterns, which are hidden in similar

reasoning models such as O1 and O3 made by Open AI.

3.4 Statistical analysis of reasoning lengths
in correct vs. incorrect responses

We conducted an independent two-sample Welch’s t-test

to compare the average reasoning length between correct and

incorrect answers, as the groups exhibited unequal variances,

correct answers (n = 93) averaged 3,648 characters (SD = 2,132;

variance = 4.55 × 10), incorrect answers (n = 7) averaged 8,118

characters (SD = 4,277; variance = 1.83× 10).

The analysis revealed a statistically significant difference (t =

–2.74, p = 0.032), with incorrect answers containing substantially

longer reasoning (mean = 8,118 characters) compared to correct

answers (mean = 3,648 characters). The effect size was very large:

Cohen’s d = 1.93, indicating that an average incorrect explanation

is nearly two pooled standard deviations longer than a correct

one. The negative t-value reflects the directional difference, where

incorrect responses were consistently lengthier.

The marked disparity in reasoning length suggests that

extended explanations may signal uncertainty or reflect attempts

to rationalize incorrect conclusions. Shorter responses (e.g., under
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TABLE 1 Distribution of reasoning errors in 100 clinical cases.

Error type Count Percentage Exemplar
case

Protocol

misapplication

2 2% Acute limb

ischemia

management

Anchoring bias 1 1% Neonatal bilious

vomiting

Etiology-

consequence

confusion

1 1% Pulmonary artery

fibrosis

Lab value

overinterpretation

1 1% Porphyria cutanea

tarda

Isoform

misunderstanding

1 1% Enzyme kinetics

Overinvestigation

tendency

1 1% Niacin-induced

flushing

5,000 characters) were strongly associated with accuracy, providing

a practical threshold for assessing confidence in model-generated

answers. This metric could enhance user transparency by flagging

verbose outputs as potential indicators of unreliability.

3.5 Analysis of reasoning success

Although our effort focused on reasoning errors in most cases

the model was successful with 93% accuracy. In our analysis of the

successful cases we found that the medical reasoning of the model

was sound.

3.5.1 Classification as medical reasoning
The reasoning by the R1 model would likely qualify as

medical reasoning. The thought process demonstrates key elements

of clinical decision-making demonstrated here on case C1 (see

Table 1):

3.5.2 Correct case 1: a 23-year-old pregnant
women at 22 weeks gestation presents with
burning upon urination

The model identifies that the patient is a pregnant woman at

22 weeks gestation with signs of a lower urinary tract infection. It

systematically evaluates the safety and efficacy of each antibiotic

option in pregnancy: it rules out ampicillin due to common

resistance, ceftriaxone because it is overly broad for simple cystitis,

and doxycycline because it is contraindicated in pregnancy. It

concludes that nitrofurantoin is safe and effective in the second

trimester, making option D the correct choice.

• Data synthesis: Systematically reviews the patient’s history,

symptoms, and exam findings.

• Differential diagnosis: Rules out pyelonephritis (absence of

CVA tenderness) and narrows to cystitis.

• Application of guidelines:Considers pregnancy-specific risks

and antibiotic safety profiles.

• Critical appraisal of options: Evaluates drug efficacy,

resistance patterns, and contraindications.

• Risk-benefit analysis: Balances fetal safety (e.g., avoiding

doxycycline) with maternal treatment efficacy.

3.5.3 Structured clinical approach
• Begins with clinical context: Identifies pregnancy as a critical

factor influencing management.

• Prioritizes diagnosis: Distinguishes cystitis from

pyelonephritis based on exam findings (no CVA tenderness).

• Antibiotic stewardship: Avoids overly broad agents

(ceftriaxone) for uncomplicated cystitis and considers

resistance patterns (ampicillin’s limitations).

• Guideline adherence: Correctly applies recommendations for

nitrofurantoin use in pregnancy (safe in second trimester,

avoided in first/third).

3.5.4 Reasoning process
The reasoning follows a hypothetico-deductive model common

in clinical medicine:

• Information gathering: Patient demographics, symptoms,

vital signs, and exam findings.

• Problem representation: “Pregnant woman with dysuria, no

systemic signs, likely cystitis.”

• Differential diagnosis: Prioritizes cystitis over pyelonephritis.

• Treatment selection:

– Elimination: Doxycycline (contraindicated).

– Comparison of remaining options: Ampicillin

(resistance), ceftriaxone (overly broad), nitrofurantoin

(guideline-supported).

– Final decision: Nitrofurantoin, justified by safety in the

second trimester and efficacy for uncomplicated cystitis.

We believe that the structured reasoning approach with high

accuracy shows the usefulness of DeepSeek R1 in the healthcare

sector. The sound reasoning combines with an open source model

gives a clear path forward for integrating this in the healthcare

domain.

3.6 Specialty-level accuracy

Mapping the seven erroneous answers (E1–E7) to their

respective clinical domains revealed no consistent clustering of

mistakes. Only seven of the thirty specialties represented in the

100-item set recorded any error, and in five of those the domain

contained a single question (Physiology, Neonatology) or two

questions (Pharmacology), such that a lone miss reduced accuracy

to 0% or 50%. Among larger categories the system remained highly

reliable: Pediatrics 86% (6/7 correct), Surgery 80% (4/5), and

Pulmonology 75% (3/4). All remaining 23 disciplines–including

Neurology (12 items), Infectious Disease (10), and Cardiology
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TABLE 2 Examples of responses with a focus on incorrect responses and reasoning.

Question Strengths Weaknesses Diagnosis R1 answer

C1. 23-year-old

pregnant woman

with UTI

- Identifies cystitis based on symptoms.

- Recognizes need for treatment.

- Rules out inappropriate options.

- Selects Nitrofurantoin.

- Spends time on Cephalexin.

- Could be more concise.

Cystitis Cystitis

Correct

C2. 3-month-old

with SIDS

- Correctly identifies SIDS.

- Recalls prevention strategies.

- Evaluates answer choices.

- Recognizes “Back to Sleep" campaign.

- None significant. SIDS SIDS Correct

C3. 20-year-old

woman with

menorrhagia

- Interprets lab results.

- Considers differentials.

- Recognizes family history.

- Identifies vWD.

- Briefly considers Hemophilia A.

- Mentions bleeding time.

Von Willebrand

disease

Von Willebrand

disease

Correct

C4. 40-year-old

zookeeper with

pancreatitis

- Recalls causes of pancreatitis.

- Identifies scorpion sting.

- Considers other options.

- None significant. Scorpion sting Scorpion sting

Correct

E1. 3-week-old

with bilious

vomiting

- Recognizes bilious vomiting as obstruction.

- Considers relevant differentials.

- Understands embryology.

- Initially rules out duodenal atresia.

- Fixates on “complete" in option B.

- Overemphasizes malrotation.

- Repetitive explanation.

Abnormal

migration of ventral

pancreatic bud

Duodenal atresia

Incorrect The models

reason correctly but

gives out the wrong

response

E2. 58-year-old

woman

post-surgery

- Identifies risk factors.

- Initially leans toward thromboembolism.

- Considers each option.

- Understands CTEPH.

- Gets fixated on histological composition.

- Repetitive reasoning.

Thromboembolism Pulmonary

Hypertension

Incorrect

E3. 68-year-old

man with leg pain

- Correctly identifies acute limb ischemia.

- Recognizes atrial fibrillation as a risk factor.

- Applies Rutherford classifications to evaluate

severity.

- Understands that urgent management is

needed to salvage limb.

- Incorrectly prioritizes definitive treatment over

immediate anticoagulation with heparin.

- Incorrectly states that thrombolysis is

contraindicated in embolic events.

Heparin drip Surgical

thrombectomy

Incorrect

E4. 48-year-old

woman with

photosensitive

rash

- Correctly identifies porphyria cutanea tarda

(PCT) as the most likely diagnosis.

- Recognizes the significance of family history,

dark urine, and photosensitivity.

- Considers other porphyrias (variegate

porphyria).

- Appropriately rules out liver transplantion and

thalomide as standard therapies, understands

the role of phlebotomy and hydroxychloroquine

in PCT treatment.

-Places excessive emphasis on normal ferritin

levels, overlooking that phlebotomy can still

induce remission even with normal iron stores.

- Briefly considers unrelated conditions

(epidermolysis bullosa, pseudoporphyria).

- Incorrectly states that thalidomide is used in

refractory cases of PCT.

Begin phlebotomy

therapy

Begin oral

hydroxychloroquine

therapy

Incorrect

E5. Enzyme

Kinetics

- Correctly relates X to Km and Y to Vmax.

- Correctly identifies the enzyme as hexokinase.

- Understands the properties of hexokinase (low

Km).

- Correctly identifies that the enzyme in

question phosphorylates glucose.

- Overthinks the Vmax, failing to definitively

conclude whether it’s high or low, causing

confusion in the final step.

-Confuses the concepts of Vmax and Km,

incorrectly stating that a low Km indicates a

high Vmax.

- Incorrectly states that hexokinase has a higher

Vmax than glucokinase and incorrectly states

that hexokinase is inhibited by

glucose-6-phosphate under these experimental

conditions.

- It overthinks minor details and loses track of

the simpler hallmark difference

Low X and low Y Low X and high Y

Incorrect

E6. 5-week-old

infant with a

murmur

- Correctly identifies PDA as the most likely

diagnosis.

- Recognizes the significance of preterm birth.

- Understands the implications of the

continuous murmur.

- Considers the infant’s age and feeding changes.

- Knows the general management options for

PDA (Indomethacin, surgery).

- Incorrectly dismisses indomethacin as an

option based on age alone without considering

the full clinical picture

- Overthinks the feeding changes and weight

gain.

- Overthinks age and arrives at the wrong

first-line treatment in an otherwise stable infant.

Indomethacin

infusion

Surgical ligation

Incorrect

(Continued)
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TABLE 2 (Continued)

Question Strengths Weaknesses Diagnosis R1 answer

E7. 53-year-old

woman with

flushing and

itching

- Correctly identifies niacin-induced flushing as

the most likely cause.

- Considers other possibilities (carcinoid,

pheochromocytoma, allergy).

- Understands the limitations of statins and

fibrates.

- Recognizes the need for LDL management.

- Incorrectly prioritizes switching to fenofibrate

over managing niacin side effects.

- Overly focuses on the possibility of carcinoid

syndrome despite the low likelihood.

- Fails to recognize that taking aspirin 30

minutes before niacin can significantly reduce

flushing.

Administer

ibuprofen

Switch niacin to

fenofibrate

Incorrect

TABLE 3 Summary of reasoning errors across cases.

Case Error type Model answer Key reasoning flaw

E1. Neonatal vomiting Anchoring bias B (duodenal atresia) Overprioritized textbook presentation despite incompatible

timeline

E2. Respiratory failure Etiology confusion C (Pulmonary hypertension) Misattributed vascular remodeling to primary disease

E3. Limb ischemia Protocol violation C (surgery) Skipped anticoagulation step in Rutherford IIb

E4. PCT management Lab misinterpretation D (hydroxychloroquine) Overvalued serum ferritin over hepatic iron

E5. Enzyme kinetics Isoform confusion C (High Vmax) Confused hexokinase/ glucokinase kinetic profiles

E6. PDA management Therapeutic window error C (Surgery) Misjudged indomethacin efficacy in preterms

E7. Niacin flushing Overinvestigation D (Fenofibrate) Ignored temporal drug-effect relationship

(7)–achieved 100% accuracy. Accuracy and errors are detailed in

Table 2.

To test whether the observed distribution deviated from a

uniform 7% error rate, we applied a χ
2 goodness-of-fit test,

obtaining χ
2
= 4.8 with p = 0.31; however, the result is tentative

because> 75% of cells contained zero errors, violating standard χ
2

assumptions. Overall, the data provide no convincing evidence of a

discipline-specific weakness. The apparent dips are compatible with

random variation in a small sample, and larger, domain-targeted

test sets will be required to identify any genuine specialty-level

performance gaps.

3.7 Post-hoc audit of ChatGPT-4o

To benchmark against a non-research-grade, commercially

deployed LLM, we queried ChatGPT-4o via the public web interface

on 28 May 2025, against the seven error vignettes. The system was

instructed to reveal its chain of thought inside <thinking> tags

and then commit to a final answer. This was the full prompt:

Please answer this question using a format where you first

reason inside <thinking> tags, after thinking you give an output.

Reason through chain of thought.

3.7.1 Method
A single prompt was issued per vignette; no temperature

or system-level modifications were possible in the consumer

UI. A physician reviewer scored the disclosed reasoning for (i)

presence of clinical problem representation, (ii) generation of

a pathophysiology-grounded differential, and (iii) adherence to

guideline logic when selecting a management step.

3.7.2 Findings
Six of seven chains satisfied all three criteria, demonstrating

recognizable medical reasoning. The sole exception (niacin

flushing) exhibited a sound diagnostic path but erred at the final

therapeutic choice, mirroring the pattern seen in DeepSeek R1

(Table 3).

3.7.3 Implications
Prompting was sufficient to give a non reasoning model

reasoning steps that could be evaluated for medical reasoning. This

is promising since it could be a step forward for explainability for

non-reasoning LLMs. The model solved 6/7 questions which gives

an accuracy of 85.71%. This accuracy is hard to compare since the

subset is based on questions that DeepSeek R1 failed however it is

below the average accuracy for the entire dataset for DeepSeek R1

(93%).

The close qualitative parity between ChatGPT-4o and

DeepSeek R1 in terms of medical reasoning suggests that our error

taxonomy captures generalizable failure modes of contemporary

LLMs.

4 Discussion

This study provides a detailed analysis of the medical reasoning

capabilities of DeepSeek R1, revealing both its strengths and

limitations in handling complex clinical scenarios.While the model

demonstrates high overall diagnostic accuracy (93%), our in-depth

error analysis highlights specific areas where its reasoning leads

to errors in clinical assessment see Figure 1 and Tables 3–6. These

findings have several important implications for the development

and deployment of LLMs in healthcare.
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FIGURE 1

Length of reasoning and correctness.

4.1 A note on anthropomorphization of
LLMs

In this work we evaluated the reasoning of LLMs and

highlighted cognitive errors in its reasoning. There is a speculative

nature to this since we assign human error mechanism to an

LLM system. We want to be clear that the bias we found in

reasoning is dependent on the analysis of the reasoning text and

we provide all model reasoning outputs as supplementary material.

Thinking about how we reason and how LLMs reason can be

fruitful to improve our own reasoning process even though it might

lead to bias and potential misunderstanding of the technology.

The language we use to describe the reasoning and errors is

made to help human understanding and we hope that this does

not lead to anthropomorphization of these systems. We believe

that LLMs should be viewed as tools but language regarding

human cognition can help increase our understanding of their

functioning.

4.2 Opening the black box

Deep learning models including LLMs have been accused

of being black box algorithms where the inner workings of the

models are shielded from view (Wang Y. et al., 2024). This

has limited their use in high risk areas such as healthcare

where understanding of model outputs is essential for safe

implementation. Open reasoning models such as R1 shows a path

forwards by being transparent regarding reasoning which has

the potential of making the model safer to use in a high risk

setting.

4.3 Errors in medical reasoning

Errors that took place were overall a result of thinking errors

where the model focused too much attention on details of a

problem and lacked necessary understanding of medical protocols.

These errors can be viewed similar to mistakes made by a human

with medical knowledge and ability to reason about that knowledge

making a mistake. That is, a doctor misdiagnosing a patient rather

than a human without medical knowledge guessing the answer on a

medical test. This is an important distinction because the difference

between the two is years of clinical schooling andmedical reasoning

ability. As such we view these errors as promising and believe

that training techniques and new reasoning models will enhance

this already fairly adequate medical reasoning ability. Our findings

that the length of reasoning was strongly linked to correctness is

interesting and can be helpful for improving the usefulness of these

models in a clinical setting. By simply using the length of reasoning

as a reverse certainty score, we can help a clinician make sense

of the models reasoning and even automate double checking, by

rerunning long reasoning attempts with an added prompt that the

reasoning is likely incorrect.

4.4 Lengths of reasoning and errors

One interesting finding was the strong correlation between the

length of output and errors where longer results were more likely

to be incorrect. We did a qualitative analysis and found that longer

outputs seemed to suffer from “overthinking," where the model

gets confused and uses additional tokens to think even though

the thinking is not helpful to improve the quality of the results.

A concrete finding from our paper is that showing the reasoning
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TABLE 4 Distribution of medical questions by specialty.

Specialty Number of questions Percentage

Gynecology (OBGYN) 6 6%

Pediatrics 7 7%

Genetics 7 7%

Cardiology 7 7%

Neurology 12 12%

Hematology 7 7%

Gastroenterology 7 7%

Pulmonology 4 4%

Nephrology 6 6%

Urology 3 3%

Infectious disease 10 10%

Oncology 7 7%

Surgery 5 5%

Dermatology 3 3%

Endocrinology 5 5%

Psychiatry 3 3%

Orthopedics 2 2%

Emergency medicine 3 3%

Medical ethics 1 1%

Biostatistics/epidemiology 3 3%

Pharmacology 2 2%

ENT (otolaryngology) 4 4%

Pathology 2 2%

Immunology 1 1%

Toxicology 1 1%

Metabolic disorders 2 2%

Research methods 1 1%

Physiology 1 1%

Patient safety 1 1%

Neonatology 1 1%

Total 100 100%

length prominently could be a promising way to help clinician

evaluate the quality of model reasoning.

4.5 Quality of medical reasoning

Overall we found that the model made few mistakes in its

reasoning and the reasoning was medical in nature. The model

could reason regarding medical scenarios and overall the reasoning

of the model was excellent. This is promising because it shows that

medical reasoning is possible through LLMs and that the reasoning

TABLE 5 Risk-ranked clinical impact of reasoning errors.

Case Error (short
label)

Risk
level

Potential patient
harm if followed

E1 Anchoring on

duodenal atresia

High Missed annular pancreas

delayed surgery, bowel

perforation, neonatal sepsis;

mortality rises hour-to-hour.

E3 Skipping heparin

step

High Thrombus propagation

during limb-ischaemia

work-up irreversible limb loss

or systemic emboli within

hours.

E4 Overvaluing ferritin Moderate Persistent porphyria lesions

and hepatic iron overload

scarring, cirrhosis risk;

morbidity high, mortality

lower.

E6 Premature PDA

ligation

Moderate Avoidable surgical and

anesthetic risk when

indomethacin could suffice;

potential vocal-cord palsy,

bleeding.

E2 Treating effect as

cause

Low Vasculitis left untreated while

managing “CTEPH”

unchecked inflammation,

right-heart failure, fatal

pulmonary hemorrhage.

Forensic question. Patient is

already diseased.

E5 Hexokinase/

glucokinase mix-up

Low Purely biochemical slip; no

direct bedside decision tied to

it, negligible immediate harm.

E7 Abandoning niacin

instead of fixing

flushing

Low LDL undertreated for

months-years incremental

long-term CV risk; little

short-term danger.

is already functional and can be helpful in the healthcare sector if

integrated in a safe way.

4.6 The future of LLMs in healthcare

As within other areas of healthcare, expert clinicians time

become a bottleneck when evaluating LLMs. As models improve

and show signs of medical reasoning it seems worthwhile to use

LLMs to improve LLMs in healthcare. This seemingly paradoxical

way of working is actually in line with how large AI labs work

to improve LLMs (Anthropic, 2023). A capable LLM model can

be used to refine and improve data that can be used to train

another LLM and over time data quality improves as well as

model performance. For larger medical datasets where human

evaluation is simply unfeasible when thousand or millions of

questions are evaluated this technique becomes necessary. Having

a gold standard of human evaluation with lesser standards for

evaluation using LLMs seems to be a possible way forward. As

in other areas where LLMs are highly performant such as code

generation, we should start to accustom ourself to a world where

clinicians supervise AI systems that reason independently. In the

future the job of the clinician might be to supervise an AI system

that independently gives suggestions for diagnosis and treatment.
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TABLE 6 Correct vs. incorrect responses by specialty and resulting

accuracy.

Specialty Questions
(n)

Correct Incorrect Accuracy

Gynecology

(OB/GYN)

6 6 0 100%

Pediatrics 7 6 1 86%

Genetics 7 7 0 100%

Cardiology 7 7 0 100%

Neurology 12 12 0 100%

Hematology 7 7 0 100%

Gastroenterology 7 7 0 100%

Pulmonology 4 3 1 75%

Nephrology 6 6 0 100%

Urology 3 3 0 100%

Infectious disease 10 10 0 100%

Oncology 7 7 0 100%

Surgery 5 4 1 80%

Dermatology 3 2 1 67%

Endocrinology 5 5 0 100%

Psychiatry 3 3 0 100%

Orthopedics 2 2 0 100%

Emergency

medicine

3 3 0 100%

Medical ethics 1 1 0 100%

Biostatistics/

epidemiology

3 3 0 100%

Pharmacology 2 1 1 50%

ENT

(Otolaryngology)

4 4 0 100%

Pathology 2 2 0 100%

Immunology 1 1 0 100%

Toxicology 1 1 0 100%

Metabolic

Disorders

2 2 0 100%

Research

Methods

1 1 0 100%

Physiology 1 0 1 0%

Patient Safety 1 1 0 100%

Neonatology 1 0 1 0%

Total* 100 93 7 93%

4.7 Improving human medical reasoning

Errors in medical reasoning by humans leads to thousands

of deaths and injuries each year (Makary and Daniel, 2016).

As such improving clinicians ability to reason might be one of

the most important tasks for improving healthcare outcomes.

The medical reasoning already available in the R1 model can

take years for a clinician to acquire through medical training

and mentorship and thus using models such as R1 to improve

clinicians reasoning skills is one potential use of this technology.

This is also in line with a human in the loop approach which

improves safety while being aligned with regulatory bodies views

on AI in healthcare (Parliament and of the European Union,

2024).

4.8 Improving clinical reasoning

Themodel was evaluated with a simple prompt and could likely

improve through several methods.

1. Retrieval augmented generation (RAG) for improved clinical

reasoning. By using a RAG system the performance of the

system would likely improve by access to clinical guidelines and

other medical texts.

2. Specialization in prompting and documents. In a clinical

context, medical professionals usually reason about a smaller

subset of clinical knowledge. By dividing the problem of medical

reasoning by medical specialty; prompts and knowledge could

be used to solve these subproblem more appropriately.

3. Fine tuning on medical reasoning. Improvements to medical

reasoning would likely result from fine-tuning on medical

reasoning data. Recent advancements in reinforcement learning

training for text (DeepSeek-AI et al., 2025) could be useful in this

regard.

4.9 Use in a clinical setting

Although the model had errors, overall the reasoning was

sound from a medical perspective, as such we believe that these

models can be useful in the medical domain and we think it

is time for healthcare practitioner to start experimenting with

these technologies. As long as healthcare workers are aware of

limitations, we believe that use of these systems could help

improve patient outcomes. For many clinicians especially in

specialized care settings the work can be lonely and there might

not be colleagues with similar experience to discuss medical

diagnostics. Even though healthcare decisions should always

be the responsibility of a human, we believe that reasoning

models such as R1 can help clinicians in their diagnostic

assessments.

As clinicians we need to be creative in finding safe ways to

use this technology in a clinical settings. Both for clinician facing

and patient facing interfaces there are likely useful ways to use

this technology in a way that is helpful for improving health

outcomes.

4.10 Extending the evaluation framework:
broader applicability and enhanced validity

Our reasoning analysis framework, applied to DeepSeek R1, is

broadly adaptable to all reasoning models that contain reasoning
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traces and all LLMs that can be prompted through chain-of-

thought to show reasoning traces. Our small experiment with GPT-

4o shows that a simple prompting technique can be used with a

standard LLM to allow it to be evaluated in this way.

4.11 Limitations

This study has several limitations. First, the evaluation is based

on a limited, albeit diverse, set of clinical cases from a single

dataset. While MedQA provides a valuable benchmark, it may not

fully capture the complexity of real-world clinical practice. Second,

our analysis focuses on one specific LLM, DeepSeek R1. While

this model represents a state-of-the-art approach to reasoning-

enhanced LLMs, the findings may not be generalizable to all

LLMs, especially those with different architectures or training

methodologies. Third, the expert validation is still subject to the

inherent limitations of human judgment and potential biases.

Another limitation is that we only had a single medical expert

evaluate the medical reasoning of the model.

4.12 Future research directions

Building on the reasoning failures identified in this study, we

outline six targeted avenues to improve the clinical robustness of

large language models (LLMs).

1. Domain-Specific fine-tuning with curated medical reasoning

corpora

Extending the work by Wu et al. (2025) on creating high-

quality, explanation-rich datasets of medical reasoning, we

advocate assembling case collections with chain-of-thought

medical reasoning. Fine-tuning domain-specialized LLMs on

such corpora should reduce diagnostic bias and increase factual

completeness.

2. Retrieval-augmented generation (RAG) over authoritative

guidelines

Linking LLMs to continuously updated medical sources via

lightweight RAG pipelines can ground outputs in best evidence,

constrain hallucinations, and expose deviations from established

care pathways.

3. Multi-evaluator frameworks for reliable assessment

Adopting panels of at least three independent clinicians,

standardized rubrics, and explicit inter-rater metrics (e.g.

Cohen’s κ) will yield more robust estimates of reasoning quality.

Targeted training on LLM error taxonomies can further align

evaluators.

4. Prompt engineering for improvement of reasoning

capabilities

Chain-of-thought prompting sparked the rise of reasoning-

oriented models. Systematic exploration of additional

prompting strategies–especially those requiring no retraining–

could further enhance reasoning and should be rigorously

evaluated.

5. Hybrid human-AI workflows

An open research question is how best to integrate these tools

into clinical practice. Future systems could auto-flag verbose or

low-confidence chains of thought for clinician review, balancing

automation with expert oversight.

6. LLM-as-judge evaluation of reasoning ability

Human evaluation is costly, whereas text generation is relatively

cheap. Leveraging LLM-as-judge techniques (Croxford et al.,

2025) may provide scalable, low-cost assessment of reasoning

quality–especially when tightly coupled to dataset creation and

model training.

5 Conclusion

This study shows that DeepSeek R1 is capable of a form of

medical reasoning as evaluated by analysis by human evaluation

on a subset (n = 100) of the MedQA benchmark. The model

had an accuracy of 93% and both correct and incorrect cases

showed signs of medical reasoning. Using open reasoning models

in healthcare improves explainability over non-reasoning models

and we encourage continued investigation of how these models can

be used to improve the future of healthcare.
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