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Leukemia is a deadly disease, and the patient’s recovery rate is very dependent 
on early diagnosis. However, its diagnosis under the microscope is tedious and 
time-consuming. The advancement of deep convolutional neural networks 
(CNNs) in image classification has enabled new techniques in automated disease 
detection systems. These systems serve as valuable support and secondary opinion 
resources for laboratory technicians and hematologists when diagnosing leukemia 
through microscopic examination. In this study, we deployed a pre-trained CNN 
model (MobileNet) that has a small size and low complexity, making it suitable 
for mobile applications and embedded systems. We used the L1 regularization 
method and a novel dataset balancing approach, which incorporates HSV color 
transformation, saturation elimination, Gaussian noise addition, and several 
established augmentation techniques, to prevent model overfitting. The proposed 
model attained an accuracy of 95.33% and an F1 score of 0.95 when evaluated 
on the held-out test set extracted from the C_NMC_2019 public dataset. We also 
evaluated the proposed model by adding zero-mean Gaussian noise to the test 
images. The experimental results indicate that the proposed model is both efficient 
and robust, even when subjected to additional Gaussian noise. The comparison 
of the proposed MobileNet_M model’s results with those of ALNet and various 
other existing models on the same dataset underscores its superior efficacy. The 
code is available for reproducing the experimental results at https://tamaslevente.
github.io/ALLM/.
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1 Introduction

Leukemia is a serious type of blood cancer marked by the uncontrolled and excessive 
generation of abnormal and immature white blood cells within the bone marrow. According 
to the Lymphoma and Leukemia Society (LLS, n.d.), between 2013 and 2017, leukemia was 
the sixth leading cause of cancer deaths in males and the seventh in females in the United States. 
In 2023, an estimated 13.900 males and 9.810 females may die from leukemia in the US (Blood 
Cancer CH, 2023). The 2020 report from the World Health Organization estimated 1,342 
deaths in Romania alone (Leukemia in Romania, 2020). These statistics show the deadly nature 
of leukemia. Nevertheless, early diagnosis of this disease is helpful for the recovery of patients, 
particularly children (Bain et al., 2017). Consequently, early and accurate identification of 
leukemia is crucial to lowering its death rates.

Usually carried out by laboratory technicians, blood specimen analysis under a microscope 
is a vital and reasonably priced method among several leukemia diagnosis techniques (Das 
et al., 2021; Makem and Tiedeu, 2020; Paiva et al., 2018; Walker et al., 1994; Dorfman et al., 
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2018; Alexander and Mullighan, 2021). However, this procedure 
requires technicians to perform visual analysis and leucocyte 
classification, a task that is both labor-intensive and time-consuming. 
Researchers have developed several computational image analysis 
techniques to overcome these challenges and diagnose leukemia using 
blood smear pictures. Traditional computerised image analysis 
methods for leukemia diagnosis usually consist of preprocessing, 
segmentation, feature extraction, and classification (Mohapatra and 
Patra, 2010; Putzu et al., 2014; Rawat et al., 2015; Singhal and Singh, 
2014; Rawat et al., 2017; El Houby, 2018; Mohammed and Abdulla, 
2021; Bodzas et al., 2020; Mishra et al., 2019a; Mishra et al., 2019b; 
Abdulla, 2020; Bhattacharjee and Saini, 2016). Consequently, the 
efficacy of each phase is contingent upon the efficacy of the preceding 
stage. Deep learning architectures have proven to be more efficient 
and accurate for disease detection than traditional methods. They 
learn and extract complex features directly from the images without a 
previous segmentation step. A solitary deep learning model can 
execute both feature extraction and classification tasks in various 
domains (Eralp and Sefer, 2024). One shortcoming of such models is, 
however, that they require a large amount of data to yield good 
performance. We  can address the lack of extensive datasets by 
implementing a transfer learning-based methodology (Das and 
Meher, 2021).

In this study, we applied we made adaptations to the MobileNet 
architecture (Howard et al., 2017) to identify the presence of acute 
lymphoblastic leukemia (ALL) in a collection of microscopic blood 
smear pictures. The Global Average Pooling, dropout layer, batch 
normalization layer, and dense layer are used to modify the MobileNet 
architecture to enhance its ability to differentiate between normal and 
leukemia blood cells. We applied L1 regularization to improve the 
model’s generalization. Also, a new dataset augmentation process was 
used, involving Gaussian noise and existing augmentation techniques. 
The following is a list of this study’s principal contributions:

 1 The HSV color space is used, with the saturation removed and 
additional Gaussian noise;

 2 The base MobileNet architecture performs compression to 
detect ALL;

 3 Transfer of classification knowledge learnt on the ImageNet 
dataset to the acute lymphoblastic leukemia classification task;

 4 Development of an efficient and robust model to small 
Gaussian noise;

 5 Evaluation of the classification efficacy of the suggested acute 
lymphoblastic leukemia detection against 
contemporary methodologies.

We structure the remainder of the work into five sections. Section 
2 presents related works, followed by the proposed technique in 
Section 3. Section 4 describes experimental validation and discussion. 
Section 5.2 delineates conclusions and future work.

2 Related work

2.1 Traditional methods

Over the years, researchers have developed traditional methods 
for diagnosing lymphoblastic leukemia. The authors focused mainly 

on the classification of normal or healthy leukocytes from abnormal 
or lymphoblast leukocytes. Mohapatra and Patra (2010) suggested a 
framework for the identification of acute leukemia. This approach 
begins by applying a selective filter to the blood smear picture and 
transform the resultant image into the L*a*b color space (Putzu et al., 
2014). The K-means algorithm is subsequently employed on the 
transformed image to isolate the white blood cell nucleus from the 
other elements. Each nucleus of a white blood cell was segmented into 
a sub-image. Subsequently, features related to forms and textures was 
retrieved from the nucleus. The SVM classifier categorizes nucleus 
pictures as healthy or leukemic based on the retrieved attributes. The 
algorithm was evaluated by considering 108 blood smear images 
collected at Ispat General Hospital in Rourkela, Odisha, and at the 
University of Virginia. The authors reported a lymphoblast detection 
accuracy of 95%.

Putzu et  al. (2014) also created a method for identifying and 
categorizing white blood cells in pictures of blood smears. The original 
RGB image is transformed into grayscale and CMYK color spaces, 
followed by the application of enhancement techniques, including 
histogram equalization and linear contrast stretching, to increase the 
image quality. The Zack algorithm is employed for thresholding to 
segment white blood cells. The morphological opening operator was 
employed to eliminate the residual undesirable objects. Ultimately, 30 
morphological variables, four chromatic features, and 16 textural 
features were retrieved from the nucleus and cytoplasm regions to 
categorize cells as normal or aberrant via an SVM classifier and cross-
validation. Putzu et al. (2014) suggested an approach that achieved an 
accuracy of 93% for 33 images from the ALL-IDB1 database (Mondal 
et al., 2021) acquired under the same conditions. The main limitation 
of this approach is that images acquired with different cameras and 
different lighting conditions are not considered.

Rawat et  al. (2015) suggested an approach to differentiate 
lymphoblastic cells from healthy lymphocytes. Their method involved 
initially segmenting the leukocytes from other blood cells, followed by 
the separation of the isolated leukocytes into their nucleus and 
cytoplasm components. Subsequently, distinct texture characteristics 
from the grayscale co-occurrence matrix and shape features are 
retrieved from the nucleus and cytoplasm areas, respectively. The 
collected features were identified using a binary Support Vector 
Machine (SVM) to identify the presence of lymphoblast cells 
(leukemic cells). The method of Rawat et al. (2015) was tested by 
considering 196 images of the ALL-IDB2 database and a classification 
accuracy of 89.8% was obtained. That method is therefore limited in 
terms of detection accuracy.

Singhal and Singh (2014) conducted a comparative investigation 
of the performance of two types of texture feature descriptors. In their 
study, the original RGB image is initially transformed into the HSI 
color space, followed by the extraction of the white blood cell nucleus 
with the use of a manual threshold on the S component. Two 
categories of texture feature descriptors, specifically the local binary 
pattern (LBP) and the grayscale co-occurrence matrix are used for 
feature extraction, followed by the polynomial kernel SVM classifier 
for classification. The ALL-IDB2 images database was considered to 
evaluate the performance of this algorithm. The classification accuracy 
of the features that were extracted using the LBP was 93.84%. A 
classification accuracy of 87.30% was attained utilizing the GLCM 
features. They evaluated the performance of this algorithm using the 
ALL-IDB2 images database. Although giving an accuracy of detection 
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in the order of 93%, this classification system is unsuitable for 
computer-aided diagnosis of leukemia due to the manual 
determination of the threshold for leukocyte nucleus extraction.

Rawat et  al. (2017) proposed a hybrid hierarchical diagnostic 
support system that analyzes the blood smear image for rapid 
detection of acute lymphoblastic leukemia. This system not only 
distinguishes between healthy leukocyte cells and leukemia cells, but 
also categorizes ALL cells into subtypes. The leukocyte nucleus and 
cytoplasmic components are extracted from the original smear image 
in this system. The properties of texture, color, and form of the 
segmented nucleus and cytoplasm are retrieved for the classification 
of lymphoblasts. A PCA-based dimensionality reduction module is 
employed to decrease the size of the retrieved features. The classifiers 
SVM, KNN, PNN, ANFIS, and SSVM are employed in a hierarchical 
sequence for classification purposes. The computer aided diagnosis 
system of Rawat et al. (2017) evaluated with 260 images of ALL-IDB 
was able to classify cancerous leukocytes from healthy leukocytes 
while classifying cancerous leukocytes into subtypes according to the 
FAB classification with an average accuracy of 97.6%. This algorithm 
is powerful, but extremely slow to execute due to the number of 
components that need to be executed.

El Houby (2018) focused their interest on identifying healthy 
leukocytes from lymphoblast leukocytes. In their method, shape, 
texture, and color attributes were collected from nuclear regions, 
cytoplasm, and whole leukocytes respectively, previously segmented 
from other cells present in blood smear images and cropped into 
sub-images. Ant colony optimization (ACO) was employed to choose 
characteristics derived from the segmented cellular components to 
enhance classification performance. Classification was performed 
using decision tree (DT), K-nearest neighbor (K-NN), Naïve Bayes 
(NB), and support vector machine (SVM) algorithms. Their proposed 
classification system evaluated with 260 images of the ALL-IDB2 
database showed classification accuracy of 96.25%, achieved with the 
DT classifier. The main shortcoming of this classification system is 
that it was tested with a small number of images.

Mohammed and Abdulla (2021) focused on the development of 
an automatic system to assist in the identification of ALL cells. The 
suggested methodology comprises two phases. The first phase 
emphasizes the segmentation of leukocytes. The second stage recovers 
characteristics such as shape, geometry, statistics, and discrete cosine 
transform from the segmented cells. They apply KNN, SVM, and NB 
to the retrieved characteristics to classify the segmented cells as either 
normal or pathological. This method’s efficacy was assessed using the 
ALL-IDB2 blood smear image database. The experimental results 
achieved a maximum accuracy of 97.45% with the SVM. Although 
performing well, this algorithm should be evaluated by considering a 
different image set for validation.

Bodzas et  al. (2020) created an algorithm for leukemia 
identification, employing a three-tiered filtering procedure for the 
segmentation of the nucleus and cytoplasm of white blood cells. 
Additionally, the algorithm considered the detection and 
separation of agglomerated white blood cells. Sixteen shape and 
texture parameters were retrieved from the segmented regions to 
enable the classifier to differentiate between normal and diseased 
cells. The employed classifier was Support Vector Machine (SVM). 
The University Hospital in Ostrava’s Department of Haemato-
Oncology supplied a private image collection for training and 
testing the system created by Bodzas et al. (2020). The image set 

consisted of 33 images, 18 of which were acquired from healthy 
people and 13 from people with ALL. According to the authors, 
their system achieved a classification accuracy of 96.72%. This 
algorithm requires an expansion of the database used for testing 
and training.

Looking at the traditional computer-vision methods presented so 
far, that they are mainly focused on segmentation and the extraction 
of specific features. However, nucleus and cytoplasm identification 
and extraction are a challenging task due to the contrast variations of 
different types of leucocyte, which leads to a low accuracy of the 
expected result. Also, it not trivial to extract a suitable feature set able 
to distinguish health leucocytes from cancer leucocytes.

2.2 Deep learning methods

Recent proposals have emerged for the detection and 
categorization of ALL using deep learning approaches (Shah et al., 
2021; Deshpande et  al., 2020; Loey et  al., 2020) due to the 
advancements in artificial intelligence and extensive data analysis. 
Vogado et al. (2018) used pretrained CNN models (AlexNet, VGG_f, 
and CaffeNet) for feature extraction and employed SVM for 
classification in an ALL detection system. The hybrid dataset, which 
included ALL-IDB, CellaVision, and leukocyte mixed databases, 
yielded an average accuracy of 99.20%. In order to identify white 
blood cells in blood smear images and categorize them as either 
leukemia or healthy, Di Ruberto et al. (2020) presented an algorithm. 
The white blood cell detection step employed the H and S color 
components, Otsu’s thresholding method, a new object detection 
technique, and the watershed method. The AlexNet convolutional 
network was used to extract 3 different feature vectors of white blood 
cells previously segmented and cropped into a sub-image. The 
retrieved feature vectors are classified using three distinct linear 
SVMs, and their results are amalgamated through a voting process. 
The classification system was tested on 33 images of the ALL-IDB2 
database and an accuracy of 94.1% was obtained. This classification 
system is limited because it was built and assessed based on smear 
images captured with the identical camera and under uniform 
illumination circumstances.

Shafique and Tehsin (2018) employed the pre-trained deep 
convolutional neural network AlexNet to identify LLA and categorize 
it into its subtypes (L1, L2, and L3). This algorithm involved modifying 
the architecture of the AlexNet network by substituting the final three 
layers of the pre-trained model with a new fully connected layer 
containing 1,024 neurones, succeeded by a ReLU layer and an 
additional fully connected layer, wherein all units were interconnected 
to the output probabilities of two classes via the softmax function. For 
the classification of the LLA into subtypes, the last fully connected 
layer with 2 output probability classes was changed to 4 output 
probability classes. The ALL-IDB2 database, comprising 260 smear 
images, was utilized for the assessment of their algorithm. The 
outcomes attained an average categorization accuracy of 96.06%. In 
their study, the removal of noise in the original image was omitted, yet 
the presence of noise results in erroneous features and therefore 
impacts on the performance of the classification system. On the other 
hand, a limited number of images was considered for training and 
testing, yet this has a negative effect on the learning of the 
deep network.
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Claro et  al. (2020) developed two deep convolutional neural 
networks (DCNs) designated Alert Net-R and Alert Net-X to diagnose 
myeloid and acute lymphoblastic leukemia. The Alert Net-R network 
was designed by inserting residual structures similar to those of the 
ResNet into the original Alert Net architecture. The Alert Net-X 
network was built using the technology implemented in Xception by 
Nvidia. In addition, a data augmentation procedure was employed to 
enhance the volume of the training dataset. The designed RNC has 
been trained and tested with 16 image databases including 2,415 
images, and an overall accuracy of classification equal to 97.23% has 
been obtained. This accuracy is good, considering that it is obtained 
by considering a heterogeneous image database. However, its 
implementation requires high resources.

Hegde et al. (2019) assessed the impact of characteristics derived 
from conventional image processing and the pre-trained CNN 
AlexNet on neural network classifier. In their study, the neural 
network classifier was used to classify abnormal and normal WBC, 
also to classify normal WBC in their sub-types. Eralp and Sefer 
(2024), however, suggested a hybrid transfer learning approach in 
which ResNet18 and MobilenetV2 are hybridized based on their 
proposed weight factor. The ALL-IDB1 and ALL-IDB2 was considered 
to evaluate the performance of the methods. According to the authors, 
when the dataset is divided into 50% training and 50% testing, the 
computer-aided system’s performance is limited.

Nabilah et al. (2020) proposed a comparison analysis of three 
pre-trained convolutional neural networks, specifically VGG, 
GoogleNet, and AlexNet, for the identification of acute lymphoblastic 
leukemia. That study showcased VGG as the best architecture based 
on its testing and training accuracy. The main limitation is that only a 
few image samples were considered in this study. In contrast, Mondal 
et  al. (2021) developed a weighted ensemble classifier for ALL 
detection by applying transfer learning to pre-trained CNNs including 
VGG-16, Xception, MobileNet, InceptionResNet-V2, and DenseNet-
121. The dataset C-NMC-2019 was utilized to train and evaluate the 
constructed model, yielding an average accuracy of 86.2%.

Ullah et al. (2021) adopted the efficient channel attention module 
to enhance the VGG-16 architecture’s ALL detection. The developed 
model was assessed using the C-NMC-2019 dataset and attained an 
accuracy of 91.1%, indicating a need for enhancement. Jawahar et al. 
(2022) introduced a CNN model called ALNett, which is founded on 
a depth-wise convolutional architecture. On the training folder of the 
C-NMC-2019 dataset, the ALNett model achieved an F1_score of 0.96 
and a classification accuracy of 91.31%. Magpantay et  al. (2022) 
developed a transfer learning approach utilizing Yolov3 for the 
classification of ALL cells and normal cells. Only 300 images selected 
from the C-NMC-2019 dataset were considered in this study, and the 
model achieved a training accuracy value of 97.2% and an mAP value 
of 99.8% on testing images. This method considered few images of a 
large dataset for the training and testing the models. However, an 
effective and resilient leukemia diagnosis system must provide results 
for a substantial volume of smear images, including those from 
alternative leukocyte datasets.

Yolov5 was applied for detection and count of blood cell in 
Rohaziat et al. (2022). Priyanka et al. (Liu and Hu, 2022) proposed 
a model named LeuFeatx, an adapted, fine-tuned feature extractor 
model based on VGG16. LeuFeatx demonstrated promising 
performance both in the leukemia subgroup classification and the 
binary classification. The ALL-IDB2 dataset was utilized for binary 

classification, yielding an accuracy of 96.15%. Abhishek et  al. 
(2025) proposed the fuzzification of pretrained convolutional 
neural networks with the Gompertz function; the developed 
methodology categorized blood smear pictures into five 
classifications: AML, CML, ALL, CALL, and normal. Similarly, 
VGG16 and XceptionNet models were combined for classification 
of four type of diabetic eye disease (Hasan et al., 2025). Election-
Base Chameleon Swarn algorithm was used on multiscale adaptive 
and attention-base DCNN method for leukemia detection 
(Gokulkannan et al., 2024).

Existing methods for leukemia diagnosis based on transfer 
learning have not considered the complexity of the pre-trained CNN, 
including the parameter count. This leads to a resource-intensive 
model that is unsuitable for embedded systems and computers with 
limited performance. To address this limitation our proposed models 
are based on MobileNet (Howard et al., 2017), which has a smaller size 
and complexity models, and is therefore suitable for mobile 
applications and embedded systems. Conversely, MobileNet has 
superior classification accuracy compared to alternative 
lightweight approaches.

3 Proposed methodology

The overarching schematic of the suggested methodology is 
illustrated in Figure 1. The proposed methodology has two stages. The 
first stage includes dataset processing, modification, and 
augmentation. The second stage performs transfer learning 
classification using MobileNet. The sequel will provide explanations 
for all the components in the figure.

3.1 Dataset description

The pictures used in this paper are from the public ISBI 2019 
database available on Kaggle (Gupta and Gupta, 2019). The ISBI 2019 
database contains blood smears with resolution of 450 × 450 × 3 
pixels, designed to distinguish leukemic B lymphoblast cells (ALL) 
from normal B lymphoid precursors (HEM). The training, 
preliminary, and final test sets make up this database. The training set 
comprises 10,661 white blood cell images, categorized into 7,272 
leukemic images (ALL) and 3,389 healthy images (Hem). These 
images are from 47 leukemia patients and 26 healthy patients. 
We divide the training set into three separate folders. The preliminary 
test set contains 1,219 ALL and 648 HEM images extracted from the 
blood smears of 13 leukemia patients and 15 healthy patients, 
respectively. The final test set included 2,586 white blood cell pictures 
from nine patients with acute lymphoblastic leukemia and eight 
healthy individuals.

Figure  2 illustrates the preprocessing steps and modifications 
applied to the database, which we discuss next:

3.2 Modification of dataset

In the study, the three separate folds of the ISBI 2019 database 
training set, which are individually stratified into HEM and ALL 
folds, were independently preprocessed and divided using 
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percentages [70, 10, 20%] into training, then validation and test 
sets. Table 1 displays the distribution of each fold. All images in 
the dataset underwent cropping and scaling adjustments. 
We executed the cropping from the center of the original image to 
preserve the entire white blood cell. We  resized the resulting 
image to 224*224*3 to meet MobileNet’s input requirements. 
Table  1 reveals an imbalanced class problem in the ISBI 2019 
database. Indeed, the ratio of the total number of ALL pictures to 
the number of HEM pictures is consistently 2 across all folders in 
the training set. According to Mayouf et al. (2020), a dataset is 
qualified as slightly unbalanced when this ratio is in the range 
[1.5, 3]. Class imbalance in a database affects the model 
generalization in favor of the majority class (Johnson and 
Khoshgoftaar, 2019; Kaope and Pristyanto, 2023). There are two 
ways to rebalance data sets, namely (Orriols-Puig and Bernadó-
Mansilla, 2009): one class is oversampled, while the majority class 
is undersampled. This study took into account the oversampling 
technique to lessen the disparity between the ALL and HEM 
classes in the training set for the three folders. This procedure was 

selected because, unlike the undersampling strategy, it does not 
diminish the size of the data collection. The oversampling process 
was based on converting each image of the HEM class of the train 
set into the HSV color space; then the saturation was removed 
from the resulting image. These two operations doubled the 
number of images in the HEM class, as shown in Table 2, without 
any duplication of information.

FIGURE 1

Proposed methodology of leukemia diagnosis.

FIGURE 2

Preprocessing steps of the proposed approach.

TABLE 1 Train, test, and validation distribution over the different batches 
denoted as folds.

Folds Train Val Test Total

Fold 0 ALL: 1677

HEM: 791

ALL: 239

HEM: 113

ALL: 481

HEM: 226

ALL: 2397

HEM: 1130

Fold 1 ALL: 1692

HEM: 814

ALL: 241

HEM: 116

ALL: 485

HEM: 233

ALL: 2418

HEM: 1163

Fold 2 ALL: 1719

HEM: 767

ALL: 245

HEM: 109

ALL: 493

HEM: 220

ALL: 2457

HEM: 1096
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3.3 Data augmentation

Prior research has demonstrated the beneficial effects of image 
augmentation on enhancing the characteristics and diversity of a 
dataset. We therefore apply the following augmentation procedures 
to our data. Gaussian noise with a mean of zero and standard 
deviations of 3 and 9 was injected in equal proportions in the training 
dataset for augmentation. This step aimed to build a model that is 
insensitive to Gaussian noise. The sigma values were selected 
experimentally. Other augmentation steps, such as rotation of 45 
degrees, horizontal flip, brightness range [0.4, 0.8], width shift range 
(0.1), height shift range (0.1), zoom range [0.8, 1], shear range (3), 
and rescale (1/255), were applied to generate new images during the 
training phase. Pixel values of all the images of our dataset were 
scaled to the range [0, 1]. Figures 3, 4 illustrate some image samples 
of the ISBI 2019 database and the augmentation.

3.4 MobileNet

The transfer learning technique is based on choosing a pre-trained 
model and fine-tuning it to solve a new classification problem. The main 
benefits of transfer learning are sharing knowledge and saving training 

time and resources (Sarkar et  al., 2018). Due to its foundation in 
depthwise separable convolution, MobileNet was selected as the 
pre-trained convolutional neural network for classification, so it is 
extremely efficient and has a low computational cost compared with 
other standard convolution-based models.

MobileNet comprises convolutions, depthwise separable convolutions, 
batch normalization, ReLU activations, and fully connected layers 
(Ashwinkumar et al., 2021). Among these layers, depthwise separable 
convolution serves as the fundamental layer of the MobileNet model, 
minimizing both the number of parameters and computing expense by 
decomposing a normal convolution into a depthwise convolution. In 
Table 3, the initial MobileNet design is displayed. The batch normalization 
and ReLU activations follow each layer of the architecture, as illustrated in 
Figure 5. The MobileNet depthwise separable convolutional layer is broken 
into 3×3 depthwise convolution filters and 1×1 pointwise convolution. A 
single 3×3 depthwise convolution filter is applied to each image channel, 
followed by a 1×1 pointwise convolution to generate a linear combination 
of the output as per (Howard et al., 2017). The Mathematical expression of 
depthwise convolution with one filter per input channel can be defined as 
shown Equation 1:

 + − + −=∑ , , 1, 1,,
ˆ ˆ i j m k i l j mi jG K F

 (1)

where k and l are locations in the thm  feature map, K̂  represents the 
depthwise convolutional kernel of size × ×k kD D M, Ĝ is the output feature 
map obtained when the thm  filter in K̂  is applied to the thm  channel in F.

3.5 MobileNet_M: extension of MobileNet

In the proposed work, we replaced the MobileNet average 
pooling, fully connected, and softmax layers with a set of layers 

FIGURE 3

(a) Example of ALL image; (b) cropped and resized ALL image; (c) image with Gaussian noise using sigma = 3; (d) image with Gaussian noise using 
sigma = 9; (e–h) augmented images.

TABLE 2 Images in the HEM class before and after class balance.

Folds Number of HEM images in train set

Before balance 
process

After balance 
process

Fold 0 791 1,582

Fold 1 814 1,628

Fold 2 767 1,534
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appropriate for our classification problem. The obtained model 
was called MobileNet_M. Table  4 illustrates the structure of 

layers used to solve our classification problem. In this structure, 
the dropout layer is used to randomly deactivate a fraction of 
the neurons to avoid overfitting, and the Batch Normalization 
(BN) is employed to stabilize the distribution of the dataset 
during training, hence expediting model. Mathematically, 

FIGURE 4

(a) Example of HEM picture; (b) cropped and resized picture; (c) HSV picture with saturation removed; (e) picture with Gaussian noise using sigma = 3; 
(f) picture with Gaussian noise using sigma = 9; (g–k) augmented pictures.

TABLE 3 Architecture of MobileNet.

Type/Stride Filter Shape Input Size

Conv/s2 3× × ×3 3 32 224× ×224 3

Conv dw/s1 3× ×3 32 dw 112× ×112 32

Conv/s1 1× × ×1 32 64 112× ×112 32

Conv dw/s2 3× ×3 64 dw 112× ×112 64

Conv /s1 1× × ×1 32 128 56× ×56 128

Conv dw/s1 3× ×3 128 dw 56× ×56 128

Conv /s1 1× × ×1 32 128 56× ×56 128

Conv dw/s2 3× ×3 128 dw 56× ×56 128

Conv/s1 1× × ×1 32 256 28× ×28 128

Conv dw/s1 3× ×3 256 dw 28× ×28 256

Conv/s1 1× × ×1 32 256 28× ×28 256

Conv dw/s2 3× ×3 256 dw 28× ×28 256

Conv /s1 1× × ×1 32 512 14× ×14 256

Conv dw/s1

Conv/s1
3× ×3 512 dw

1× × ×1 512 512

14× ×14 512

14× ×14 512

Conv dw/s2 3× ×3 512 dw 14× ×14 512

Conv/s1 1× × ×1 512 1024 7× ×7 512

Conv dw/s2 3× ×3 1024 dw 7× ×7 1024

Conv/s1 1× × ×1 1024 1024 7× ×7 1024

Avrg pool/s1 Pool 7×7 1× ×1 1000

FC/s1 1 ×1024 1000 1× ×1 1024

Softmax/s1 Classifier 1× ×1 1000

Total parameters: 4,253,864. Trainable parameters: 4,231,976. Non-trainable parameters: 
21,888. size≈ 16 MB.

FIGURE 5

(a) Depthwise separable convolutions consisting of depthwise and 
pointwise layers, succeeded by batch normalization and ReLU; (b) 
standard convolutional layer accompanied by batch normalization 
and ReLU.
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we can define the BN for convolutional neural networks using 
Equation 2 (Bjorck et al., 2018):

µ β
σ ε

−= +
+

, , ,
, , ,

2
b c i j

b c i j c
c

I
O c

 ∀ , , ,b c i j and  µ
∑

= ∑ , , ,, ,
1

c b c i jb i jIB  (2)

where i and j are the spatial location of the c channel feature map 
, , ,b c i jO  and , , ,b c i jI are the BN’s output and input, respectively. Notation 

µcrepresent the means activation of all images in the batch b and σcthe 
standard deviation. B encompasses all activations within channel c across 
every feature b in the complete mini-batch and all spatial locations i,j. 
Finally, γ c and βcare parameters for channel-wise affine transformation.

The dense output layer contains two neurons and a SoftMax 
activation function that gives an output probability for each neuron. 
The SoftMax function uses a logistic transformation to map the vector 
of raw outputs from the neural network (z-scores) into probabilities 
p∈ [0, 1] as defined in Equation 3:

 

( ) ( )
( )=

=
∑2

1

ex
s

p

exp
oftmax i

jj

z
z

z
 (3)

3.6 Tunable hyper-parameters of 
MobileNet_M

This project involved training MobileNet_M using a substantial 
dataset of images. We initialized all MobileNet layers for transfer 
learning using the pre-trained MobileNet model from the ImageNet 
dataset. We initialized the last dense layer with two units using a 
uniform distribution. We added L1 weight regularization to the dense 
layer to enhance the model’s generalization, using a regularization 
parameter of 0.015. During the training phase, we set the starting 
learning rate at 0.001, and applied a reduction if we observed no 
improvement in validation loss over 5 epochs. We set the reduction 
factor to 0.1 and set the minimum learning to 0.000001. 
We  implemented early halting when the model’s validation loss 
stopped decreasing after 20 epochs, indicating that the model has 
stopped learning meaningfully. All hyperparameters utilized 
throughout the training phase are presented in Table 5.

3.7 Evaluation metrics

We assessed the efficacy of the suggested model using criteria 
such as the confusion matrix, accuracy, precision, recall, F1 score, 

and AUC. The confusion matrix has the advantage of quickly 
determining the effectiveness of a classification system. The 
classification improves as the confusion matrix approaches a 
diagonal matrix. Accuracy is the proportion of correctly diagnosed 
leukemia cells (true positives) and healthy cells (true negatives) 
relative to the total number of cells. Recall is the proportion of true 
positives identified as opposed to those overlooked. The AUC is the 
two-dimensional area beneath the complete receiver operating 
characteristic (ROC) curve. Equations 4–7 provide the mathematical 
definitions for accuracy, precision, recall, and F1 score:

 
+

=
+ + +

TP TNAccuracy
TP TN FP FN  

(4)

 
=

+
TPRecall

TP FN  
(5)

 
=

+
TPPrecision

TP FP  
(6)

 
× ×

=
+

2 Re1_
Re

Precision callF score
Precision call  

(7)

TP, TN, FP, and FN denote true positives, true negatives, 
false positives, and false negatives, respectively. True positives 
(TP) refer to instances where the model accurately identifies 
leukemia. False positives occur when the model erroneously 
predicts the HEM class as the ALL class. False negatives (FN) 
occur when the model erroneously predicts the ALL class as the 
HEM class.

4 Experimental validation and 
discussion

4.1 Experimental setup

A server with two Intel Xeon Gold 6226R CPUs, four Nvidia A100 
40GB GPUs, 756 GB of RAM and Ubuntu 20.04 from which a single 
card was effectively used for training was used to implement the 
proposed work. Python 3.9.16 was used with the tensorflow_gpu 2.4.1, 
keras 2.10, scikit_learn 1.2.2, numpy 1.23.4, and matplotlib 3.7.1 
packages. Imgeio 2.30 and imgaug 0.4.0 libraries were employed for 
modification and Gaussian noise addition to the dataset. Gaussian 

TABLE 4 The suggested MobileNet_M’s architecture.

Layer (type) Output 
shape

Parameters

MobileNet (None, 7, 7,1,024) 3,228,864

GlobalAveragePooling (None, 1,024) 0

Flatten (None, 1,024) 0

Dropout (None, 1,024) 0

Batch normalization (None, 1,024) 4,096

Dense (None, 2) 2050

Total parameters: 3,235,010. Trainable parameters: 3,211,074. Non-trainable parameters: 
23,936. GPU Memory Requirement: 6.2 MB. Size = 12.3406 MB.

TABLE 5 Training hyper parameters of the proposed model.

Parameters Values

Epochs 100

Patience of early stopping 20

Patience of learning rate control 5

Optimizer Adam

Batch size 16

Loss Categorical cross entropy

Learning rate 0.001 to 0.000001

L1 regularization 0.015
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noise with a mean of zero and sigma values of 2, 5, 6, and 10 was 
introduced to the test sample where the noise value is different per 
pixel and per channel (a different value for the red, green and blue 
channels of the same pixel). The aim was to evaluate our model’s 
sensitivity to Gaussian noise.

4.2 Performance analysis: training step

The proposed MobileNet_M model was trained and tested 
using the three folders of data to assert its efficiency in leukemia 
detection. As presented in the previous section, MobileNet_M is 
based on depthwise separable convolution; hence, the L1 weight 
regulation method was applied to its last dense layer to avoid 
overfitting. The model had 3,211,074 trainable parameters, which 
were trained with early stopping and validation loss as the 
monitoring parameter. Figure 6 depicts the loss and validation 
accuracy curves for each Fold of the training and validation sets. 
The graphic indicates that the validation loss begins at a high level 
and ultimately converges with the training loss across all Folds. 
We observe a similar trend in the 16th, 23th, and 27th epochs for 
Folds 0, 1, and 2, respectively. The training and validation 
accuracy starts with a low value, then increases progressively, and 

after a few epochs, no further significant improvement is 
observed. Also, in Figure 6, we can see that the proposed model 
converges fast: early stopping happens after 30 training epochs for 
Fold 0, after 60 epochs for Fold 1, and close to 40 epochs for Fold 
2. Fold 0 achieves the best and fastest convergence. The average 
training accuracy was, respectively, equal to 95.83% for Fold 0, 
96.60% for Fold 1, and 94.24% for Fold 2.

4.3 Performance analysis: prediction phase

We introduced Gaussian noise to the test sample, setting the 
sigma values at 2, 5, 6, and 10. The aim was to evaluate our model’s 
sensitivity to Gaussian noise. Figure 7 shows a sample test image with 
Gaussian noise. We computed the evaluation metrics for both noisy 
and clean datasets. Tables 6–8 present the average obtained result. 
From Table 6, we notice that for Fold 0, the proposed MobileNet_M 
models achieved the same accuracy value of 96% on both the clean 
and noisy test images for sigma values of 2 and 8. All these results 
illustrate the efficacy and resilience of the proposed model in 
accommodating fluctuations in the dataset (Folds) and additive 
Gaussian noise. The prediction time per image was 4.92 ms on a 
personal computer and 44.68 ms in the remote runtime Google Colab.

FIGURE 6

Training and validation curves.
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To assess the impact of class imbalance on the efficiency of the 
proposed MobileNet_M in this study, we compared the performance 
of MobileNet_M on imbalanced datasets without data augmentation 
and after correction. Table 9 shows the comparison. The HEM and 

ALL accuracy results show that class imbalance affects the 
generalization of MobileNet_M in favor of the ALL class.

4.4 Comparison with existing models on ALL

The proposed model was first of all compared to the ALNett 
model based on confusion matrix and accuracy. The test dataset 
containing clean images was used for this purpose. ALNett (Jawahar 
et al., 2022) is a newly established deep convolutional neural network 
designed for the classification of acute lymphoblastic leukemia. On the 
given data set, it has shown the highest F1_score and accuracy 

TABLE 9 Test classification performance of MobileNet_M train with 
imbalance class dataset without data augmentation and MobileNet_M 
after balancing the dataset.

Metrics Fold 0 Fold 1 Fold 2

MCN MAC MCN MAC MCN MAC

ALL 

precision
0.97 0.97 0.98 0.96 0.96 0.97

HEM 

precision
0.42 0.95 0.51 0.94 0.37 0.89

Weighted 

average 

precision

0.79 0.96 0.83 0.96 0.78 0.94

Accuracy 0.57 0.96 0.69 0.96 0.47 0.94

AUC 0.675 0.954 0.767 0.948 0.609 0.941

TABLE 10 Accuracy of prediction of leukemia by the proposed and 
ALNett.

Accuracy in %

Our model ALNett, 2022 
(Jawahar et al., 

2022)

Fold_0 96 92.20

Fold_1 96 94

Fold_2 94 87.20

Average 95.33 91.13

FIGURE 7

Gaussian noise with sigma = 10 on test sample image.

TABLE 6 Test classification performance of noisy and clean images in 
Fold 0.

Test 
data

Precision Recall F1_
score

Accuracy AUC

Sigma = 0 0,96 0,95 0,96 0,96 0,954

Sigma = 2 0,95 0,95 0,95 0,96 0,952

Sigma = 5 0,94 0,95 0,95 0,95 0,950

Sigma = 8 0,96 0,94 0,95 0,96 0,941

Sigma = 10 0,96 0,92 0,94 0,95 0,924

Bolded values indicate the minimum values achieved for each metric across the different test 
with noise.

TABLE 7 Test classification performance of noisy and clean images in 
Fold 1.

Test 
data

Precision Recall F1_
score

Accuracy AUC

Sigma = 0 0,95 0,95 0,95 0,96 0,948

Sigma = 2 0,97 0,96 0,96 0,97 0,955

Sigma = 5 0,95 0,94 0,95 0,95 0,940

Sigma = 8 0,96 0,94 0,94 0,95 0,936

Sigma = 10 0,96 0,93 0,94 0,95 0,928

Bolded values indicate the minimum values achieved for each metric across the different test 
with noise.

TABLE 8 Test classification performance of noisy and clean images in 
Fold 2.

Test 
data

Precision Recall F1_
score

Accuracy AUC

Sigma = 0 0,93 0,94 0,94 0,94 0,941

Sigma = 2 0,95 0,95 0,95 0,96 0,948

Sigma = 5 0,92 0,93 0,93 0,94 0,929

Sigma = 8 0,94 0,93 0,93 0,94 0,928

Sigma = 10 0,94 0,92 0,93 0,94 0,924

Bolded values indicate the minimum values achieved for each metric across the different test 
with noise.
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compared to the ResNet-50, AlexNet, VGG16, and GoogleNet transfer 
learning models. The accuracy of the developed models compared to 
ALNett models is shown in Table  10. According to the table, the 
suggested model’s average accuracy is higher than ALNett’s for each 
of the three folds. Figure 8 further elucidates this outcome through the 
confusion matrix, demonstrating that the proposed model surpasses 
the ALNett model in leukemia detection. For instance, in Fold 0, 
MobileNet_M identified 680 photos as true positives (TP) and true 
negatives (TN) with a classification accuracy of 96%, while ALNett 
classified 650 images as TP and TN with an accuracy of 92.70%.

Considering the three folds of the dataset, we also compared the 
average performance (recall, precision, accuracy and F1 score) of the 
proposed MobileNet_M with transfer learning models such as 
GoogleNet, ResNet-50, AlexNet and VGG16 reported in Jawahar et al. 
(2022), as shown in Figure  9. The proposed model obtained the 
highest recall, precision, accuracy and F1 score values. This 
comparison reveals the effectiveness of the proposed MobileNet_M.

In other hand, Table 11 presents a comparison of the proposed 
model with various approaches evaluated on the ISBI 2019 database in 
recent years. Mathury et  al. (2020) achieved 91% of F1_score by 
overcoming model generalization through the application of local spatial 

attention blocks learning, pointwise attention convolution layers, and 
Rademacher Mixup. YOLOv4 was implemented in Khandekar et al. 
(2021) for cell detection and leukemia classification and achieved F1_
score value of 92%. However, as illustrated in Tables 6–8 the proposed 
MobileNet_M is more robust against additive Gaussian noise achieving 
better results than the MMA-MTL or YOLO4. This may be due to the 
proposed balanced database method with specific augmentation process. 
The results in Tables 10, 11 indicate that the suggested model 
outperformed contemporary state-of-the-art approaches, achieving an 
impressive average accuracy of 95.33% and an average F1 score of 95%. 
The L1 regularization method, the learning rate range, and early stopping 
callback were key parameters to obtain this performance.

5 Conclusion

This paper proposes a computationally efficient and high-
performing model that is resilient to Gaussian noise for the 
classification of acute lymphoblastic leukemia using microscopic 
pictures. Thus, the discrimination between these cells is a very 
challenging task. The pre-trained MobileNet architecture was modified 

FIGURE 8

Predicting confusion matrix of the proposed and ALNett models on clean test dataset.

https://doi.org/10.3389/frai.2025.1620252
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Makem et al. 10.3389/frai.2025.1620252

Frontiers in Artificial Intelligence 12 frontiersin.org

and fine-tuned to address this classification challenge. A new 
augmentation procedure was proposed both to avoid over-fitting and 
to build an efficient model. The MobileNet_M model was trained and 
evaluated using the C_NMC_2019 dataset (Mourya et al., 2019). This 
study achieved an overall test accuracy of 95.33% and an F1 score of 
0.95. The suggested model’s effectiveness and robustness were 
demonstrated by the introduction of additional Gaussian noise to the 
test images. The proposed MobileNet_M model yields a better average 
performance compared to ALNet and several other competitive models.

Based on the results obtained, our suggested model is useful as a 
guide and second-opinion tool for laboratory technicians and 
hematologists in the diagnosis of acute lymphoblastic leukemia under 
a microscope. In the forthcoming period the proposed MobileNet_M 
model will be deployed on an embedded system or Android phone to 
build cost-effective devices for computer-assisted diagnosis of leukemia.
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TABLE 11 F1_score comparison of proposed model with existing models.

Authors Models Datasets (Rohaziat et al., 
2022)

F1_score

Mathury et al. (2020) MMA-MTL Training set of C-NMC-NMC -2019 91%

Khandekar et al. (2021) YOLOv4 Subset of C-NMC-2019 92%

Proposed methods MobileNet_M Training set of C-NMC-2019 95%

Bold value represents the maximum F1_score.

FIGURE 9

Comparison of common transfer learning models with the proposed MobileNet_M.
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