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Introduction: Thyroid nodule segmentation in ultrasound (US) images is a

valuable yet challenging task, playing a critical role in diagnosing thyroid cancer.

The di�culty arises from factors such as the absence of prior knowledge about

the thyroid region, low contrast between anatomical structures, and speckle

noise, all of which obscure boundary detection and introduce variability in nodule

appearance across di�erent images.

Methods: To address these challenges, we propose a transformer-based

model for thyroid nodule segmentation. Unlike traditional convolutional neural

networks (CNNs), transformers capture global context from the first layer,

enabling more comprehensive image representation, which is crucial for

identifying subtle nodule boundaries. In this study, We first pre-train a Masked

Autoencoder (MAE) to reconstructmasked patches, then fine-tune on thyroid US

data, and further explore a cross-attention mechanism to enhance information

flow between encoder and decoder.

Results: Our experiments on the public AIMI, TN3K, and DDTI datasets show

that MAE pre-training accelerates convergence. However, overall improvements

are modest: the model achieves Dice Similarity Coe�cient (DSC) scores of 0.63,

0.64, and 0.65 on AIMI, TN3K, and DDTI, respectively, highlighting limitations

under small-sample conditions. Furthermore, adding cross-attention did not

yield consistent gains, suggesting that data volume and diversity may be more

critical than additional architectural complexity.

Discussion: MAE pre-training notably reduces training time and helps the model

learn transferable features, yet overall accuracy remains constrained by limited

data and nodule variability. Future work will focus on scaling up data, pre-

training cross-attention layers, and exploring hybrid architectures to further

boost segmentation performance.

KEYWORDS

thyroid nodule segmentation, ultrasound imaging, transformer-based network, Masked
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1 Introduction

Thyroid nodules are commonly found in the general population and are often detected

through imaging, either during investigations for thyroid-related issues or as incidental

findings (Dean and Gharib, 2008). While most nodules are benign and asymptomatic, a

small percentage can bemalignant, requiring timely and accurate evaluation. Segmentation

is an essential initial step in this process, as it delineates the interface between the nodule

and the surrounding parenchyma, aiding in the assessment of malignancy likelihood.
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Segmenting thyroid nodules in ultrasound images presents

several technical challenges. The lack of distinct anatomical

landmarks, coupled with the low contrast between tissues, makes it

difficult to differentiate the boundaries of the nodules. Additionally,

the granular speckle noise inherent in ultrasound imaging adds

further complexity by distorting image clarity and increasing the

variability of nodule shapes and appearances across frames.

Early segmentation methods, such as K-means (Hart et al.,

2000), Fuzzy C-means (FCM) (Hart et al., 2000), efficient graph-

based segmentation (EGB) (Felzenszwalb and Huttenlocher, 2004),

and robust graph-based segmentation (RGB) (Huang et al.,

2012), were among the earliest techniques applied in computer-

aided image segmentation. These methods rely on pre-defined

parameters, such as thresholds, which are manually crafted and

need careful tuning for optimal performance (Xu et al., 2019).

Despite their simplicity and effectiveness in certain cases, these

methods often struggle to adapt to complex patterns in large and

diverse datasets.

With the advancement of data availability and computational

power, deep learning-based approaches, particularly convolutional

neural networks (CNNs), have gained prominence. CNNs excel

at capturing patterns between inputs and outputs by learning

features directly from data, eliminating the need for handcrafted

features. Traditional CNNs for segmentation often utilize an

encoder-decoder architecture. The encoder extracts low-resolution

feature maps, while the decoder up-samples these maps to produce

per-pixel class predictions. Fully Convolutional Networks (FCNs)

(Long et al., 2015) represent a classic implementation of this

architecture. Building on this, models such as U-Net (Ronneberger

et al., 2015) introduced skip connections between the encoder and

decoder, allowing the combination of fine-grained details from

earlier layers with deeper, more abstract features, thus preserving

critical spatial information.

However, one key limitation of CNNs is their inability to

effectively capture global image context due to the local nature of

convolutional filters. Although deeper layers in CNNs can expand

the receptive field, they still struggle to form a comprehensive

view of the entire image, making it difficult to accurately segment

structures like thyroid nodules. Transformers (Vaswani, 2017),

in contrast, inherently capture global context from the very

first layer, offering a more holistic image representation that

is crucial for detecting subtle boundary variations. However,

despite their strengths, Vision Transformers (ViTs) tend to

underperform on smaller datasets compared to CNNs, as they lack

the inductive biases that help CNNs generalize well with limited

data (Dosovitskiy, 2020).

In this study, we deviate from the typical approach of pre-

training ViTs on classification datasets like ImageNet-21k. Instead,

we aim to leverage the segmentation datasetmore effectively by pre-

training the model using a Masked Autoencoder (MAE) (He et al.,

2022). TheMAE reconstructs partially masked images, enabling the

model to capture image patterns more effectively for segmentation

tasks.

We perform an extensive analysis of transformer architectures

for segmentation, experimenting with different model architectures

and input patch sizes. Inspired by advancements in natural

language processing (Vaswani, 2017), we incorporate a

cross-attention mechanism to improve the interaction between

the encoder and decoder, enhancing the model’s context capture

capabilities.

In summary, we propose a transformer-based approach with

MAE pre-training for thyroid nodule segmentation, performing

ablation studies on model architectures and patch sizes to optimize

performance for this challenging task.

2 Methods

2.1 Dataset

For the pre-training and segmentation tasks, we utilize three

open-source datasets: AIMI, TN3K (Gong et al., 2021), and DDTI

(Pedraza et al., 2015). The AIMI dataset was collected from

167 patients with 192 biopsy-confirmed thyroid nodules at the

Stanford University Medical Center. The TN3K dataset consists

of ultrasound images provided in Gong et al. (2021), while the

DDTI dataset was compiled with the support of the Universidad

Nacional de Colombia. The specifics of each dataset, including the

number of images and the corresponding patient data, are outlined

in Table 1.

For model training and evaluation, we split each dataset into

training and testing subsets. The AIMI and TN3K datasets were

split in an 80:20 ratio, while the DDTI dataset was split in a 75:25

ratio. The exact number of images used for training and testing

across each dataset is presented in Table 1.

We applied these splits in two key stages of the process:

• For MAE pre-training, we used only the training portion of

each dataset to pre-train the model.

• For the segmentation model, we trained the model on the

training subset and evaluated its performance on the testing

subset to assess generalization capabilities.

2.2 Masked autoencoder (MAE)

We follow the self-supervised training framework outlined in

the original MAE paper (He et al., 2022), utilizing an encoder-

decoder architecture to pre-train a Vision Transformer (ViT). In

this process, the input ultrasound images are first resize to 224×224

and then divided into non-overlapping patches of size 14× 14. We

randomly mask 75% of the patches, as recommended in original

MAE paper.

TABLE 1 Dataset and splitting details.

Dataset Total number
of images

Training
images

Testing
images

AIMI 17,412 (from 192

subjects)

14,055 (from 154

subjects)

3,357 (from 38

subjects)

TN3K 3,493 2,879 614

DDTI 637 477 160
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The remaining 25% of the unmasked patches are fed into the

encoder, a 12-layer ViT with a patch embedding size of 192 and

three attention heads. The masked patches are not passed through

the encoder but are later included in the decoder stage. The decoder,

consisting of a four-layer ViT with three attention heads, receives

both the encoded unmasked patches and a learned representation

for the masked patches. The decoder then reconstructs the entire

image, and a linear projection layer maps the output back to the

original image resolution.

In the original MAE framework, reconstruction loss is

measured using mean squared error (MSE) on the masked patches.

We extend this by incorporating loss from the unmasked patches

as well to enhance the model’s attention to both masked and visible

regions. Our modified loss function is:

Loss = MSEmasked_patches + αMSEunmasked_patches

where α is a weighting factor that balances the contribution of

the unmasked patches to the total loss. We empirically set α = 0.1

to encourage focus on the reconstruction of masked regions while

still accounting for some information from unmasked patches.

We train the MAE using the AdamW optimizer with an initial

learning rate of 2 × 10−5, a batch size of 1.024, and 4.000 epochs.

Data augmentation techniques, including random horizontal flips

and random resized crops, are applied to increase the diversity of

training data and improve the model’s generalizability, especially

given the relatively small size of the thyroid nodule dataset.

2.3 Segmentation model architecture

The segmentation model largely follows the same structure

as the MAE pre-training process, with key differences in how all

image patches are processed. After resizing and dividing the input

ultrasound images into non-overlapping patches, all patches are

passed through the encoder and decoder layers. We maintain the

similar architecture as in theMAE process, using a 12-layer encoder

and a three-layer decoder, to facilitate the comparison between

the model trained from scratch and the one fine-tuned with MAE

pre-trained weights.

Specifically, the input images are resized to (224 × 224) pixels

and divided into (14 × 14) patches, resulting in 256 patches

per image. After flattening each patch, a linear layer projects

the resulting vectors into a 192-dimensional space. Positional

embeddings are then added, resulting in an input tensor of shape

(16 × 16, 192). This tensor is passed through the 12-layer encoder

followed by the three-layer decoder. The final output of the decoder

is projected to 196 dimensions (corresponding to the flattened

segmentation map) and then passed through a sigmoid activation

function to generate the segmentation mask, as illustrated in

Figure 1. The total number of parameters in this configuration

is 4.66M.

We train the segmentationmodel for 400 epochs using an initial

learning rate of 1.6× 10−4 and a batch size of 512. The Dice Loss is

employed as the loss function to directly optimize for segmentation

performance. Data augmentation techniques, including random

rotation, random horizontal flips, and random resized cropping,

are applied to enhance model generalization, especially given the

limited size of the training dataset.

2.4 Cross-attention architecture

In addition to the traditional encoder-decoder architecture

using Vision Transformer (ViT) layers, we also explore a cross-

attention mechanism within the segmentation model. Cross-

attention, originally introduced in natural language processing

(NLP) (Vaswani, 2017), connects the encoder and decoder by

FIGURE 1

The architecture of the segmentation model. The division of patches at here is for illustration. Please refer to section 2.3 for actual setup.
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FIGURE 2

The architect of the segmentation model with cross attention: connecting the encoder and decoder similar to a U-net network. The division of

patches at here is for illustration. Please refer to section 2.4 for actual setup.

FIGURE 3

MAE loss curves for di�erent patch sizes over 4,000 epochs. The pink curve represents the loss for patch size 9× 9, and the red curve represents the

loss for patch size 14× 14.

allowing information exchange between the two, rather than

relying solely on self-attention. This enhances the model’s ability

to leverage feature representations at multiple levels, similar to

U-Net’s skip connections.

The architecture we implemented is illustrated in Figure 2.

In each cross-attention layer, the attention mechanism is

computed as:

Attention(Q,K,V) = softmax(
Q@KT

√

dk
)V (1)

In this case, the query (Q) comes from the decoder, while the key

(K) and value (V) are sourced from the encoder output. This differs

from the self-attention mechanism, where the query, key, and value

all originate from the same source (either the encoder or decoder).

Cross-attention allows the model to focus on relevant regions in the

encoder output while processing the decoder’s output, effectively

linking the two stages. After incorporating the cross-attention layer,

the total number of parameters increases to 5.54M, representing

a 18.88% increase compared to the architecture without cross-

attention.

This type of cross-attention architecture is widely used in NLP,

most notably in models like T5 (Raffel et al., 2020), which employs

an encoder-decoder structure with cross-attention to enhance

information flow between the two components.

For our segmentation task, we designed a cross-attention-based

architecture similar to U-Net, adding skip connections from the
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encoder to the decoder. This modification aims to better preserve

spatial details and contextual information during the decoding

process. We compare the performance of this cross-attention

architecture with the original segmentation architecture in the

following experiments to assess the impact of this design on

segmentation accuracy and boundary detection.

3 Results

3.1 Masked autoencoder (MAE)

We pre-trained the MAE model using the training dataset (size

= 17,411) over 4,000 epochs. To evaluate the influence of patch size,

we experimented with two configurations: a smaller patch size of

9 × 9 and a larger patch size of 14 × 14. The loss curves for both

configurations are shown in Figure 3.

At the end of training (epoch 4,000), the MAE with a patch size

of 9 × 9 achieved a lower reconstruction loss of 0.01698 compared

to 0.02311 for the patch size of 14 × 14. As illustrated by the

graph, the loss for patch size 9 decreased more rapidly during the

initial training stages and outperformed patch size 14 throughout

the training process, indicating that smaller patches facilitate better

reconstruction performance.

We further evaluated the quality of the reconstructed images

at various training stages: epochs 200, 2,000, and 4,000. Figure 4

demonstrate the evolution of the reconstructed outputs for both

patch sizes. The results show that as training progresses, the

quality of the reconstructions improves significantly for both

patch sizes.

Figure 4 also compares the reconstruction performance of

the two patch sizes. The left column displays results for patch

size 9 × 9, while the right column corresponds to patch

size 14 × 14. Notably, the 9 × 9 patch size produced more

detailed reconstructions, successfully capturing finer image features

compared to the 14 × 14 patch size, which led to slightly

coarser results. This suggests that smaller patch sizes enable the

model to learn and preserve more intricate details during the

reconstruction process.

3.2 Segmentation models

3.2.1 Model performance pretrained with MAE vs.
without

Given the architectural similarity between the encoder-decoder

structure in MAE and the segmentation model, we trained

the segmentation model both from scratch and using weights

pretrained from the MAE process. Since the MAE decoder has four

layers, while the segmentation model’s decoder consists of three

layers, we dropped the last layer of the MAE model when loading

the weights.

We set the total training epochs to 400. As shown in Figure 5,

the loss curve for training from scratch decreases slowly, leading

us to apply early stopping. Subsequent experiments use the

segmentation model initialized with the pretrained MAE weights.

FIGURE 4

Reconstructed outputs by MAE with patch sizes 9× 9 and 14× 14 at di�erent training stages (epochs 200, 2000, 4000). For each triplet, the original

image is on the left, the masked input is in the middle, and the MAE-reconstructed image is on the right.
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FIGURE 5

Segmentation loss curve for patch size 14. The blue line represents the training process from scratch, the green line represents training using weights

pretrained in MAE without the cross-attention architecture, and the purple line represents training with cross-attention architecture.

3.2.2 Performance with di�erent architectures
and patch sizes

As demonstrated in the previous section, the pretraining

process significantly improved performance and reduced training

time.We further compared different model architectures and patch

sizes after pretraining.

The Dice score performance of our transformer-based

segmentation model is shown in Table 2, alongside results

from baseline counterparts, including UNet (Ronneberger et al.,

2015), Attention UNet (Oktay et al., 2018), SResUNet-AD

(Radhachandran et al., 2024), BPAT-UNet (Bi et al., 2023), UNet

Transformer (Petit et al., 2021), and TransUNet (Chen et al.,

2021). While the data splitting methods for these baselines are

not entirely identical, the results remain comparable. Our model

demonstrates notable improvements over SResUNet-AD, which

primarily excels at reducing false positives; this advantage may be

less relevant in the AIMI and DDTI datasets, as they exclusively

include nodule images. However, our model’s transformer-based

architecture, without any convolutional neural network (CNN)

layers, may explain its inferior performance compared to CNN-

based models or hybrid approaches that integrate CNN and

transformer architectures.

We evaluated two patch sizes, 9 × 9 and 14 × 14, and

two architectures: one with cross-attention (Figure 2) and one

without cross-attention (Figure 1). The Dice scores for different

datasets are reported in Table 2. Overall, the performance difference

between models with and without cross-attention was not

substantial, though there were some minor improvements in

specific datasets.

Next, we examined the segmentation results. Figures 6, 7 show

sample images from the training dataset, presenting segmentation

TABLE 2 Dice score comparison of segmentation models across datasets

and patch sizes.

Dice score

AIMI TN3K DDTI

UNet (Ronneberger et al.,

2015)

0.7003 0.7998 0.6983

Attention UNet (Oktay et al.,

2018)

0.7129 0.8114 0.7105

SResUNet-AD

(Radhachandran et al., 2024)

0.5920± 0.369 – 0.4020± 0.384

BPAT-UNet (Bi et al., 2023) – 0.8364 –

Unet Transformer (Petit et al.,

2021)

– 0.8080 –

TransUNet (Chen et al., 2021) – 0.8098 0.8350

With-cross attention-9× 9 0.6254 0.6173 0.6537

Without-cross attention-9× 9 0.6182 0.6342 0.6555

With-cross attention-14× 14 0.6304 0.6390 0.6653

Without-cross

attention-14× 14

0.6321 0.6354 0.6479

results at epochs 100, 200, 300, and 400. Over the training

process, the margins evolved from showing a significant mosaic

effect to having smoother boundaries. While patch size 9 ×

9 suffered from a more pronounced mosaic effect, it achieved

higher positional accuracy compared to patch size 14 × 14. The

difference in results between models with and without cross-

attention was minor.
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FIGURE 6

Segmentation results at di�erent epochs (100, 200, 300, and 400) for patch size 9× 9 with and without cross-attention. Each quadruplet includes the

original ultrasound image, the gold standard, the predicted mask using the cross-attention model, and the predicted mask using the model without

cross-attention.

4 Discussion

The results demonstrate that using Masked Autoencoder

(MAE) pretraining significantly improves the efficiency of

the segmentation model training process. By initializing the

segmentation model with weights pre-trained on the MAE task,

we were able to achieve faster convergence compared to training

the segmentation model from scratch. This suggests that MAE

effectively transfers useful features, allowing the segmentation

model to fully utilize the available training data and reduce overall

training time.

To further analyze the proposed method, we compare its

advantages and limitations with those of traditional CNN-based

approaches and hybrid CNN-Transformer architectures. Table 3

summarizes the comparison.

Traditional CNN-based methods, such as U-Net and Attention

U-Net, excel at extracting local features and benefit from extensive

pretraining on datasets like ImageNet. However, their limited

receptive fields constrain their ability to capture global context,

making them less effective for tasks requiring fine-grained

boundary detection, such as thyroid nodule segmentation.

Hybrid CNN-Transformer architectures, such as BPAT-UNet
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FIGURE 7

Segmentation results at di�erent epochs (100, 200, 300, and 400) for patch size 14× 14 with and without cross-attention. Each quadruplet includes

the original ultrasound image, the gold standard, the predicted mask using the cross-attention model, and the predicted mask using the model

without cross-attention.

and TransUNet, leverage the strengths of both CNNs and

Transformers, achieving high performance metrics. Nevertheless,

these models are computationally expensive and often require

careful tuning for specific datasets.

The proposed method, based on pure Transformer architecture

with MAE pretraining, addresses some of these challenges

by capturing global context and improving training efficiency.

However, as shown in the results, the incorporation of the cross-

attention mechanism did not lead to significant improvements.

This could be due to the lack of pretraining for the cross-attention

layers, which limits their effectiveness given the constraints

of the training data. Future work could explore methods to

pre-train these layers or leverage larger datasets to enhance

their potential.

In terms of patch size, the smaller patch size (9 × 9)

demonstrated better feature extraction during MAE pretraining,

as evidenced by more detailed reconstructions. However, this did

not translate into improved segmentation performance, as the

segmentation results exhibited more pronounced mosaic effects.

This could be attributed to the increased number of parameters

associated with smaller patches, requiring more training epochs to

fully optimize.

Finally, the overall dice scores were not as high as anticipated

across all datasets. This could be attributed to the inherent difficulty

of the thyroid nodule segmentation task, which presents challenges

due to the variable shapes and indistinct boundaries of the nodules.

Future experiments could explore different training strategies or

architectures to further enhance performance.
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TABLE 3 Advantages and limitations of di�erent methods.

Method Advantages Limitations

Traditional CNNs

(e.g., U-Net,

Attention U-Net,

SResUNet-AD)

- Effectively captures

complex patterns between

inputs and outputs.

- Well-established and

widely used in medical

imaging.

- Limited ability to capture

global context due to local

receptive fields.

- Requires large-scale

pretraining datasets

(e.g., ImageNet).

Hybrid CNN-

Transformer

Networks

(e.g., BPAT-UNet,

UNet

transformer,

TransUNet)

- Combines CNN’s

strength in extracting local

features with

Transformer’s global

context understanding.

- High accuracy and strong

performance metrics

reported in various studies.

- Computationally

expensive.

- Often tuned for specific

tasks and datasets, which

may limit generalization

for new applications.

Pure transformer

networks with

masked

autoencoder

pretraining

(this study)

- Possesses the ability to

capture the global context.

- Masked Autoencoder

(MAE) pretraining

improves training

efficiency by reducing

training time and fully

utilizing the dataset.

- Eliminates the need for

external datasets for

pretraining.

- Mosaic artifacts in

results, particularly with

small patch sizes.

- Moderate segmentation

accuracy and dice scores

compared to hybrid

methods.

Beyond the technical metrics, our MAE-pretrained

segmentation pipeline can be developed into a fully automated

workflow that significantly reduces manual delineation by

radiographers and radiologists—especially when processing large

volumes or multiple nodules. Even DSCs in the 0.60–0.65 range

can cut annotation time, improve consistency, and lower clinician

workload compared to current FDA-approved semi-automated

tools, which still require expert-drawn contours (Tessler and

Thomas, 2023).

5 Conclusion

This study presents a transformer-based approach to thyroid

nodule segmentation in ultrasound images, leveraging MAE pre-

training to accelerate convergence and enhance feature learning.

On three public datasets, our model achieved Dice Similarity

Coefficients of 0.63 (AIMI), 0.64 (TN3K), and 0.65 (DDTI),

demonstrating the feasibility of self-supervised pre-training even

with limited annotated data.

Incorporating a cross-attentionmodule did not yield consistent

accuracy gains—likely because those layers were not pre-trained.

Although smaller patch sizes improved reconstruction quality, they

also introduced mosaic artifacts, increased context length, and

added parameter complexity, resulting in longer convergence times

without boosting segmentation performance.

Moving forward, we will integrate boundary-aware loss

functions and adopt more extensive data-augmentation strategies

to better delineate irregular nodule borders, and we will assemble

larger, more diverse datasets to mitigate small-sample limitations.

Even at moderate DSC levels, our MAE-driven auto-segmentation

pipeline holds promise for reducing the manual delineation

workload of radiographers and radiologists, thereby enabling more

efficient and scalable clinical workflows.
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