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Introduction: Despite significant advances in breast cancer screening and
early detection over recent decades, rising patient volumes, limited resources,
and time constraints hinder healthcare teams from anticipating distress and
effectively managing the patient experience. We leveraged real-world data from
236 patients during a breast biopsy procedure and follow-up period.
Objective: The study goal was to model important components of the
multifaceted biopsy procedure and its effect on patient experience.
Methods: We integrated data from patient-reported outcomes, psycho-social
assessments, and workflow annotations.
Results: We (1) provide a visual model of the patient pathway, (2) predict,
with linear mixed models and machine learning, anxiety based on psychological
pre-assessments as well as procedural events, and (3) analyze communication
between caregiver and patient to understand moderators of the patient
experience. Predictive modeling revealed significant correlation between
psychological pre-assessments and median anxiety during biopsy (IES β = 0.91,
CES-D β = 0.8, PSS β = 0.62, STAI β = 0.58, all with p < 0.001). Higher baseline
stress was strongly associated with greater anxiety during biopsy. Centering
each individual’s procedure time at her first local anesthesia (LA) revealed a
significant (βt2 p = 5.43e−06) temporal pattern in anxiety, which increased until
LA and decreased afterwards. Using natural language processing, we identified
patient expressions of pain and distress alongside workflow annotations.
Conclusion: Our findings highlight the potential of combining data to model
patient experience during a medical procedure. Our work helps to develop digital
twins of medical procedures to support clinicians to provide proactive care and
mitigate patient distress.

KEYWORDS

patient experience, digital twin medical procedure, breast biopsy, NLP, linear mixed
model (LME)

1 Introduction

The process of breast biopsy is stressful for women (Maimone et al., 2020; Grimm
et al., 2024; Soo et al., 2019), involving various steps, such as preparation, the procedure
itself, and subsequently waiting for results. However, patient experiences during each step
remain poorly understood, making it difficult to anticipate points of distress. A digital
twin of the process could provide transparency, enabling clinicians to better anticipate and
respond to patients’ needs. Image-guided core needle breast biopsy (CNB) is a diagnostic
interventional procedure that involves local anesthesia, an incision in the breast, and
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insertion of a biopsy device guided by ultrasound or
mammography. Typically, sedation is not used for ultrasound-
guided procedures, during which patients lie on their back. For
mammography-guided procedures, where patients lie on their
abdomen, sedation is contraindicated. The biopsy process and
patient pathway are not completed with the end of the procedure
itself. Subsequently, patients recover briefly at the clinic and
continue to wait up to 5 days for lab analysis results. Currently,
anticipating disruptions in the process and understanding
patient experiences throughout the journey remains a significant
challenge. In healthcare, digital process or service models offer
a novel approach to analyze workflows (Pesapane et al., 2022;
Karakra et al., 2019), thus providing a framework to effectively track
patients’ experiences and aiding to minimize unexpected events.

Since artificially elicited emotions, e.g. in a lab, cannot be
generalized to the real-world environment (Can et al., 2023)
and the psychophysiological responses to artificial stimuli do not
represent those in real life (Dantzer, 2016), we focus on a real-
world analysis to partition and analyze the psychological pathway
modeling problem. The patient experience, which includes triggers
for distress, anxiety and pain in each moment of the pathway,
could be represented by integrating multimodal data sources:
patient-reported, contextual, and procedural data. Research shows
that given the individual resources, people can communicate
distress triggers and potentially regulate their response through
coping strategies (Baker et al., 2005; Can et al., 2023). Although
physiological monitoring and cortisol data are used in research on
physiological distress detection (Dantzer, 2016), relevant data is
typically not collected during current clinical workflows. Moreover,
contextual data are useful to understand patient anxiety and
distress. Data from the procedure, e.g., difficulty to find the
lesion, difficulty to perform biopsy, or being sent home to wait
for surgical biopsy, could provide insight into the individual
experience. To deal with the complexity of the data and variables
related to individual experience, recent studies in other domains
use a concept map to visualize patient experience and moderating
factors in a medical procedure (Nieto Alvarez et al., 2024;
Falsiroli Maistrello et al., 2022; Gualandi et al., 2019).

Real-world data from the clinical process of CNB used in
the present investigation was collected in a clinical trial dataset
by Lang et al. (2006). At the time, the researchers assessed
effects of relaxation on anxiety and pain levels of outpatients
undergoing CNB diagnosis while being randomly assigned to three
intervention groups during the biopsy procedure. Furthermore,
Lang et al. (2009), examined the effects of uncertainty after
the biopsy procedure on salivary cortisol levels and found that
uncertainty was associated with significantly higher biomarkers
signaling distress. In the present work, we focus on experience,
including patient reported anxiety and pain, because these aspects
increase patient management effort during procedures, increase
resource utilization, and increase healthcare costs (Ladapo et al.,
2018).

Our objective was to develop models of the breast biopsy
procedure and the experience of patients based on actual CNB data.
Specifically, we investigate: (1) patient experience of the biopsy
process and critical events, (2) individual variables influencing the
patient experience, e.g., psychosocial predictors, and (3) situational

moderators of the patient experience. Our methods integrate
diverse data and may lead to future procedural digital twin models
of patient experience. Our work contributes to early identification
of distressing moments, as well as to improve the care experience
along the patient pathway.

2 Results

We investigated the procedural and psychological pathway
using a CNB study dataset (Lang et al., 2006, 2009) involving 236
patients during the biopsy procedure and a 5-day follow-up period
at home.

2.1 Process model and moderating factors

We describe the biopsy process based on clinical guidelines
and real-world sub-procedures, see Figure 1a. A detailed person-
centered pathway (Figure 1b) maps the patient experience from
scheduling appointment for CNB, through the procedure, and
during the post-procedural period at home. The pathway
diagram displays real-world process variations, which may impact
experience of care, e.g., various healthcare professionals joining the
intervention room, time for the process, and variation in delay
before patients receive results. Biopsy results were received on day 5
by 16 patients (13%) with malignant findings and 37 patients (29%)
with benign diagnoses. For 73 patients (58%), results were delayed:
(a) the result had not been communicated yet (n = 54); (b) CNB
could not be performed and patients needed to wait for surgical
excision (n =14); (c) histopathologic analysis of the biopsy revealed
at-risk lesions (n = 4) or benign cells (n = 1), recommending
surgery for excision and follow-up diagnosis.

2.1.1 Procedural sub-classification
Although all patients (n = 236) were scheduled for CNB, we

implemented a semi-automated methodology to classify patients
into sub-procedures, based on 4,411 textual observations. Sub-
procedure categories were: (1) no biopsy after diagnostic imaging (n
= 23), (2) standard imaging with local anesthetics and biopsy (n =
177), (3) require further procedure after imaging (e.g., surgery) (n
= 32), (4) neither imaging nor biopsy (n = 1).

Figure 2 shows patient reported scores during the procedure
and for 5 days post-procedure. Data on anxiety and pain were
available from arrival through 5 days post-procedure at home.
Descriptive statistics revealed higher anxiety at the start of the
procedure compared to its end. Post-procedure anxiety was
elevated, if CNB procedure result included a request to perform
another intervention (e.g., surgery), compared to cases were it
was not.

Sub-classification of procedures represents intra-procedure
information and cannot predict median anxiety during the
procedure. Instead, we used sub-classification to predict “next
minutes,” subsequent days, and dynamic models (e.g., dynamic
prediction with landmark model). However, due to limited data the
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FIGURE 1

Process modeling for patients undergoing CNB. (a) Process diagram based on clinical guidelines and identified sub-procedures from real-world
clinical perspective. Process diagram (b) of the person-centered pathway mapping, including patient’s perspective, averaged experience report
according to our dataset, healthcare professionals joining/leaving the procedural room, time for the process step duration or wait time.

results lacked statistical power, preventing significant probabilistic
associations with other variables.

We applied a semi-automated word recognition method to
identify the first local anesthesia (LA) moment in unstructured

data. Figure 3a shows an LA-centered graph grouping patients,
who received anesthesia by sub-procedure. Using a linear mixed
model, we tested the predictability of LA as peak anxiety moment.
Centering time at LA revealed a significant (flipped U-shape effect
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FIGURE 2

Patient reported experience during CNB procedure and five days post-procedure. (a, c) Patient reported pain. (b, d) Patient reported anxiety. During
the CNB procedure, patients reported every 10 min. During post-procedure, patients reported at four moments during the day, over five days.
Sub-procedures were identified from unstructured data analysis, see methods section for details.

FIGURE 3

Predictability of local anesthesia (LA) as a first moment with higher anxiety. (a) LA-centered graph per sub-procedure and (b) the LA as a significant
moment for anxiety, effect plot analyzed with linear mixed model.

plot βt with p = 0.61 and βt2 with p = 5.43e−06) increase in anxiety
shortly beforehand (see Figure 3b), underscoring its critical role in
the procedure. Notably, centering time at the grand mean yielded
insignificant parameter estimates.

2.1.2 Labeling critical events in the process
Human expert analysis of the unstructured data further

sub-labeled normal biopsy procedures by critical events,
using terms from Table 1 to define each patient’s process.
Supplementary Figure S3 illustrates pain and anxiety levels
experienced during these events. Sub-labels included: biopsies
in two breast areas (n = 6), cyst aspiration (n = 8), clinician
consultations (n = 4), patient-triggered events (e.g., restroom
visit, n = 9), clinician-triggered events (e.g., fainting, n = 2),

waiting for clinicians (n = 22), technical complications (e.g.,
imaging difficulties (n = 9), and technology malfunctions (n
= 2). The sub-classification and sub-labeling of events capture
process variations during CNB, and define classifiers based on
real-world data to be used for potential future digital twin models
of medical procedures.

2.2 Factors influencing individual
experience

The concept map in Figure 4 organizes variables moderating
patient experience into three groups: (1) sociodemographic and
psycho-social variables, (2) clinical factors, and (3) situational
variables including clinical team involvement, perceived threats,

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1618357
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nieto-Alvarez et al. 10.3389/frai.2025.1618357

TABLE 1 Sub-labeling based on words or observations from unstructured data to identify events happening per patient during CNB.

Sub-labeling in the procedure Related words from unstructured data

Double area biopsied 2nd area, other breast, 2nd Bx, second bx

Consultation needed Needs help, Dr [...] and Dr [...] enter, consult

Patient event Hostile, restroom, moved, drunk, touched sterile space, request to scan left breast too

Clinician event Faint (syncope), says study is disturbing factor

Waiting for clinician Waiting, patient alone, waiting for, tech/MD out, tech/MD back

Technical complications Complication(s), (re)positioning, [research] study as a disturbing factor

Technological complications Machine very loud, machine off, problems with machine, computer down, cannot continue, problems with computer, needle
doesn’t open, needle needs replacement, new device, salesperson in room, patient uncomfortable with man in room

FIGURE 4

Concept map of patients’ experience and moderating variables. The patient experience includes physiological and self-reported data, the concept
map identifies the relation with moderating variables and is the basis for analysis of relations of variables.

and coping resources. While probabilistic relations were established
for some psycho-social variables and situational variables (e.g.,
clinical team involvement, and coping mechanisms), limited
data prevented statistical significance across all variables. Further
details on the available data for each group are provided in the
Methods section.

2.2.1 Psychosocial predictors
Descriptive analysis (Supplementary Figure S1), supported by

a linear mixed model, revealed significant correlations between
median anxiety and pre-procedure psychological assessments. The
assessments included the Impact of Event Scale (IES), Perceived
Stress Scale (PSS), State-Trait Anxiety Inventory (STAI), and the
Center for Epidemiological Studies-Depression Scale (CESD) from
120 patients. While most individuals reported lower to moderate
levels of anxiety (most measures are right-skewed), a notable
subset experienced high anxiety levels, suggesting disproportionate
vulnerability in some patients. Linear mixed model results showed
the strongest predictor was IES (β = 0.91), followed by CES-D (β
= 0.82), PSS (β = 0.62), and STAI (β = 0.58), all with p < 0.001.

2.2.2 Socio-demographic predictors
Multidimensional descriptive analysis revealed variability in

anxiety levels across socio-demographic factors. Anxiety and pain

scores showed no clear trend with age, suggesting its influence
may be complex or nonlinear. Race and ethnicity exhibited some
clustering by anxiety scores, potentially reflecting cultural or socio-
environmental influences; however, under representation of certain
racial groups limits broader conclusions.

2.2.3 Physiological predictors
Baseline physiological measures (e.g., blood pressure, heart

rate) from 101 patients, showed low correlations with median
anxiety scores. Cortisol levels as an indicator of anxiety
presented challenges for analysis. Although pre-post procedure
measurements include less confounding factors than “at home”
data, none yielded significant results in the linear mixed model.
Potential confounder factors include: age variability (e.g., young
and older patients), hours of sleep before the procedure, and
hormonal differences (e.g., pregnancy, menopause, hormone
replacement therapy) with progesterone and estradiol levels
potentially influencing sensitivity to distressing situations.

2.3 Situational moderators of experience

2.3.1 Clinical team’s impact on experience
Anxiety levels before, during, and after LA varied by

intervention type: self-hypnotic, standard care, and empathetic
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FIGURE 5

Anxiety per type of talk during biopsy. During CNB, patients received standard care (n = 76), patients experienced empathetic talk (n = 82), and
patients underwent self-hypnotic talk (n = 78). The timing of the first local anesthesia (LA) varied for each patient.

talk (Figure 5). Both self-hypnotic and empathetic talk were
associated with a post-LA decline in anxiety and shorter
intervention times. Longer delays to LA were attributed to
factors such as waiting time or technical complications.

Analysis of clinician word choices revealed trends in
associations between median anxiety and the use of negative and
positive suggestions, as well as praise. Higher total number of
negative suggestions (e.g. “this will hurt”) correlated with higher
median anxiety (Supplementary Figure S2A). While positive
suggestions (e.g. “imagine yourself floating”) showed a slight
downward trend in median anxiety (Supplementary Figure S2B).
However, wide confidence intervals indicate high uncertainty.
Praise (e.g. “you are doing a great job”) did not show a clear
relationship with median anxiety, and the number of praises
recorded was generally low across the dataset. There is considerable
scatter and variability in the data.

2.3.2 Insights from comments
Sentiment analysis of unstructured data were performed using

the pretrained “bart-large-mnli” (BART) model (Wolf et al.,
2020; Lewis et al., 2020; Kyritsis et al., 2023) that was proposed
for zero-shot text classification (Yin et al., 2019; Tesfagergish
et al., 2022). We chose BART due to its superior performance
compared to the VADER (Hutto and Gilbert, 2014) model. Unlike
VADER, which provided only positive, negative, and neutral scores,
with BART we could classify texts into specific labels. From all
textual comments in the database, 42,411 units of meaning and
229 unique entries were extracted, and evaluated for association
with the labels “stressful,” “relaxed,” “painful,” and “painless.”
Table 2 lists the top 10 comments per label, based on frequency
and association value. Supplementary Table S2 details participant-
specific outputs for the individuals with the maximum association
value for “stressful” and “painful.” Comments with association
values >0.9 were classified as “stressful” (585), “relaxed” (388),
“painful” (423), and “painless” (254) and are summarized in
Supplementary Data I. The automated classification provided
insights into individual experience and their underlying reasons.

Supplementary Figure S5 depicts components of the multifaceted
CNB procedure.

3 Discussion

We modeled the CNB process and its impact on patient
experience by integrating clinical data, patient-reported outcomes,
psychological pre-assessments, and workflow annotations.
Although biopsies may appear to follow a standard process, our
analyses revealed sub-procedures and critical events that were
unique to the clinical CNB setting. The patient-centered pathway
model captures different steps that patients may experience.
Additionally, the predictive model for anxiety and the automated
identification of experiences from patient and staff comments
capture the diverse factors moderating patient experiences. Our
approach profoundly extends traditional patient experience
analysis, which often rely on single prospective metrics (Adams
et al., 2022; Godovykh and Pizam, 2023) (e.g., Net Promoter Scores,
satisfaction) and generalized service-wide measures (Adams et al.,
2022).

Although our dataset included limited physiological data, we
integrated patient-reported anxiety and pain before, during, and
after the procedure combined with unstructured textual comments
to better understand the patients’ experience. Higher baseline stress
was strongly associated with greater anxiety during biopsy. Pain,
as defined clinically, encompasses both physical and emotional
components (Chen et al., 2021; King et al., 2016). Pain, as reported
by Lang et al. (2006), increased during procedural time significantly
in all intervention groups (logit slopes: standard care = 0.53,
empathic talk = 0.37, self-hypnosis = 0.34; all p < 0.001) but less
steeply with self-hypnosis (p = 0.024) and empathetic talk (p =
0.018) compared to standard care. Similarly, procedural anxiety
increased significantly with standard care (logit slope = 0.18, p <

0.001), remained stable with empathetic talk (slope = –0.04, p
= 0.45), and decreased significantly with self-hypnosis (slope =
–0.27, p < 0.001). Building on previous findings, our results
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TABLE 2 Extraction of top 10 comments that were classified as “painful,” “painless,” “stressful, “relaxed” by the BART model.

Comment classified as “painful” Classified as “painless” Classified as “stressful” Classified as “relaxed”

Shoulder hurts Bandaid Very anxious No pain

Back hurts No bipsy taken Discomfort Feel fine

Arm and neck are killing me Anesthesia I do not feel a thing Arm hurts Doctor very comforting

Pain from foot No pain in breast Stinging Back in hypnosis

Neck and face hurting very much Procedure was aborted so no pain Feeling stressed Imagery beach

Stinging incision sharp We won’t hurt you Anxious about results Massage neck

Very bad headache Numb Exhausted Benign

Ribs are killing me Taking no pain medication Very tired Happy

Sore this evening Headache is gone Work stress Resting

All of a sudden I am getting pain where the needle was
injected 1st time such pain

No problem sleeping Upsetting phone call Sleep

incorporate psychological assessments and first anesthesia moment
into predictive models of median anxiety.

The non-significant correlations of other variables highlight the
need for larger, more diverse datasets to evaluate predictability of
other psycho-social and clinical variables, including ethnicity or
hormonal differences. Additionally, Bridges et al. (1991) suggests
a predisposition for anxiety based on personality traits, and Smith
and Pope (1992) indicate physiological distress responses vary with
personality. In our dataset only textual comments complemented
patients’ reported anxiety and pain levels providing deeper insights
into their experiences. For individuals who have difficulty to
express distress, personality trait pre-assessments and sensor-
based monitoring of chemical and physiological data, e.g., cortisol
or heart-rate variability (Goodday and Friend, 2019; Lyzwinski
et al., 2023; Singh et al., 2023), may aid in detecting distress and
pain (Kumuda et al., 2018; Can et al., 2023). However, integrating
corresponding data collection methods must be done carefully to
avoid disrupting clinical workflows.

Our dataset lacked sufficient information to apply Lazarus
psycho-emotional model for probabilistic analysis (Lazarus, 2000;
Obbarius et al., 2021). Lazarus model emphasizes human self-
regulation and considers the significance of the event (e.g.,
imminence, duration, uncertainty), alongside the ability to cope
with its demands. Stressors may vary from high magnitude to low-
magnitude but chronic, while coping abilities depend on both:
available resources (e.g., calming atmosphere) and environmental
demands (e.g., exposed breasts during procedures, or receiving care
in a unfamiliar language style). Incorporating such frameworks
may better account for the interplay between stressors and coping
mechanisms in patient experience.

Our work underscores the complexities of medical procedures,
socio-demographic, and contextual variables - many of which
involve probabilities that are either unknown or not readily
apparent through traditional statistical methods. As data
availability increases, causal discovery techniques hold promise for
identifying relationships among variables (Feuerriegel et al., 2024;
Granger et al., 2024; Sanchez et al., 2022). Bayesian Networks,
although resource intensive to start with, enable graphical
representation of “what-if ” scenarios, provide transparent

estimation process, and facilitate integration of multiple outcomes
in a single, cohesive model.

Our results demonstrated the critical role of unstructured,
real-world textual data in modeling and analysis, particularly
for understanding anxiety and pain. Although the BART model
effectively identified reasons for anxiety and pain (e.g., “arm
hurts”), its maximum or averaged association values were not
significantly predictive of anxiety or pain in the linear mixed model.
Several factors may explain the predictive limitations. First, the
unstructured textual data included a mix of patient, clinician, and
procedure comments, introducing variability. Second, differences
in clinician roles and communication expertise-including trainee
involvement or clinician-patient interaction style-may modulate
patient responses (e.g., “patient not happy about trainee in
the room” or “medical doctor says: concentrate on going to
sleep” with the patient responding: “I’m not going to sleep!”).
Third, the BART model’s reliance on terms like “stressful”
and “painful” may have increased sensitivity to minor stress
triggers, without accounting for patients’ coping mechanisms
or resilience. To address these challenges, advanced natural
language processing (NLP) approaches (Miller et al., 2022) are
recommended, including domain-specific training (Yang et al.,
2023) in medical terminology, and adaptive context-awareness
to account for divergent phrasing (e.g., “Now I’ll punch you”
vs. “I’ll take a sample now”). Finally, our analysis reveals
nuanced limitations in the interpretability of NLP model outputs:
the absence of comments does not necessarily exclude patient
anxiety, negative staff remarks do not invariably elicit anxiety,
and procedural disruptions (e.g., machine malfunction) may not
always influence patient perceptions. Our findings emphasize the
need for comprehensive interpretive frameworks that consider
the multifaceted nature of patient-clinician interactions and
procedural contexts.

The concept of a digital twin of a medical procedure,
as explored in this study, offers a scalable framework for
modeling complex clinical interactions and enhancing precision
health. While developed in the context of breast cancer biopsy,
the methodology–integrating patient-reported outcomes, psycho-
social assessments, workflow annotations with clinical workflow
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mapping, and NLP-enabled behavioral insights–is adaptable to
other invasive procedures with local anesthesia. These procedures
often involve high levels of human-human interaction, where
purely quantitative models fall short in capturing contextual
nuances. Our approach leverages large language models (LLMs)
to integrate qualitative data, enabling simulations that reflect
real-life clinical care experiences. Furthermore, the predictive
capabilities of these models can be embedded into real-time clinical
decision support systems (CDSS). For example, real-time inputs
from electronic health records (EHRs), patient-reported outcomes,
and clinician annotations can be processed to identify stress
points, predict adverse reactions, or recommend communication
strategies. The envisioned implementation involves embedding
these models into clinical workflows via interoperable platforms
that support explainability and ethical safeguards (Smiee et al.,
2022; El-Sappagh et al., 2021, 2023). As a first step, scalable
and cost-effective digital twin modules could be developed and
tested in routine clinical activities, starting with procedures
where emotional and procedural complexity is high. Responsible
deployment requires training clinical teams, ensuring data fairness,
and protecting both patient and clinician well-being.

Although our dataset is unique, it has limitations stemming
from the data collection approach and sampling frequency.
The weak correlation between physiological modalities highlights
the importance of future sensor-based monitoring, multi-modal
sampling, and stress definition, encompassing both patient-
reported measures and physiological measures. We recommend
conducting power analysis and simulations to estimate data volume
required for more robust predictive models.

The standard of practice, in particular, type of procedure, wait
for pathology results, and educational curricula of technicians,
remained mostly the same for the past 20 years. We believe that
our results are relevant to large parts of the world and provide
a foundational understanding of patient experience and clinical
interactions during core needle biopsy procedures. Our analyses
highlight critical variables and patterns that can guide the design
of further investigations. In subsequent studies, patients could be
supported by technologies for data collection, e.g., IoT devices,
wearable sensors for stress monitoring, and data extraction from
electronic health records (Guevara et al., 2024; Yang et al., 2023).
Future efforts should also develop programs to modulate the
patient experience within clinical data ecosystems.

Our work exemplifies how future clinical data can be collected
and analyzed to monitor patient and healthcare professionals’
experience, identifying critical factors of distress. Building on
our models, future efforts, for example using knowledge-
aware machine learning methods, should account for individual
variability, procedure complexity, and real-world data constraints.
Ultimately, the advancements aim to improve care experiences
along the patient pathway.

4 Methods

4.1 Participants and data collection

Our study used data from the CNB clinical trial (Lang
et al., 2006) conducted between February 2002 and March 2004,

approved by institutional review boards of Beth Israel Deaconess
Medical Center and the U.S. Army Medical Research and Materiel
Command. The trail complied with Health Insurance Portability
and Accountability Act (HIPAA), and participants provided written
informed consent for the use of anonymized data. Inclusion criteria
included female patients referred for CNB procedure attending
an outpatient facility in USA, who passed screening for mental
impairments (Mini Mental-State Exam) and psychosis (Schedule
for Affective Disorders and Schizophrenia). Exclusion criteria
included the use of oral anxiolytics or analgesics, and inability to
communicate in English.

In total, 236 participants were tracked through the CNB
procedure and 150 participants during a follow-up period at
home. Women aged 18 to 86 years underwent ultrasound- or
mammography-guided CNB and were randomized into three
intervention groups: standard care (n = 76), empathetic talk (n
= 82), or self-hypnotic talk (n = 78). Patients who underwent
both, ultrasound- and mammography-guided CNB, were removed
from the dataset (n = 3) to avoid that their extended procedure
duration affects the analysis. During the follow-up period at home,
participants collected salivary cortisol samples four times daily
for 5 days, reporting anxiety and pain levels, and recorded diary
comments. Data collection, conducted in 2002, involved manual
on-site recording during CNB, video documentation of procedures,
and transcription of numerical and textual values into a CSV
file. The dataset includes verbal expressions from patients and
clinicians. While prior analysis focused on pain progression during
procedures (Lang et al., 2006), and the relationship between biopsy
diagnosis uncertainty and cortisol levels (Lang et al., 2009), the
current study leverages the integrated dataset to explore additional
dimensions of patient experience and procedural context.

At baseline, patients provided sociodemographic data,
physiological measurements, salivary cortisol levels, responses to
psychological instruments, and prior biopsy experience. During
the CNB procedure, patients reported pain and anxiety levels
at regular intervals. A research assistant annotated procedural
observations, including patient and clinician comments or
situational descriptions (e.g., waiting, procedural changes,
technical complications), in free-text format. Observations
were documented from patient arrival through recovery, at
10-min intervals. Baseline and post-procedural salivary cortisol,
heart rate, and blood pressure were recorded from monitors.
Procedural data were stored per patient in a wide-format CSV
file, while follow-up data were stored in long-format. Data are
summarized in Supplementary Table S1. We utilized the entire
dataset, including numerical and unstructured textual data to
map the patient pathway (Figure 1) and derive variables which
moderate the experience (Supplementary Figure S4), a published
concept map for another diagnostic procedure was used as
reference (Nieto Alvarez et al., 2024).

4.2 Data preprocessing, coding, and
modeling

The dataset was labeled, organized, and uploaded into a
common Python environment for descriptive analysis, variable

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1618357
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nieto-Alvarez et al. 10.3389/frai.2025.1618357

associations, and text analysis using NLP models. Detailed code is
publicly available.

Descriptive analyses included: (a) demographic trends in
median anxiety, with specific analysis for ethnic or minority
groups; (b) psychological instruments as predictors of anxiety; (c)
associations of baseline blood pressure and heart rate with
anxiety; (d) anxiety trends by type intervention type (standard
care, empathetic and self-hypnotic talk); (e) associations
between clinicians’ (e.g., negative suggestions) and median
anxiety (Supplementary Figure S2).

Unstructured textual data served as the basis for classifying
sub-procedures into five types, including cases requiring additional
diagnosis (e.g. surgery) or canceled procedures (Figure 1A). Sub-
procedure labeling combined semi-automated categorization by
computational methods with expert review. Textual annotations
also identified key procedural moments, such as the first moment
women received local anesthesia (LA).

We used data from 236 patients for analysis and modeling.
Statistical analyses were conducted using R (v4.4.1) and the lme4
package (v1.1-29) to estimate linear mixed models. Our primary
objective was to examine the effect of psychological constructs on
patient-reported anxiety over time (days 1–5). Four linear mixed
models were created, each analyzing one psychological construct:
State-Trait Anxiety Inventory (STAI), Impact of Event Scale (IES),
Center for Epidemiologic Studies Depression Scale (CES-D),
and Perceived Stress Scale (PSS). Patients with fewer than
three observations were excluded to ensure robust estimates. All
predictors (STAI, IES, CES-D, PSS) were z-standardized, and each
model included random intercepts and slopes (time) to account for
individual variability. Time and procedure group were fixed effects.
The dependent variable was patient-reported anxiety. The general
form of the model is provided in Equation 1.

Yij =β0 + β1 × timeij + β2 × groupi + β3 × Xij

+ u0i + u1i × timeij + εij
(1)

where:

• Yij is the patient-rated anxiety for individual i at time point j.
• β0 is the fixed intercept.
• β1 is the fixed effect of time.
• β2 is the fixed effect of the procedure group.
• β3 is the fixed effect of the z-standardized psychological

construct Xij which represents STAI, IES, CES-D, or PSS in
separate models.

• u0i is the random intercept for patient i, u0i ∼ N0, σ 2
u .

• u1i is the random slope for time for patient i, u1i with∼ N0, σ 2
t .

• εij is the residual error term, with εij ∼ N0, σ 2.

A second linear mixed model was applied to assess whether the
first time women received local anesthesia (LA) was a significant
predictor of increased anxiety during CNB, identifying it as a
critical moment for patients (Figure 4).

To analyze patient experience and factors derived from textual
data during the procedure and subsequent 5 days, we employed
NLP sentiment analysis. Comments were evaluated using the
VADER model (Hutto and Gilbert, 2014) and, in a second

approach, each unit of meaning evaluated for their association
with the labels “painless,” “painful,” “relaxed,” and “stressful” using
the pre-trained NLP model BART model (Wolf et al., 2020;
Lewis et al., 2020; Kyritsis et al., 2023) designed for zero-shot
text classification (Yin et al., 2019; Tesfagergish et al., 2022).
The BART model calculated association values, from 0 (lowest)
to 1 (highest) for each label. Comments with the highest association
values (>0.9) were extracted. Maximum and averaged association
values per label were computed for each participant, and they
were incorporated into a linear mixed model to predict anxiety
levels in the days following the procedure. To further explore
individual experiences, patients with the highest association values
for “painful” and “stressful” were identified and their experiences
presented in Supplementary Table S2.
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