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Elucidating simulated
equivalence responding through
dynamic visualization of
structural connectivity and
relational density

James O’Sullivan1*, Freddy Jackson Brown2 and Oliver Ray1

1Department of Computer Science, University of Bristol, Bristol, United Kingdom, 2Centre for Research

in Intellectual and Developmental Disabilities, University of Warwick, Coventry, United Kingdom

This article presents A�nity, a visual analytics tool that enhances the simulation

of the emergence of derived relations between stimuli in humans. Built on the

foundations of a reinforcement learning model called Enhanced Equivalence

Projective Simulation, A�nity provides both real-time visualizations of the agent’s

relational memory and enables the simulation of Relational Density Theory, a

novel approach to understanding relational responding through the modeling

of higher-order properties of density, volume, and mass. We demonstrate

these features in a simulation of a recent study into the quantification of

relational volume. We also use this as an opportunity to examine the e�ect

of the underlying model’s consolidation mechanism, Network Enhancement,

on the agent’s relational network. Our results highlight A�nity’s innovation as

an explainable modeling interface for relational formation and a testbed for

new experiments. We discuss the limitations of A�nity in its current state,

underline future work on the software and computational modeling of Stimulus

Equivalence and locate this contribution in the broader scope of integrations of

Contextual Behavioral Science and Artificial Intelligence.

KEYWORDS

Stimulus Equivalence, computational modeling, explainable AI, reinforcement learning,

relational density theory, relational frame theory

1 Introduction

Affinity is a novel tool for exploring the formation of trained and derived relations

of stimuli in experimental simulations. By extending a pre-existing computational model

called Enhanced Equivalence Projective Simulation (EEPS) (Mofrad et al., 2021), Affinity

provides real-time visualizations of an agent’s relational development, which, in EEPS,

constitutes a network of observations and actions obtained from the environment, in the

form of dynamic graph networks and heatmaps that capture the intricacies of relations

between stimuli. Additionally, Affinity breaks ground by incorporating Relational Density

Theory (RDT) into its analytics. RDT is a novel proposal that conceptualizes networks of

related stimuli as having volume, density, and mass (Belisle and Dixon, 2020b). Therefore,

this innovative approach allows the software to model the agent’s mental state conceptually

as a physical system, using various factors of the agent’s memory as potential measures of

density and volume. Affinity differentiates itself from EEPS with these features, generating

unique insights into RDT and bridging a gap between computational simulations in

Contextual Behavioral Science and Explainable and Understandable AI.
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Described as one of the most studied phenomena in behavioral

science, Stimulus Equivalence (SE) describes how conditional

discriminations can emerge naturally without reinforcement so

long as prior conditional discriminations have been established

(Sidman, 1971; Sidman and Tailby, 1982; Green and Saunders,

1998). These prior conditional discriminations are learned in a

unidirectional fashion, with reflexivity (A = A) first, then symmetry

(if A = B, then B = A) and finally transitivity (if A = B and B =

C, then C = A), with the formation of these three discriminations

necessary for an individual to perform equivalence responding

(Sidman and Tailby, 1982). While SE provided a robust initial

framework for exploring language generativity, it is limited to

equivalence relations and primarily a descriptive framework of

the phenomena that did not explain how individuals acquired

these discrimination skills. In later years, Steven C. Hayes and

colleagues developed Relational Frame Theory (RFT), proposing

humans learn a generalized ability to relate stimuli in flexible,

context-dependent ways to form networks of meaning beyond

simple equivalence and direct learning histories (Hayes et al., 2001).

RFT describes how humans learn to respond in generalized ways

to the relationships between stimuli in increasingly arbitrary ways

(i.e., the relations between the stimuli are based on socially agreed

conventions rather than any physical characteristics of the stimuli

themselves).

The experimental precision and scope of SE and RFT in

studying language and cognition provide a robust and flexible basis

for Artificial Intelligence (AI) researchers aiming tomodel language

and cognitive development (Tovar et al., 2023). The simulation

of these theories serves a dual purpose. For behavioral scientists,

each model is a pathway for exploring abstract and methodological

questions on the theory. For AI researchers, simulating SE

presents an opportunity for developing a clearer perspective on

how AI models can exhibit understandable, human-like abilities

in symbolic learning and perspective-taking (Johansson and

Lofthouse, 2023).

Mofrad et al. (2020, 2021) have developed two models of

SE in this area called Equivalence Projective Simulation (EPS)

and Enhanced Equivalence Projective Simulation (EEPS). These

simulacra stand out from other feed-forward and neural network

models in the field (Lew et al., 2008; Lew and Zanutto, 2011;

Tovar and Chávez, 2012; Ninness et al., 2018) thanks to their

focus on reinforcement learning, which is applied through a novel

framework called Projective Simulation (PS) (Briegel and De las

Cuevas, 2012).

In PS, an agent possesses a memory composed of a directed

network of nodes, called clips, that are generated and reconfigured

throughout the agent’s lifespan:

c ≡ (c1, c2, ..., cn) ∈ C (1)

A clip can be created following the perception of some input

within a portion of the agent’s environment, called the percept

space. These inputs or percepts can have several characteristics,

such as size, speed, or color, and the percept and its characteristics

are recorded within the agent’s clip space as a “remembered”

version of it, defined as si:

s ≡ (s1, s2, ..., sm) ∈ S1 × ...× Sm ≡ S, si = 1, ..., |Si| (2)

Alongside the percept space, an agent has access to an actuator

space containing all possible actions an agent can undertake. As

with percepts, the agent can create versions of the actuators in their

clip space:

a ≡ (a1, a2, ..., ap) ∈ A1 × ...× Ap ≡ A, aj = 1, ...,
∣

∣Aj

∣

∣ (3)

With this design, the behavior of PS agents can be likened to

mapping some input data s to an action a. Figure 1 illustrates this

design, using the description of shapes as an example. How an agent

transitions between a percept and an actuator is determined by the

conditional probability p(t)(a|s) at a time t. Under reinforcement

learning, this conditional probability can be influenced by adjusting

the edge weights or h-values of connections in the agent’s clip space

based on feedback from the environment:

h(t+1)(ci, cj) = h(t)(ci, cj)− γ (h(t)(ci, cj)− 1)+ λ (4)

In EPS and EEPS, this PS framework is applied in the

simulation of matching-to-sample (MTS) tasks, a popular

procedure of testing SE abilities via establishing several new

baseline relations and subsequently evaluating if symmetry,

transitivity, and equivalence relations form as a result of this

training (Steele and Hayes, 1991). Participants are presented with a

sample stimulus and two or more comparison stimuli, which can

include letters, images, word, audio, etc., are commonly fabricated

precisely for the experiment and are designed in most cases to be

distinct from real-world stimuli. The participant selects one of

the comparison stimuli, which, either correct or incorrect, helps

to reinforce the baseline relationships between one or more pairs

of stimuli. After reaching some criterion for correct matches (a

mastery criterion), the experiment will often continue to train

new relations and test the participant’s formation of reflexivity,

symmetry, transitivity, and equivalence relations, thus determining

the participant’s equivalence responding abilities.

The differential reinforcement of the MTS procedure integrates

cleanly with the PS and reinforcement learning framework. With

PS, agents in EPS and EEPS perceive sample and comparison

stimuli in the environment as percepts and actions. A clip cs ∈ C

is created for each stimulus observed. Connections between the

sample stimulus and comparison stimuli (ca) are initialized with a

default edge weight value h0. If the agent matches the correct pairs

of stimuli, the weight of the edge between the two stimuli in the

agent’s clip space is increased by 1. If incorrect, the edge weight

is decreased by 1. These edge weights are used to calculate the

transition probability between the sample stimulus and comparison

stimuli, with bothmodels utilizing a variant of the softmax formula:

p(t)(ci|cj) =
eβ

(t)
h
(ci ,cj)

∑

k e
β
(t)
h
(ci ,ck)

(5)

Here, the βh variable is utilized to control the speed of learning,

with smaller values of βh resulting in the agent learning new

relations slower, and also being less likely to form transitivity

relations. Mofrad et al. demonstrate each model via a series of

experiments which illustrate, with EPS, the framework’s ability to

replicate and extend classical experiments, and with EEPS, how the
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FIGURE 1

An example of an agent’s clip space in a PS framework. Here, a percept clip p1 is triggered by a shape in the agent’s environment and, under the

traditional PS design, the agent will take a random walk through the clip space and, based on the h values present, will reach one of two action clips,

each of which provide a di�erent answer.

agent and environmental parameters affect the behavior of agents

and the simulation.

A significant difference between EPS and EEPS is the

mechanisms utilized in establishing derived relations during and

after training. EPS possesses a ad-hoc policy that assumes the

formation of transitivity and equivalence relations in training

but only calculates their weights during testing, hence the model

prevents the agent’s memory from changing after completing

training. The method for calculating these derived relations varies,

with the authors testing random walks, max product, and memory

sharpness algorithms as approaches. Meanwhile, EEPS creates

transitive and equivalence relations via an approach that is akin to

an “offline replay” system—rather than calculating when required,

the agent’s entire network is updated using a modified variant of a

de-noising algorithm called Network Enhancement (NE), which is

applied once the agent has completed the training phase and before

evaluation. Designed by Wang et al. (2018), NE aims to provide

“a better representation of the underlying module membership” of

nodes in a network vs. its original structure. This involves creating

a localized network T within the same set of nodes and obtaining

K-nearest neighbors for ith node, denotedNi, in a two step process:

Pi,j ←
Wi,j

∑

k∈Ni
Wi,k

I{j∈Ni}, Ti,j ←

n
∑

k=1

Pi,kPj,k
n
∑

v=1
Pv,k

(6)

The first step calculates a transition probability matrix labeled

P using an indicator function I. The second step computes

the localized transition matrix T using this transition matrix.

This approach measures local affinity and prioritizes connections

between nodes “within three orders of distance” away. EEPS

contains two different versions of NE: the original version proposed

by Wang et al. (called Symmetric Network Enhancement or SNE),

which applied the localized network T in the diffusion process:

Wt+1 = αT ×Wt × T + (1− α)T (7)

and a modified version which replaces the localized network with a

transition probability matrix called directed network enhancement

(DNE) which the authors state “provides a better formation of

classes.” This version substitutes the localized network for the

transition probability matrix P:

Wt+1 = αP ×Wt × P + (1− α)P (8)

The PS framework provides a transparent and understandable

foundation for empirically examining linguistic relational

networks, which is typically absent in contemporary models built

on opaque AI designs that have been criticized for inaccurate

learning mechanisms and “biological implausibility” (Stork, 1989;

Castro and Siew, 2020). Additionally, the clip space of agents in

PS is akin to Tolman (1948)’s pivotal cognitive map design, which

lends the model a reliable and supported internal representation.

While either EPS or EEPS would be suitable for modification,

the motivation behind utilizing Affinity is threefold. Firstly, the

model’s inclusion of the NE algorithm presented an opportunity to

explore how the algorithm enables the formation of transitivity and

equivalence relations. Secondly, inspired by discussions proposed

in Mofrad et al. (2021), adjustments can be made to EEPS’s source

code to support the application of NE during the training stage,

each time the agent achieves the mastery criterion. This alternative

design can be contrasted against the original, and the effects of

the algorithm on the agent’s clip space can be visualized. Thirdly,

a novel analysis can be carried out on how each design affects the

higher-order properties of the agent’s memory, as proposed in RDT

(Belisle and Dixon, 2020b).

RDT merges SE and RFT with another account called

Behavioral Momentum Theory (Nevin and Shahan, 2011), a

quantitative approach to analyzing the effects of behavioral

reinforcement by applying Newtonian mechanics. RDT adopts

the same mathematical framework of Newtonian mechanics to

describe behavioral networks, treating density, volume, andmass as

abstract analogs of physical quantities. Under this design, a change

in relational responding (1R) can be modeled as a counterforce−x

against the relational mass of the network Rm:

1R =
−x

Rm
(9)
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This relational mass, which describes a network’s resistance to

change via counterconditioning, is equivalent to the product of the

network’s relational density Rp (the overall strength of relations

within the network) and its relational volume Rv (the number of

relations/stimuli within the network):

Rm = Rp× Rv (10)

Relational volume and density are inversely related properties

that allow RDT to predict non-linearity in equivalence responding.

Belisle and Dixon also posit that relational networks high in volume

and density are “highly resistant” to counterconditioning. The

former is based on findings by Spencer and Chase (1996) and

highlights that, in equivalence experiments, equivalence classes are

not equal and “instead differ across several interactive dimensions.”

Dixon et al. (2006) supports the latter, identifying relational

resistance in perceived stimuli associated with firmly held beliefs.

As part of the overall RDT research programme, Belisle and

colleagues have examined how networks with greater relational

mass have acceleration and gravity, which affects other networks

and the rate at which new stimuli are assimilated into the network

(Belisle and Dixon, 2020a; Belisle and Clayton, 2021). Research has

also been conducted to identify suitable measures for relational

volume and relational density, with Cotter and Stewart (2023)

testing nodal distance vs class size asmeasures for relational volume

inMTS experiments. Utilizing four equivalence classes with a linear

training structure (A-B-C-D-E), relational density was recorded

using the participants’ response latency (how quickly a comparison

stimulus was selected). The authors noted that the nodal distance

of two stimuli [defined as “the number of nodes that link two

stimuli not related by direct training,” where a node is “a member

of a equivalence class that has been directly trained to at least two

other stimuli” (Fields et al., 1984)] was inversely proportional to

relational density and thus is a better fit for relational volume than

the class size.

This study and its findings highlight an opportunity to explore

the simulation of RDT, identifying which metrics best capture

density and volume in EEPS. By leveraging agents’ “episodic and

compositional memory” in EEPS, we can identify and analyse key

indicators of these higher-order properties. Additionally, we can

create an interface for EEPS that streamlines its operation and

visualizes the internal clip spaces of agents, elucidating the iterative

development of an agent’s clip space at regular intervals and

providing an additional level of interpretability upon the original

design. This interpretability helps improve our ability to simulate

equivalence responding, and therefore also works toward a better

understanding of its emergence in human and animal populations.

In this paper, we present Affinity, an extension for EEPS that

provides real-time visualizations of agent behavior. Built using

the PyQT package, Affinity has a graphical interface where users

can set model parameters, run multiple iterations of EEPS side-

by-side, access and save visualizations and results, and directly

modify relations in the agent’s clip space mid-simulation. In the

following sections, we will provide a detailed description of Affinity

and its features, give a methodology for demonstrating Affinity,

its RDT features, and the effects of NE in EEPS by recreating

Cotter and Stewart (2023), outline the results of this demo, and

discuss the implications for EEPS and future work on RDT, and

future work on Affinity and computational modeling in Contextual

Behavioral Science.

2 Method

Affinity is implemented in Python, which provides an accessible

foundation for integrating it with various Python packages

and EEPS. The source code is available on GitHub under an

MIT License: https://github.com/jamosully/EEPS-Visualizations.

An overview of the user interface, changes to the original EEPS

code, visualizations of the agent’s clip space, RDT metrics, and the

procedure for the demonstration are provided in the subsections

below. Further documentation on installation and use is provided

alongside the source code on the GitHub repository.

2.1 Implementation of user interface

The interface of Affinity is built using PyQT (Riverbank

Computing, 2012), an extensive library with a flexible modular

design. Visualizations are integrated into the interface via packages

such as matplotlib and networkx. Figure 2 displays the interface of

Affinity, which consists of four components:

• Parameter configuration: on the left side of the interface, a

menu is provided for selecting and altering model parameters.

A description accompanies each parameter. Users can also

load in results from prior experiments and set their current

parameters as the default for subsequent launches. Affinity

uses a JSON file to save each parameter’s name, value,

description, and widget type to alter the value (e.g., drop-

down, toggle button, spin box, text field). This JSON file

updates the initialization script from the original EEPS design.

• Control panel: the control panel contains a slider and spin

box for selecting the step value that controls the rate at which

visualizations are produced, with steps equal to the number of

trials between visualizations. The four buttons above the slider

are used to initialize the EEPS model, update its parameters,

launch the simulation, and progress through it.

• Visualization display: to the right of the control panel is the

visualization display, comprised of tabs that display the agent’s

clip space as a graph network and heatmap, as well as the RDT

metrics and, upon completion of the simulation, the results of

the experiment.

• Relation editor: to the right of the visualization display, the

relation editor is where users can modify the strength of

edges within the agent’s clip space. By clicking on clips within

the graph network visualization, users are provided with a

breakdown of each clip’s ingoing and outgoing relations, the

weight of each relation, and whether the relation is part of

the class. Users can alter the edge weight values presented, and

upon progression, these modifications are made to the agent’s

clip space.

Affinity connects directly to the EEPSmodel, leveraging PyQT’s

multithreading, mutex, and event handling modules (Driscoll and
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FIGURE 2

The GUI of A�nity consists of four main components. (1) The Parameter Configuration menu (green) allows users to adjust the settings of the EEPS

model and load previous experimental configurations. (2) The Control Panel (red) provides interactions to control the progression of the experiment.

(3) Visualization Display (blue) contains the graph, heatmap, and RDT visualizations, as well as the results once a simulation has concluded. (4) The

Relation Editor (yellow) displays tables with the edge weight values of incoming and outgoing edges of a selected stimulus.

Driscoll, 2018; Harwani, 2018) to create a custom simulator object

each time the user launches a simulation. This design allows

Affinity to separate the front-end GUI from the EEPS process,

improving performance. Additionally, in combination with the

tabular design of the main interface, Affinity can run multiple

versions of EEPS simultaneously.

2.2 Modifications to EEPS

Developing Affinity and simulating, Cotter and Stewart (2023)

required several modifications to EEPS, the primary of which

was implementing a second version of NE that could be applied

during the training phase of a simulation. The algorithm’s design

followed the same steps as the original version, but rather than

returning a matrix of transition probabilities, this new version

returns a de-noised version of the agent’s clip space with adjusted

edge weights each time the agent reaches the mastery criterion for

the training phase. Additionally, as NE’s purpose is to introduce

derived relations in the agent’s network, baseline relations are not

included in the application of NE. Other minor modifications

include changes to the experimental loop, which initiates the

agent’s training process, which is now expanded to pause the

simulation when Affinity’s step value has been reached and create

visualizations, and the EEPS environment now keeps track of the

success rate of each class during an experiment, which is used as

one of three potential measures of relational density.

2.3 Agent network visualization

Visualization of the agent’s clip network is displayed in two

different formats. The first is a graph network visualization inspired

by both the figures present in Briegel and De las Cuevas (2012)

and the visualizations provided in the appendix of Mofrad et al.

(2020). In the latter, the agent’s clip space is represented by each

stimulus of a class aligned with the others in the same column.

This orientation is interchangeable between experimental setups

and can be scaled up upon introducing additional classes and

stimulus types. Implementation of this design was also assisted

by EEPS using the networkx library to store an agent’s memory

during simulation. Networkx provides built-in support for drawing

networks via the matplotlib library (Hagberg et al., 2008).

Figure 3 illustrates the visualization design. The rationale

behind the visuals focuses on interpretability in the interface and

on paper. The design of the graph and edges adopts heuristics

outlined by Bennett et al. (2007), and this consideration has

also been considered when visualizing the strength of each edge

weight. The color map presented at the bottom of Figure 3 utilizes

darker and thicker edges to illustrate stronger relations, with the

white edges visible against the gray background of the graph. The

opacity of edges is calculated based on the normalized weights

across the entire network, but is clamped at 0.33 to prevent

them from becoming too transparent. More substantial edges also

possess thicker edges than their weaker counterparts. Overall, the

combination of these features provides sufficient clarity regarding

the strength and structure of the agent’s clip space.
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FIGURE 3

A�nity’s graph network visualization, with its color map, “gist_heat_r.” This is a reversed version of the original color map, which visualizes stronger

relations in darker colors and weaker relations with lighter colors.

While developing Affinity, we noted that the graph network

visualizations could present issues. For example, as the number

of stimuli in the network increases during an experiment, the

number of relations can increase significantly, especially once NE

has been applied. This can result in a cluttered visualization,

potentially affecting user comprehension (Glazer, 2011). Therefore,

a heatmap visualization is also displayed using the seaborn package

(Waskom, 2021). Illustrated in Figure 4, the visualization provides a

suitable alternative to the graph network visualization and captures

the multivariate data from the agent’s clip space. By applying a

normalized color space, attention can be drawn to specific value

ranges central to the data being visualized (Ward et al., 2010).

In Affinity, the heatmap visualizes a normalized matrix of the

edge weights, with percept/sample stimuli along the x-axis, and

action/comparison stimuli along the y-axis. Figure 4 represents a

heatmap at the end of training, once NE has been applied. Hence,

transitive and equivalence relations are present.

2.4 Relational density theory metrics

Figure 5 illustrates the RDT tracking in Affinity, with three

plots for each class of stimuli, detailing the step-by-step changes

to relational density, volume and mass within the agent’s clip

space. Each metric is displayed as a continuous line plot, showing

the entire breadth of data obtained during a simulation. Two

drop-down boxes in the main display allow the user to switch

between which of the relational volume or density measures is

being visualized. Changing this version also updates the relational

mass figure. Alongside these options are a set of buttons, one

for each class, that can be clicked on to switch between the class

being visualized.

With access to an agent’s internal clip space, we can explore

more measures for relational density and volume beyond those

present in Cotter and Stewart (2023). These are the measures of

relational volume available in Affinity.

• Nodal distance: in Affinity, nodal distance comes in two forms.

The first is based on Cotter and Stewart (2023)’s definition

of nodal distance as the number of nodes [where a node is a

stimulus with at least two trained relations (Fields et al., 1984)]

in the agent’s memory that link two stimuli that have not been

directly trained. This is labeled as empirical nodal distance.

The other form of nodal distance is true nodal distance,

which records nodal distance as the shortest path between

any stimuli in a class (regardless of the number of trained

relations), including any transitivity/equivalence relations

formed throughout training. The transparent memory of

agents in EEPS affords this form of nodal distance, which is

more susceptible to fluctuations from differences in training

structure and NE. For both measures, the total of each class

is recorded.
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FIGURE 4

The heatmap visualization, with percept/sample stimuli along the x-axis, and action/comparison stimuli along the y-axis. This heatmap was obtained

at the end of an experiment, where NE created several transitive and equivalence relations.

• Class size: this is the other measure of relational volume

presented in Cotter and Stewart (2023)’s study and is

the number of stimuli in each class. While Belisle and

Dixon (2020b) define relational volume as the number

of relations in a network, class size and empirical nodal

distance are highlighted in Belisle and Dixon (2020a) as

estimates of relational volume, especially in experiments

where specific relations are not trained or tested. Therefore,

the implementation of both in Affinity supports the

comprehensive replication of studies on RDT in MTS tasks.

• Number of relations: this measure is suggested in Belisle and

Dixon (2020a) as the relational volume of a network and can

be directly correlated to class size. The significant difference

between the two is that the number of relations will be directly

affected by including the NE algorithm, increasing the number

of relations with the formation of reflexivity, transitivity and

equivalence relations.

We have also implemented the following measures of relational

density in Affinity:

• Mean transition probability between intra-class stimuli: using

the same softmax distribution function that an agent in EEPS

uses to select comparison stimuli, this measure takes an

average over the distribution of all the edges between stimuli

within a class, including baseline, symmetry, and transitivity

relations. While, in some cases, this measure can roughly

equate to 1/number of stimuli, the measure is particularly

useful when interacting with Affinity’s relation editor and with

various values of βh, which affects an agent’s rate of learning.

• Class accuracy: this measure is the correct matches between

sample and comparison stimuli for stimuli in a class,

divided by the overall number of trials (baseline, symmetry,

transitivity) within that class. The accuracy of matching in

MTS procedures has been used in prior studies as a measure

of performance (Saunders et al., 2005), and it is testable

in both EEPS agents and human participants. Additionally,

as with class size and nodal distance for relational volume,

class accuracy is readily identifiable measure in real-world

experiments, and therefore can potentially serve as a estimate

for relational density.

• Mean h-value/edge weight: using the weight of edges within

the agent’s clip space, this measure can capture the strength

of all relations between stimuli within a class. Alongside the

mean transition probability, this metric leverages the structure

of the agent’s clip space, with the main difference being that h-

values in the agent’s clip space are unbounded and, therefore,

the mean h-value can be skewed by outlier relations that have

received significantly more training than their counterparts.

However, unlike the mean softmax probability, the mean edge

weight is not affected by βh, and rather parameters such as K,

γ , and α.
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FIGURE 5

The RDT metric visualization provided by A�nity. From (top to bottom): relational volume, density, and mass. The x-axis represents the number of

trials/steps in the simulation, and the dashed lines represent the transitions between training phases. In the example above, the relational volume is

the true nodal distance, and the relational density is the mean transition probability. The notable spike in the relational density measure results from

the selected class only having a single stimulus for the first few trials of the simulation.

Alongside the visualizations created during the runtime of a

simulation, Affinity also provides additional visualizations at the

end of a simulation. Alongside the results in the original version

of EEPS, Affinity provides line graphs showing the change in each

measure of relational density and volume across all classes and line

graphs for each type of relational mass. Another line graph depicts

all relational mass types together, and a boxplot displays Pearson’s

correlation coefficients for all relational mass combinations. These

coefficients help analyse which measures best capture the inverse

relationship between relational volume and density.

2.5 Experiment design

To demonstrate Affinity and its features, we aimed to replicate a

modern study that utilized the MTS procedure and involved RDT.

Highlighted in Section 1, Cotter and Stewart (2023) has investigated

the role of volume in RDT using MTS-based experiments, finding

that nodal distance shares a stronger inverse relationship with

relational density than class size. Therefore, this study is an

ideal candidate for demonstrating Affinity’s effectiveness as a tool

for experimental analysis. Additionally, while the author’s use of

response latency as relational density could not be extended to

EEPS, exploring the potential alternatives outlined in Section 2.4

is a unique opportunity and has the potential to inspire further

real-world studies as well.

The design of the MTS experiment in Cotter and Stewart

(2023) is as follows. Four classes were utilized, with classes 1 and

2 containing five members and classes 3 and 4 containing three.

Four stimuli (D3, D4, E3, E4) were utilized as comparison stimuli

but not directly trained. Phase 1 trained A–B relations and Phase

2 trained B–C relations for all four classes, while Phase 3 trained

C–D and Phase 4 trained D–E relations for classes 1 and 2. Phase 5

conducted mixed training of all relations across all four classes and

tested entailment relations (A–C, C–A, C–B, B–A for all classes,

D–C, E–D, A–E, E–A for classes 1 and 2). Phase 6 performed

counterconditioning on A–B relations in all four classes, with

new relations A1–B2, A2–B3, A3–B4, and A4–B1. Prior correct

responses now resulted in negative feedback. The final phase, Phase

7, retested all trained and tested relations in Phase 5. The authors

used this design to explore several predictions, including two on

relational density, and how the class size/nodal distance affected

the strength of relations. Firstly, relations within large classes were

predicted to be less dense. Contrary to the original prediction that

larger classes would exhibit lower density, Cotter and Stewart found

that smaller classes (three members) were less dense in more than
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half the cases. Secondly, relations with a larger nodal distance

between their relata would be less dense. The results showed that

relations with a nodal distance of 3 were less dense than those with

a nodal distance of 1 in 76% of cases.

To demonstrate Affinity, we utilized a recreation of the first

five phases of this study as a platform to explore the software’s new

features and the initial insights they provide. This demowill explore

how the simulation results align with the first two predictions and

their respective findings outlined in Cotter and Stewart (2023).

We can also take a step further by tracking Pearson Correlation

Coefficients for each version of relational mass created as a product

of the seven measures of relational density and mass available in

Affinity. These findings will allow us to examine which factors

best capture the inverse relationship posited by Belisle and Dixon

(2020b). We will also recreate the study under two conditions in

the two environments. The first condition is based on the original

design of EEPS, with NE being carried out on the agent’s clip space

at the end of training. The second condition will apply NE once

the agent reaches the mastery criterion for each training phase.

With these conditions, we will provide a clearer understanding of

the effect of NE on the agent’s network, the predictions made by

Cotter and Stewart, and the RDT tracking of Affinity. Overall, this

simulation will serve as a proof-of-concept of Affinity: outlining

one of many potential use cases and highlighting the novel features

that set it apart from EEPS.

With these objectives outlined, these are the parameters of our

demonstration: γ = 0.001, K = 1, βh = 0.1, βt = 4, and

α = 0.7. These are according to the default parameters outlined

in experiment 1 of Mofrad et al. (2021). The mean transition

probability measure of relational density will also be calculated

using βh. For each version of the simulation run, we will utilize

15 agents, the number of participants that completed phase 7 in

Cotter and Stewart’s study, increasing the accuracy of our results.

Each agent must achieve a 0.9 mastery before progressing to

the next training stage. We will utilize DNE instead of SNE for

all applications of NE, based on Mofrad et al.’s testimony that

SNE does not entirely control the formation of symmetry and

transitivity relations.

3 Results

Table 1 displays the mean performance of the 15 agents in both

conditions, indicating little difference in time andmastery. Figure 6

displays the performance of each relational density measure under

both NE conditions as a mean of 15 agents completing the

experiment. The Figures 6A–C detail the behavior of each measure

in a simulation where NE is only carried out at the end of the

study. With both the mean transition probability and mean edge

weight, classes 1 and 2 have a lower relational density during

the latter stages of the simulation as D1, D2, E1, and E2 are

introduced. This result loosely supports the two predictions in

Cotter and Stewart regarding relational density, but doesn’t align

with the findings. The Figures 6D–F show the same measures for a

simulation where NE is applied during training. As with the prior

condition, the results for mean transition probability and mean

edge weight are aligned with Cotter and Stewart’s predictions but

not their findings. This condition has also had a noticeable effect

on the mean transition probability, providing a significantly lower

value of relational density in the second half of the experiment

than when compared with their no-NE counterparts, likely as a

result of NE adding additional edges to the agent’s clip space with

weak h-values/edge weights. This effect can also be observed in the

mean edge weight decreasing toward the end of the simulation. The

class accuracy metric follows a similar trend in both conditions,

stabilizing to ∼0.7 during the simulation, and does not follow a

similar, decreasing trend as does its counterparts.

Figure 7 shows the behavior of relational volume measures

without NE during training, while Figure 8 illustrates the same

with NE applied during training. Figures 7A, B, 8A, B display

the two forms of nodal distance in Affinity: true nodal distance

and empirical nodal distance. As outlined in Section 2.4, the

true nodal distance utilizes transitive and equivalence relations

in its calculation. It does not conform to the exact definition

of a node as the empirical nodal distance, hence why the true

nodal distance is greater during the second half of the experiment.

As with relational density, NE has affected measures in both

conditions. When NE is carried out at the end of training, true

nodal distance decreases as the number of direct connections

between relations increases. Meanwhile, the number of relations

increases with the alterations to the agent’s clip space. As for the

conditions where NE is carried out during the training stage, the

formation of transitive and equivalence relations at each phase has

curbed the true nodal distance measure, which decreases to around

zero after the 800th step. The number of relations continually

increases throughout the simulation. In both conditions, the class

size measure remains stable.

Figure 9 provides a clearer picture of the effect of NE during

training. Each visualization of the agent’s network is taken at

the 500th step of the simulation. In the left network, where NE

hasn’t been applied at this point, the only relations the agent

has generated are the baseline, symmetry, and incorrect relations.

Meanwhile, the visualization on the right indicates the effect of

NE during training. The agent has generated numerous additional

relations, including reflexive and inter-class relations between

stimuli introduced within the same phase as comparison stimuli.

This alteration of the agent’s clip space explains several of the

differences between conditions provided in Figures 6–8.

The final results we have obtained as part of this demonstration

are the correlation coefficients for each version of relational mass.

As shown in Figure 10, for the simulations where NE is only carried

out at the end of the training, the mean transition probability

combined with several of the measures of relational volume (mean

coefficients with: true nodal distance = −0.671, empirical nodal

distance = −0.915, class size = −0.937, number of relations =

−0.803), best captures the inversely proportional relationship that

Belisle and Dixon (2020b) proposed. Contrary to Cotter and

Stewart (2023), class size was a better measure of relational volume

than true and empirical nodal distance in this condition. This is

likely a result of changes in the training order across the fifteen

simulations (i.e., which stimuli are presented first at each phase

of the experiment), and the application of NE at the end of the

experiment. Additionally, the empirical nodal distance is a better

fit for relational volume than the true nodal distance, which, again,
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TABLE 1 Table containing the results of each training phase over the 15 simulations.

Training Number of
trials

Average time Average mastery

No NE during
training

NE during
training

No NE during
training

NE during
training

Phase 1: AB (A1B1, A2B2, A3B3, A4B4) 48 5.466 5.267 0.963 0.942

Phase 2: BC (B1C1, B2C2, B3C3, B4C4) 48 5.333 5.333 0.947 0.949

Phase 3: CD (C1D1, C2D2) 24 4.666 5.400 0.950 0.967

Phase 4: DE (D1E1, D2E2) 24 5.000 4.933 0.944 0.958

Phase 5: Mixed (AB, BC, CD, DE) 72 1.400 1.000 0.943 0.996

Time here represents the number of times that particular phases had to be repeated to achieve the 0.9 mastery criterion. Under both conditions, agents completed each phase of training in a

comparable number of repeats.

FIGURE 6

The average behavior of relational density metrics during the Cotter and Stewart study simulations under both NE conditions. (A, B, C) Shows

measures during a simulation with NE carried out at the end of training. (D, E, F) Illustrate the same under a simulation where NE has been applied

during training (lines have been o�set for visibility). The dashed gray lines indicate transitions between the training phases. (A) Mean transition

probability. (B) Mean edge weight. (C) Class accuracy. (D) Mean transition probability. (E) Mean edge weight. (F) Class accuracy.

is affected by the training structure and NE at the end of training.

The NE process, as highlighted in Figure 9, strengthens and creates

new intra-class relations between stimuli with large empirical nodal

distances (e.g., A1–D1, B1–E1), which in turn greatly reduces the

true nodal distance of an entire class.

Meanwhile, when NE was included during the training process,

the inter-quartile range of most measures has increased, indicating

a greater variance in performance of each version of relational

mass. This is likely a result of NE’s effects on specific measures

of relational volume and density, such as the true nodal distance,

number of relations, and mean edge weight/h-value. The measures

that utilize the mean transition probability as density remain

as the best for capturing the inverse proportional relationship

between relational volume and density (true nodal distance =

−0.435, empirical nodal distance = −0.870, class size = −0.938,

number of relations = −0.879). As with the other condition,
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FIGURE 7

Behavior of relational volume measures during a simulation of Cotter and Stewart where no NE was carried out during the training process, taken as

an average over 15 simulations (lines have been o�set for visibility). The dashed gray lines indicate transitions between the training phases. (A) True

nodal distance. (B) Empirical nodal distance. (C) Class size. (D) Number of relations.

when calculated with mean transition probability/softmax, class

size has performed better than empirical nodal distance, and

empirical nodal distance has performed better than true nodal

distance. Also, there is an increase in the coefficient for mean

softmax and true nodal distance, obviously as a result of NE

introducing transitive and equivalence relations at earlier phases

of training.

4 Discussion

We have presented Affinity, a novel visualization tool that

illustrates agent behavior with visualizations and RDT-driven

models of their internal behavior. We have provided an overview

of the software, outlining its features and visualizations, followed

by a demonstration with the recreation of a modern MTS

study on RDT (Cotter and Stewart, 2023), examining potential

measures of relational density and volume and the effect of

EEPS’s NE algorithm on the agent’s development. These sections

have helped to highlight Affinity’s capability to provide novel

and testable insights on RDT and computational modeling

of SE.

While informal, our results show what insights can be obtained

from Affinity, and the simulation of Cotter and Stewart (2023) has

indicated the need for further research on RDT. The correlation

coefficients presented in Figures 10, 11 indicate that, in EEPS, class

size is a better measure of relational volume vs. either the true nodal

distance or the empirical nodal distance of the agent’s clip space.
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FIGURE 8

Behavior of relational volume measures during a simulation of Cotter and Stewart where NE was carried out during the training process, taken as an

average over 15 simulations (lines have been o�set for visibility). The dashed gray lines indicate transitions between the training phases. (A) True

nodal distance. (B) Empirical nodal distance. (C) Class size. (D) Number of relations.

This is likely a result of differences in the training order across

the fifteen simulations and the effects of NE altering the structural

connectivity, either during training or at the end of the simulation.

At the same time, Affinity, built upon EEPS’s transparent design

of the agent’s memory, can obtain a more accurate measure of the

relations between stimuli during the MTS procedure. With this

access, Affinity discloses one possible version of the behavior of the

fluctuating relational network that is constructed as part of theMTS

procedure and illustrates the need for further research on RDT.

Meanwhile, it appears that the mean transition probability of each

class is the most suitable metric for relational density and a reliable

alternative to response accuracy. In both conditions, the measure

shared the strongest inverse correlation with the four measures of

relational volume.

The ability to monitor two versions of nodal distance, true and

empirical, has provided Affinity with an additional perspective on

the behavior of individuals under the MTS protocol. While the

empirical nodal distance captures a predictable and measurable

metric solely from the training structure, the true nodal distance

only exists thanks to the transparent design of agents in EEPS.

Symmetry and transitivity probes would need to be carried out

alongside baseline training for the true nodal distance to be

measured in humans. An integrated training-and-testing structure

has been used in classical studies such as Pilgrim andGalizio (1995).
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FIGURE 9

Network visualizations of the 500th step of the Cotter and Stewart simulation, with the no NE condition on the left, and the NE during training

condition on the right. NE has created several additional relations, including inter-class relations between stimuli introduced in the same batch of

sample stimuli and comparison.

FIGURE 10

Pearson correlation coe�cients for a simulation of Cotter and Stewart’s study with NE only performed at the end of the experiment.
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FIGURE 11

Pearson correlation coe�cients for a simulation of Cotter and Stewart’s study with NE performed during the training process.

The behavior of the true nodal distance measure in Affinity

highlights an unusual feature of the metric (at least in its

implementation in Affinity). As demonstrated in Figure 12, during

simulations, when new stimuli are introduced as comparison

stimuli and are not directly trained to their corresponding class

upon their first sighting, the actual nodal distance between the

comparison stimuli and its sample stimuli is, for a few steps,

substantial as a result of the shortest distance between the stimuli

and its class is that of one or more inter-class, incorrect relations.

This phenomenon coincides with the spike/decline in other

relational metrics thanks to NE, also shown in Figure 12, and noted

in Section 3. While the nodal distance spikes are insignificant in the

broader course of an experiment, they highlight an interesting effect

caused by the training structure.

These early findings also display the effects of NE on the

agent’s clip space and the RDT metrics, both at the end of training

and throughout it. While the algorithm is suitable for its original

intended purpose (i.e., generating transitivity and equivalence

relations at the end of the training phase) within the purpose

of EEPS (simulating the behavior of humans in MTS tasks),

we wish to explore beyond this field in future projects at the

potential of AI models which can perform equivalence responding

without directly programming the ability to form symmetry or

transitivity relations into thier architecture. There has been recent

work in this area, with Carrillo and Betancort (2024) evaluating

the equivalence responding ability of large-language models using

MTS procedures, finding that these models are display equivalence

responding behavior under a linear training structure, but cannot

derive relations under non-linear designs. NE is a step in this

direction, but there is an opportunity for an alternative approach

that either alleviates these effects or incorporates aspects of RDT

in its consolidation process, could be applied in its place. One

potential approach could be to employ network embedding, where

networks are visualized as vectorial data in a low-dimensional

space, thus providing a clearer picture of their structure and

supporting analysis methods such as clustering and similarity

search (Nelson et al., 2019). For EEPS and Affinity, network

embedding would allow for the representation of the higher-order

properties in a two-dimensional space, as per Belisle and Dixon

(2020b), or by incorporating the geometric designs presented in

Belisle and Clayton (2021), where classes possess perimeters and

areas based on their coherence.

However, the results are not without their limitations. These

have been considered in framing the results as a proof-of-concept

rather than a complete recreation of, and comparison with Cotter

and Stewart (2023). Firstly, Cotter and Stewart utilized response

latency in their study (the speed at which a user matched a sample

stimulus to a comparison stimulus when presented). This was a
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FIGURE 12

Examples of the spiking of measures of relational volume. (A) Shows a spike in the true nodal distance caused by introducing a stimulus as a

comparison stimulus before direct training. (B) Illustrates a spike in the number of relations, following NE at the end of the training phase.

reliable choice, given that prior studies had linked decreases in

the speed of a participant’s response to increases in the size of

a class/nodal distance (Arntzen and Holth, 2000; Spencer and

Chase, 1996). EEPS and other computational models are designed

to simulate laboratory experiments in a fraction of the time it takes

a human participant to do the same, and therefore, cannot provide

a tangible response latency similar to the one measured by Cotter

and Stewart. However, the initial insights provided by Affinity posit

the mean transition probability as a reliable alternative.

The simulation of Cotter and Stewart (2023) has been limited

to its first five phases, excluding the counterconditioning in

phase 6. This is due to Affinity’s lack of the necessary tools for

measuring the resistance of individual relations. Based on Belisle

and Dixon (2020b)’s definitions, relational mass should describe

the resistance of a network. Affinity, in its current form, is only

capable of calculating relational mass at a class level, and we are

yet to implement tracking of the resistance of individual relations.

Therefore, we decided to limit our demonstration to these first

five phases, which would provide a picture of what insights can be

obtained in Affinity and allow for an informal analysis of the first

two predictions of Cotter and Stewart’s study and the correlations

between density and volume. Identifying the individual mass of

relations in the agent’s network would be a worthwhile addition

to Affinity.

Another limitation of the demonstration is the inclusion of a

mastery criterion. Each agent in the simulation was required to

achieve a 0.9 (or 90%)mastery of the relations trained in each phase

before progressing to the next stage. This is contrary to the original

study, where participants were only required to achieve 14 out of 16

correct responses in the pre-training phase, and were only selected

for analysis based on accuracy at various stages of the study. The

mastery criterion in our version has resulted in the agents repeating
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FIGURE 13

An example of the e�ects of two di�erent training structures on the agent’s clip space. Both graphs display Spencer and Chase (1996)’s study midway

through the simulation, with the left utilizing a one-to-many setup (a single sample stimulus is trained to several comparison stimuli) vs. the right

using a many-to-one setup (several sample stimuli are trained to a single comparison stimulus).

each phase multiple times in our simulation (vs. the single phases

for each participant), but this was the only realistic way to regulate

the agents’ performance over the five phases. Additionally, in their

discussion, Cotter and Stewart note that a limitation of their study

was that the density before phase 6 was not controlled, and could

be done via a mastery criterion, which would improve its validity.

Despite the limitations, this paper has showcased several of

Affinity’s innovative features. The multi-threaded design, which

allows users to run several versions of EEPS alongside each

other, has been convenient in testing Affinity. This feature,

combined with the graph network visualization, has been intuitive

in understanding the effects of NE on the agent’s clip space

despite its tendency to become cluttered throughout the simulation.

This use case is exemplified in Figure 13, illustrating how the

graph visualization in Affinity can elucidate the effect of different

training structures. The two graphs display one-to-many and

many-to-one structures in the Spencer and Chase (1996) study,

highlighting another practical application of Affinity. On the

whole, the demonstrations provided in this report have highlighted

the value of interpretable models of SE in developing a greater

understanding of the underlying mechanisms and methodological

effects of this paradigm.

Also, while these features have played a significant part in

development and analysis, a few Affinity features have not been

demonstrated or utilized heavily in this paper. Most notable is

the relation editor interface, through which a user can modify

the structure of an agent’s clip space during an experiment. A

novel concept in PS research, the ability to reduce or increase the

strength of relations, could be utilized to appraise how neurological

conditions affect a participant’s performance. Studies such as

Cowley et al. (1992) and Paranhos et al. (2018) have identified

differences in performance onMTS procedures for individuals with

brain injuries and strokes. Affinity could be a preliminary tool

for ideating how relational networks are potentially altered under

these circumstances.

As per Tovar et al. (2023)’s and Mofrad et al. (2020)’s

suggestions, a significant step forward would be to introduce

a generalization mechanism into EPS/EEPS, which could allow

for modeling of compound stimuli in the agent’s environment

and, more significantly, the simulation of RFT. The generalization

mechanism in PS would take the form of a wildcard clip in the

agent’s clip space that activates when two or more stimuli share a

standard set of features (Melnikov et al., 2017). In the case of RFT,

this wildcard clip would help identify the type of relation between

the two stimuli, e.g., similarity or opposition. The development

and testing of this proposed design would be more accessible via

the visualizations provided in Affinity, which can clarify how the

agent’s clip space should be modified to introduce a broader range

of relational responding.

Beyond implementing RFT, Affinity and EEPS would also

benefit from several quality-of-life improvements. For example, the

implementation interactive filtering tools to manage visual clutter–

such, such as hiding edges below a threshold h-value in the graph

network visualization and RDT measures, or generating dynamic

subgraph views on specific stimuli, would enhance the analytics

functions of the software. Other additions include keyboard

shortcuts, heatmap interaction, result tables, and an interface for

creating new experiments. A more significant overhaul would

involve modifications to the model’s design. For example, including

multiple training and testing phases would provide a helpful

addition in the simulation of the subset of classical and modern

studies that utilize this structure. Alongside Cotter and Stewart

(2023), another example is Pilgrim and Galizio (1995), which

explored the reversal of baseline relations in adults. The study’s

six phases included various probes of transitivity and equivalence

relations alongside training sections. Pilgrim and Galizio’s study
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is pivotal as one of SE’s first explorations of counterconditioning.

It would be valuable to EEPS’s accompanying classical study

simulations collection. With Affinity, additional testing phases

could be incorporated in the interface as additional tabs alongside

the visualizations.

As discussed in Section 1, augmenting a pre-existing model

of Stimulus Equivalence with RDT was an attractive prospect

for several reasons. However, an alternative would be to design

a simulation of RDT from the ground up. Edwards (2024) has

outlined a novel application of RDT as part of their proposed

neurosymbolic model of value alignment for large languagemodels.

By integrating RDT with the clustering method “Density-Based

Spatial Clustering of Applications with Noise” (DBSCAN), a large

language model, with its own relational network of stimuli, can

identify which stimuli should be clustered together. This design

is incorporated into a wider system by Edwards, but on its own,

integrating RDT and DBSCAN clustering would provide a unique

foundation for simulating RDT, including several of the emergent

properties of high-mass networks, such as acceleration and gravity.

Additionally, this approach could be applied in the context of word

embeddings (Jang et al., 2016), where RDT can capture and provide

insights with the relational properties of a corpus of text.

By working toward and integrating explainability into

simulations of SE and RFT, an opportunity is presented for

creating an observation-driven computational model that provides

predictions of a human participant’s behavior in real-time

throughout an experiment. The factored design of Affinity would

easily support an extension to map the agent’s decision-making

process to inputs from a human participant. This hybrid design

would be akin to a digital twin, an approach for simulating

real-world systems by creating a digital counterpart. Clinical and

psychiatric applications have utilized digital twins for supporting

clinical trials using participant information and data from follow-

up visits (Das et al., 2023), and as an approach for early diagnosis

and risk assessment (Alimour and Alrabeei, 2024). These use cases

highlight the potential of a digital twin system for MTS-based

experiments and potentially process-based therapy.

Beyond computational simulations, Contextual Behavioral

Science has the potential to inform and inspire future work in

explainable AI. There is a growing body of literature investigating

integrations between the two fields. For example, Edwards et al.

(2022) have created a framework using RFT to abstract background

knowledge in category learning models, where the theory is

integrated with connectionist models which support the system

in achieving arbitrary and non-arbitrary relational responding.

Additionally, there have been several contributions exploring

SE and RFT in the context of Artificial General Intelligence

(Johansson, 2019; Johansson and Lofthouse, 2023), including

implementations of relational and equivalence responding in

logical systems geared toward these all-encompassing models.

From these perspectives, Affinity represents a tangible contribution

that, while situated in the modeling paradigms of SE, acts as a step

forward for synthesizing the two fields.
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