AUTHOR=Moƫll Birger , Sand Aronsson Fredrik , Akbar Sanian TITLE=Medical reasoning in LLMs: an in-depth analysis of DeepSeek R1 JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1616145 DOI=10.3389/frai.2025.1616145 ISSN=2624-8212 ABSTRACT=IntroductionThe integration of large language models (LLMs) into healthcare holds immense promise, but also raises critical challenges, particularly regarding the interpretability and reliability of their reasoning processes. While models like DeepSeek R1-which incorporates explicit reasoning steps-show promise in enhancing performance and explainability, their alignment with domain-specific expert reasoning remains understudied.MethodsThis paper evaluates the medical reasoning capabilities of DeepSeek R1, comparing its outputs to the reasoning patterns of medical domain experts.ResultsThrough qualitative and quantitative analyses of 100 diverse clinical cases from the MedQA dataset, we demonstrate that DeepSeek R1 achieves 93% diagnostic accuracy and shows patterns of medical reasoning. Analysis of the seven error cases revealed several recurring errors: anchoring bias, difficulty integrating conflicting data, limited consideration of alternative diagnoses, overthinking, incomplete knowledge, and prioritizing definitive treatment over crucial intermediate steps.DiscussionThese findings highlight areas for improvement in LLM reasoning for medical applications. Notably the length of reasoning was important with longer responses having a higher probability for error. The marked disparity in reasoning length suggests that extended explanations may signal uncertainty or reflect attempts to rationalize incorrect conclusions. Shorter responses (e.g., under 5,000 characters) were strongly associated with accuracy, providing a practical threshold for assessing confidence in model-generated answers. Beyond observed reasoning errors, the LLM demonstrated sound clinical judgment by systematically evaluating patient information, forming a differential diagnosis, and selecting appropriate treatment based on established guidelines, drug efficacy, resistance patterns, and patient-specific factors. This ability to integrate complex information and apply clinical knowledge highlights the potential of LLMs for supporting medical decision-making through artificial medical reasoning.