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While the transformer architecture has demonstrated strong success in natural
language processing and computer vision, its application to limit order book
forecasting, particularly in capturing spatial and temporal dependencies, remains
limited. In this work, we introduce Limit Order Book Transformer (LiT), a novel
deep learning architecture for forecasting short-term market movements using
high-frequency limit order book data. Unlike previous approaches that rely on
convolutional layers, LiT leverages structured patches and transformer-based
self-attention to model spatial and temporal features in market microstructure
dynamics. We evaluate LiT on multiple LOB datasets across different prediction
horizons, LiT consistently outperforms traditional machine learning methods
and state-of-the-art deep learning baselines. Furthermore, we show that LiT
maintains robust performance under distributional shifts via fine-tuning, making
it a practical solution for fast-paced and dynamic financial environments.
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1 Introduction

In the context of the rapid shift toward automated trading in modern financial
markets, the Limit Order Book (LOB) has emerged as a central focus for studying
market microstructure. The LOB is a centralized system that records buy and sell orders
submitted by market participants, aggregating order volumes at discrete price levels.
With the rapid generation of high-frequency LOB data along with the advancement in
machine learning models and computational resources, forecasting short-term market
movements has become feasible and increasingly valuable for supporting decision-making
in fast-paced trading environments. However, the complex structure of the limit order
book, characterized by its latent dynamics and deep hierarchy, makes LOB feature
representation and extraction particularly challenging. Moreover, the high volatile, noisy
and non-stationary nature of LOB data further complicates the market trend prediction.

Traditional market forecasting models relied on hand-crafted features and statistical
methods, but these approaches have proven insufficient for capturing the complex
dynamics and nonlinear patterns in real-world high-frequency LOB data. The past
decade has seen increasing adoption of machine learning techniques, especially deep
learning approaches that automatically learn feature representation from raw LOB inputs.
Among these approaches, Convolutional Neural Networks (CNNs; LeCun et al., 1998)
have become particularly dominant. Pioneering works such as DeepLOB (Zhang et al.,
2019) showed that CNNs, when combined with models like Long Short-Term Memory
(LSTM; Hochreiter and Schmidhuber, 1997) to capture temporal dependencies, can
effectively model spatial and temporal dependencies in LOBs and achieve state-of-the-art
performance. More recently, based on the transformer architecture (Vaswani et al., 2017),
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approaches such as TransLOB (Wallbridge, 2020) have
demonstrated that transformers, when combined with CNNs
for feature extraction, can also effectively model market dynamics
in LOB data.

Building on these developments, we propose the Limit Order
Book Transformer (LiT), a transformer-based architecture that
eliminates the need for convolutional layers in LOB forecasting.
Inspired by the success of transformer models in Natural Language
Processing (NLP) and Computer Vision (CV), LiT captures LOB
features using structured patches and processes them through self-
attention layers, followed by LSTM layers to enhance temporal
modeling. Unlike prior approaches, LiT combines the expressive
power of transformers with the sequential modeling capabilities
of recurrent networks, enabling it to efficiently learn both spatial
and temporal features in LOB across short and long term
dependencies, as well as maintaining a capability to adapt to the
latest market conditions.

Our main contributions are as follows:

e We propose LiT, a novel transformer-based model for LOB
forecasting that replaces convolutional layers with a structured
patch-based self-attention mechanism.

e We benchmark LiT ML models,
deep learning baselines and state-of-the-art CNN-based

against traditional
architectures across multiple prediction horizons and show
consistent improvements.

e We conduct a comprehensive analysis of structured patch
configurations in LiT and show that narrower temporal
windows and deeper spatial coverage significantly improve
LiT forecasting performance.

e We show that LiT remains strong performance under
distributional shift in market dynamics via fine-tuning,
making it practical for real-world deployment.

The remainder of the paper is organized as follows. Section 2
reviews related work in LOB forecasting. Section 3 describes
the data collection and preparation. Section 4 outlines our
proposed architecture and training methodology. Section 5
presents experimental results, including a comparison across
models, patch size analysis, and time-adaptive fine-tuning.
Finally, Section 6 concludes the paper and discusses future
research directions.

2 Related work

2.1 Statistical methods and traditional ML
techniques

Early adoption of statistical methods and traditional machine
learning approaches for analyzing limit order book data
typically emphasizes simplicity and interpretability. Statistical
approaches such as Autoregressive Integrated Moving Average
(ARIMA), Vector Autoregressive models (VAR) and Generalized
Heteroskedasticity =~ (GARCH)
primarily explore linear relationships between LOB-derived signals

Autoregressive  Conditional

and target variables such as price and volatility. For example,
Ariyo et al. (2014) employed ARIMA for short-term stock price
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prediction, while Pai and Lin (2005) enhanced stock forecasting
by integrating ARIMA with Support Vector Machines (SVM) to
capture nonlinear patterns. Traditional machine learning methods,
including regression models, SVMs, and random forests, have
also been applied to capture more complex dynamics inherent in
market microstructures, especially when statistical assumptions
like linearity and stationarity are not met. Zheng et al. (2012)
leveraged LASSO logistic regression for feature selection to predict
price jumps, while Krauss et al. (2017) adopted gradient boosting
and random forests in an ensemble framework for statistical
arbitrage on the S&P 500 index. Additionally, Kercheval and
Zhang (2015) and Li et al. (2016) applied SVMs to predict market
movements by categorizing them into different trends based on
predefined thresholds.

2.2 Conventional deep learning
approaches

With developments in deep learning and computational
resources in recent decades, deep learning has become a
mainstream approach in limit order book research. Different
neural network architectures have been extensively explored in
numerous studies. Basic models like Multilayer Perceptrons (MLP)
are usually employed as benchmark models. For instance, Ntakaris
et al. (2018) created a LOB dataset and applied a shallow neural
network for market movement forecasting. The LSTMs (Hochreiter
and Schmidhuber, 1997) are commonly employed due to their
effectiveness in capturing long-term temporal dependencies,
Sirignano and Cont (2019) demonstrated improved performance
by training an LSTM model on multiple stocks compared to a
single-stock model. Fang et al. (2021) adopted a two-layer LSTM
model to predict market movements and evaluate its performance
over time. Meanwhile, CNNs have been frequently applied due to
their effectiveness in extracting spatial features from grid-like LOB
data. For example, CNNs have been shown to outperform MLP
and SVM models in predicting market movements (Tsantekidis
et al., 2017). Furthermore, hybrid approaches combining LSTM
and CNN architectures have also been explored, as illustrated by
Tsantekidis et al. (2020), and further popularized by Zhang et al.
(2019), becoming state-of-the-art benchmarks.

2.3 Advanced transformer-based models

Following the invention of attention mechanisms (Bahdanau,
2014) and transformers (Vaswani et al., 2017), transformer-
based models have greatly advanced in various fields, especially
NLP and CV. In recent years, transformer models have also
attracted research in the financial domain, particularly in limit
order book (LOB) forecasting. Wallbridge (2020) combined
CNNs with transformers to predict LOB movements, while
Sridhar and Sanagavarapu (2021) applied attention mechanisms
to forecast cryptocurrency price movements. Zhang et al. (2021)
applied deep learning to Market-by-Order (MBO) data for high-
frequency forecasting, showing its complementary value to LOB-
based models. More recently, Arroyo et al. (2024) introduced a
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convolutional-transformer model to estimate fill probabilities in
the LOB using survival analysis. While their architecture is similar
in structure, their focus is on order execution timing rather than
market movement forecasting, making their work complementary
to ours.

However, CNN-based approaches encounter limitations due to
spatial inductive biases, which do not align effectively with intrinsic
LOB characteristics. Typically, LOB features exhibit hierarchical
properties, where levels near the mid-price update more frequently
than deeper levels, thus reducing the utility of spatial locality
assumptions inherent in CNNs. In contrast, this paper proposes
a sophisticated model architecture that completely removes CNN
reliance. We demonstrate that eliminating CNN components
does not compromise predictive performance, thereby confirming
the efficacy and adaptability of transformer-based methods for
modeling complex LOB dynamics.

3 Limit order book data

3.1 Limit order book overview

A limit order book is a centralized record that facilitates the
matching of buy and sell orders submitted by market participants.
The LOB aggregates limit orders, which are orders that wait for a
desired price to be reached rather than execute immediately with
certainty at the current market price, on both the sell side and the
buy side of the book. Each buy or sell order is placed with a specific
quantity at a specified price, and multiple orders at the same price
level are aggregated in the LOB. On the sell side, participants seek
to sell assets, and their orders are ranked from lowest to highest
price, with the lowest ask price given the highest execution priority.
Conversely, buy orders are ranked from highest to lowest bid price.
Incoming market orders are matched against the best available limit
orders. The order matching process may follow different market
rules, such as price-time priority (also known as First-in-First-out)
or pro-rata matching, depending on the policy of the platform.

Definition A limit order book (LOB) with n levels of price and
volume is defined as the set

X = {x1,%2, . s Xn}»

where each level x; is a tuple
Xj = (P?Sk, V?Sk,P}’id, V}’id) , fori=1,2,...,n.

Here, P?Sk and V?Sk denote the ask price and volume at level i,
while PYd and VP4 represent the bid price and volume at the same
level. The best ask price P‘liSk (i.e., the lowest sell price) and the best
bid price PY (i.e., the highest buy price) are defined as:

Pk = min P, phid — may pbid,
1 1

The mid-price at time ¢ is given by:

, P?Sk + Pllaid
pmid = 2 .

A market movement from time ¢ to time ¢ + 1 is illustrated in
Figure 1. The horizontal axis represents the market depth at each
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price level, while the vertical axis represents the price levels. In the
figure, red bars indicate sell orders and green bars correspond to
buy orders, with the block sizes representing order volumes. At
time ¢, there are five price levels on both the bid and ask sides. At
time ¢ + 1, the ask limit order at the best ask price P*llSk is matched
with an incoming market buy order, leading to its removal from
the order book. As a result, the best ask price moves up to the
next available level, and the mid-price p! ., shifts accordingly to
reflect the new best bid and ask prices. In our experiments, we
use the mid-price as a proxy for market movement and evaluate
the predictive performance of various models based on its changes
over time.

3.2 Data collection and preparation

To evaluate our proposed model architecture, we collect Level
2 high-frequency book data from the Binance exchange. The
full order book is reconstructed at the millisecond level, and we
use the top 20 levels on both the bid and ask sides as input
to our model. This leads to 80 features of price and volume
information at each timestamp, capturing the market depth on both
sides.

We collect four datasets to support the different experimental
setups discussed in Section 5: one covering the full month
of September 2024, and three others consisting of data from
the second week of each month in October, November, and
December. Since the cryptocurrency market operates 24 h a
day and the sampling interval between timestamps is extremely
small, the resulting dataset is significantly more granular than
conventional daily price data. We consider this data volume
sufficient to support robust evaluation and fair performance
comparison across different models. Following the event-based
inflow approach adopted in Ntakaris et al. (2018), we construct
the LOB dataset with price and aggregated volume information
at each price level for both bids and asks. In total, over 1 million
LOB snapshots are reconstructed from the streaming data. The
descriptive statistics of the datasets are presented in Table 1. The
mid-price distributions across all months show low skewness
and mostly negative kurtosis, indicating relatively symmetric
distributions with thinner tails than a normal distribution.
These characteristics suggest that extreme price movements are
infrequent, reducing the risk of extreme outliers significantly
impacting model performance.

4 Method

In this section we discuss the proposed LiT model architecture
(Figure 2) which consists of three main components: (1) a linear
projection concatenated with positional embeddings to efficiently
represent structured patches from the limit order book data; (2)
transformer layers utilizing self-attention mechanisms to encode
spatial and temporal dependencies between patches; and (3)
LSTM layers to further model long-term temporal dependencies.
Additionally, we provide details regarding the experimental
training and fine-tuning settings.
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FIGURE 1
Limit order book evolution from time t to t + 1.
TABLE 1 Descriptive statistics of LOB datasets across different months.
Timestamps Mean St. Dev Min Max Skew Kurtosis
September 1,077,057 59,038.824 3,206.560 52,550.005 66,076.115 0.284 —1.110
October 177,651 70,149.906 2,104.124 66,439.905 73,620.115 —0.235 —1.477
November 130,246 69,223.755 807.258 67,478.735 71,632.805 0.511 0.261
December 233,058 95,574.438 2,135.029 91,532.525 99,963.695 0.256 —1.087

4.1 LiT model architecture

4.1.1 Input layers

Drawing inspiration from multi-channel representations in
image processing (e.g., RGB channels), the grid-like structure of
limit order book data is represented using two input channels: one
for price and one for volume information. This results in a three-
dimensional input x € RF*WXC (Figure 2), where H denotes the
depth of the LOB (i.e., the number of price levels), W is the window
size representing the number of time steps used to construct each
training example, and C is the number of channels which in this
case is 2 for price and volume channels.

Following (Dosovitskiy et al., 2020), we split the input LOB
data into patches to facilitate efficient feature extraction. However,
as random small square patches in the LOB do not consistently
represent coherent or interpretable market structures, they may
span across sides or unrelated price levels without preserving
meaningful spatial or temporal context, instead of sampling small
square patches in random locations as done in image processing
with resolution (P, P), where P is much smaller than both the height

Frontiersin Artificial Intelligence

and width of the original image. In our approach, we adopt a
structured patching scheme with size (P, P,,), where Py, denotes the
vertical dimension of the patch, which is set equal to the number
of price and volume levels in bid or ask side, i.e. P, = H/2, and
P,, is a small temporal window representing multiple ticks. This
design ensures that each patch captures consistent and interpretable
information across price levels while maintaining temporal locality.
This results in a total number of HW/(P), x P,,) patches extracted.

To retain information about position and structure, we
incorporate a learnable positional embedding that encodes both
side information and the temporal position of each patch. This
embedding is concatenated with the linear projection of each patch
and passed to the transformer layers for further encoding.

4.1.2 Transformer layers

Inspired by how humans selectively focus on relevant
information when processing complex data, the attention
mechanism in deep neural networks was originally introduced by
Bahdanau (2014) and popularized by Luong (2015) with several

frontiersin.org
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FIGURE 2
LiT model architecture.

efficient variants. In this work, the transformer layers in our
Limit Order Book Transformer model adopt the self-attention
mechanism proposed by Vaswani et al. (2017). This mechanism
effectively captures both spatial and temporal dependencies in
LOB sequences by leveraging the importance of different patches
based on their contextual relationships, while convolutional layers
rely on fixed-sized filters and primarily capture local patterns.
Furthermore, this mechanism also easily maintains efficiency by
parallel processing sequence elements.

Specifically, self-attention computes attention scores using
three vector representations derived from the input price and
volume information: queries (Q), keys (K) and values (V). Given
a query vector q and a key vector k; (j = 1,..., T), the attention
score is defined as:

9’k
N

where dj is the dimensionality of the vectors. These scores

score(q, kj) =

quantify the relevance of each patch in the context of predicting
future market movements. The attention weights, representing the
normalized importance of each patch, are calculated as:

exp(score(q, k;))
>, exp(score(q, ki)

aj—

Subsequently, the context vector can be calculated with a
weighted sum over the value vectors:
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This is then passed through a feedforward network to produce
the final transformer layer output z;.

4.1.3 LSTM and output layers

For the market movement forecasting task, the transformer
layer final output z; is then fed to the LSTM layers to further
model temporal dependencies within the encoded LOB features.
A The LSTM layers enhance the capture of sequential patterns
that complement the self-attention mechanism by explicitly
maintaining temporal states, which from a high level the LSTM is
given by

(hy, ¢;) = LSTM(z, hy—1,¢:-1)

where h; denotes the hidden state, ¢; the memory cell state,
h;_1, ¢, the recurrent states from the previous timestep. Finally,
the output layer applies softmax to classify the market trends.

4.2 Training and fine-tuning settings

For all our experiments, the models are implemented in Python
using Keras (Chollet, 2015) and TensorFlow (Abadi et al., 2015)
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and all the models are implemented with a comparable number
of parameters. All the training and evaluation are performed
on King’s Computational Research, Engineering and Technology
Environment (CREATE) (Kings College London, 2025). The
adaptive optimisation method RMSProp was employed during
training, and each model was trained for up to 300 epochs, with
early stopping applied after 30 epochs without improvements
to ensure convergence, and a batch size of 128 was used
throughout the experiments. During the training stage for the
experiments in Section 5.2, all parameters are learnable. In
the fine-tuning phase for the experiments in Section 5.4, all
layers are frozen except for the last two fully connected layers,
allowing the model to adapt to the data distribution of the latest
market conditions.

5 Results

5.1 Experiment setup

In all experiments, we use the 64 most recent snapshots as
the input to our model. To ensure numerical stability during the
training process, we apply z-score normalization separately for
volume and price data. Furthermore, to verify the robustness and
adaptability of our model across different prediction horizons, we
calculate price changes and define market trends over four time
windows: 300 ms-500 ms, 300 ms—700 ms, 300 ms-1,000 ms and
500 ms-1,000 ms, we calculate the average price change and exclude
timestamps where no change in the mid-price occurs. This results
in an unevenly spaced time series of market movement events. The
mid-price change is defined as:

1 t+k i t
% 2imt41Prmia — Pria

Pt

mid

price_change =

Where k denotes the number of future timesteps within the
time window. To classify the market trends, we use a specific
percentage p of the current price as a threshold p x P! .. to group
the market movements into three following categories:

e upward: the price is increasing and the price change is over p
percentage of the previous price.

o stable: the price change is within p percentage of the
previous price.

e downward: the price is decreasing and the price change is over
p percentage of the previous price.

And the following metrics are assessed across all
the experiments.
TP+ TN
Accuracy = T 1)
TP+ TN + FP + FN
.. TP
Precision = ——— (2)
TP + FP
TP
Recall = ——— (3)
TP + FN
2 x Precision x Recall 2% TP
Fl = = 4

Precision + Recall ~ 2% TP + FP + FN
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Due to potential class imbalance introduced by the choice of
different thresholds (in our experiments, we select 0.000015 to
maintain a relatively balanced label distribution), we normalize the
evaluation metrics based on class frequencies. Specifically, for a
classification task with C classes with the sizes for each class (n;,i =
1,2,.., C), for class i, we then rescale its metrics by weight W;:

_ X

Wi =
C*ni

5.2 Comparison of forecasting models

In this section, we evaluate the performance of our proposed
model (LiT) against a range of traditional ML models and deep
learning baselines. Specifically, for the traditional models, we
include Ridge Regression (RR), Random Forest (RF) and Support
Vector Machine (SVM), while the deep learning baselines consist
of Multilayer Perceptron (MLP) and Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). Additionally, we
compare LiT with the vanilla transformer structure (ViT) used
in vision tasks (Dosovitskiy et al., 2020) and two state-of-the-
art models with convolution layers designed for limit order book
data: DeepLOB (Zhang et al.,, 2019) and TransLOB (Wallbridge,
2020). For this comparison, due to the computational constraints
and scalability limitations of certain baseline models, we use a
subset of the entire September dataset and the label distribution is
shown in Figure 3. We show the assessment of the transfer learning
capability by pre-training on the full dataset and fine-tuning on
a future dataset in the next Section. To assess the robustness of
our model across different horizons, we evaluate it using all four
time windows in a time-series cross-validation setup. Specifically,
the dataset is split into five folds, and we report the mean of all
evaluation metrics across these folds. We show that even without
relying on convolutional layers, LiT consistently outperforms both
traditional and deep learning baselines, as well as existing state-of-
the-art models, demonstrating its ability to capture microstructural
market dynamics effectively.

Table 2 presents the forecasting results for the shortest
prediction horizon of 300 ms to 500 ms, which evaluates the ability
to capture immediate microstructural dynamics. The results show
that, although model performance is under 60% in all metrics,
highlighting the challenge due to the noise and volatility inherent
in ultra-short-term price movements, deep learning models MLP
and LSTM generally show improvements of 1-3% over traditional
ML models, and the state-of-the-art models further improve upon
the deep learning baselines by an additional 1-2%. Among state-
of-the-art models, the ViT model lags behind other models,
suggesting that the vanilla vision-based transformers without an
LSTM head are less effective at modeling LOB data. Despite
DeepLOB achieving the highest precision, its relatively lower recall
leads to a weaker F1 score and accuracy compared to TransLOB
and LiT. In the forecasting for this prediction horizon, both LiT and
TransLOB outperform DeepLOB, with LiT achieving the highest F1
score (58.99%) and accuracy (59.03%), indicating a marginal but
meaningful advantage in this short-term forecasting window.
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Distribution of training labels.
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TABLE 2 Market movement forecasting results: 300 ms—500 ms horizon.

TABLE 3 Market movement forecasting results: 300 ms—700 ms horizon.

Model Precision Recall F1 score  Accuracy Model Precision Recall F1 score  Accuracy
(%) (%) (VA (VA (VA (VA (VA) (VA
SVM 55.00 56.50 5425 56.40 SVM 58.00 58.75 58.00 58.77
RR 59.37 53.99 47.32 53.99 RR 64.21 60.80 60.10 60.80
RE 57.25 58.50 56.75 58.66 RF 62.50 62.75 62.25 6291
MLP 56.51 56.21 56.15 56.21 MLP 60.73 6271 60.54 6271
LSTM 57.91 57.31 57.14 57.31 LSTM 61.86 63.17 61.89 63.17
ViT 56.90 56.89 54.87 56.89 ViT 59.69 59.14 59.37 59.14
DeepLOB 59.65 57.66 57.09 57.66 DeepLOB 63.26 63.98 63.20 63.98
TransLOB 59.14 58.84 58.77 58.84 TransLOB 63.12 64.43 63.05 64.43
LiT 59.10 59.02 58.99 59.03 LiT 63.49 64.59 63.65 64.58

Bold values indicate the best (highest) result for each metric.

Table 3 shows the forecasting results for the 300 ms-700 ms
window, a slightly longer and more stable prediction horizon. The
results show that, with the increased time window, all models
demonstrate improved performance, with most metrics surpassing
60%, indicating greater predictability over longer intervals.
Regarding the comparison across models, as in the previous
setting, deep learning models outperform traditional approaches
by a 1-3% margin while state-of-the-art models outperform deep
learning baselines by 1-3%. DeepLOB and TransLOB perform
similarly, while the ViT model again underperforms, and LiT

Frontiersin Artificial Intelligence

Bold values indicate the best (highest) result for each metric.

achieves the best overall results in F1 Score (63.65%) and Accuracy
(64.58%), suggesting stronger generalization in capturing medium-
horizon trends.

Table 4 shows the results for the longest forecasting window
of 300 ms to 1,000 ms. With model performance close to 70%
across several metrics, we observe a consistent improvement due
to the increased temporal aggregation of market dynamics, which
helps mitigate the short-term noise and volatility. Among the
models, the state-of-the-art models, except ViT, which shows
only moderate improvement and continues to underperform
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TABLE 4 Market movement forecasting results: 300 ms—1,000 ms
horizon.

Model Precision Recall F1 score  Accuracy
(%) (%) (%) (%)
SVM 59.75 61.50 58.75 61.64
RR 65.22 62.52 59.18 62.52
RE 64.25 65.50 62.75 65.37
MLP 62.04 65.16 61.83 65.16
LSTM 65.77 67.64 66.10 67.63
ViT 62.75 63.79 63.15 63.79
DeepLOB 65.92 67.76 66.23 67.76
TransLOB 65.83 68.25 65.68 68.25
LiT 66.20 68.34 66.40 68.34

Bold values indicate the best (highest) result for each metric.

TABLE 5 Market movement forecasting results: 500 ms—1,000 ms
horizon.

Model Precision Recall F1score Accuracy
(%) (VA (VA (VA
SVM 58.50 60.00 57.75 60.07
RR 63.89 60.71 57.68 60.71
RE 62.50 63.50 61.50 63.54
MLP 59.99 61.68 60.60 61.68
LSTM 62.16 64.68 62.14 64.68
ViT 60.81 61.40 61.07 61.40
DeepLOB 64.27 65.99 64.57 65.99
TransLOB 63.63 66.24 63.49 66.24
LiT 64.14 66.37 64.32 66.37

Bold values indicate the best (highest) result for each metric.

relative to others, once again achieve the best forecasting results,
while traditional ML models continue to show the weakest
performance. We observe LiT achieves the best results across
all four metrics—Precision (66.20%), Recall (68.34%), F1 Score
(66.40%), and Accuracy (68.34%)—demonstrating its ability to
capture longer-term dependencies in market dynamics effectively.
Notably, DeepLOB achieves a comparable F1 Score to LiT but
a lag in Accuracy, while conversely, TransLOB produces a close
Accuracy but a noticeably lower F1 Score, suggesting LiT offers
a better balance in all metrics, resulting in more stable and
reliable performance.

Table 5 reports the results for a shifted prediction window
starting from 500 ms to 1,000 ms. This allows us to validate model
robustness over slightly delayed inputs and different temporal
offsets. Results remain consistent with earlier findings. LiT again
performs competitively, with the highest recall (66.37%) and
accuracy (66.37%) and near-best F1 score. While DeepLOB slightly
edges out LiT in FI, the overall margin is minimal, affirming LiT’s
stable and competitive performance across time horizons.
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TABLE 6 Forecasting results for different patch sizes: 300 ms—500 ms
horizon.

H W N Precision Recall F1 Accuracy
(%) (%) score (%)
(%)
10 | 4 | 64 59.30 58.89 58.74 58.89
0 8 | 32 57.05 56.97 56.93 56.97
10 16 16 55.99 55.95 55.91 55.95
20 | 4 | 32 59.24 59.06 59.00 59.07
20 | 8 | 16 57.74 57.52 57.44 57.52
20 | 16 | 8 56.16 56.06 56.02 56.06
40 | 4 | 16 59.10 59.02 58.99 59.03
0 | 8 | 8 57.78 57.51 57.43 57.51
40 | 16 | 4 55.77 55.60 55.54 55.60

Bold values indicate the best (highest) result for each metric.

5.3 Comparison of different patch sizes

To examine how the structured patching scheme in LiT
influences model performance, we evaluate different combinations
of patch height (H), width (W), and the resulting number of
patches (N) with the same dataset as in Section 5.2. These
settings correspond to how the input LOB training example is
partitioned into structured patches before being passed to the
transformer layers. As illustrated in Figure 2, the input LOB
data represented as a grid of price and volume information is
divided into vertically and horizontally aligned rectangular patches.
The structured patching preserves both spatial structure across
price levels and temporal structure across different timestamps.
Specifically, in our comparison of different patch sizes:

e H represents the patch height corresponding to spatial depth
(i.e., the number of LOB price levels).

e W represents the patch width corresponding to the temporal
window (i.e., the number of timestamps).

e N represents the resulting number of patches.

Table 6 shows the forecasting results for the 300 ms-500 ms
horizon across different patch sizes. For a fixed patch height (H),
we observe a consistent pattern across all settings that narrower
temporal widths (W) lead to better performance. Specifically,
patches with W = 4 outperform W = 8 by 1-2%, which
in turn outperform W = 16 by a comparable margin. This
suggests that a higher temporal resolution within each patch more
effectively captures the microstructural dynamics in LOB data.
Conversely, while fixing the patch width and comparing different
depths (H), performance generally improves with increasing patch
height, suggesting that capturing a greater LOB depth helps to
capture underlying market dynamics. Overall, the configuration
(H = 20, W = 4) achieves the best results for this short-term
forecasting horizon.

Across Tables 7-9, we observe similar trends that performance
improves consistently with narrower temporal windows and
deeper spatial windows. Unlike the more marginal improvements
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TABLE 7 Forecasting results for different patch sizes: 300 ms—700 ms
horizon.

10.3389/frai.2025.1616485

TABLE 9 Forecasting results for different patch sizes: 500 ms—1,000 ms
horizon.

H W N Precision Recall F1 Accuracy H W N Precision Recall F1 Accuracy
(%) (%) score (%) (%) (%) score (%)
(%) (%)
10| 4 64 61.66 63.09 61.71 63.08 10| 4 64 63.02 65.72 63.02 65.72
0 8 32 60.97 62.94 60.73 62.94 0] 8 | 32 61.87 65.03 61.88 65.03
10| 16 16 60.17 6227 60.11 62.27 10 | 16 16 61.23 64.58 61.27 64.58
20 | 4 32 63.39 64.53 63.54 64.53 20 | 4 32 63.94 66.11 64.31 66.11
20 | 8 16 61.60 63.02 61.83 63.02 20 | 8 16 62.08 65.04 62.25 65.04
20 | 16 | 8 60.11 62.06 60.12 62.06 20 | 16 | 8 61.05 64.45 61.08 64.45
0 | 4 16 63.49 64.59 63.65 64.58 0 | 4 16 64.09 66.37 64.32 66.37
0 | 8 | 8 61.92 63.32 62.04 63.32 0 | 8 | 8 62.72 65.26 62.95 65.26
40 | 16 | 4 59.84 62.01 59.74 62.01 40 | 16 | 4 60.95 64.52 60.64 64.52

Bold values indicate the best (highest) result for each metric.

TABLE 8 Forecasting results for different patch sizes: 300 ms—1,000 ms
horizon.

H W N Precision Recall F1 Accuracy
(%) (%) score (%)
(%)
10| 4 | 64 64.95 67.50 65.10 67.50
10| 8 | 32 63.95 66.89 64.22 66.89
10 16 16 63.46 66.62 63.55 66.62
20 | 4 | 32 66.00 68.03 66.28 68.03
20 | 8 16 64.48 67.23 64.70 67.23
20 | 16 | 8 63.38 66.54 63.47 66.54
40 | 4 16 66.20 68.34 66.40 68.34
40 | 8 | 8 65.13 67.53 65.38 67.53
40 | 16 | 4 63.36 66.62 63.15 66.62

Bold values indicate the best (highest) result for each metric.

observed in the 300 ms-500 ms horizon, these longer horizons
demonstrate a clearer benefit from having a greater window
height (H) and narrower window width (W). In particular,
the configuration (H = 40, W = 4) consistently achieves
the best results across all metrics and horizon time windows,
highlighting the importance of both spatial depth and high-
frequency temporal resolution when modeling LOB dynamics over
extended periods.

Overall, the evaluation metrics across four prediction horizons
show clear sensitivity to patch size. Across all horizons, narrower
temporal windows (W = 4) with greater spatial depth (H = 40)
consistently yield stronger results. While larger patch sizes reduce
the cost of computation resources, this trade-off comes at the
compromise of predictive performance. These results suggest that
LiT benefits most from a patching strategy that balances spatial
coverage with high temporal granularity, enabling transformer
layers to effectively attend to high-frequency structural changes
within the LOB.
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Bold values indicate the best (highest) result for each metric.

5.4 Adaptation across time via fine-tuning

In the context of rapidly evolving market dynamics and
high-volume streaming data, fully retraining a model to keep
up with the current market state is often computationally and
operationally impractical. Moreover, for limit order forecasting
tasks, when there is a shift in data distribution between the training
and deployment periods, model performance tends to degrade
over time (Fang et al., 2021), indicating that models trained on
historical data alone may not remain effective in evolving market
conditions. While the primary goal of this paper is to assess
the performance of the proposed model in capturing market
microstructure dynamics compared to other methods, we also
explore how LiT can be pre-trained on historical data and fine-
tuned for market states in the subsequent periods and help mitigate
this challenge. In this section, we first illustrate how model trained
on a static historical dataset performs over time, and then show
how transfer learning through pre-training and fine-tuning can
help maintain its practical capability to adapt to changing market
conditions. Specifically, we show how LiT can be pre-trained on a
large historical dataset and then fine-tuned on more recent data,
enabling the model to quickly adjust to new market states without
full retraining.

We use all datasets described in Section 3 in this experiment.
Specifically, the entire September data is used to pre-train a large
model. For the October, November and December datasets, we
apply a simple 60/40 split for the training and testing sets instead
of cross-validation. In order to verify the distribution shift in the
LOB data and assess the model adaptability, we compare three
training strategies:

e From-scratch: for each of the October, November, and
December datasets, a model is trained solely on its training set
and evaluated on its test set. These results serve as the baseline
for comparison.

e Zero-shot: a model is first pre-trained on the September data
and then evaluated on the test sets of October, November and
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TABLE 10 Monthly forecasting results.

10.3389/frai.2025.1616485

Precision (%) Recall (%) F1 score (%) Accuracy (%)
Oct Nov Nov Nov Nov
From-scratch 62.47 62.09 63.93 62.34 62.09 63.87 62.12 62.04 63.86 62.34 62.09 63.87
Zero-shot 64.20 63.89 60.77 64.19 59.57 59.32 64.17 58.04 58.14 64.19 59.57 59.32
Fine-tuned 65.26 64.71 64.33 65.07 64.66 64.12 64.88 64.58 64.13 65.07 64.66 64.12

Bold values indicate the best (highest) result for each metric.

December. This setup helps assess the impact of distributional
shift without adaptation.

e Fine-tuning: for each of the October, November, and
December datasets, the same pre-trained September model
is first fine-tuned on its training set by freezing all layers
except for the final dense layers, then evaluated on its test set.
This setup demonstrates the benefit of adaptation to recent
market conditions.

Table 10 presents the results for each month using the 300
ms-500 ms forecasting horizon (similar trends observed across
other horizons). For the From-scratch approach, where the model
is trained on the most recent data, the results remain relatively
stable across all months, with all metrics consistently around 62—
63%. For the Zero-shot approach, where the model pre-trained
on September data is applied directly to the test sets of future
months without adaptation, we observe an obvious degradation in
performance over time. Specifically, while October results remain
strong due to the recency and size of the September dataset, we
observe a significant decline of around 5% in most metrics in
November and December, falling even below the from-scratch
baselines. This confirms the presence of a distribution shift between
the September training data and the test set of target months,
and indicates the limitations of applying static trained models in
evolving market conditions. In contrast, the Fine-tuned model
demonstrates clear improvements. By adapting a pre-trained model
to the most recent market conditions, it outperforms both Zero-
shot and From-scratch approaches and consistently achieves the
best performance across all evaluation metrics for all four months.
The gains are especially notable in November and December,
where fine-tuning recovers the performance lost in the Zero-
shot setting and exceeds From-scratch baselines. These findings
highlight the effectiveness of fine-tuning LiT in adapting to shifting
market dynamics. They also demonstrate that the earlier layers
in LiT successfully learn robust and transferable representations
of LOB features, allowing adaptation to new market conditions
through fine-tuning only the final layers. Combined with its non-
convolutional design, scalability, and fast fine-tuning capability,
LiT offers a highly practical solution for real-time deployment in
dynamic financial markets.

6 Conclusion

This paper introduced LiT (Limit Order Book Transformer),
a transformer-based model designed to capture microstructural
dynamics in high-frequency financial markets without relying on
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convolutional layers. Unlike prior approaches that rely heavily on
convolutional layers, LiT leverages a vision-inspired transformer-
based architecture to effectively model both spatial and temporal
dependencies in LOB sequences.

We evaluated LiT on datasets collected from the Binance
exchange and compared it against traditional machine learning
models, early deep learning architectures and state-of-the-art LOB
models such as DeepLOB and TransLOB. Through extensive
experiments across multiple forecasting horizons, we demonstrated
that LiT consistently outperforms all baselines in precision, recall,
F1 score, and accuracy, showing its capability to learn fine-
grained LOB features without the need for CNN-based feature
extraction.

We also investigated how different patch configurations
affect the performance of LiT. Across all forecasting horizons,
we found that using narrower temporal windows and deeper
spatial windows significantly improves performance. These
results confirm the importance of patch configurations in
transformer-based LOB models and provide practical insights for
designing effective architectures to capture high-frequency market
microstructural dynamics.

Beyond static evaluation, we further explored the adaptability
of LiT in dynamic market conditions. By pre-training the
model on historical data and fine-tuning on more recent
periods, we showed that LiT can effectively adjust to shifting
market dynamics. Our results showed that zero-shot transfer
leads to performance degradation due to distributional shift,
while fine-tuning not only helps mitigate this issue but also
surpasses from-scratch baselines. This demonstrates LiT’s practical
value in real-world scenarios, where full retraining is often
computationally infeasible and rapid adaptation is essential. Its
ability to combine transformer-based sequence modeling with
efficient fine-tuning makes it particularly well-suited for modern
financial environments, where models must not only learn complex
patterns but also remain robust in the face of constant market
evolution.

While LiT demonstrates strong forecasting performance
and market adaptability, there are several promising directions
for future work. Currently, the model relies solely on raw
price and volume data. Incorporating additional high-frequency
features such as order imbalance could potentially further
enhance predictive performance. Another potential direction is to
extend LiT within a reinforcement learning framework, enabling
it not only to forecast price movements but also to learn
optimal trading strategies through interaction with a market
environment.
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