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Background: Abdominal ultrasonography is a primary diagnostic tool 
for evaluating medical conditions within the abdominal cavity. Accurate 
determination of the relative locations of intra-abdominal organs and lesions 
based on anatomical features in ultrasound images is essential in diagnostic 
sonography. Recognizing and extracting anatomical landmarks facilitates lesion 
evaluation and enhances diagnostic interpretation. Recent artificial intelligence 
(AI) segmentation methods employing deep neural networks (DNNs) and 
transformers encounter computational efficiency challenges to balance the 
preservation of feature dependencies information with model efficiency, limiting 
their clinical applicability.

Methods: The anatomical structure recognition framework, MaskHybrid, was 
developed using a private dataset comprising 34,711 abdominal ultrasound 
images of 2,063 patients from CSMUH. The dataset included abdominal organs 
and vascular structures (hepatic vein, inferior vena cava, portal vein, gallbladder, 
kidney, pancreas, spleen) and liver lesions (hepatic cyst, tumor). MaskHybrid 
adopted a mamba-transformer hybrid architecture consisting of an evolved 
backbone network, encoder, and corresponding decoder to capture long-range 
spatial dependencies and contextual information effectively, demonstrating 
improved image segmentation capabilities in visual tasks while mitigating 
the computational burden associated with the transformer-based attention 
mechanism.

Results: Experiments on the retrospective dataset achieved a mean average 
precision (mAP) score of 74.13% for anatomical landmarks segmentation in 
abdominal ultrasound images. Our proposed framework outperformed baselines 
across most organ and lesion types and effectively segmented challenging 
anatomical structures. Moreover, MaskHybrid exhibited a significantly shorter 
inference time (0.120 ± 0.013 s), achieving 2.5 times faster than large-sized AI 
models of similar size. Combining Mamba and transformer architectures, this 
hybrid design was well-suited for the timely analysis of complex anatomical 
structures segmentation in abdominal ultrasonography, where accuracy and 
efficiency are critical in clinical practice.

Conclusion: The proposed mamba-transformer hybrid recognition framework 
simultaneously detects and segments multiple abdominal organs and lesions 
in ultrasound images, achieving superior segmentation accuracy, visualization 

OPEN ACCESS

EDITED BY

Tuan D. Pham,  
Queen Mary University of London, 
United Kingdom

REVIEWED BY

Tanvi Luthra,  
All India Institute of Medical Sciences, India
Mahendra Gawali,  
Sanjivani University, India

*CORRESPONDENCE

Chi-Chih Wang  
 bananaudwang@gmail.com

RECEIVED 28 May 2025
ACCEPTED 09 July 2025
PUBLISHED 23 July 2025

CITATION

Chang S-F, Wu P-Y, Tsai M-C, Tseng VS and 
Wang C-C (2025) AI-assisted anatomical 
structure recognition and segmentation via 
mamba-transformer architecture in 
abdominal ultrasound images.
Front. Artif. Intell. 8:1618607.
doi: 10.3389/frai.2025.1618607

COPYRIGHT

© 2025 Chang, Wu, Tsai, Tseng and Wang. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 23 July 2025
DOI 10.3389/frai.2025.1618607

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1618607&domain=pdf&date_stamp=2025-07-23
https://www.frontiersin.org/articles/10.3389/frai.2025.1618607/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1618607/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1618607/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1618607/full
mailto:bananaudwang@gmail.com
https://doi.org/10.3389/frai.2025.1618607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1618607


Chang et al. 10.3389/frai.2025.1618607

Frontiers in Artificial Intelligence 02 frontiersin.org

effect, and inference efficiency, thereby facilitating improved medical image 
interpretation and near real-time diagnostic sonography that meets clinical 
needs.
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1 Introduction

Abdominal ultrasonography (US) is a primary diagnostic tool for 
evaluating medical conditions within the abdominal cavity and 
discomfort (Tomizawa et  al., 2017). Physicians frequently use the 
abdominal US to screen for lesions in abdominal organs, including the 
liver, gallbladder, kidneys, pancreas, spleen, and adjacent blood 
vessels, facilitating a comprehensive assessment of intra-abdominal 
structures. The deep location of abdominal organs within the body 
and their potential obscuration by bone structures or intestinal gas 
often result in partially captured organ images on abdominal 
ultrasound. Variations in ultrasound imaging equipment and systems 
further complicate image interpretation, posing significant assessment 
challenges. Despite its relatively lower image resolution compared to 
advanced medical imaging modalities such as computed tomography 
(CT) and magnetic resonance imaging (MRI), US remains 
irreplaceable for the timely detection of potentially life-threatening 
conditions such as acute abdomen and supports further diagnosis 
and intervention.

Identifying the relative location of abdominal organs and lesions 
based on anatomical or pathological features in US images is essential 
in diagnostic sonography. However, due to the inherent characteristics 
of ultrasound imaging, including blurred textures and indistinct organ 
boundaries, interpretation can be  challenging, particularly for 
inexperienced physicians and inadequately trained technicians (Reddy 
et al., 2021). With the rise of artificial intelligence (AI), deep neural 
network (DNN) techniques (Reddy et al., 2021; Cheng and Malhi, 
2017; Dandan et al., 2020; Xu et al., 2018; Hatture and Kadakol, 2021) 
have shown promise in facilitating object detection and instance 
segmentation of abdominal organs, reducing examination 
interpretation time in US images. Due to the time-consuming 
annotation process, most studies on the abdominal US have trained 
their AI models using small datasets, typically comprising only 
hundreds or thousands of labeled images (Song, 2021). Consequently, 
extracting features from limited data to enhance model training is 
essential for improving generalizability in clinical applications.

Object detection and instance segmentation in US image 
analysis aims to identify regions of interest (ROI) as reference points 
for lesion assessment and aid in diagnostic interpretation. Therefore, 
accurate ROI extraction is critical for defining organs and lesion 
boundaries in abdominal US images. Historically, abdominal 
anatomical recognition heavily relied on the generation of hand-
crafted image characteristics to expand feature dimension spaces. 
For instance, the light neural network, a time-sensitive attention-
radial basis function network (TSA-RBFN), was designed to 
calculate distances within feature dimensions, aiding in segmenting 
and measuring inflamed gallbladder volumes associated with 
cholecystitis and gallstones (Muneeswaran and Rajasekaran, 2018). 
Similarly, wavelet decomposition has been employed in 

high-resolution US images to enhance gallbladder localization and 
facilitate the detection of suspicious gallbladder polyps (Chen et al., 
2020). Active contour segmentation with wavelet filtering has also 
been further applied to liver disease classification (Krishnan and 
Radhakrishnan, 2017). More recently, the continued advancement 
of deep learning has revolutionized abdominal US imaging 
applications (Cai and Pfob, 2025), particularly in the automatic 
feature extraction and recognition of abdominal organs such as the 
kidney (Ravishankar et al., 2017; Yin et al., 2019; Yin et al., 2020; 
Peng et al., 2023; Peng et al., 2023), prostate (Peng et al., 2023; Karimi 
et al., 2019; Lei et al., 2019; Orlando et al., 2020), gallbladder (Obaid 
et  al., 2023), and liver (Ryu et  al., 2021; Dadoun et  al., 2022; 
Mămuleanu et al., 2022; Lee et al., 2020; Biswas et al., 2018; Xi et al., 
2021; Turco et al., 2022).

Ryu et al. (2021) introduced a multi-task system based on the 
Visual Geometry Group Network (VGG-Net) for segmenting and 
classifying liver lesions in US images with user-provided click 
guidance. Ravishankar et al. (2017) developed a shape-regularized 
U-Net (SR-UNet) segmentation framework that integrates shape 
priors into fully convolutional networks to enhance robustness against 
low contrast and artifacts. Strategies incorporating morphological 
information have also improved the effectiveness of DNN-based 
segmentation tasks. Yin et al. (2019) and Yin et al. (2020) developed a 
boundary distance regression network to improve the segmentation 
robustness against variations in kidney appearance. Peng et  al. 
employed a contour extraction approach (Peng et al., 2023) and an 
automatic searching polygon tracking method (Peng et al., 2023) to 
address the challenges of unclear boundaries and diverse kidney 
shapes in US images. Similarly, Obaid (Obaid et al., 2023) applied 
active contour segmentation integrated with DNN models to delineate 
organ boundaries and classify gallbladder disease. Additionally, blood 
vessels within the liver are critical anatomical landmarks in delineating 
the liver’s anatomy and identifying adjacent organs, such as the 
pancreas. Deep learning (U-Net) and detection transformer (DETR) 
have been applied to the characteristic identification and lesion 
segmentation of liver diseases, including hepatic cysts and tumors 
(Ryu et al., 2021; Dadoun et al., 2022; Mămuleanu et al., 2022). Lee 
et al. (2020) utilized deep learning (VGG-Net) to predict the meta-
analysis of histological data in viral hepatitis (METAVIR) score and 
classify liver fibrosis severity for screening and longitudinal assessment 
of US examinations. Biswas et  al. (2018) applied a deeper DNN 
structure (GoogLeNet) to characterize tissue in fatty liver disease and 
stratify normal and abnormal tissues. Xi et al. (2021) employed a 
similar DNN architecture (ResNet) with pre-trained weights to 
distinguish between benign and malignant liver lesions. Advanced 
supervised multidirectional DNN mechanisms (3D V-Net series) (Lei 
et al., 2019; Orlando et al., 2020) were further employed to segment 
prostate volume for prostate cancer diagnostic applications. Despite 
having relatively shallow architecture with only a few dozen layers, 
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these deep-learning models have outperformed radiologists in 
specific tasks.

Moreover, Turco et  al. (2022) interpreted the spatiotemporal 
features of vascular perfusion and characterized vascular structures in 
contrast-enhanced ultrasound (CEUS) to improve the precise 
characterization of focal liver lesions. Zhang et al. (2024) proposed the 
SEG-LUS semantic segmentation model, incorporating multi-head 
self-attention to identify small ROIs, such as the inferior vena cava, 
portal vein branches, and hepatic artery, during clinical scanning. 
While current studies have reported the dice scores (0.826–0.957; 
Ravishankar et al., 2017; Peng et al., 2023; Peng et al., 2023; Zhang 
et al., 2024) and diagnostic accuracies (83.5–98.4%; Peng et al., 2023; 
Obaid et al., 2023; Lee et al., 2020) for abdominal US, most research 
focuses on learning from US images with a single label per image in 
multi-organ scenes and subsequently inferring the organ with the 
highest probability. Such limitations hinder the applicability of these 
methods in clinical scenarios that require the simultaneous 
identification of multiple organs to enhance the diagnostic quality in 
abdominal ultrasound imaging.

This study aimed to develop an efficient AI-based anatomical 
recognition framework capable of automatically and simultaneously 
detecting and segmenting multiple anatomical landmarks from the 
abdominal US images, thereby enhancing generalizability and 
diagnostic accuracy in clinical practice.

2 Materials and methods

2.1 Study population

2.1.1 Participants
The retrospective dataset was obtained from outpatient 

examinations using ultrasound scanners from Toshiba, Hitachi, 
General Electric, Canon, and Siemens at Chung Shan Medical 
University Hospital (CSMUH) between April 2013 and May 2024. It 
included 34,711 B-type abdominal ultrasound images (format: JPG, 
size: 480 × 640 to 970 × 1,552 pixels) from 2,063 patients (male: 56.8%, 
female: 43.2%). This study underwent a medical ethics review and was 

approved by the CSMUH Institutional Review Board (IRB) (IRB No: 
CS2-22003), and all patient identities were anonymized before images 
were released, eliminating the need for informed consent from 
included patients.

2.1.2 Data annotation
Given that the quality of collected US images can be affected by 

various health conditions of the abdominal organs, several internists 
specializing in hepatology and gastroenterology (with 8–20 years of 
professional experience) were invited to establish accurate annotations 
for a high-quality dataset. The dataset was annotated using an 
interactive labeling mechanism for image segmentation to facilitate 
AI-assisted recognition of organs and related lesions required for US 
examination, thereby reducing labor-intensive processes. After each 
US image set of the same patient case was randomly assigned to a 
physician, the physicians marked only the intersecting line segments 
to indicate potential organ regions. A polygon-based contouring 
foreground was then automatically generated using the optimized 
graph-based segmentation algorithm, GrabCut (Rother et al., 2004; 
Xu et al., 2017), which progressively enhances and streamlines the 
segmentation contour endpoints by considering color resemblance 
and spatial closeness, as illustrated in Figure 1. The ground truth was 
then established for the dataset for subsequent modeling of detection 
and segmentation tasks. This dataset involved seven abdominal organs 
and vascular structures, including the hepatic vein, inferior vena cava, 
portal vein, gallbladder, kidney, pancreas, and spleen, and two related 
liver lesions, including the hepatic cysts and tumors, comprising 6,332, 
3,977, 16,202, 8,183, 5,858, 3,492, 1,358, 2,630, and 8,191 marks, 
respectively.

2.1.3 Dataset split
The entire private dataset of patients and US images was randomly 

divided into training, validation, and testing sets based on patient 
cases, comprising 21,039, 6,775, and 6,897 images of 1,240, 408, and 
415 cases, respectively, with approximate ratios of 60, 20, and 20%. 
Table  1 and Figure  2 present detailed information regarding the 
number of images and the distribution of annotations for 
anatomical structures.

FIGURE 1

(A) Line segments and (B) polygon-based contouring foregrounds were created with our own interactive labeling mechanism. Intersecting line 
segments annotated by physicians are used to indicate potential organ regions, and the GrabCut segmentation algorithm is then used to generate the 
ground truth automatically.
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2.2 Studies for algorithm development

In the pre-deep learning era, image segmentation for 
anatomical landmark recognition relied on hand-crafted features 
and classical computer vision techniques, which were limited by 
occlusion and overlapping objects. Currently, the use of DNNs and 
transformers to enhance segmentation accuracy and scalability 

represents one of the main trends in contemporary medical 
image analysis.

2.2.1 DNN-based segmentation
Mask R-CNN (He et  al., 2017) is a typical two-stage image 

segmentation design (object detection followed by pixel-by-pixel mask 
prediction) that deals with varying shapes and generalizes to several 

TABLE 1 The training, validation, and testing sub-datasets for abdominal anatomical recognition modeling.

Anatomical 
Landmarks

Training Validation Testing Total

cases images cases images cases images cases images marks

Hepatic vein 791 2,878 247 970 258 926 1,296 4,774 6,332

Inferior vena cava 673 2,340 220 827 224 805 1,117 3,972 3,977

Portal vein 1,100 7,893 352 2,561 366 2,586 1,818 13,040 16,202

Gallbladder 984 4,894 329 1,558 328 1,593 1,641 8,045 8,183

Kidney 1,034 3,564 346 1,149 343 1,144 1,723 5,857 5,858

Pancreas 806 2,098 265 662 265 730 1,336 3,490 3,492

Spleen 536 810 177 274 182 273 895 1,357 1,358

Hepatic cyst 382 1,421 130 408 119 384 631 2,213 2,630

Tumor 566 3,727 186 1,271 185 1,260 937 6,258 8,191

Total 1,240 21,039 408 6,775 415 6,897 2,063 34,711 56,223

Each ultrasound image set of the same patient case will be assigned to only one of the training, validation, and testing sub-datasets.

FIGURE 2

Number of patients and ultrasound images, and the distribution of anatomical structure annotations in the private dataset.

https://doi.org/10.3389/frai.2025.1618607
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Chang et al. 10.3389/frai.2025.1618607

Frontiers in Artificial Intelligence 05 frontiersin.org

types of scenes, handling simple overlapping objects effectively. The 
YOLO (You Only Look Once) series (Boesch, 2024) employs a single-
stage detection paradigm and has evolved significantly in speed, 
accuracy, feature extraction, and computational efficiency. It evolved 
from its grid-based, single-stage detection (YOLOv1) to a multi-scale 
anchor-based approach (YOLOv2, YOLOv3), improving accuracy and 
robustness. CSPDarkNet, PANet, CIoU loss (YOLOv4), and anchor-
free designs with model scaling (YOLOv6, YOLOv7) optimized speed 
and precision. PGI, GELAN (YOLOv9), and the removal of 
Non-Maximum Suppression (YOLOv10) enhanced detection and 
segmentation speed. The latest version, YOLOv11, integrates object 
detection, segmentation, pose estimation, oriented bounding boxes, 
and classification to advance performance. However, the trade-off 
between high-precision segmentation and computational efficiency in 
DNN-based segmentation limits its applicability in real-world 
scenarios (Xu et al., 2024).

2.2.2 Transformer-based segmentation
Recent advancements have used transformers for image 

segmentation, improving the understanding of the global context. The 
architecture consists of an encoder-decoder structure, where the 
encoder captures contextual information and the decoder generates 
the output sequence. The self-attention mechanism enables 
transformers to evaluate the relative importance of input elements, 
effectively capturing long-range dependencies that may be overlooked 
by recurrent neural networks (RNNs) and convolutional neural 
networks (CNNs). This capability is particularly beneficial for 
segmental tasks, where the relevant context may not be confined to 
regions locally in US images. DETR (Carion et al., 2020) was the first 
transformer to use query embeddings, combining CNN feature 
extraction with transformer-based decoding for object detection and 
instance segmentation, achieving end-to-end but at a high 
computational cost. By incorporating query embedding refinements 
and enhanced attention mechanisms, DINO (DETR with improved 
deNoising anchOrs) (Zhang et al., 2023) stabilized bipartite matching 
and contrastive query selection, enhancing feature learning and 
convergence speed in detection and segmentation tasks. This approach 
accelerated learning while maintaining high precision, forming the 
foundation for models like MaskDINO (Li et  al., 2023) for dense 
prediction tasks. MaskDINO integrated DETR-like object detection 
and the DINO structure with mask prediction capabilities to extend 
efficient semantic and panoptic segmentation advantages. With multi-
scale features, self-attention, and contrastive denoising training, 
MaskDINO captured global dependencies, leading to improved 
accuracy and robustness compared to DNN-based approaches. 
However, these transformer-based segmentation approaches still 
encounter computational efficiency challenges, hindering their 
applicability in real-time applications without optimization.

2.2.3 State space models (SSM)
SSM is a mathematical framework that models sequence or time 

series data by maintaining a hidden internal state that evolves based 
on input signals and past states, optimizing model inference speed 
while maintaining model effectiveness. SSM is widely used in signal 
processing, control systems, time series forecasting, and deep learning. 
Mamba (Gu and Dao, 2024), a modern SSM-based sequence model, 
was introduced with gated state transitions to enhance expressiveness 
while maintaining efficiency. It features parallelizable recurrence, 

reducing memory overhead and improving long-sequence modeling. 
By leveraging input-dependent gating and efficient kernel 
parameterization, Mamba achieves transformer-level performance 
while being computationally efficient for NLP and vision tasks. 
Mamba-2 (Dao and Gu, 2024) built upon Mamba, refining its gating 
mechanisms, adaptive state transitions, parallelized recurrence, and 
efficient parameterization, achieving better expressiveness, efficiency, 
and scalability for long-range dependency modeling and rivaling 
transformers while reducing computational overhead. On the other 
hand, MambaVision (Hatamizadeh and Kautz, 2024) proposed a 
hybrid mamba-transformer backbone, adopting Mamba for vision 
tasks and offering an effective alternative to deep learning and 
transformers for image and video understanding.

2.3 MaskHybrid, the proposed framework

We developed an AI-based anatomical recognition framework 
that presents the mamba-transformer hybrid design to enhance 
segmentation accuracy, visualization effects, and inference efficiency 
while mitigating the computational burden. Figure 3 illustrates the 
architecture of the proposed framework and its major components: 
the mamba-transformer backbone, the MaskHybrid hybrid encoder, 
and the corresponding decoder. The hybrid designs were primarily 
implemented at the backbone and encoder levels to enhance the 
model performance and visualization for anatomical recognition.

2.3.1 Mamba-transformer backbone
In order to capture global dependencies while preserving the 

spatial structure of US images, the MambaVision-like architecture was 
employed to extract multi-scale features across different dimensions. 
The first two stages retained residual convolutional blocks for rapid 
feature extraction, while the subsequent two stages were modified to 
incorporate four layers of the Mamba-2-like blocks and followed by 
four layers of multi-head self-attention transformer blocks. This 
design preserves global context and long-range spatial dependencies 
in vision tasks, as shown in Supplementary Figure 1. At this stage, 
features were flattened and transformed at different scales for use in 
the subsequent hybrid encoder.

2.3.2 MaskHybrid encoder
The hybrid encoder consisted of multiple repeated transformer-

based encoder layers (N = 6), each containing a multi-scale deformable 
self-attention block and two multilayer perceptron (MLP) blocks. 
Given the efficacy of Mamba designs in capturing long-range 
dependencies with a limited number of layers (Dao and Gu, 2024), 
one of the intermediate layers was replaced by a Mamba-based layer, 
incorporating a Mamba-2-like block to substitute the self-attention 
process inherent in the transformer layer. The reference architecture 
of the encoder layers is shown in Supplementary Figure 2.

2.3.3 MaskHybrid decoder
Unlike the encoder, which incorporated a mamba-based layer, 

the decoder comprised only multiple repeated transformer-based 
decoder layers (M = 9), with each decoder layer including an 
additional multi-head cross-attention compared to the encoder layer. 
For small-token counts, such as feature tokens derived from our 
proposed encoder, the Mamba design using recurrent-like 
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state-space updates may exhibit suboptimal learning due to its 
reliance on hidden state updates rather than pairwise token 
interactions. This limitation could reduce effectiveness due to weaker 
token-to-token interactions than transformers (Dao and Gu, 2024). 
Therefore, the decoder was designed exclusively using transformer-
based layers. The reference architecture of the decoder layers is 
shown in Supplementary Figure 3.

2.4 Performance evaluation

Average Precision (AP) is a performance metric used to 
measure the model capabilities, commonly employed in computer 
vision tasks like object detection and instance segmentation. In 
specific applications, AP can be further categorized based on the 
task at hand, such as box AP and mask AP. Box AP focuses on the 
overlap between the predicted bounding box and the ground truth 
box at a fixed intersection over union (IoU) threshold, calculating 
the area under the precision-recall curve (PR-AUC) by varying the 
confidence level. Mask AP (He et al., 2017) is specifically designed 
explicitly for image segmentation tasks, emphasizing the overlap 

between the prediction and the ground truth masks at a specified 
IoU threshold. In this study, mask AP was used as the performance 
metric, and the mAP was then calculated as the mean of the mask 
AP values across all organ and lesion classes of abdominal 
anatomical landmarks, with the IoU threshold set to 0.15 and the 
confidence level set to 0.3, denoted as mAP15. Since a higher IoU 
threshold (such as IoU ≥ 0.5) may lead to mistakenly excluding 
clinically reasonable predictions, a lower IoU threshold of 0.15 
was determined for model training to appropriately mark 
anatomical structures and pathological features in a practical 
clinical setting.

 

( )
( )

=
   ,   
   ,   

Area of Overlap prediction mask ground truth mask
IoU

Area of Union prediction mask ground truth mask

 
( ) ( )−= −∑ 1class i i interp iiAP r r P r

Where Pinterp(r) is the interpolated precision at a certain recall level 
r, which is defined as the highest precision found for any recall 
level r’ ≥ r.

FIGURE 3

Architecture and components of the proposed framework, MaskHybrid, are based on MaskDINO and further extended (gray-shaded area) to 
accelerate segmentation accuracy and inference efficiency.
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= ∑1

classclassesmAP AP
n

Where APclass is the average precision of each class, and n is the 
number of classes.

2.5 Implementation detail

In this study, original US images were uniformly resized to a 
dimension of 1,024 × 1,024 pixels, subjected to random horizontal 
flipping, and augmented with slight scaling using large-scale jittering 
(LSJ) (Ghiasi et al., 2021) prior to training. The ResNet-50 (He et al., 
2016) and Swin Transformer (Swin-T) (Liu et al., 2021) were used as 
backbones for baseline establishment within MaskDINO, representing 
small and large-sized models, respectively. The MaskHybrid model 
utilized six encoder layers and nine decoder layers (N = 6, M = 9). The 
feature channels in both the encoder and decoder were maintained at 
256, and the hidden dimension of the feed-forward neural network 
(FFN) was set to 2,048. The same loss functions as MaskDINO (L1 loss 
and GIOU loss for box loss, focal loss for classification loss, and cross-
entropy loss and dice loss for mask loss) were leveraged for model 
convergence. Unlike the commonly used IoU threshold of 0.5 for 
balanced evaluation on public datasets, a threshold of 0.15 (Wang 
et al., 2022) was chosen because some anatomical landmarks had not 
been fully annotated by experts, resulting in the actual annotated size 
being relatively small compared to the ground truth. Employing a 
lower threshold may reduce the number of false negatives and affect 
overall model performance; however, it is considered more appropriate 
for screening purposes in clinical settings.

The fixed input image size results in a constrained token size 
given by the backbone network to the subsequent encoder and 
decoder. The tokens of MaskDINO (ResNet), MaskDINO (Swin-T), 
and MaskHybrid models are 21,760, 21,760, and 22,528, 
respectively. Since these token sizes are comparable, the candidate 
models require similar computing resources, with no significant 
impact on execution time or speed. In addition, due to hardware 
constraints, the baseline MaskDINO and our MaskHybrid were 
trained for 10 epochs on an NVIDIA RTX A6000 GPU with an 
initial learning rate of 1e-4. A batch size of two was used for 

evaluation to ensure a fair comparison, given the high memory 
consumption of the Swin-T backbone. An early stopping 
mechanism was implemented to prevent overfitting. All 
experiments were conducted using the PyTorch framework in 
this study.

3 Results

3.1 Main results of anatomical recognition

As presented in Table  2, the experiments demonstrated the 
efficacy of incorporating mamba-transformer architectures in 
anatomical landmarks segmentation. Specifically, the MaskHybrid 
model outperformed MaskDINO baselines with ResNet-50 and Swin 
Transformer backbones across most abdominal organs and lesion 
types, achieving a superior mAP15 score (74.13% vs. 70.68 and 
72.60%). For example, it achieved the highest AP scores for the 
gallbladder (91.79%), kidney (95.47%), pancreas (89.36%), spleen 
(86.19%), hepatic vein (60.71%) and hepatic cyst (55.48%), suggesting 
that our model excels at detecting both organs and vascular structures. 
It also showed consistent segmentation performance, achieving 
40.94% mAP at an average AP of higher IoU thresholds from 0.5 to 
0.95, surpassing the baselines MaskDINO (Swin-T and ResNet), as 
shown in Supplementary Table 1. Since this study aims to provide a 
screening-based toolkit to assist inexperienced physicians or in the 
medical settings of rural areas, a lower IoU threshold was adopted to 
better recognize anatomical structures and pathological features, 
despite performing relatively well at most IoU thresholds.

The performance improvement is likely due to the enhanced 
contextual modeling provided by the mamba-transformer 
architecture, which supports longer-range dependencies and 
improved spatial reasoning. Furthermore, the MaskHybrid model 
showed significant improvements in segmenting challenging 
anatomical structures such as the hepatic vein, portal vein, and hepatic 
cyst. Larger organs (including the gallbladder, kidneys, pancreas, and 
spleen: 86.19–95.47%) exhibited higher AP than blood vessels (60.71–
70.67%) due to their relatively larger volumes. These findings 
suggested that the mamba-transformer hybrid design effectively 
captured long-range spatial dependencies and contextual information, 

TABLE 2 Image segmentation performance of MaskHybrid under mAP15 metric compared to MaskDINO baselines with RestNet-50 and Swin 
Transformer backbones.

Models Dataset mAP15 
(%)

Average Precision (%)

Hepatic 
vein

Inferior 
vena 
cava

Portal 
vein

Gall-
bladder

Kidney Pancreas Spleen Hepatic 
cyst

Tumor

MaskDINO 

(ResNet)

valid 70.85 59.92 56.77 66.89 88.66 95.77 88.23 83.91 47.03 50.49

test 70.68 57.63 63.61 64.38 88.85 94.44 86.30 82.29 51.46 47.15

MaskDINO 

(Swin-T)

valid 72.59 60.13 61.68 69.50 90.01 96.71 89.54 83.19 47.43 55.12

test 72.60 55.24 67.13 68.29 91.58 95.29 85.47 83.74 53.27 53.39

MaskHybrid valid 73.72 64.35 60.36 71.05 90.63 97.79 91.64 87.58 48.55 51.56

test 74.13 60.71 66.87 70.67 91.79 95.47 89.36 86.19 55.48 50.62

The MaskHybrid framework improved the overall segmentation performance, reaching 74.13% mAP, surpassing the baselines (70.68–72.60%). Compared to large-sized models of similar size, 
the MaskHybrid demonstrated comparable segmentation capabilities to the transformer-based object detection framework, MaskDINO (Swin-T), and it also had superior recognition ability 
and extensibility to small-sized model, MaskDINO (ResNet). The bold values represent the best-performing results among the models.
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making it well-suited for complex ultrasound image segmentation 
tasks where accuracy and robustness are critical.

In addition, the MaskHybrid model, incorporating the mamba-
transformer hybrid design, achieved the closest visualization effect to 

the ground truth regarding both annotation type and the number of 
recognized structures. In contrast, the MaskDINO baselines exhibited 
missed anatomical structures (hepatic vein in Figure 4A and portal 
vein in Figure 4B) or the erroneous identification of non-existent 

FIGURE 4

Visualization comparison of baselines and our anatomical recognition model. MaskHybrid achieved the closest visualization effect to the ground truth 
regarding both annotation type and the number of recognized structures. (A) MaskDINO baselines missed the hepatic vein or the erroneous 
identification of the tumor. (B) MaskDINO baselines missed the portal vein.
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lesions (tumor in Figure 4A). However, these structures were correctly 
recognized in our MaskHybird model. Detailed comparisons between 
models are provided in the Supplementary Material.

3.2 Ablation experiments

To further investigate the effect of the mamba-transformer hybrid 
design, ablation experiments were performed on the segmentation 
performance of anatomical structures with various backbone and 
encoder combinations. As presented in Table 3, the hybrid architecture 
of MaskHybrid (Mamba-T) as the backbone with MaskDINO as the 
encoder achieved superior performance, yielding the highest mAP 
score of 74.13% among all configurations. This indicates that the 
hybrid architecture, particularly the Mamba-based backbone, is 
effective in capturing complex anatomical features and enhancing 
overall model accuracy. Specifically, replacing the Swin-T backbone 
in the baseline with our mamba-transformer architecture (Mamba-T) 
improved overall performance, demonstrating superior segmentation 
accuracy for nearly all anatomical structures.

Notably, the MaskHybrid backbone paired with the MaskHybrid 
encoder achieved the highest AP for the Portal vein (70.92%), suggesting 
that matching the backbone and encoder architecture might lead to 
better feature alignment and precision for certain structures. On the 
other hand, while the MaskDINO (Swin-T) backbone and MaskDINO 
encoder pair had a slightly lower mAP (72.60%), it produced the highest 
AP for the inferior vena cava (67.13%) and tumor (53.39%), entailing 
that attention-based models may still offer specific benefits for difficult 
or irregular structure regions. In contrast, the MaskDINO (ResNet) 
backbone and MaskDINO encoder pair showed the lowest overall 
performance, both in terms of mAP and per-class AP scores. This 
underperformance revealed the limitations of early DNN-based 
backbones such as ResNet in comparison to transformer-based and 
derivative models in performing complex medical segmentation tasks.

Additionally, incorporating the MaskHybrid encoder enhanced 
visual interpretation in some clinical scenarios while still maintaining 
similar competitive performance, validating the effectiveness of this 
novel approach. For instance, while candidate models approximated 
the location of anatomical structures, only the MaskHybrid with 
hybrid encoder correctly identified the hepatic vein in Figure 5A and 
showed a more comprehensive tumor distribution than MaskDINO 
(Swin-T) and MaskHybrid in Figure 5B.

4 Discussion

In contemporary AI development, model accuracy remains a 
primary objective across all learning tasks. Driven by advancements 
in deep learning technologies, medical AI research frequently 
incorporates deeper  and more complex network structures to 
demonstrate the capability to recognize anatomical structures 
comprehensively, which may sacrifice recognition efficiency.

4.1 Computational efficiency

Transformer-based models enhance accuracy through attention 
mechanisms that selectively focus on critical information. However, T
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FIGURE 5

Visualization comparison of MaskHybrid models with and without the hybrid encoder. Both (A) and (B) are segmentations of hepatic veins and tumors. 
MaskHybrid with the hybrid encoder correctly identified the hepatic vein in (A) and showed a more comprehensive tumor distribution in (B).

the computational complexity of the attention mechanism increases 
substantially with the number of features, rendering it 
computationally inefficient and challenging for real-time clinical 
applications. Given that practical AI applications frequently require 

timely responses, posing a challenge to balancing accuracy and 
efficiency, we utilized a hybrid design of Mamba and transformer 
architectures. This approach led to the development of an enhanced 
AI detection and segmentation framework, MaskHybrid, aimed at 
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reducing inference latency while preserving model performance 
advantages. Previous studies (Dao and Gu, 2024)–(Hatamizadeh and 
Kautz, 2024) have shown that hybrid architectures incorporating a 
limited number of Mamba layers alongside attention layers can 
achieve state-of-the-art evaluation metrics and visual representation. 
Consequently, we  facilitated the hybrid design by modifying the 
model at the backbone and encoder levels to enhance the performance 
of the anatomical recognition model.

4.2 Visualization effect

Visualizing image segmentation of intra-abdominal organs can 
be challenging due to disease symptoms. For example, large tumor 
areas can lead to poor organ recognition performance in 
segmentation models, as seen with the hepatic vein of ground truth 
in Supplementary Figure 6B. Although images may be affected by 
associated lesions, the baseline MaskDINO and our MaskHybrid 
models performed well, accurately delineating tumor regions closest 
to the ground truth. Furthermore, MaskHybrid mitigated the issue 
of overlapping segmented regions in identical anatomical structures, 
resulting in superior overall visualization outcomes.

4.3 Modeling limitation

In our retrospective dataset, ultrasound images with mild image 
conditions, like ascites, were included in the cohort and used for 

model training, so they could be well recognized. As for images with 
much intestinal gas were regarded as poor echo windows and 
excluded at the beginning of the study; therefore, cases with severe 
gas conditions were out of the scope supported by our AI recognition 
models. In spite of the fact that the annotations in the training dataset 
were provided by medical experts, they may not always be perfectly 
accurate in their annotations. Physicians might overlook certain 
organs or lesions in US images during the labeling process, such as 
the inferior vena cava in Figure 6A, the hepatic vein in Figure 6B, and 
the hepatic vein in Figure 6C. Such training data limitations can 
restrict training performance. However, our model demonstrates 
good performance by leveraging long-range dependencies of image 
features, effectively identifying anatomical structures missed in the 
ground truth, thereby successfully recognizing the hepatic vein in 
Figure 6C. Moreover, the model may exhibit errors due to a lack of 
axis information or incorrect probe orientation. This limitation in 
spatial recognition may lead to misinterpretations, such as the case 
in Supplementary Figure 8, where the liver was mistaken for the 
spleen due to incorrect left–right orientation. Additionally, this study 
is without external dataset validation.

4.4 Inference time

We evaluated model execution time to ensure timely responses 
during inference for real-time scenarios. As presented in Table 4, the 
results showed that MaskHybrid exhibited a significantly shorter 
inference time (0.120 ± 0.013 s) compared to MaskDINO (Swin-T) 

FIGURE 6

Recognition of unannotated anatomical structures from ground truth. Despite training data limitations, MaskHybrid still effectively identifies anatomical 
structures in the segmentation of the missing inferior vena cava in (A), the missing hepatic veins in (B), and the missing hepatic veins in (C).
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(0.304 ± 0.019 s) for large-sized AI models of similar size, achieving 
more than 2.5 times faster. Although MaskDINO (ResNet) achieved 
the fastest inference time (0.117 ± 0.013 s), this improvement came 
at the potential cost of segmentation accuracy, as suggested by prior 
experiments. The slight increase in inference time from MaskHybrid 
to MaskHybrid with the hybrid encoder (0.122 ± 0.014 s) indicated 
that incorporating a Mamba-based layer design within the encoder 
introduced only a marginal computational overhead without 
significantly compromising efficiency. This finding highlighted the 
effectiveness of the hybrid architecture in reducing computational 
complexity while maintaining competitive performance, making our 
proposed framework well-suited for complex anatomical landmark 
segmentation tasks in the abdominal US, where accuracy and 
efficiency are critical in clinical practice.

Overall, the main focus of this pilot study is the recognition and 
segmentation of anatomical structures and pathological features. Our 
framework provides comparable execution speed to small-sized 
segmentation models while offering superior accuracy and 
visualization compared to common large-sized models, potentially 
enabling near real-time diagnostic sonography that meets clinical 
needs. In future work, follow-up studies will evaluate whether the 
proposed method can distinguish different types of tumors, and a 
small-scale reader or clinical usability study will be conducted to 
further evaluate the effectiveness of MaskHybrid in supporting 
physician interpretation in clinical scenarios.

5 Conclusion

In conclusion, the proposed AI-based anatomical recognition 
framework, MaskHybrid, achieved superior segmentation accuracy 
and visualization effect for the timely analysis of complex 
anatomical structures in ultrasound images. Experiments conducted 
on a retrospective dataset demonstrated the effectiveness and 
robustness of simultaneously detecting and segmenting multiple 
abdominal organs and lesions, particularly in challenging 
anatomical structures. This study is anticipated to facilitate 
improved diagnostic interpretation of abdominal ultrasound in the 
near future.
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