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Background: ST-elevation myocardial infarction (STEMI) poses a significant 
threat to global mortality and disability. Advances in percutaneous coronary 
intervention (PCI) have reduced in-hospital mortality, highlighting the 
importance of post-discharge management. Machine learning (ML) models have 
shown promise in predicting adverse clinical outcomes. However, a systematic 
approach that combines high predictive accuracy with model simplicity is still 
lacking.
Methods: This retrospective study applied three data processing and ML 
algorithms to address class imbalance and support model development. ML 
models were trained to predict one-year mortality in STEMI patients post-PCI, 
with performance evaluated using accuracy, sensitivity, precision, F1-score, area 
under the receiver operating characteristic curve (AUROC), and the area under 
the precision-recall curve (AUPRC).
Results: We analyzed data from 1,274 patients, incorporating 46 clinical and 
laboratory features. Using the Random Forest (RF) algorithm, we achieved an 
AUROC of 0.94 (95% confidence interval (CI): 0.90–0.98), an AUPRC of 0.44 
(95% CI:0.15–0.76) in the internal validation set, identifying five key predictors: 
cardiogenic shock, creatinine, NT-proBNP, diastolic blood pressure, and 
left ventricular ejection fraction. By integrating risk stratification, the model’s 
performance improved, achieving an AUROC of 0.97 (95% CI: 0.96–0.99) and 
an AUPRC of 0.74 (95% CI: 0.60–0.84).
Conclusion: This study highlights the feasibility of constructing accurate and 
interpretable ML models using a minimal set of predictors, supplemented by 
risk stratification, to improve long-term outcome prediction in STEMI patients.
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Introduction

Acute myocardial infarction (AMI) remains a leading cause of 
morbidity and mortality worldwide, with ST-elevation myocardial 
infarction (STEMI) representing the most severe form, accounting for 
50–60% of AMI cases in contemporary registries (Gaudino et al., 2023; 
Miller, 2020; Cederström et al., 2024). Advances in emergency care 
systems, the establishment of chest pain centers, and the widespread 
implementation of percutaneous coronary intervention (PCI) have 
significantly reduced in-hospital mortality, now reported to be between 
4 and 8% (Khera et al., 2021; Liu et al., 2021). Consequently, optimizing 
post-discharge management for STEMI survivors has become 
increasingly important, with a strong emphasis on the early 
identification of high-risk individuals to enhance long-term outcomes.

Machine learning (ML) has shown substantial promise in risk 
stratification and outcome prediction across various clinical domains 
(Wang et al., 2021; Oliveira et al., 2023; Khera et al., 2024). Compared to 
traditional statistical approaches, ML models offer enhanced predictive 
accuracy and individualized risk assessment (Mohd Faizal et al., 2021; 
Stephan et  al., 2025). However, despite the increasing availability of 
predictive models, standardized approaches for selecting the optimal 
model remain limited (Ogunpola et al., 2024; Radwa et al., 2024). The area 
under the receiver operating characteristic curve (AUROC) is commonly 
used to evaluate model performance (Lee et al., 2020; Payrovnaziri et al., 
2019; Fukumoto et  al., 2021). However, when multiple models 
demonstrate similarly high AUROC values, it becomes challenging to 
determine a clear winner. Furthermore, as the complexity of medical data 
continues to grow—along with the number of candidate models and 
input variables—developing models that balance predictive accuracy with 
clinical simplicity has become a key challenge.

This study aimed to construct a predictive model tailored to the 
characteristics of the dataset by selecting appropriate data processing 
methods and ML algorithms. Our objective was to maximize predictive 
performance while minimizing model complexity. The key contributions 
of this work include: (1) demonstrating that different data processing 
strategies yield no statistically significant differences in model 
performance; (2) showing that in highly imbalanced datasets where 
AUROC lacks discriminative capacity, the area under the precision-recall 
curve (AUPRC) provides a more informative metric (Zhou et al., 2021; 
Zheng et al., 2024); (3) proposing bootstrap testing as a viable alternative 
to DeLong’s test for comparing area under curve values; and (4) 
constructing a high-performing predictive model using a minimal set of 
readily available clinical variables, with further gains achieved through 
risk stratification.

Additionally, this study aimed to develop predictive models for 
one-year mortality in patients with STEMI post-PCI, utilizing the Shapley 
Additive Explanations (SHAP) method for model interpretability. We also 
developed a web-based application that enables clinicians to predict 
individual patient outcomes by inputting the required model variables, 
thereby facilitating personalized risk assessment.

Materials and methods

Study population

This study involved a retrospective analysis of patients 
admitted to the First Hospital of Lanzhou University in Gansu 
Province, China, between January 1, 2019, and December 31, 

2020. All consecutive hospitalized patients diagnosed with STEMI 
and treated with PCI during this period were screened for 
eligibility. STEMI was diagnosed based on criteria established by 
the European Society of Cardiology (ESC) Association (Huang 
et  al., 2025; Razavi et  al., 2025). Inclusion criteria were: (1) a 
confirmed diagnosis of STEMI, (2) age ≥18 years, (3) receipt of 
PCI, and (4) availability of complete clinical data. Details of the 
inclusion and exclusion process are provided in Supplementary 
Figure S1.

Follow-up information was obtained through structured 
telephone interviews conducted by a dedicated follow-up center, 
supplemented by outpatient clinical assessments.

Data collection

Clinical and laboratory data for patients with STEMI were 
extracted from electronic medical records, with one-year all-cause 
mortality defined as the primary outcome. Detailed clinical and 
laboratory variables are presented in Table 1. For each patient, the 
initial set of laboratory test results obtained upon hospital admission—
including blood samples—was utilized for analysis. A two-step 
approach was employed to address missing data: variables with more 
than 20% missing values were excluded, while those with less than 
20% missing values were imputed using the IterativeImputer method 
to minimize bias.

A total of 46 variables were included in the final dataset, 
comprising demographic information, cardiovascular history, and 
laboratory measurements. These features included: gender, age, total 
ischemic time (TIT), coronary artery disease (CAD), hypertension 
(HTN), type 2 diabetes mellitus (T2DM), hyperlipidemia (HLD), 
peripheral arterial disease (PAD), smoking history (SH), bleeding 
history (BH), body mass index (BMI), systolic and diastolic blood 
pressure (SBP, DBP), heart rate (HR), creatinine (CREA), uric acid 
(UA), random blood glucose (RBG), low-density lipoprotein 
cholesterol (LDL-C), estimated glomerular filtration rate (eGFR), 
hematocrit (HCT), neutrophil count (NEUT), lymphocyte count 
(LYMPH), neutrophil-to-lymphocyte ratio (NLR), hemoglobin 
(HGB), platelet count (PLT), C-reactive protein (CRP), myoglobin 
(MYO), creatine kinase-MB (CK-MB), troponin I (TNI), N-terminal 
pro B-type natriuretic peptide (NT-proBNP), hemoglobin A1c 
(HbA1c), left atrial diameter (LAD), left ventricular ejection fraction 
(LVEF), left ventricular end-diastolic and end-systolic volumes 
(LVEDV, LVESV), and medications including beta-blockers (BB), 
angiotensin-converting enzyme inhibitors (ACEI), angiotensin II 
receptor blockers (ARB), angiotensin receptor-neprilysin inhibitors 
(ARNI), sodium-glucose cotransporter-2 inhibitors (SGLT2i), statins 
(STAT), aspirin (ASA), ticagrelor (TICA), clopidogrel (CLOP), and 
proton pump inhibitors (PPI). Key clinical events such as ventricular 
fibrillation (VF), atrial fibrillation (AF), and cardiogenic shock (CS) 
were also documented.

Model development and explanation

Patients were randomly divided into training and testing cohorts 
in a 7:3 ratio. Prior to model construction, several data processing 
steps were implemented: the synthetic minority oversampling 
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TABLE 1  Comparison of baseline characteristics of the study population.

Variables 2019 STEMI 2020 STEMI

Survived (n = 634) Deceased (n = 38) Survived (n = 581) Deceased (n = 21)

Age (y) 60.46 ± 10.9 65.53 ± 12.61** 59.45 ± 10.81 66.76 ± 13.08

Gender (%) 553 (87.22) 31 (81.58) 500 (86.01) 18 (85.71)

BMI (Kg/m2) 23.68 ± 3.44 23.44 ± 3.93 24 ± 3.51 22.52 ± 2.96

TIT (h) 37.59 ± 73 43.31 ± 65.06 33.41 ± 92.18 35.51 ± 61.86

Medical history

T2DM (%) 111 (17.51) 13 (34.21)* 104 (17.9) 7 (33.33)

HTN (%) 297 (46.85) 20 (52.63) 228 (39.24) 10 (47.62)

HLD (%) 21 (3.31) 0 (0) 181 (31.15) 8 (38.1)

PAD (%) 27 (4.26) 4 (10.53) 17 (2.93) 4 (19.05)**

SH (%) 398 (62.78) 20 (52.63) 242 (41.65) 11 (52.38)

CAD (%) 42 (6.62) 4 (10.53) 36 (6.2) 4 (19.05)*

BH (%) 7 (1.1) 0 (0) 14 (2.41) 3 (14.29)*

Baseline vital signs

SBP (mmHg) 116.87 ± 22.95 99.89 ± 27.83*** 113.81 ± 25.61 102.57 ± 33.23

DBP (mmHg) 76.55 ± 14.99 63.21 ± 17.19 72.14 ± 15.75 64.81 ± 20.45

HR (beats/min) 82 (70, 91) 88 (66.5, 99.5) 78 (67, 89) 94 (79, 102)***

Baseline laboratory values

CREA (umol/L) 72 (64, 84) 111 (74, 143)*** 70 (61, 80) 91 (66, 129)**

UA (umol/L) 351 (286, 413) 407 (323, 472)** 344 (286, 412) 423 (339, 495)*

RBG (mmol/L) 6.77 (5.62, 8.98) 10.27 (6.98, 15.74)*** 6.88 (5.67, 9.04) 12.31 (6.95, 20)***

LDLC (mmol/L) 2.93 ± 0.82 2.71 ± 0.78 2.99 ± 0.88 2.77 ± 1.00

HCT (%) 45.13 ± 5.46 44.84 ± 6.48 44.84 ± 6.12 42.59 ± 6.28

NEUT (109 /L) 8.05 ± 3.17 10.01 ± 3.31*** 9.10 ± 8.31 11.15 ± 5.22

LYMPH (109 /L) 1.49 ± 0.74 1.54 ± 1.08 1.66 ± 1.93 1.47 ± 1.05

NLR 7.12 ± 5.03 9.21 ± 5.85* 8.09 ± 10.30 11.05 ± 9.98

HGB (g/L) 153.11 ± 18.03 149.95 ± 21.69 152.21 ± 18.08 144.24 ± 21.33

PLT (109 /L) 197.31 ± 73.34 195.89 ± 65.93 184.17 ± 60.74 176.76 ± 54.76

MYO (ng/ml) 447.31 ± 338.41 576.96 ± 351.92 425.42 ± 337.39 609.76 ± 361.82

CKMB (ng/ml) 150.06 ± 167.02 176.41 ± 179.83* 154.83 ± 174.19 169.19 ± 169.92

TNI (ng/ml) 6.63 ± 8.68 9.19 ± 9.89 7.41 ± 9.12 9.33 ± 9.59

NT-proBNP (pg/ml) 480 (186, 1,435) 4,305 (1,260, 8,715)*** 473 (158, 1,340) 3,093 (566, 4,860)***

Echocardiographic findings

LAD (cm) 3.23 ± 0.37 3.25 ± 0.45 3.3 (3.1, 3.5) 3.3 (2.7, 3.5)

LVEF (%) 51 (47, 57) 45 (39, 51)*** 53 (48, 57) 44 (30, 45)***

LVEDV (ml) 120 (104, 142) 120 (105, 162) 126 (106, 147) 140 (121, 178)*

LVESV (ml) 57 (47, 70) 65 (56, 92)** 58 (49, 72) 85 (65, 99)***

Discharge medication

BB (%) 459 (72.4) 21 (55.26)* 464 (79.86) 8 (38.1)***

ACEI (%) 286 (45.11) 6 (15.79)*** 281 (48.36) 3 (14.29)**

ARB (%) 29 (4.57) 2 (5.26) 37 (6.37) 1 (4.76)

ARNI (%) 12 (1.89) 5 (13.16)** 27 (4.65) 2 (9.52)

SGLT2i (%) 2 (0.32) 0 (0) 23 (3.96) 1 (4.76)

STAT (%) 631 (99.53) 33 (86.84)*** 576 (99.14) 14 (66.67)***

(Continued)
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technique (SMOTE) was applied to address class imbalance (Shi and 
Fan, 2023), Boruta was used for feature selection (Kursa and Rudnicki, 
2010), and grid search with cross-validation (GSCV) was employed 
for hyperparameter tuning. Six ML algorithms were evaluated: RF, 
light gradient boosting machine (LightGBM), extreme gradient 
boosting (XGBoost), logistic regression (LR), k-nearest neighbors 
(KNN), and deep neural networks (DNN).

Model development adhered to a structured three-step 
framework: (1) identifying the optimal data processing pipeline, (2) 
selecting the best-performing ML algorithm, and (3) constructing the 
final predictive model by integrating the chosen processing and 
algorithmic strategies (Figure 1). Model performance was primarily 
assessed using AUROC and AUPRC (Zhou et al., 2021). Additional 
evaluation metrics—accuracy, precision, sensitivity, specificity, and 
F1-score—were employed to support model selection.

To enhance interpretability, SHAP and local interpretable model-
agnostic explanations (LIME) analyses were employed to evaluate 
feature importance and quantify the contribution of individual 
variables to model predictions (Qi et al., 2025). SHAP force plots and 
LIME were utilized to visualize the influence of each feature on 
individual predictions, thereby improving transparency and 
supporting personalized clinical interpretation.

Classes of risk

The pooled dataset, which includes 1,274 patients from both the 
derivation and external validation datasets, was categorized into low- 
and high-risk levels based on clinically meaningful thresholds. The 
stratification threshold was determined by analyzing the predicted 
probability distribution and calibration curves of the model in both the 
training and validation datasets. The model assesses individualized risk 
probabilities for specific patients based on input parameters and 

subsequently stratifies them into low-risk or high-risk groups using 
predefined thresholds. This risk stratification directly informs clinical 
decision-making regarding treatment intensity and follow-up frequency, 
thereby serving as a reference for personalized therapeutic strategies.

Statistical analysis

All statistical analyses were conducted using R Software (version 
4.3.1; http://www.r-project.org). The development of predictive 
models was carried out with Python (version 3.11.9; https://www.
python.org) and PyCharm (version 2024.1.4). For normally 
distributed continuous variables, data are presented as means with 
standard deviations, while comparisons between groups were 
performed using independent sample t-tests. For variables with 
abnormal distributions, data are expressed as median values (Q1, 
Q3), and the Mann–Whitney U test was utilized for comparisons 
between two groups. Differences in AUROCs between models were 
assessed using DeLong’s test, and differences in AUPRCs were 
evaluated using the bootstrap method. Categorical variables are 
reported as counts (percentages) and were compared using the 
Chi-squared test. If the expected frequency of any cell was less than 
5, Fisher’s exact test was employed. A two-tailed p-value of less than 
0.05 was considered statistically significant. The Pearson correlation 
matrix was used to quantify the linear relationships among features.

Results

Population characteristics

A total of 672 patients were included in the derivation cohort for 
developing the one-year mortality prediction model, among whom 

TABLE 1  (Continued)

Variables 2019 STEMI 2020 STEMI

Survived (n = 634) Deceased (n = 38) Survived (n = 581) Deceased (n = 21)

ASA (%) 631 (99.53) 33 (86.84)*** 571 (98.28) 14 (66.67)***

TICA (%) 433 (68.3) 22 (57.89) 457 (78.66) 10 (47.62)**

CLOP (%) 218 (34.38) 11 (28.95) 120 (20.65) 5 (23.81)

PPI (%) 602 (94.95) 32 (84.21)* 437 (75.22) 13 (61.9)

Complications

MB (%) 4 (0.63) 3 (7.89)** 1 (0.17) 5 (23.81)***

VF (%) 21 (3.31) 7 (18.42)*** 3 (0.52) 6 (28.57)***

AF (%) 25 (3.94) 7 (18.42)** 4 (0.69) 2 (9.52)*

CS (%) 7 (1.1) 18 (47.37)*** 2 (0.34) 14 (66.67)***

Compared with Survived, *p < 0.05; **p < 0.01; ***p < 0.001 For normally distributed continuous variables, data are presented as mean ± standard deviation. For variables with abnormal 
distributions, data are expressed as median values (Q1, Q3). Categorical values are presented as count (percentage). The eGFR was calculated based on the first available serum creatinine 
during the first 24 h after admission. TIT, total ischemic time; CAD, coronary artery disease; HTN, hypertension; T2DM, type 2 diabetes mellitus; HLD, hyperlipidemia; PAD, peripheral 
arterial disease; SH, smoking history; BH, bleeding history; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CREA, serum creatinine; UA, 
uric acid; RBG, random blood glucose; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; HCT, hematocrit; NEUT, neutrophil count; LYMPH, 
lymphocyte count; NLR, neutrophil-to-lymphocyte ratio; HGB, hemoglobin; PLT, platelet count; CRP, c-reactive protein; MYO, myoglobin; CK-MB, creatine kinase-mb; TNI, troponin I; 
NT-proBNP, n-terminal pro b-type natriuretic peptide; HbA1c, hemoglobin a1c; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic 
volume; LVESV, left ventricular end-systolic volume; BB, beta-blockers; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers; ARNI, angiotensin receptor-
neprilysin inhibitors; SGLT2i, sodium-glucose cotransporter-2 inhibitors; STAT, statins; ASA, aspirin; TICA, ticagrelor; CLOP, clopidogrel; PPI, proton pump inhibitors; VF, ventricular 
fibrillation; AF, atrial fibrillation; CS, cardiogenic shock.
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38 (5.7%) died within one-year post-PCI. Regarding missing data, 
BMI and HR were absent in 1 case (0.1%), HbA1c in 69 cases (10.3%), 
LAD in 8 cases (1.2%), LVEF in 6 cases (0.9%), LVEDV and LVESV 
in 7 cases (1.0%). The external validation cohort comprised 602 
patients, with 21 (3.5%) experiencing one-year mortality. A 
comparative analysis of demographic and clinical characteristics 
between survivors and non-survivors is presented in Table 1, while 
Supplementary Table S1 provides a detailed comparison between the 
training and testing cohorts. Our analysis of baseline characteristics 
revealed statistically significant differences between the modeling 
cohort and the external validation cohort across multiple clinical 
variables, including medical history, vital signs, laboratory values, 
medication use patterns, and clinical outcomes (p < 0.05). However, 
within the modeling cohort, the training and validation subsets 
exhibited well-balanced characteristics without significant 
differences, thereby supporting the robustness of our internal 
validation approach.

Model selection and performance 
comparison

To optimize predictive performance, data processing methods—
including SMOTE, Boruta, and GSCV—were applied where appropriate. 
The effects of these processing strategies were evaluated using the AUROC 
and AUPRC metrics, as illustrated in Figures 2A,B, respectively.

Although processing steps influenced model performance, the 
differences in AUROC were not statistically significant based on the 
DeLong test (Supplementary Figure S2A), nor were AUPRC 
differences significant according to bootstrap testing (Supplementary 
Figure S2B).

Key performance metrics—AUROC, AUPRC, accuracy, precision, 
sensitivity, specificity, and F1 score—were utilized to assess model 
efficacy. As shown in Supplementary Table S2, the model developed 

using Boruta and GSCV achieved an AUROC of 0.949, AUPRC of 
0.486, accuracy of 0.950, precision of 0.500, sensitivity of 0.400, 
specificity of 0.979, and F1 score of 0.444.

Six ML algorithms were evaluated, with the results for AUROC 
and AUPRC presented in Figures 3A,B. Among these algorithms, 
RF, LightGBM, and XGBoost exhibited the best predictive 
performance. The RF model achieving an AUROC of 0.91 (95% 
confidence interval (CI): 0.81–0.98) and an AUPRC of 0.53 (95% 
CI: 0.17–0.82).

Upon reevaluation of the impact of processing methods, it was 
determined that the differences in AUROC among the models were not 
statistically significant, as assessed by the DeLong test (Supplementary 
Figure S3A). However, the RF model displayed a significantly higher 
AUPRC compared to the LR model, while the differences in AUPRC 
among the other models remained non-significant based on bootstrap 
testing (Supplementary Figure S3B).

As summarized in Supplementary Table S3, the RF model 
exhibited superior overall performance, achieving an AUROC 
of  0.911, AUPRC of 0.534, accuracy of 0.960, precision of 
0.667, sensitivity of 0.400, specificity of 0.990, and an F1 score 
of 0.500.

Final model identification

No statistically significant differences in model performance 
(AUROC/AUPRC) were observed across various data processing 
strategies. Consequently, the method that offered the best balance 
between predictive precision and simplicity was selected. Among 
the evaluated ML algorithms, the RF model—optimized using 
Boruta and GSCV—achieved the highest AUROC and AUPRC 
values, thereby being designed as the optimal predictive model. 
Internal validation demonstrated an AUROC of 0.94 (95% CI: 
0.90–0.98) and an AUPRC of 0.44 (95% CI: 0.15–0.76), while 
external validation yielded an AUROC of 0.93 (95% CI: 

FIGURE 1

The ML model development process. ML, machine learning; SMOTE, synthetic minority over-sampling technique; GSCV, grid search with cross-
validation; SHAP, shapley additive explanation; LIME, Local Interpretable Model-agnostic Explanations.
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0.86–0.99) and an AUPRC of 0.70 (95% CI: 0.51–0.88) 
(Supplementary Figure S4).

To enhance clinical utility, patients were stratified into high- and 
low-risk groups using a probability threshold of 0.6. Calibration 
analysis (Supplementary Figure S5) demonstrated a systematic 
overestimation of high-risk predictions, while showing excellent 
agreement within the low-to-medium risk ranges, thereby supporting 
clinical reliability. Probability distributions by outcome 
(Supplementary Figure S6) exhibited a clear separation between 
survivors and non-survivors. Kernel density plots indicated 
significantly higher predicted probabilities for deceased patients 
(Mann–Whitney U test, p < 0.001), with the current threshold 
(p = 0.6, represented by the black dashed line) and the suggested 
optimal range (indicated by green shading). Boxplots further 
illustrated these distinct distributions.

The post-stratification model performance is illustrated in 
Figure 4. Internal validation yielded an AUROC of 0.97 (95% CI: 
0.96–0.99) and AUPRC of 0.74 (95% CI: 0.60–0.84), while external 
validation showed an AUROC of 0.93 (95% CI: 0.85–0.99) and 
AUPRC of 0.70 (95% CI: 0.46–0.88).

Performance metrics before and after risk stratification are 
summarized in Table 2. After stratification, the final model achieved an 
accuracy of 0.985, a precision of 0.875, a sensitivity of 0.667, a specificity 
of 0.997, and an F1 score of 0.757 in the external validation set.

Model development

The application of the Boruta algorithm for feature selection 
significantly enhanced model interpretability and mitigated 

FIGURE 2

Model performance under five data preprocessing strategies. (A) AUROC values across different preprocessing levels. (B) AUPRC values across different 
preprocessing levels. SMOTE, synthetic minority over-sampling technique; GSCV, grid search with cross-validation; AUROC, area under the receiver 
operating characteristic curve; AUPRC, area under the precision-recall curve.

FIGURE 3

Model performance across six ML algorithms. (A) AUROC values for models developed using six algorithms. (B) AUPRC values for models developed 
using six algorithms. ML, machine learning; RF, random forest; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; LR, 
logistic regression; KNN, k-nearest neighbor; DNN, deep neural network; AUROC, area under the receiver operating characteristic curve; AUPRC, area 
under the precision-recall curve.
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overfitting by reducing the input set from 46 features to just 5. This 
reduction not only preserved the model’s performance but also 
simplified its implementation. Figure 5 illustrates the features selected 
by the Boruta algorithm. Furthermore, the optimized RF model was 
configured with the following hyperparameters: a maximum tree 
depth of 30, a minimum of samples per split, a total of 300 
decision trees.

Model explanation

We employed the Pearson correlation matrix to assess 
multicollinearity among all modeling features (Supplementary Figure 
S7). The results indicated four pairs of features exhibiting high 
collinearity (|r| > 0.7): SBP and DBP (r = 0.75), HCT and HGB 
(r = 0.95), CKMB and TNI (r = 0.83), and LVEDV and LESV 
(r = 0.91). These strong correlations suggest potential redundancy, 
emphasizing the need for dimensionality reduction or variable 
selection to mitigate multicollinearity during model development. The 
final model did not include the afore mentioned features 
simultaneously. Feature importance in the final RF model is illustrated 
in a radar plot (Figure 6A) and a SHAP summary bar plot (Figure 6B), 
highlighting the five variables that influence one-year mortality. The 
model comprises five features, ranked by weight from highest to 

lowest: CS (0.433), CREA (0.200), DBP (0.191), NT-proBNP (0.104), 
and LVEF (0.072).

To enhance transparency and clinical interpretability, SHAP was 
used to analyze overall feature importance, while LIME was employed 
to examine local feature weights and decision rules for individual 
samples. Figure  7 shows SHAP summary plots ranking feature 
importance based on mean SHAP values. The most influential 
predictors included CS, CREA, NT-proBNP, DBP, and LVEF. Figure 8 
illustrates the contribution of key clinical features to individual risk 
prediction across various patient subgroups. Notably, across all 
subgroups, the absence of cardiogenic shock (CS ≤ 0) consistently 
emerged as the strongest negative predictor. Elevated levels of 
NTproBNP (>1677.5 pg./mL) and impaired renal function (CREA 
>86 μmol/L) were identified as significant risk enhancers. Additionally, 
subtle variations in diastolic blood pressure (DBP) and left ventricular 
ejection fraction (LVEF) contributed to risk modulation specific to 
each subgroup.

Clinical utility and application

To facilitate clinical application, the final model was deployed as 
a web-based tool (Figure 9). Clinicians can input patient values for the 
five selected features, and the tool will automatically calculate the 

FIGURE 4

Performance of the stratified RF model in predicting one-year mortality among STEMI patients post-PCI. (A) AUROC values of stratified-RF model. 
(B) AUPRC values of the stratified-RF model. STEMI, ST-segment elevation myocardial infarction; RF, random forest; PCI, percutaneous coronary 
intervention; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.

TABLE 2  Performance of the final model after applying the risk stratification method.

Data processing Accuracy Precision Sensitivity Specificity F1-
score

AUROC AUPRC

Internal validation

Boruta + GSCV 0.950 0.500 0.400 0.979 0.444 0.942 0.443

Boruta + GSCV + Stratified 0.960 0.720 0.474 0.989 0.571 0.971 0.741

External validation

Boruta + GSCV 0.953 0.405 0.714 0.962 0.517 0.932 0.699

Boruta + GSCV + Stratified 0.985 0.875 0.667 0.997 0.757 0.929 0.699

AUROC, the area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; GSCV, grid search with cross-validation; RF, random forest.
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predicted risk of one-year mortality for STEMI patients post-
PCI. Additionally, it generates a personalized SHAP force plot that 
visually highlights the factors influencing each prediction. In these 
plots, the blue features on the right indicate variables associated with 
improved survival, while the red features on the left represent factors 
that contribute to an increased risk of mortality.

Discussion

This study successfully developed a predictive model for 
estimating the 1-year mortality risk in STEMI patients following PCI 
and validated a systematic approach to model construction. Based on 
the characteristics of the raw data, appropriate processing strategies 

FIGURE 5

Features chosen in the training cohort using the Boruta algorithm. TIT, total ischemic time; CAD, coronary artery disease; HTN, hypertension; T2DM, 
type 2 diabetes mellitus; HLD, hyperlipidemia; PAD, peripheral arterial disease; SH, smoking history; BH, bleeding history; BMI, body mass index; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CREA, serum creatinine; UA, uric acid; RBG, random blood glucose; LDL-C, low-
density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; HCT, hematocrit; NEUT, neutrophil count; LYMPH, lymphocyte count; NLR, 
neutrophil-to-lymphocyte ratio; HGB, hemoglobin; PLT, platelet count; CRP, c-reactive protein; MYO, myoglobin; CK-MB, creatine kinase-mb; TNI, 
troponin I; NT-proBNP, n-terminal pro b-type natriuretic peptide; HbA1c, hemoglobin a1c; LAD, left atrial diameter; LVEF, left ventricular ejection 
fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; BB, beta-blockers; ACEI, angiotensin-converting 
enzyme inhibitors; ARB, angiotensin II receptor blockers; ARNI, angiotensin receptor-neprilysin inhibitors; SGLT2i, sodium-glucose cotransporter-2 
inhibitors; STAT, statins; ASA, aspirin; TICA, ticagrelor; CLOP, clopidogrel; PPI, proton pump inhibitors; VF, ventricular fibrillation; AF, atrial fibrillation; CS, 
cardiogenic shock.

FIGURE 6

Feature importance in the stratified RF model for predicting one-year mortality in STEMI patients post-PCI. (A) Radar plot depicting feature importance 
for the stratified RF model. (B) SHAP summary bar plot illustrating the contributions of individual features to the model’s predictions. STEMI, ST-
segment elevation myocardial infarction; RF, random forest; PCI, percutaneous coronary intervention; CS, cardiogenic shock; CREA, creatinine; NT-
proBNP, N-terminal pro-B-type natriuretic peptide; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction.
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and ML algorithms were selected. Model performance was evaluated 
using AUROC and AUPRC metrics. The final streamlined model 
included only five clinical variables: CS, CREA, NT-proBNP, DBP, and 
LVEF. Among all candidate models, the one constructed using the 
Boruta, GSCV, and the RF algorithm demonstrated the best 
performance, with an AUROC of 0.94 and an AUPRC of 0.44 in the 
internal validation set. However, the application of risk stratification 
substantially improved model performance, achieving an AUROC of 
0.97 and an AUPRC of 0.74. We propose categorizing patients into two 
risk classes (low and high) for each outcome. This stratification aims 
to underscore the clinical implications of each risk value computed by 
the model. By selecting a relatively high threshold, we corrected the 
overestimated event rates in the overall test set, thereby enhancing 
model performance. This approach ensured stability within specific 
populations and mitigated inflated metrics caused by risk 
overestimation. Following stratification, the sample characteristics 
within high and low-risk groups became more homogeneous, thereby 
improving the model’s predictive accuracy within each subgroup. 
These findings suggest that risk stratification is an effective method for 
enhancing model performance in imbalanced datasets.

Clinical databases often exhibit missing values, high 
dimensionality, and class imbalance, necessitating robust processing 
strategies (Mohammadi et al., 2023; Chan et al., 2023; Iacobescu et al., 
2024; Hosseini et al., 2024; Öztekin and Özyılmaz, 2025). Prior studies 
have addressed these challenges using techniques such as SMOTE and 

GSCV (Oliveira et al., 2023). For instance, Iacobescu et al. (2024) 
utilized SMOTE and GSCV to enhance model performance in a 
highly imbalanced dataset (91.91% vs. 8.09%); however, they did not 
quantify the impact of processing. Hosseini et al. (2024) analyzed 
9,073 AMI patients and reported an AUROC of 0.866 for the RF 
model following the application of SMOTE. Similarly, Öztekin and 
Özyılmaz (2025) employed SMOTE with 38 features to develop an 
in-hospital mortality model, achieving high predictive performance, 
despite a small sample size. Nonetheless, these studies did not evaluate 
the statistical significance of processing on model performance or 
delineate when SMOTE is necessary. In our study, we systematically 
assessed various processing strategies and confirmed, using DeLong’s 
test, that there were no significant differences in 
AUROC. Consequently, we selected the simplest effective approach to 
maximize model interpretability and clinical relevance.

Choosing the most suitable ML algorithm remains a significant 
challenge in predictive modeling (Yang et al., 2025; Liu et al., 2022; 
Jeong et  al., 2024). Most studies recommend algorithm based on 
conventional metrics—such as AUROC, F1-score, precision, sensitivity, 
and accuracy—yet few assess the statistical significance between 
models (Zhang et al., 2023; Zheng et al., 2023). For instance, D'Ascenzo 
et al. (2021) developed the PRAISE score for one-year mortality in ACS 
patients using adaptive boosting (Adaboost), naive bayes, KNN, and 
RF, concluding that Adaboost performed the best. Khera et al. (2021) 
compared four models (XGBoost, neural networks, meta-classifier, and 

FIGURE 7

SHAP summary dot plot for the stratified RF model predicting one-year mortality in STEMI patients post-PCI. (A) SHAP summary plot for the model 
predicting death as a positive outcome. (B) SHAP summary plot for the model predicting survival as a positive outcome. The plot illustrates the 
contribution of each feature to the model’s predictions. STEMI, ST-segment elevation myocardial infarction; RF, random forest; PCI, percutaneous 
coronary intervention; CS, cardiogenic shock; CREA, creatinine; NT-proBNP, N-terminal pro–B-type natriuretic peptide; DBP, diastolic blood pressure; 
LVEF, left ventricular ejection fraction.
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LR) for predicting in-hospital AMI mortality, finding no significant 
improvement of ML models over LR, with all AUPRC values below 0.4. 
Although these comparisons are informative, they lack statistical 
testing. Notably, Hu et al. (2024) employed the DeLong test to evaluate 
algorithmic differences, thereby adding methodological rigor. In our 
study, we  compared RF, LightGBM, XGBoost, LR, KNN, and 
DNN. Ensemble methods like RF reduce variance through bagging, 
while LightGBM and XGBoost enhance accuracy via boosting and 
regularization. LR provides interpretability, KNN offers flexibility with 
structured data, and DNNs excel in handling complex, high-
dimensional data. Our findings support the growing consensus that 
there is no universally best algorithm—only the most contextually 
appropriate one. Despite algorithmic advances, improvements are not 
always statistically significant, as confirmed by our results.

While increasing the number of input features may initially 
enhance model performance, the improvements often plateau (Chen 
et al., 2024; Hamilton et al., 2024; Li et al., 2024; Liu et al., 2024; Hu 
et al., 2024). Therefore, constructing models with a limited number of 
clinically accessible features becomes a primary objective. Some 
researchers employ LASSO or SHAP to rank feature importance and 
manually select the most significant variables. For example, Hu et al. 
(2024) successfully reduced 33 features to 8 using SHAP without a 
notable decline in performance. Similarly, Liu et al. (2024) developed 
a readmission model for NSTEMI patients, condensing 96 features to 

7 through the use of LR, RF, and LASSO, ultimately finding the 
LR-based model to be  the most effective. However, these studies 
generally did not evaluate the statistical significance of performance 
differences between models, which limits their robustness.

Recognizing the complexity of real-world clinical data, 
we emphasize that simplicity and usability are critical for the adoption 
of models. Consequently, we employed DeLong and bootstrap tests to 
compare the AUROC and AUPRC across various models, ultimately 
finding no statistically significant differences. Based on these results, 
we selected the simplest model capable of reliably identifying positive 
cases, which aligns with the priorities of clinical decision-making.

In addition to limitations related to sample size and data quality, 
we contend that the reliance on static variables to predict dynamic 
clinical outcomes is inherently restrictive. Future advancements in 
real-time, dynamic prediction models—incorporating time-series 
analysis and multimodal data integration—may offer a more precise 
and personalized approach to risk stratification and clinical decision-
making (Ren et al., 2025).

Limitations

There are several limitations to our study. First, as a single-center, 
retrospective investigation with a limited sample size, it is essential to 

FIGURE 8

Contribution of key clinical features to individual risk prediction across subgroups. (A–D) Illustrate the directional impact of selected discretized 
features on model output across different patient strata. The horizontal bars represent both the magnitude and direction of contribution for each 
feature, with red indicating a negative (risk-reducing) effect and green indicating a positive (risk-enhancing) effect.
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conduct multicenter, prospective studies for more robust findings. 
Second, although we performed external validation, all data were 
sourced from the same hospital, which may introduce selection bias 
and lacks validation across diverse institutional settings. Third, the 
clinical utility of this prognostic prediction model is constrained by its 
inability to incorporate time-series analysis and integrate multimodal 
data, which limits its applicability in real-world scenarios.

Conclusion and future work

In conclusion, we  developed an RF-based predictive model 
utilizing Boruta for feature selection and GSCV for optimization, 
effectively reducing dimensionality and enhancing model performance 
in predicting one-year mortality in STEMI patients 

post-PCI. Additionally, integrating a risk stratification approach 
significantly improved the model’s clinical applicability.

This work highlights several gaps that must be addressed in future 
research before implementing this type of model construction. First, 
while SMOTE is an effective method for addressing class imbalance, 
particularly when the imbalance ratio exceeds 10:1, it may overlook 
intra-class distributions. Additionally, its interpolation of minority-
class samples can lead to the generation of noisy instances, potentially 
increasing model complexity and degrading performance. SMOTE is 
most effective when the data is imbalanced and the minority class 
exhibits clear distribution patterns. Second, although SHAP provides 
valuable insights into feature contributions, its reliability may 
be compromised in the presence of strong feature multicollinearity. 
Future work should incorporate correlation analysis and feature 
selection or reduction prior to interpretation to ensure more coherent 
SHAP results.

FIGURE 9

Convenient application for clinical utility. The convenient application of the stratified RF model with 5 features is available for STEMI one-year mortality 
prediction. When entering actual values of the 5 features, this application automatically displays the probability of 24%. Meanwhile, the force plot for 
individual child indicates the features that contribute to the decision of mortality: the blue features on the right are the features pushing the prediction 
towards decease, while the red features on the left are pushing the prediction towards survival. RF, random forest; STEMI, st-segment elevation 
myocardial infarction.
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