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The development of vaccines and immunotherapies against infectious diseases 
and cancers has been one of the significant achievements of medical science in 
the last century. Subunit vaccines offer key advantages over whole-inactivated 
or attenuated-pathogen-based vaccines, as they elicit more specific B-and T-cell 
responses with improved safety, immunogenicity, and protective efficacy. However, 
developing subunit vaccines is often cost-and time-consuming. In the past, the 
development of vaccines and immunotherapeutics relied heavily on trial-and-error 
experimentation, as well as extensive and costly in vivo testing, which typically 
required years of pre-clinical and clinical trials. Today, artificial intelligence (AI) 
and deep learning (DL) are actively transforming vaccine and immunotherapeutic 
research by (i) offering predictive frameworks that support rapid, data-driven 
decision-making, (ii) integrating computational models, systems vaccinology, 
and multi-omics data (iii) helping to better phenotype, differentiate, and classify 
patients diseases and cancers; (iv), integrating host characteristics for tailored 
vaccines and immunotherapeutics; (v) refining the selection of B-and T-cell antigen/
epitope targets to enhance efficacy and durability of immune protection; and (vi) 
enabling a deeper understanding of immune regulation, immune evasion, and 
regulatory pathways. Artificial intelligence and DL are pushing the boundaries 
toward (i) the potential replacement of animal preclinical testing of vaccines and 
immunotherapeutics with computational-based models, as recently proposed 
by the United States NIH and FDA, and (ii) improving clinical trials by enabling 
real-time modeling for immune-bridging, predicting patients’ immune responses, 
safety, and protective efficacy to vaccines and immunotherapeutics. In this review, 
we describe the past and current applications of AI and DL as time-and resource-
efficient strategies and discuss future challenges in implementing AI and DL as 
new transformative fields that may facilitate the rapid development of precision 
and personalized vaccines and immunotherapeutics for infectious diseases and 
cancers.
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1 Introduction

Rapidly advancing immunology research has significantly 
contributed to the development of vaccines and immunotherapies 
against infectious diseases and cancers, marking a notable success in 
medical science. The relationship between artificial intelligence (AI) 
and immunology is intricate and transformative (Schultze et al., 2022). 
AI models are increasingly used to enhance our understanding of the 
cellular and molecular components of the immune system, leveraging 
computational power to identify complex interactions across immune 
pathways and disease contexts (Ekins et  al., 2019; Topol, 2019; 
Vamathevan et al., 2019). Yesterday, immunological research relied 
primarily on experimental trial and error and time-consuming 
laboratory assays. These traditional methods, though foundational, 
were limited in scope and scalability. In the early days of computational 
immunology, traditional mathematical models were the primary tools 
for simulating immune responses. These early models relied on 
simplified assumptions and static parameters, often failing to account 
for the inherent complexity and variability of immune interactions 
across diverse populations. Before the implementation of artificial 
intelligence, immune system modeling was limited by computational 
constraints, small datasets, and the absence of real-time adaptability. 
This ‘yesterday’ phase laid the groundwork for today’s AI-driven 
approaches, highlighting both the potential and the limitations of 
classical immunological simulations. AI-driven models offer valuable 
insights into immunotherapeutic clinical trials, enhancing their 
delivery and efficacy. However, AI approaches can sometimes 
be  misleading when they fail to consider the full complexity of 
immunological interactions, particularly when focusing on isolated 
mechanisms without integrating broader immunological networks. 
When experimental findings challenge existing AI-driven predictions, 
computational scientists must refine their models to ensure they 
remain aligned with empirical immunology. While AI-driven 
hypothesis generation can be insightful, the practical implementation 
of this approach remains a challenge. Many AI models lack robustness 
in real-world applications due to oversimplifications, biases in training 
datasets, and an inability to capture the full scope of immune system 
variability (Li et al., 2023). Moreover, specific AI models struggle to 
provide reliable experimental validation pathways, resulting in 
limitations to their clinical applicability (Xu et al., 2021).

There is significant debate among immunologists regarding (i) the 
role of AI-driven models in immunology (referred to in this report as 
immuno-AI) and (ii) how AI can be  effectively employed to 
understand complex non-linear immunological systems (Xu et al., 
2021). Immunology is inherently dynamic, involving multi-scale 
biological interactions that require advanced computational 
approaches for effective modeling. Today, AI and machine learning 
(ML) are at the forefront of immunological research, enabling 
unprecedented capabilities in simulating the immune system, 
mapping epitopes, and designing immunotherapies. AI has been 
instrumental in studying immune responses to viral infections (e.g., 
HIV-1), cancer (e.g., chronic myeloid leukemia), and autoimmune 
disorders (e.g., Alzheimer’s disease). Additionally, AI models have 
been informed by diverse research findings across physiology, 
behavior, and immunology. For instance, (Janssen et al., 2005) 
demonstrated how behavioral factors such as diet and physical activity 
influence health outcomes in youth populations, highlighting the need 
for integrative datasets. (Sato et al., 2021) further supported localized 

physiological modeling through resistance training outcomes. (Singh 
et al., 2023) emphasized the importance of physical activity in 
improving mental health, reinforcing the value of comprehensive 
models that encompass both psychological and physical health. From 
a cellular and mechanistic perspective, (Topchyan et al., 2023) 
provided evidence that CD4+ T cell help is essential for CD8+ T cell 
function in chronic infection and cancer, justifying the use of AI to 
simulate complex immune cell interactions. Traditional vaccine 
development relies on labor-intensive antigen screening, which can 
result in suboptimal formulations. AI-driven approaches have 
emerged as powerful tools to streamline epitope selection by 
leveraging diverse datasets, including single-cell RNA sequencing, 
structural protein modeling, and immune response profiling (Azevedo 
et  al., 2024). Recent studies have demonstrated the potential of 
AI-powered frameworks, such as generative models and deep learning 
(DL) techniques, in accelerating vaccine design by predicting immune 
responses and optimizing multi-epitope formulations (Dogra et al., 
2023; Guedan et al., 2019).

Artificial intelligence systems process large-scale immunological 
datasets, translating them into predictive frameworks that provide 
logical insights into immune responses, facilitate vaccine development, 
and guide novel immunotherapy strategies (Figure 1). Reflecting the 
growing confidence in AI-driven approaches, the U.S. FDA recently 
announced plans to phase out specific animal testing requirements 
and replace them with AI-based computational models and human 
organoid systems to enhance preclinical evaluation and improve 
translational relevance (Zushin et  al., 2023). AI also excels in 
generating counterintuitive insights, uncovering immune interactions 
that may not be  evident through conventional in  vitro or in  vivo 
experimental assays (Wherry and Kurachi, 2015). However, many 
immunologists remain skeptical about fully integrating AI-driven 
approaches, as computational models often differ from traditional 
wet-lab methodologies (Borst et  al., 2018). The emerging field of 
immuno-AI aims to bridge this gap by fostering interdisciplinary 
collaboration between AI researchers and immunologists. AI models 
are playing a transformative role in vaccine and immunotherapy 
development by enabling more precise predictions of immune 
responses. Deep learning-based classifiers, such as convolutional 
neural networks (CNNs), have been utilized to differentiate protective 
versus non-protective immune responses (Zhou et  al., 2010). By 
integrating AI-powered biomarker discovery, these models contribute 
to refining vaccine formulations that enhance and prolong immunity. 
AI-driven immunogenicity prediction frameworks, validated through 
experimental approaches, demonstrate their potential in optimizing 
vaccine efficacy and guiding next-generation immunotherapy 
strategies (Kaech and Cui, 2012).

Artificial intelligence plays a crucial role in deciphering the 
complex, non-linear dynamics of the immune system. Most 
immunological interactions involve complex feedback loops and 
multi-scale regulatory mechanisms. The immune system is highly 
non-linear, meaning that small perturbations in immune signals can 
lead to disproportionate effects on immune responses. A key example 
is T-cell activation in response to antigen (Ag) concentration (Pardoll, 
2012). T cells exhibit threshold-based responses, where minimal 
antigen exposure triggers no response, while increased antigen 
concentration induces an exponential increase in activation. However, 
at extremely high antigen levels, T-cell responses may decline due to 
immune exhaustion mechanisms (e.g., PD1+CD8+ or TIM+CD8+ T 
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cells) (Schapiro et al., 2022). While immunologists have long studied 
dose–response relationships, AI enables a more detailed exploration 
of how immune responses dynamically shift across different 
conditions. The complexity of cytokine networks, chemokine 
interactions, and immune checkpoints makes AI-based models 
particularly valuable for predicting immune system behaviors in 
health and disease (van Dorp et al., 2025).

One of the most significant challenges AI researchers face in 
immunology is capturing the full complexity of immune phenomena. 
Immunologists themselves often struggle to fully decipher 
immunological mechanisms due to current limitations in 
experimental assays and data interpretation. AI models must address 
critical gaps in immune system modeling, including predicting the 
speed of immune responses, analyzing T-cell subset differentiation 
(Th1, Th2, Th17), and simulating immune activation under diverse 
conditions (Kaech and Cui, 2012). AI has been applied to modeling 
CD4+ T cell differentiation, but many studies remain theoretical and 
lack robust experimental validation (Lu et al., 2021). To overcome 
these challenges, AI-driven models must strike a balance between 
complexity and interpretability. Both immunologists and AI scientists 
often rely on simplified models that capture essential immune 
dynamics without excessive abstraction. AI enables pattern 
recognition, predictive analytics, and experimental design 
improvements, allowing researchers to identify key immune 
parameters for hypothesis testing (Wang et al., 2023). However, over-
reliance on AI without validation through empirical immunology can 
lead to misleading conclusions. Base immune-like AI models should 
be viewed as complementary to wet-lab immunology rather than as 

standalone predictive tools. Advances in user-friendly computational 
tools have facilitated the rapid expansion of AI applications in 
immunology. These platforms enable immunologists to integrate 
AI-driven insights into their research without requiring extensive 
programming expertise. AI models often begin with fundamental 
immunological assumptions, which are refined through iterative 
machine-learning approaches. However, AI-driven predictions must 
be  carefully scrutinized to ensure their applicability to real-world 
immunological settings. While AI models have led to numerous 
breakthroughs, such as AstraZeneca’s use of AI to inform cancer drug 
trials, challenges persist in translating computational insights into 
clinically actionable immunological strategies.

A growing number of AI approaches aim to simulate adaptive 
immune responses, including the activation of B cells and T cells 
(Miho et al., 2018; Isacchini et al., 2021). AI-based immune simulations 
can generate realistic predictions that align with experimental findings, 
but many models remain overly simplified. One limitation is the 
failure to account for the dynamic interplay between multiple immune 
components (Bottcher et al., 2023). AI simulations should prioritize 
mechanistic insights that can be experimentally validated rather than 
focusing solely on predictive accuracy. Immunologists often express 
concerns about AI models omitting critical immune variables. 
However, just as experimental studies focus on a subset of parameters 
(e.g., antigen load, cytokine levels, and immune cell counts), AI-driven 
approaches can provide valuable insights by identifying essential 
immune interactions (Bottcher et  al., 2023; Thomas et  al., 2022). 
Simple AI models can be beneficial for ruling out ineffective immune 
mechanisms rather than solely predicting successful outcomes. 

FIGURE 1

AI-driven framework optimizes b-and t-cell epitope prediction, classification, and multi-epitope vaccine design. (A) Epitope prediction model 
(transformer-based) for identifying immunogenic B-cell and T-cell epitopes, (B) deep learning epitope classification using (CNN-based) biomarker 
extraction and feature selection, (C) a multi-task autoencoder prioritizes immunogenic and protective epitopes, and (D) AI-powered vaccine 
formulation integrating top-ranked asymptomatic B-and T-cell epitopes into a candidate vaccine using Generative Adversarial Networks (GANs). GANs 
refine and generate four multi-epitope-based next-generation coronavirus vaccine candidates.
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AI-based models are also increasingly employed in vaccine design and 
immunotherapy development (Zhao et al., 2024; Olawade et al., 2024; 
Ong et al., 2020b). By optimizing clinical trial parameters, AI can 
reduce the number of experimental groups, refine vaccine 
formulations, and optimize immune checkpoint inhibitor protocols 
(Olawade et al., 2024). Recent studies continue to demonstrate the 
expanding role of AI in epidemiological and immunological modeling. 
For example, Çolak developed a multilayer perceptron-based artificial 
neural network to simulate and predict COVID-19 infection and 
mortality rates in Turkey, demonstrating high predictive performance 
and highlighting the value of AI in pandemic forecasting and response 
planning (Çolak, 2021). Similarly, Shafiq et al. conducted a comparative 
analysis between artificial neural networks (ANN) and parametric 
models for COVID-19 data prediction, demonstrating that 
ANN-based models yielded superior forecasting accuracy and 
robustness for epidemiological analysis (Shafiq et al., 2022). These 
studies highlight the urgent need for adaptable and interpretable AI 
tools in infectious disease research. AI can guide vaccine development 
by predicting immunogenic epitopes, assessing immune memory 
responses, and evaluating vaccine efficacy across diverse populations 
(Paul et al., 2013; Villani et al., 2018). Tomorrow, the integration of 
advanced AI frameworks, including generative models, multi-modal 
learning, and interpretable machine learning, will further accelerate 
the design of personalized vaccines and immunotherapies, creating a 
future where immune responses can be simulated and optimized in 
silico before entering clinical pipelines.

In summary, AI models are transforming immunological research 
by facilitating experimental design, identifying key immune 
interactions, and optimizing therapeutic strategies (Schubert, 2011; 
Gasperini et al., 2025). AI enables the rapid generation of hypotheses 
and computational simulations that guide experimental immunology 
in new directions (Gao et  al., 2024). Under a broader “systems 
immunology” perspective, AI helps immunologists (i) to focus 
investigations for rapid discovery and (ii) to identify immune 
mechanisms that may not work as expected (Miho et  al., 2018; 
Gasperini et al., 2025). The integration of AI with wet lab immunology 
is crucial for advancing the field, fostering interdisciplinary 
collaboration, and ensuring AI-driven insights contribute to real-
world immunological advancements (Flower and Doytchinova, 2002). 
The following sections will explore the complexities of immunological 
systems and emphasize the necessity of improved collaboration 
between AI researchers and immunologists (Davis et al., 2017).

This work is novel in its dual purpose: it provides a comprehensive 
review of the evolving role of artificial intelligence in vaccines and 
immunotherapeutics while also including a practical transformer-
based deep learning case study. The case study exemplifies how cutting-
edge AI can be directly applied to immunological problems, addressing 
a key gap in the literature where theoretical discussions often lack real-
world modeling demonstrations. By combining critical review with 
practical implementation, our work bridges the disconnect between AI 
theory and translational application in immunology and vaccinology.

1.1 AI-driven modeling and nonlinear 
dynamic immune systems

The non-linearity of biological systems presents significant 
challenges in understanding immune responses, necessitating the use 

of artificial intelligence (AI)-driven modeling to complement 
experimental approaches (Callard and Yates, 2005). Most 
immunological processes involve nonlinear interactions between 
cellular and molecular components, often incorporating both positive 
and negative feedback loops (Feinerman et al., 2010). Because immune 
responses do not always exhibit proportional input–output 
relationships, AI-based computational models are essential for 
capturing the complexity of these interactions and predicting immune 
system behaviors (Miao et  al., 2010). For instance, AI-based 
simulations of T-cell responses have demonstrated that immune 
activation is highly dependent on antigen (Ag) concentration (Wu 
et al., 2011). Supplementary Figure S3 illustrates the predicted T cell 
proliferation response to varying antigen concentrations, modeled 
using a saturating function. The model assumes that the T cell 
proliferation rate depends on antigen concentration according to a 
function (Barron et al., 1994; Lairson et al., 2003; Pepose et al., 2006; 
Sykakis et al., 2013).

 ( )
ρ
+h I
I

Where ρ represents the maximum proliferation rate, I  is the 
antigen concentration, and h is the half-saturation constant. 
We  assume that immune response starts with 100 T cells, 
ρ = 1 −1day , and T cells divide for 1 week.

AI-driven modeling provides valuable insights into nonlinear 
immune dynamics, particularly in T-cell proliferation in response to 
antigen concentration (Ganusov et al., 2011). Supplementary Figure S3 
demonstrates how T cell expansion follows a saturating function, 
indicating that immune activation is highly dependent on antigen 
availability. The sigmoidal response curves illustrate that as antigen 
concentration increases, T cell proliferation initially follows a slow 
growth phase, then enters a rapid expansion phase before reaching a 
plateau (Toussaint et al., 2008). The shape of these curves is governed 
by the half-saturation constant (h), which determines the antigen 
threshold required to trigger significant T-cell proliferation. A lower 
h value (h = 0.01, blue curve) results in an earlier and steeper immune 
response, meaning that T cells respond efficiently to trim 
antigen levels.

In contrast, a higher h value (h = 0.1, red curve) shifts the 
activation threshold, requiring a higher antigen concentration to 
induce the same level of immune response (Terry and Chaplain, 
2011). These findings underscore the importance of optimizing 
antigen dose in immunotherapy and vaccine design (Pappalardo et al., 
2010). Traditional mathematical models, while helpful in describing 
basic immune activation principles, often fail to account for real-world 
immune variability (Davenport et  al., 2004). AI-driven models 
enhance these predictions by integrating multi-omics datasets, real-
time patient profiling, and adaptive learning algorithms to dynamically 
refine T cell activation thresholds (Callard and Yates, 2005; Barron 
et al., 1994; Lairson et al., 2003; Pepose et al., 2006; Sykakis et al., 
2013). This results in more accurate predictions of immune memory 
formation, therapeutic efficacy, and antigen dose–response 
relationships, ultimately enhancing the development of personalized 
immunotherapies and precision vaccines (Feinerman et al., 2010).

Artificial intelligence models have shown that T cells do not 
activate until Ag levels cross a specific threshold, after which there is 
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an exponential increase in response magnitude before reaching a 
plateau (Wu et  al., 2011; Barron et  al., 1994; Lairson et  al., 2003; 
Pepose et al., 2006). At excessively high Ag levels, T cell exhaustion 
can occur, characterized by the upregulation of immune checkpoints 
such as PD1+CD8+ or TIM+CD8+ T cells, leading to immune 
suppression and decreased functionality (Wu et al., 2011). Traditional 
dose–response models often fail to fully capture these dynamics. In 
contrast, AI-based predictive frameworks can adapt and refine 
immunological interpretations in real-time, leading to more accurate 
therapeutic interventions (Cheng et al., 2009). AI-driven models are 
particularly advantageous in predicting the behavior of cytokine and 
chemokine networks (Ganusov et  al., 2011). While traditional 
approaches often struggle to model complex immune signaling 
pathways, AI algorithms such as deep learning and reinforcement 
learning models enable real-time adjustments based on experimental 
immunological data (Toussaint et al., 2008). The structured workflow 
of artificial intelligence (AI) in immunology research is shown in 
Figure  2. The process begins with identifying key immunological 
challenges and progresses through data collection, feature selection, 
and data preprocessing. AI models are then developed and trained 
using immune datasets, followed by evaluation and optimization 

through performance metrics such as ROC-AUC and precision-recall 
curves. Finally, the AI-driven models are deployed for clinical testing 
and real-world application in immunology, vaccine development, and 
immunotherapy. This workflow showcases the integration of AI 
techniques to enhance immunological research, improve predictive 
modeling, and optimize therapeutic strategies, ensuring that AI-driven 
models can efficiently analyze immune system dynamics and inform 
the development of vaccines and immunotherapy strategies.

The ability of AI-driven models to efficiently analyze immune 
system dynamics is particularly valuable when studying complex 
immunological processes such as CD8+ T-cell responses to antigenic 
peptides (Wherry, 2011). For example, the unpredictable CD8+ T-cell 
response in IL-2−/− or IL-2R−/− knockout mice has historically been 
attributed to redundancy within the immune system, with IL-15 
compensating for the loss of IL-2 function (Miho et  al., 2018). 
However, AI models provide a more nuanced perspective, 
demonstrating that cytokine networks maintain stability through 
compensatory mechanisms rather than simple redundancy (Pandya 
et  al., 2021). These insights are crucial for refining immune 
intervention strategies and designing more effective immunotherapies 
(Chentoufi et al., 2011; Coulon et al., 2024; Prakash et al., 2024b; 

FIGURE 2

AI-driven workflow for immunology research. This illustration presents a structured framework outlining the role of Artificial Intelligence (AI) in 
immunology research, demonstrating how AI-driven approaches enhance immunological analysis, predictive modeling, and therapeutic development. 
The process begins with the identification of key immunological challenges, such as disease prediction and vaccine development, followed by the 
collection and preprocessing of immunological datasets, including gene expression profiles and protein interactions. Feature selection then plays a 
crucial role in identifying relevant biomarkers and immune-related variables to improve model accuracy. Once the data is prepared, machine learning 
and deep learning models are built and trained on immune system datasets to recognize patterns and predict immune responses. The trained models 
undergo evaluation and optimization using performance metrics like ROC-AUC and precision-recall curves to ensure accuracy and reliability. 
Ultimately, these AI-driven models are applied in real-world immunology research, enabling advancements in personalized medicine, immunotherapy, 
and vaccine optimization. By integrating AI techniques into immunology, researchers can gain deeper insights into immune system behavior, develop 
more effective therapeutic interventions, and refine disease treatment strategies.
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Prakash et al., 2024a; Zayou et al., 2025; Prakash et al., 2021). The 
immune system is an extraordinarily complex network of interacting 
cells and molecules that function collectively to mediate immune-
protective, immune-pathologic, or immune-evasion responses against 
infectious pathogens or cancers (Ganusov et al., 2011). This includes, 
for example, the induction of cytotoxic CD8+ T cells that eliminate 
HIV-infected target cells or inhibit the proliferation of tumor cells in 
breast cancer (Toussaint et al., 2008). AI-based modeling has proven 
to be invaluable in identifying key regulatory interactions governing 
immune responses, including cytokine and chemokine signaling at 
infection or tumor sites, antigen-presenting cell (APC) activation and 
migration, antigen presentation to T cells, and CD4+/CD8+ T-cell 
cooperation with dendritic cells in infected or tumor tissues and 
lymph nodes (Terry and Chaplain, 2011). We  have presented a 
mathematical model of the CD8+ T cell response to viral infections, 
highlighting the interplay of positive and negative feedback loops in 
immune regulation (Figure 3). AI-driven models enhance traditional 
frameworks by dynamically adapting to experimental data and 
refining predictions regarding T cell activation, viral replication, and 
immune clearance. Unlike static models, AI-based simulations 
integrate real-time immune data, identifying patterns of viral 
persistence, immune exhaustion, and immune evasion that were 
previously difficult to capture (Chentoufi et al., 2011; Coulon et al., 
2024; Prakash et al., 2024b; Prakash et al., 2024a; Zayou et al., 2025; 
Prakash et al., 2021). By leveraging machine learning algorithms, AI 
enhances our understanding of immune checkpoints, cytokine 
signaling, and antigen presentation, allowing for the refinement of 
predictive models for disease progression and therapeutic 
interventions (Davenport et al., 2004).

Despite advancements in AI-driven immunology, challenges 
persist in bridging experimental data with computational modeling. 
Many immunologists struggle to fully grasp the complexity of 

AI-driven immune simulations, mainly due to the limitations of 
current immunological assays and the uncertainty in interpreting 
observed phenomena (Callard and Yates, 2005). AI frameworks must 
continuously improve by integrating multi-omics datasets, refining 
immune system simulations, and enhancing data-driven decision-
making processes (Barron et al., 1994; Lairson et al., 2003; Pepose 
et al., 2006; Sykakis et al., 2013). The development of user-friendly 
AI-driven software tools in the past two decades has empowered 
immunologists to explore computational models with greater 
accessibility. These tools facilitate real-time data integration, enabling 
researchers to test hypotheses through predictive immune modeling. 
However, one major challenge is that many AI-driven models rely on 
predefined assumptions and parameter tuning that may not accurately 
reflect the real-world behaviors of the immune system. This has led to 
an increasing body of work where AI-generated predictions have been 
overinterpreted, sometimes without direct experimental validation.

AI-based simulations have also been employed to study B-cell and 
T-cell responses, offering a more biologically relevant representation 
of adaptive immunity compared to static models (Miho et al., 2018). 
Unlike traditional mathematical frameworks that often omit key 
immunological interactions, AI-driven immunology incorporates 
large-scale immune cell interactions, antigen processing, and host-
pathogen dynamics, ensuring a more realistic and holistic 
understanding of immune responses. AI models are now advancing 
to simulate multi-dimensional immune responses, including the 
simultaneous calculation of speeds for multiple immune pathways, the 
dynamics of T-cell proliferation, and interaction modeling between 
Th1, Th2, and Th17 responses. Unlike previous models, AI enables 
real-time tracking of antigen presentation, immune exhaustion 
dynamics, and cross-reactivity in vaccine design. While immunologists 
often express concern when AI models do not incorporate all known 
variables of the immune system, these models can still be invaluable 

FIGURE 3

AI-driven mathematical model of CD8+ T cell response to viral infections: T (Blue) – CD8+ T cells that recognize and eliminate infected cells; I (Red) – 
Virus-infected cells that replicate and produce viral particles; E (Green) – Effector immune cells (e.g., activated CD8+ T cells); V – Free virus particles 
that infect host cells; βT – Rate at which virus infects host cells and generates infected cells (I); βTV – Interaction coefficient representing how CD8+ T 
cells (T) are stimulated by viral load (V); p – Rate of virus production by infected cells (I); κIE – Killing rate of infected cells (I) by effector T cells (E); ρI – 
Stimulation coefficient, representing the activation of effector immune cells (E) by infected cells (I); Cv – Clearance rate of virus (V) due to immune 
response.
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for hypothesis testing (Eftimie et al., 2016). AI-driven frameworks can 
identify immune pathways that are unlikely to be effective, allowing 
researchers to focus experimental efforts on the most promising 
targets. In clinical applications, AI models have proven beneficial in 
optimizing vaccine development, reducing the number of 
experimental groups, refining immunization schedules, and predicting 
long-term immune memory formation (Greiff et al., 2015). AI-driven 
models are revolutionizing immunology by offering predictive power 
at every stage of immune research, from experimental design to 
therapeutic development (Pulendran and Davis, 2020). Unlike 
traditional computational approaches, AI integrates multi-
dimensional immune data to identify key regulatory mechanisms, 
predict immune outcomes, and refine treatment strategies (Villani 
et al., 2018). AI enhances immunological research by providing real-
time predictive insights into immune dynamics, enabling rapid 
adjustments to experimental design and protocols. This allows the 
identification of key immune interactions that drive disease 
progression, leading to more targeted 
immunotherapeutic interventions.

Additionally, AI improves vaccine and drug development by 
allowing data-driven optimization of immunization strategies and 
treatment protocols. To maximize the potential of AI in immunology, 
interdisciplinary collaboration is critical; AI scientists, immunologists, 
and clinicians must work together to ensure that AI-driven predictions 
align with real-world immunological mechanisms (Wouters et al., 
2020). By advancing AI-based immune modeling, the scientific 
community can accelerate breakthroughs in precision medicine, 
immunotherapy, and vaccine development, ultimately leading to 
improved patient outcomes and disease management (Gao 
et al., 2024).

1.2 AI-driven modeling for phenotype, 
differentiation, and classification of 
diseases and cancers

Artificial intelligence (AI) is revolutionizing the fields of disease 
phenotyping, patient stratification, and cancer classification, driving 
a paradigm shift toward precision medicine. AI models, particularly 
those based on advanced architectures such as convolutional neural 
networks (CNNs), graph neural networks (GNNs), generative 
adversarial neural networks (GAN), and transformer-based 
approaches, have demonstrated an unprecedented capacity to 
integrate and analyze complex multi-modal datasets, including 
genomics, transcriptomics, proteomics, radiomics, and clinical 
records (Li et  al., 2024; Garg et  al., 2024). In the context of 
neurodegenerative diseases, such as Alzheimer’s disease (AD) and 
mild cognitive impairment (MCI), AI-driven systems have enhanced 
diagnostic accuracy by distinguishing subtle differences in cognitive 
decline trajectories that are often imperceptible to human evaluators 
(Tascedda et al., 2024; Borchert et al., 2023). Recent studies employing 
GNNs, and deep learning models have successfully mapped patient 
similarities based on cognitive, genetic, and neuroimaging features, 
achieving higher predictive power in differentiating between AD, 
MCI, and healthy controls compared to conventional methods 
(Tascedda et al., 2024). In oncology, AI algorithms have enabled the 
classification of tumors by extracting hidden patterns from 
histopathological images and molecular signatures, facilitating the 

identification of prognostic biomarkers and informing therapeutic 
decision-making. These AI-guided stratification models not only 
replicate existing diagnostic pathways but also uncover novel disease 
subtypes and phenotypic variations that were previously unrecognized, 
thereby opening new avenues for targeted therapy development. 
Notably, by learning directly from large, heterogeneous patient 
datasets, AI systems are mitigating the biases inherent in traditional 
clinical decision-making and enabling a more individualized and 
equitable approach to healthcare delivery. Collectively, the integration 
of AI into disease differentiation and classification workflows 
represents a transformative advancement in the biomedical sciences, 
enabling earlier detection, improved prognostication, and 
personalized interventions that are poised to improve patient 
outcomes across a spectrum of complex diseases significantly.

1.2.1 AI-driven modeling for vaccine and 
immunotherapy design

Artificial intelligence (AI)-driven modeling has been extensively 
applied to optimize and enhance immunotherapeutic vaccine 
strategies against infectious pathogens and cancers while also 
evaluating their efficacy, as illustrated in Figures 4A,B. As illustrated 
in Figure 4A, the hierarchical structure of AI, encompassing machine 
learning (ML) and deep learning (DL), highlights their distinct roles 
in immunological research. AI serves as the overarching framework, 
integrating computational models to predict immune responses and 
support the design of vaccines. Machine learning (ML) methods are 
used to identify patterns in immune-related data, while deep learning 
(DL) techniques model complex immune interactions and uncover 
critical regulatory pathways. Together, these approaches provide a 
robust foundation for data-driven vaccine development. AI models 
are used to predict the magnitude of immune responses across various 
immune cell populations in vitro. Due to the inherent uncertainty in 
predicting the nature of immune responses elicited by a given vaccine, 
multiple AI-driven models are applied. Results from subsequent 
experimental testing help to validate AI models, allowing for the 
rejection of inaccurate assumptions while refining those that best align 
with observed immune responses. This iterative approach enhances 
the understanding of immune mechanisms underlying vaccine 
efficacy. AI-validated models are then utilized to optimize vaccine 
delivery strategies, thereby enhancing immunization effectiveness and 
reducing the need for unnecessary experimental trials. Compared to 
conventional drug development, vaccine development is a lengthy and 
costly process that requires extensive laboratory experiments to assess 
safety, immunogenicity, and efficacy. Compared to traditional vaccine 
development, which relies on trial-and-error antigen screening, 
AI-driven methods leverage predictive modeling to optimize vaccine 
formulation. AI algorithms integrate multi-omics datasets, simulate 
immune responses, and identify the most promising epitope 
candidates for immunization. This computational approach reduces 
vaccine development time, lowers costs, and enhances success rates by 
filtering out ineffective candidates before clinical trials.

AI-driven modeling substantially reduces costs by eliminating 
redundant experiments and narrowing down vaccine candidates 
before clinical trials. As immunological efficacy is demonstrated 
through preclinical and clinical trials, one major challenge remains: 
determining the optimal vaccine dosage. AI-based approaches 
systematically explore optimal dosing strategies and vaccination 
schedules, predicting reductions in vaccine injections by 
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approximately 30% compared to traditional in vivo experiments. The 
comparison between conventional and AI-driven immunotherapy 
development highlights the significant improvements AI brings to 
drug discovery. Traditional immunotherapy approaches typically take 
around 6 years (72 months) and cost an estimated $500 million per 
drug, with a low success rate of approximately 10%, as many drug 
candidates fail to progress beyond early trial stages (Wouters 
et al., 2020).

In contrast, AI-driven methods leverage deep learning and 
predictive modeling to reduce development time to about 2 years 
(24 months) and lower costs to around $150 million per drug while 

increasing the success rate to approximately 30% (Wouters et  al., 
2020). AI achieves these improvements by optimizing the selection of 
drug candidates, identifying potential failures earlier, and accelerating 
the overall research pipeline. Studies report that AI-driven approaches 
significantly enhance the efficiency of early-stage drug discovery, 
reducing costs by up to 70–80% while improving screening accuracy 
(Ekins et al., 2019). These findings demonstrate the transformative 
impact of AI in immunotherapy, offering faster, more cost-effective, 
and higher-success drug development pathways (Lo et al., 2014).

A critical component of AI-driven vaccine development is the 
integration of specialized AI models that address key aspects of 

FIGURE 4

Growth of AI-driven research in immunology (2015–2024). (A) Conceptual representation of the hierarchical relationship among Artificial Intelligence 
(AI), Machine Learning (ML), and Deep Learning (DL) in the context of immunological applications. AI serves as the broadest category, encompassing 
ML techniques that identify patterns in immune-related datasets. DL, a specialized subfield of ML, is used to model complex immune responses and 
uncover pathways critical for vaccine efficacy and immune regulation. (B) The integration of Artificial Intelligence (AI) in immunology has undergone 
significant expansion over the past decade. The number of publications in this field has grown from just over 100 articles per year in 2015 to over 
1,500 in 2024, highlighting the increasing role of AI in immunological research and its applications in vaccine design, immune response modeling, and 
precision medicine. This diagram was generated based on keyword searches such as “AI in immunology,” “machine learning in immunology,” and 
“deep learning in immune research” from the PubMed database. The search encompassed peer-reviewed articles, systematic reviews, and conference 
proceedings related to AI-driven immunological studies. The data reflects the rising trend in AI applications, including areas such as predictive immune 
modeling, AI-assisted diagnostics, and computational vaccine development. The exponential rise in publications post-2020 aligns with breakthroughs 
in deep learning, large-scale immunological datasets, and AI-driven drug discovery, indicating a paradigm shift in how computational tools are being 
utilized in immunology. The projected increase in AI-based studies suggests continued advancements in immune system modeling, personalized 
immunotherapy, and AI-enhanced vaccine development strategies.
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immune response prediction and vaccine formulation. These models 
ensure that vaccine candidates elicit broad and durable immune 
protection. The Antigen/Epitope Prediction Model (Figure  1A) 
utilizes transformer-based deep learning to identify conserved B-and 
T-cell epitopes across multiple viral variants, integrating genomic, 
structural, and immunological datasets to optimize vaccine targets. 
The Epitope Classification Model (Figure 1B) utilizes convolutional 
neural networks (CNNs) to classify protective versus non-protective 
immune responses based on symptomatic and asymptomatic patient 
datasets, thereby refining epitope selection for enhanced 
immunogenicity. The Epitope Selection & Optimization Model 
(Figure  1C) incorporates a multi-task autoencoder to prioritize 
epitopes that exhibit high immunogenic potential while minimizing 
immune escape risks. This model integrates HLA-affinity screening, 
single-cell RNA sequencing, and interaction probability maps to 
enhance vaccine design and development. The AI-driven multi-
epitope Vaccine Model (Figure 1D) employs generative adversarial 
networks (GANs) to refine multi-epitope vaccine formulations, 
ensuring the inclusion of high-affinity epitopes optimized for antigen 
presentation and immune activation.

Beyond epitope selection, AI-driven models also predict vaccine 
durability by analyzing immune exhaustion and antigenic persistence. 
AI models have demonstrated that prolonged antigen exposure 
without adequate control can lead to T cell exhaustion, characterized 
by the upregulation of inhibitory markers such as PD-1 and TIM-3, 
which ultimately impairs vaccine-induced immunity (Wu et al., 2011). 
This is particularly relevant for vaccines targeting chronic infections, 
such as herpesvirus-based vaccines, where AI-driven approaches 
underscore the need for targeted immune stimulation at viral 
reactivation sites, including the trigeminal and sacral ganglia. 
AI-driven models suggest that optimizing localized immune responses 
at these sites enhances protective immunity, surpassing the efficacy of 
systemic immune activation alone. The role of AI in peptide-based 
vaccine development has also been extensively studied. AI models 
assist in designing peptide-based CD8+ T cell vaccines against HSV, 
HIV-1, SARS-CoV-2, and malaria, predicting optimal short peptide 
epitopes that exhibit high binding affinity to MHC class I molecules 
(Ganusov et al., 2011; Chentoufi et al., 2011; Prakash et al., 2024b). 
Compared to whole-protein vaccines, epitope-based vaccines offer 
greater immunogenic precision, enabling the inclusion of multiple 
immunodominant and subdominant epitopes within a single 
antigenic formulation. However, one of the significant challenges in 
epitope-based vaccine design is the high degree of HLA 
polymorphism, which could limit broad population coverage. 
AI-driven modeling addresses this limitation by incorporating 
supertype-restricted epitopes recognized by diverse HLA alleles. For 
example, AI models predict that a Th-CTL peptide-based herpes 
vaccine should include multiple CD8+ T cell epitopes derived from 
herpesvirus proteins, designed to cover HLA-A2, HLA-A3, and 
HLA-B7 supertypes, which collectively ensure immune recognition in 
a large portion of the global population (Barron et al., 1994; Lairson 
et al., 2003; Pepose et al., 2006; Sykakis et al., 2013). By leveraging 
AI-driven epitope mapping, researchers can identify HLA class 
I-degenerate T cell epitopes, facilitating the development of multi-
epitope Th-CTL peptide vaccines with broad immunogenicity 
(Figure 5A).

The selected CD8+ T cell epitopes target HLA-A2, HLA-A3, 
and HLA-B7 supertypes, which are among the most prevalent 

across global populations. For example, the HLA-A*02:01 allele 
(within the A2 supertype) occurs in approximately 20–50% of 
individuals in European, East Asian, and Latin American 
populations (Solberg et al., 2008). Similarly, HLA-A3 and HLA-B7 
supertypes are moderately prevalent in many populations 
worldwide (Sidney et  al., 2008). Together, these supertypes fall 
within a group of nine primary HLA class I supertypes (A1, A2, 
A3, A24, B7, B27, B44, B58, and B62) that collectively cover over 
95% of the global population in terms of epitope-binding potential 
(Greenbaum et  al., 2011). This high cumulative population 
coverage underscores the strategic value of selecting epitopes that 
bind to A2, A3, and B7 supertypes for the design of a broadly 
protective vaccine.

AI-driven modeling has also proven instrumental in 
understanding co-infections and their impact on immune responses. 
Many individuals harbor multiple pathogens simultaneously, leading 
to both positive and negative immuno-synergies between infections. 
AI-based models have been applied to study the dynamics of 
co-infections, optimizing vaccine formulations for individuals affected 
by multiple pathogens. For instance, AI-driven models addressing 
HSV-HIV co-infections provide valuable insights into immune 
evasion mechanisms and highlight novel immunotherapeutic targets 
that traditional approaches may overlook. These findings have broad 
implications for vaccine design strategies, particularly in 
immunocompromised populations. By integrating AI into vaccine 
development, researchers can enhance vaccine efficacy, refine 
immunization schedules, and minimize immune escape mechanisms. 
AI-driven approaches ensure that vaccine candidates undergo 
rigorous computational and experimental validation, allowing for 
faster, more effective, and scalable vaccine development to combat 
emerging infectious diseases. As AI technologies continue to advance, 
their integration with immunology is expected to play a crucial role 
in the development of next-generation, personalized, and precision-
based vaccines.

1.2.1.1 Use of artificial intelligence in the development of 
vaccines and immunotherapeutics for infectious diseases

Artificial intelligence (AI) has significantly transformed the 
landscape of vaccine and immunotherapy development for infectious 
diseases by enabling data-driven, precise, and scalable approaches to 
epitope discovery, immune response prediction, and vaccine 
formulation. Traditional approaches to vaccine development rely on 
labor-intensive and time-consuming processes involving empirical 
screening of pathogen proteins, often resulting in limited success and 
inefficiencies. AI addresses these limitations by incorporating deep 
learning, machine learning, and natural language processing 
techniques that integrate diverse immunological and omics datasets 
to inform rational vaccine design (Anderson et  al., 2025). In the 
context of infectious diseases such as malaria, HIV, tuberculosis, 
influenza, and dengue, AI models are deployed to predict and 
prioritize B-and T-cell epitopes with high immunogenic potential, 
cross-strain conservation, and strong major histocompatibility 
complex (MHC) binding affinities (Peters et  al., 2020). These 
predictions are based on genomic, transcriptomic, proteomic, and 
structural data that reflect the evolution of pathogens and the 
dynamics of host immune responses. Transformer-based deep 
learning architectures and convolutional neural networks (CNNs) 
have been used to identify and rank epitopes that are most likely to 
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elicit durable and protective immune responses, as illustrated in 
Figures 6A,B.

Moreover, AI facilitates reverse vaccinology, an approach that 
begins with pathogen genome sequences to identify antigens suitable 
for vaccine development computationally. By leveraging reverse 
vaccinology pipelines powered by AI, researchers have designed 
multi-epitope vaccine candidates for complex pathogens, including 
Plasmodium falciparum (malaria), Mycobacterium tuberculosis, and 
HIV-1 (Hashempour et  al., 2024). Recent research has also 
demonstrated that AI-driven approaches can successfully identify 
immune response signatures associated with novel vaccine 
formulations. For example, Chaudhury et al. used machine learning 
to analyze transcriptomic and proteomic data from vaccine-treated 
samples, enabling the discovery of biomarkers that predict adjuvant 
potency and immune pathway activation. This study underscores the 
power of AI to integrate high-dimensional immune datasets, classify 
vaccine efficacy outcomes, and inform the rational design of next-
generation vaccines with tailored immunostimulatory properties 
(Chaudhury et al., 2018). A notable application of AI in the context of 
infectious disease vaccines is the use of computational modeling to 
predict immune responses to booster immunizations. For example, 
Shinde et al. conducted an international challenge that benchmarked 
49 machine-learning models for predicting individual responses to 

Bordetella pertussis booster vaccines using multi-omics datasets. The 
study demonstrated that models designed explicitly for the pertussis 
vaccine task, particularly those incorporating multi-omics integration, 
dimensionality reduction, and nonlinear modeling, performed 
significantly better than generic models borrowed from other settings. 
This underscores the value of AI-guided, context-specific model 
development in predicting vaccine outcomes and optimizing booster 
design for infectious diseases (Tascedda et al., 2024). AI also enables 
the prediction of population coverage by accounting for global HLA 
polymorphism, thereby ensuring that selected epitopes offer broad 
protection across ethnically diverse groups. AI also plays a crucial role 
in modeling the impact of co-infections and immune modulation. In 
populations affected by latent or concurrent infections, such as 
HSV-HIV or malaria-HIV, immune responses to one pathogen can 
dampen or enhance the response to another. AI models simulate these 
interactions and reveal mechanisms of immune evasion, dysregulation, 
and synergistic immunopathology that conventional models often 
miss (Sorci et  al., 2013). These insights facilitate the design of 
combinatorial immunotherapies and vaccines that account for real-
world complexity.

Generative models, particularly generative adversarial networks 
(GANs), have demonstrated effectiveness in refining the design of 
multi-epitope vaccines. As illustrated in Figure 1D, GANs generate 

FIGURE 5

AI-driven insights into tumor-immune interactions and memory T cell differentiation. (A) AI’s Role in Tumor-Immune Interactions and Checkpoint 
Blockade: This panel illustrates how Artificial Intelligence (AI) supports understanding and optimization of tumor-immune interactions, particularly in 
regulating immune checkpoint inhibitors. Tumor cells suppress T cell activity through checkpoint pathways such as PD-1/PD-L1 and CTLA-4. AI 
models predict optimal checkpoint blockade strategies by identifying patient-specific responses, discovering biomarkers, and enhancing the efficacy 
of combination immunotherapies. Integration of multi-omics data (genomics, transcriptomics, proteomics) via AI enables personalized 
immunotherapy with improved efficacy and reduced toxicity. (B) AI Insights into Memory T-Cell Differentiation: This panel illustrates the role of AI in 
guiding the differentiation of memory T cells. Following antigen exposure, naïve T cells activate and differentiate into effector and memory T cells. AI 
enhances this process by predicting activation based on TCR signaling, analyzing differentiation markers, and optimizing memory formation. AI models 
trained on single-cell RNA sequencing and epigenetic data uncover pathways critical for long-term immune protection, informing vaccine 
development and cancer immunotherapies. (C) Interaction Between Dendritic Cells and T Cells in Antigen Presentation. This illustration depicts the 
crucial role of dendritic cells (DCs) in bridging innate and adaptive immunity through antigen presentation. The dendritic cell presents antigens to CD4+ 
T cells via MHC class II molecules, which are recognized by the T cell receptor (TCR) in conjunction with the CD4 co-receptor, facilitating the 
activation of helper T cells. Simultaneously, CD8+ T cells recognize antigens presented on MHC class I molecules, with the TCR engaging the complex 
alongside the CD8 co-receptor, resulting in the activation of cytotoxic T cells. This dual interaction is essential for initiating and coordinating immune 
responses, enabling helper T cells to support other immune cells and cytotoxic T cells to eliminate infected or malignant cells.
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realistic peptide sequences that meet criteria for antigenicity, 
immunogenicity, MHC binding, and minimal self-reactivity. The 
resulting constructs are tailored to induce robust CD8+ and 
CD4 + T-cell responses, which are crucial for long-term immunity 
and pathogen clearance (Li et al., 2021). Importantly, AI is now being 
used not only for vaccine discovery but also for adaptive optimization 
during outbreaks. Real-time surveillance data, pathogen mutations, 
and immune response metrics are fed into AI systems that 
continuously update antigen selection and vaccine design. This 
approach has been particularly effective in dealing with rapidly 
mutating viruses, such as influenza and SARS-CoV-2, and has 
implications for emerging diseases like the Nipah virus and Zika. 
Collectively, these advancements underscore AI’s pivotal role in 
facilitating faster, more targeted, and cost-effective vaccine 
development pipelines for infectious diseases. As AI algorithms 
continue to evolve and integrate with high-resolution immunological 
datasets, their utility in both prophylactic and therapeutic vaccine 
strategies is expected to expand dramatically.

1.2.1.2 Use of artificial intelligence in pan-coronavirus 
vaccine development

The COVID-19 pandemic accelerated the application of artificial 
intelligence (AI) in vaccine research and development on a global 
scale. Within weeks of the release of the SARS-CoV-2 genome 
sequence, AI tools were deployed to analyze viral protein structures, 

identify B-and T-cell epitopes, and model immune responses for 
candidate vaccine designs (Arora et al., 2021). This rapid integration 
of AI in vaccine research helped compress the typical development 
timeline from years to months, showcasing the potential of AI to 
address urgent global health crises. In recent years, severe outbreaks 
of SARS-CoV-2 (COVID-19), Ebola, Lassa, Zika, and other emerging 
viruses have highlighted both the world’s vulnerability to novel 
pathogens and the urgent need for rapid vaccine innovation 
frameworks (Olawade et al., 2024; Arora et al., 2021).

AI-powered systems have also been applied to predict cross-
reactive memory B-and T-cell responses, which play a critical role in 
SARS-CoV-2 immunity. Studies show that some individuals exposed 
to SARS-CoV-2 remain seronegative because of pre-existing cross-
reactive CD4+ and CD8+ T cells, which target conserved non-structural 
proteins (NSPs) such as those in the replication-transcription complex 
(RTC), expressed early in the viral lifecycle (Diniz et  al., 2022). 
Additionally, cross-reactive memory B cells have been shown to 
recognize conserved regions, such as the S2 domain of the spike 
protein, the nucleocapsid (N) protein, and the membrane (M) protein, 
facilitating rapid neutralizing antibody responses upon viral exposure 
(Dobano et al., 2021). Recent AI frameworks have supported these 
findings by integrating deep learning-based epitope prediction, 
classification, optimization, and vaccine formulation to identify 
conserved viral regions that are broadly recognized by human 
immune memory. This approach allows us to systematically select 

FIGURE 6

Antigen/epitope prediction model workflow. This figure illustrates the structured workflow of the transformer-based deep learning model used for 
antigen and epitope prediction. The pipeline begins with input data, consisting of viral protein sequences and epitope data, which undergo 
preprocessing to extract relevant features. The dataset is then split into training (80%) and testing (20%) subsets to ensure proper model generalization. 
The transformer-based model is trained and fine-tuned using deep learning techniques to improve prediction accuracy. Finally, the model undergoes 
performance evaluation using metrics such as Accuracy, Recall, and F1-score, providing insight into the reliability of predicted immunogenicity scores. 
This structured approach ensures that the model accurately distinguishes between highly immunogenic and non-immunogenic epitopes, facilitating 
the selection of vaccine targets.
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epitopes that ensure long-term immune memory and broad protection 
against existing and future variants.

In parallel, AI contributed to real-time genomic surveillance by 
continuously scanning viral mutation patterns in global sequence 
databases such as GISAID and modeling their implications for vaccine 
escape. Reinforcement learning and adaptive modeling helped inform 
the optimal timing of booster administration, ideal dosing intervals, 
and heterologous prime-boost strategies, particularly for high-risk 
populations and immunocompromised individuals (Arora et al., 2021; 
Lytras et al., 2025). Beyond immunological modeling, AI improved 
vaccine rollout logistics by optimizing cold-chain infrastructure, 
anticipating regional demand based on demographic data, and 
simulating vaccine distribution under multiple disruption scenarios. 
These insights supported more equitable vaccine access and 
highlighted the potential of AI to guide end-to-end pandemic 
response strategies (Mellado et al., 2021).

Taken together, AI-driven approaches to SARS-CoV-2 vaccine 
development and pandemic mitigation represent a paradigm shift in 
how vaccines are designed, tested, and deployed. The integration of 
predictive immunology, population-specific modeling, and real-time 
response systems now serves as a blueprint for responding to emerging 
global health threats more effectively and equitably (Arora et al., 2021).

In addition to traditional deep-learning approaches, recent 
developments have introduced transformer-based architectures and 
advanced machine-learning tools that significantly enhance epitope 
prediction and vaccine candidate selection. For instance, EpiBERTope 
leverages a BERT-based pre-trained language model to predict both 
linear and structural B-cell epitopes, effectively capturing long-
distance protein interactions and thereby improving the 
interpretability and accuracy of predictions (Park et  al., 2023). 
Meanwhile, Vaxign-ML integrates multiple machine learning 
algorithms, including deep neural networks, to rapidly evaluate and 
prioritize vaccine candidates based on antigenicity and host-pathogen 
interaction features. It has been successfully applied to emerging 

pathogens such as Nipah and Ebola viruses (Ong et al., 2020a). These 
tools support the development of pan-variant vaccine strategies by 
identifying conserved immune targets that remain effective against 
highly mutable viral lineages (Escalera et al., 2024). To further clarify 
the breadth and capabilities of AI approaches discussed above, Table 1 
summarizes the main classes of AI techniques, their specific 
applications in vaccine development, key advantages and limitations, 
and representative studies. This overview provides a structured 
reference for researchers and practitioners seeking to adopt or 
compare AI-driven strategies in immunological modeling and 
vaccine research.

1.2.1.3 Use of artificial intelligence in the development of 
vaccines and immunotherapeutics for cancers

Cancer immunotherapy represents a rapidly evolving frontier in 
precision medicine; however, it is still hindered by the biological 
complexity of tumors, their heterogeneity, and their capacity for 
immune evasion. Artificial intelligence (AI) has emerged as a 
transformative tool in this domain, enabling researchers to decipher 
complex tumor-immune dynamics, discover new immunotherapeutic 
targets, and develop personalized cancer vaccines. AI systems leverage 
vast datasets, including single-cell RNA sequencing, multi-omics 
profiles, and digital pathology images, to uncover hidden patterns and 
generate predictive models that guide therapeutic design and response 
prediction (Li et al., 2023). One of the most impactful applications of 
AI in cancer immunotherapy is the identification of tumor-specific 
neo-antigens. These are peptides that arise from tumor-specific 
mutations, which are absent in normal tissues. Using deep learning 
models trained on patient tumor sequences, AI can predict which 
neoantigens will be strongly presented on major histocompatibility 
complex (MHC) molecules and elicit robust CD8+ T cell responses. 
This approach has allowed the design of individualized cancer 
vaccines tailored to each patient’s tumor mutational landscape 
(Bhinder et al., 2021). Additionally, AI supports the development of 

TABLE 1 Summary of key AI approaches in vaccine development.

AI approach Application Advantages Limitations Representative studies

EpiBERTope (transformer-

based)

Predicts linear and structural 

B-cell epitopes using 

transformer models

Captures long-distance protein 

interactions; high 

interpretability

Requires large training data; 

computationally intensive

Park et al. (2023)

Ensemble ML (e.g., vaxign-

ML)

Identifies and prioritizes 

vaccine candidates based on 

antigenicity and host-pathogen 

features

Integrates multiple algorithms; 

robust for novel pathogens

May suffer from overfitting in 

small datasets

Ong et al. (2020a)

NetMHCpan (MHC binding 

predictor)

Predicts peptide binding 

affinity to MHC class I and II 

molecules

High binding prediction 

accuracy; widely validated

Dependent on HLA allele 

diversity in training data

Birkir et al. (2020)

VaxiJen Predicts protective antigens 

without sequence alignment

Fast and alignment-free; simple 

implementation

Lower accuracy for complex 

antigens

Doytchinova and Flower (2007)

IntegralVac (machine 

learning-based)

Designs comprehensive 

multivalent epitope vaccines 

using ensemble learning and 

multi-feature fusion

Integrates multiple features 

(antigenicity, immunogenicity, 

allergenicity); identifies CD4+, 

CD8 + T-cell, and B-cell 

epitopes; uses voting-based 

ensemble methods

May not generalize to all 

pathogens without sufficient 

epitope data; performance 

depends on dataset diversity

Suri and Dakshanamurthy (2022)

https://doi.org/10.3389/frai.2025.1620572
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elfatimi et al. 10.3389/frai.2025.1620572

Frontiers in Artificial Intelligence 13 frontiersin.org

shared antigen vaccines by identifying conserved epitopes across 
tumor types with high immunogenicity and low off-target toxicity. AI 
also enhances immunotherapy by improving the selection and 
application of immune checkpoint inhibitors, such as anti-PD-1 and 
anti-CTLA-4 therapies. As shown in Figure 1A, machine learning 
models can analyze transcriptomic and spatial tumor data to identify 
biomarkers predictive of response or resistance, guiding patient 
stratification and combination therapy strategies (Topalian et  al., 
2016). Beyond checkpoint blockade, AI predicts the dynamics of 
memory T cell generation, exhaustion, and reactivation, as illustrated 
in Figure 1B, facilitating a more accurate prediction of therapeutic 
durability. Unlike conventional mathematical modeling, AI 
approaches can simulate immune responses in high-dimensional 
spaces, incorporating diverse immune cell types, spatial distribution, 
cytokine gradients, and tumor antigen evolution. These models move 
beyond oversimplified predator–prey dynamics and instead embrace 
the nonlinear and context-dependent nature of immunological 
interactions. AI tools are now being used to simulate how tumors 
shape their microenvironment through immunosuppressive signals 
and how therapy modifies this balance.

In vaccine design, AI-driven algorithms have significantly 
advanced the selection of cancer-associated epitopes. Machine 
learning platforms screen thousands of peptide candidates for MHC 
binding, immunogenicity, and mutation frequency. GANs and 
transformer-based models refine peptide sequences for maximal 
immunogenic potential while reducing the risk of autoimmune 
responses. These models also help ensure coverage across diverse HLA 
types by incorporating supertype-based epitope selection, especially 
for HLA-A2, HLA-A3, and HLA-B7, enhancing global applicability 
(Suri and Dakshanamurthy, 2022). Emerging studies also explore the 
role of AI in combining cancer vaccines with other immunotherapies, 
such as oncolytic viruses and CAR-T cells. AI can model synergistic 
effects, predict resistance mechanisms, and guide adaptive dosing 
regimens (Li et al., 2023; Guedan et al., 2019).

Furthermore, digital pathology integrated with AI is providing 
insights into the spatial heterogeneity within tumors, enabling clinicians 
to visualize immune infiltration zones, predict immune cold and hot 
phenotypes, and localize optimal biopsy and injection sites (Schapiro 
et  al., 2022; Lu et  al., 2021). Overall, AI is revolutionizing cancer 
immunotherapy by enabling highly personalized, adaptive, and efficient 
therapeutic strategies. As AI systems continue to integrate biological, 
clinical, and imaging data, their predictive power will enhance not only 
vaccine efficacy but also overall treatment precision, ultimately 
improving patient survival and quality of life (Zhang et al., 2023a).

1.3 AI-powered epitope prediction: model 
1 performance and results

The Antigen/Epitope Prediction Model Architecture is a 
transformer-based deep learning model designed to predict epitope 
binding affinity, immunogenicity, and conservation across viral 
strains. The architecture consists of a preprocessing module that 
converts viral protein sequences into numerical embeddings using 
amino acid encoding. This is followed by a transformer-based feature 
extractor, which captures contextual dependencies among amino 
acids, improving antigenicity prediction. The multi-task classification 
module is responsible for predicting binding affinity, conservation, 

and immunogenicity scores, while an optimization layer enhances 
predictive confidence by reducing uncertainty. To mathematically 
characterize the temporal evolution of T-cell proliferation and viral 
load dynamics in response to infection, we employ a system of 
nonlinear differential equations (Equations 1–5)

 ( ) ( )= +embf x T W x b  (1)

Where embW  is the embedding matrix, which converts input 
amino acid sequences into numerical representations, x  represents the 
input sequence, consisting of epitope fragments, T represents the 
transformer function, b is the bias term, which ensures better 
generalization by adjusting predictions independently of input values, 
especially across diverse protein sequences.

To optimize epitope prediction, the model minimizes a multi-task 
weighted cross-entropy loss, which combines three key prediction tasks:

 α β γ= + +aff imm consL L L L  (2)

Where affL  corresponds to the binding affinity loss function, immL  
represents the immunogenicity classification loss, consL  measures 
epitope conservation loss, and α, β, γ are weight coefficients that 
control the importance of each task.

For binary classification of immunogenic epitopes, we use the 
binary cross-entropy loss function, ensuring robust differentiation 
between immunogenic and non-immunogenic peptides:
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Where iy  is the true immunogenic label (1 for immunogenic, 0 for 
non-immunogenic), ˆiy is the predicted probability assigned by the 
model. N is the number of training samples. The model is optimized 
using Adam (Adaptive Moment Estimation), which dynamically 
adjusts learning rates, improving convergence speed and preventing 
unstable updates:

 ( )β β−= + −1 1 11t t tm m g  (4)

 ( )β β−= + − 2
2 1 21t t tv v g  (5)

Where tg  is the gradient at time step t, β β1 2and  are exponential 
decay rates controlling momentum updates.

Binary cross-entropy loss is particularly suited for this 
classification task because it penalizes incorrect predictions more 
heavily and works effectively in imbalanced datasets, which are 
standard in immunogenicity labeling. This loss function ensures that 
the model focuses on rare but biologically relevant immunogenic 
epitopes, enhancing prediction accuracy and reducing false negatives.

To prevent overfitting, the model incorporates dropout layers, 
randomly deactivating neurons during training. Additionally, early 
stopping is used to halt training once the validation loss stabilizes, 
ensuring efficient learning while avoiding excessive computations. To 
ensure biological relevance and computational efficiency, the model 
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follows a structured pipeline (Figure 6). Initially, input data (protein 
sequences and epitope labels) are split into training (80%) and testing 
(20%) sets. Sequences are preprocessed into deep-learning-compatible 
features. During training and fine-tuning, the model is iteratively 
optimized and validated. Fine-tuning ensures generalization to unseen 
data. The model’s performance is assessed using accuracy, precision, 
recall, and F1-score metrics that are essential for both AI researchers 
and immunologists. This structured approach maximizes prediction 
accuracy while preserving interpretability for clinical application.

Recent studies have demonstrated that deep learning methods 
significantly outperform traditional models in predicting 
immunogenic epitopes and neoantigens. For instance, Li et  al. 
developed DeepImmuno, a deep learning model that achieved an 
accuracy of over 0.88 in predicting CD8+ T-cell immunogenicity using 
a large peptide dataset, outperforming traditional machine learning 
models (Li et al., 2021). Bi et al. proposed an attention-based BiLSTM 
model for TCR-epitope binding prediction, achieving an C of 0.974 
for naïve TCR-epitope and 0.887 for specific binding, outperforming 
previous models like TCRGP and NetTCR (Bi et al., 2022). Similarly, 
Jiang et  al. developed NeoaPred, a deep-learning framework that 
incorporates structural and surface features of pHLA complexes, 
achieving an AUROC of 0.81 and AUPRC of 0.54, which demonstrates 
strong performance in neoantigen prediction (Jiang et  al., 2024). 
Rajeshwar et al. (2024) presented TCR-H, a support vector machine 
model that leverages physicochemical features and SHAP-based 
explainability, achieving AUROCs of 0.87, 0.92, and 0.89 in epitope-
hard, TCR-hard, and strict-split settings, respectively, showcasing 
robust generalizability to unseen test cases (Rajeshwar et al., 2024). 
Zhang et al. proposed iTCep, a deep learning framework that uses 
fusion features from sequence encoding strategies to predict peptide–
TCR interactions, achieving an AUC of 0.955 on the main test set and 
over 0.86 on independent datasets (Zhang et al., 2023b). Additionally, 

Montemurro et al. introduced NetTCR-2.0, a CNN-based model that 
utilizes paired TCRα and TCRβ chain sequences for predicting TCR–
peptide binding, achieving an AUROC of 0.91 and outperforming its 
predecessor, NetTCR-1.0, as well as other baselines (Montemurro 
et al., 2021). These findings collectively demonstrate that deep learning 
models, particularly those leveraging multimodal and paired-chain 
inputs, are pushing the boundaries of predictive performance in 
immunogenicity modeling.

1.3.1 Prediction performance and results
The Antigen/Epitope Prediction Model (Figure 7A) employs a 

transformer-based deep learning approach to predict epitope binding 
affinity, immunogenicity, and conservation across various viral strains. 
The model was trained over 100 epochs (Figure  7), achieving a 
training accuracy of 0.993 and a validation accuracy of 0.935. Training 
loss stabilized at 0.049, while validation loss remained at 0.032, 
indicating strong generalization capability. These metrics demonstrate 
the model’s high efficiency in learning patterns within antigen 
sequences, enabling it to distinguish immunogenic from 
non-immunogenic regions with high confidence. Model performance 
(Figure  7) shows impressive learning behavior. The classification 
report (Supplementary Figure S1B) indicates a precision of 0.97, a 
recall of 0.98, and an F1-score of 0.98. This means that when the 
model predicts an epitope as immunogenic, it is correct 97% of the 
time, minimizing false positives. Its high recall ensures nearly all true 
epitopes are identified, avoiding the loss of promising candidates.

The confusion matrix (Supplementary Figure S1A) supports these 
results, showing 2,448 true negatives and 2,434 true positives, with 
only 65 false negatives and 53 false positives. This high specificity and 
sensitivity are vital in vaccine research, where overlooking an 
immunogenic epitope (false negative) or selecting a weak candidate 
(false positive) can hinder vaccine development. The model also 

FIGURE 7

Training and validation performance of the antigen/epitope prediction model: (A) Loss and (B) Accuracy. This figure presents the training performance 
metrics of the antigen/epitope prediction model. The left graph displays the training and validation loss over 100 epochs, where both losses decrease 
progressively, indicating stable optimization. The validation loss stabilizes at 0.032, demonstrating strong generalization without overfitting. The right 
graph showcases training and validation accuracy, which steadily improved, reaching 0.993 training accuracy and 0.935 validation accuracy. These 
results confirm that the model effectively learns to recognize key features of immunogenic and non-immunogenic epitopes while maintaining high 
reliability across validation data. The minimal gap between training and validation curves highlights robust model performance, ensuring applicability 
for real-world antigen screening.
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identifies top-ranking CD8+ T-cell epitopes based on binding affinity 
and conservation scores (Supplementary Figure S2B). The epitope 
YLQPRTFLL (HLA-A*02:01) showed the most substantial potential, 
with a binding affinity of 35.7 nM and a conservation of 94.5%. 
Similarly, TTDPSFLGRY (HLA-B*07:02) achieved high affinity at 
22.1 nM, making it broadly relevant across populations. A strong 
binding affinity ensures that antigen-presenting cells (APCs) 
effectively present antigens to T-cells, enabling a robust immune 
response. By identifying epitopes with both high affinity and 
conservation, the model streamlines experimental validation.

Reliable evaluation of AI models in immunology requires rigorous 
and standardized validation frameworks. Commonly used metrics 
include accuracy, precision, recall, and the F1 score 
(Supplementary Figure S2B), as well as the area under the receiver 
operating characteristic curve (AUC-ROC) (Figure 7) for classification 
tasks such as epitope binding prediction. For regression-based 
predictions (e.g., peptide–MHC affinity scores), mean squared error 
(MSE) and R2 values are typically used. Calibration curves help assess 
the reliability of predicted probabilities, while SHAP values, attention 
maps, and other explainability tools are increasingly used to interpret 
model outputs. Benchmark datasets, such as the IEDB database, 
NetMHCpan ligand datasets, and epitope prediction challenges, serve 
as gold standards for comparing model performance across studies. 
Transparent reporting of these metrics is essential for reproducibility 
and regulatory trust.

1.3.2 Epitope immunogenicity ranking and 
analysis

The epitope immunogenicity ranking 
(Supplementary Figures S2A,B) highlights the model’s capacity to 
prioritize antigenic regions likely to trigger immune responses. 
YLQPRTFLL scored highest (~0.98), suggesting strong potential for 
CD8+ T-cell activation. TTDPSFLGRY and NQKLIANQF followed, 
each with scores greater than 0.90, making them excellent candidates 
for broad HLA population coverage. Conversely, SPRWYFYYL and 
LSPRWYFYY had lower scores (~0.88–0.89), suggesting a reduced 
capacity to initiate a strong immune response. These patterns align with 
known immunogenicity data and validate the model’s predictive ability. 
By focusing on epitopes with high immunogenicity, the model enhances 
vaccine target selection, thereby minimizing the allocation of resources 
to weak candidates. The observed correlation between predicted 
binding affinity and immunogenicity scores confirms the model’s 
strength in selecting potent immune triggers. High-ranking epitopes 
also indicate a strong interaction potential with antigen-presenting cells 
(APCs), which is crucial for long-term immune memory and vaccine 
durability. In conclusion, this transformer-based model 1 presents a 
robust, explainable, and biologically grounded framework for epitope 
prediction, offering real-world value for vaccine researchers, 
immunologists, and AI scientists alike.

1.4 Induction and maintenance of 
protective memory CD8+ T cells: what AI 
modeling assumed vs. what experimental 
data proved or disproved

Understanding the mechanisms governing CD8+ T cell activation, 
survival, and long-term maintenance has been a significant focus in 

immunology for years (Wherry and Kurachi, 2015). Traditional 
computational models assumed that CD8+ T cell expansion required 
continuous antigenic stimulation. In contrast, recent AI-driven 
immune simulations have shown that a single antigen encounter can 
trigger a program of proliferation and differentiation, resulting in the 
generation of both effector and memory CD8+ T cells. AI-based 
modeling of CD8+ T cell kinetics has been instrumental in identifying 
key activation markers, proliferation rates, and survival factors. Unlike 
conventional models, AI frameworks dynamically adapt to 
experimental data, refining predictions on memory CD8+ T cell 
function in response to known epitopes. A comparative analysis of 
AI-driven and experimental models has revealed that previous 
mathematical models have failed to accurately predict HSV-specific 
CD8+ T cell responses in mice, rabbits, and humans (Girel et al., 2019). 
CD4+ T helper cells play a crucial role in priming CD8+ T cells, 
facilitating both primary immune responses and the development of 
protective memory CD8+ T cells. AI-driven models highlight that 
CD4+ T cell interactions during priming encoding memory potential, 
enabling autonomous secondary expansion upon antigen 
re-encounter. Experimental data have confirmed that CD8+ T cells 
primed in the absence of CD4+ T cells fail to undergo secondary 
expansion, although they retain cytotoxic activity. AI-based predictive 
analytics have been utilized to model CD4+ T cell help requirements 
in various infection scenarios, thereby refining our understanding of 
immune memory formation.

Previous mathematical models argued that CD8+ T cells could 
clear infections without CD4+ T cell help, provided that the viral 
replication rate remained low. However, AI-driven simulations 
incorporating longitudinal immune response data have shown that 
CD4+ T cell help is essential for sustained viral clearance. AI-enhanced 
models suggest that in the absence of help, CD8+ T cells reduce viral 
loads temporarily but fail to prevent resurgence. This is due to 
insufficient memory T cell reactivation, which is critically dependent 
on antigen presentation and cytokine signaling mediated by CD4+ T 
cells. In addition to CD4+ T cells, dendritic cells (DCs) have been 
identified as key players in memory CD8+ T cell priming and 
maintenance (Figure 5C). AI-driven models have also refined our 
understanding of the differences between central and effector CD8+ T 
cells, showing that their fate is pre-programmed by early priming 
signals. These insights have significant implications for the 
development of CD8+ T cell-based vaccines, providing guidance on 
optimal strategies for antigen exposure and presentation. AI 
simulations have confirmed that depleting CD4+ T cells at the priming 
stage results in impaired CD8+ T cell memory formation, but 
interestingly, late-stage depletion has minimal effects (Laidlaw et al., 
2014). Other studies contradict this, showing that CD4 + T cell help 
can occur later in the development of the immune response (Shedlock 
and Shen, 2003). AI frameworks have reconciled these discrepancies 
by modeling heterogeneous immune environments, demonstrating 
that CD4+ T cell support can be context-dependent.

Recent AI-driven studies have revealed that CD4 + T cell help is 
critical in preventing CD8+ T cell apoptosis, particularly via the 
regulation of tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL). AI-powered immune simulations suggest that CD4+ T cells 
regulate IFN-γ secretion and local chemokine expression, which are 
essential for CD8+ T cell migration to infected tissues. This directly 
contradicts earlier mathematical models that suggested CD8+ T cell 
expansion was independent of CD4+ T cell-mediated migration 
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signals. AI models now incorporate spatial variables, accurately 
predicting cellular migration dynamics and antigenic stimulation 
requirements. AI-driven research has also challenged previous 
programmed division models of CD8+ T cell expansion. Traditional 
models assumed that CD8+ T cell division was independent of 
antigenic stimulation, continuing even at low viral loads. AI 
simulations incorporating real-world patient data suggest a different 
scenario: while early CD8+ T cell divisions are antigen-independent, 
continued expansion and viral clearance require persistent antigen 
exposure and co-stimulatory signaling. AI models predict that 
programmed divisions are optimized to balance viral clearance and 
immune homeostasis, ensuring effective pathogen elimination while 
preventing excessive immunopathology. Unlike static mathematical 
models, AI-based frameworks are capable of real-time adaptive 
learning, adjusting predictions in response to emerging experimental 
data. AI simulations have provided more accurate insights into viral 
clearance mechanisms, leading to refined vaccine designs. AI-driven 
approaches now integrate multi-omics datasets, single-cell RNA 
sequencing, and immunophenotyping data, ensuring that 
computational models align with experimental observations.

AI models used in immunology and vaccine research are prone to 
overfitting, particularly when trained on small, biased, or 
non-representative datasets. Overreliance on computational 
predictions without thorough validation may lead to clinically unsafe 
or misleading results. Therefore, these models must be interpreted 
within the context of immunological knowledge and clinical practice. 
Incorporating expert review during model development and post-
analysis, along with rigorous testing on diverse datasets, is crucial to 
ensure the safety, accuracy, and translational value of the model.

Biomedical datasets used in AI-driven immunology and vaccine 
research often suffer from various forms of bias. These include the 
underrepresentation of specific demographic groups, limitations in 
geographic sampling, and annotation inconsistencies resulting from 
human error or inadequate clinical guidelines. Such biases can impair 
model generalizability and risk reinforcing health disparities. 
Addressing this challenge requires careful dataset curation, 
transparent documentation of data provenance, and, where possible, 
the use of federated learning and diverse multi-center datasets to 
minimize overfitting to a specific sub-population.

The integration of AI into CD8+ T cell research has significant 
implications for the design of next-generation vaccines and 
immunotherapies. AI-driven models have already identified optimal 
antigen exposure strategies, cytokine modulation approaches, and 
co-stimulatory molecule enhancements to maximize long-term 
immune protection. Future research will focus on further refining AI 
algorithms to predict patient-specific immune responses, paving the 
way for precision immunotherapy and personalized vaccine design.

1.5 The use and abuse of AI-driven 
modeling in cancer vaccines and 
immunotherapies

Artificial intelligence (AI) has made significant advancements in 
understanding cancer immunity mechanisms and optimizing vaccine 
design strategies. AI-driven predictive models, adapted from previous 
frameworks designed for viral infections, are now being utilized to 
analyze cancer-immune interactions (Huang et al., 2020). These AI 

models account for tumor progression, immune suppression 
dynamics, and adaptive immune responses, refining predictions on 
how the immune system combats tumors. Unlike traditional static 
models, AI frameworks continuously learn from real-time 
immunological data, making them superior in predicting tumor-
immune system interactions. AI-driven models simulate the interplay 
between tumor growth and immune response, capturing how tumors 
evade immune detection while simultaneously activating CD8+ T cells 
and other immune components (Cess and Finley, 2020). These models 
integrate multi-modal datasets that include genomic, proteomic, and 
immunological parameters, ensuring that predictions align with real-
world immune responses. Unlike early computational models, which 
oversimplified immune responses, AI-driven frameworks incorporate 
key players such as regulatory T cells (CD4+CD25+), antigen-
presenting cells (APCs), and cytokine networks, offering a 
comprehensive perspective on immune dynamics in cancer.

Traditional models have assumed that cancer cells stimulate 
immune proliferation while simultaneously impairing immune 
responses, leading to highly dependent outcomes on specific 
equations. AI models refine this understanding by continuously 
training on experimental data, highlighting novel immune escape 
mechanisms, T cell exhaustion pathways, and tumor antigen 
presentation strategies. These models have revealed how tumor-
specific immune suppression affects vaccine efficacy and the success 
of immunotherapy, leading to more precise treatment strategies. 
AI-driven cancer immunology modeling predicts several possible 
immune response outcomes: (i) an effective CD8+ T cell response that 
establishes equilibrium, keeping tumor growth in check; (ii) immune 
system failure, allowing tumor progression due to excessive immune 
suppression and tumor cell resistance; or (iii) a dynamic state where 
the immune system and tumor continuously adapt, requiring 
sustained therapeutic intervention. Unlike conventional models, 
AI-driven approaches quantify the quality of immune responses, not 
just the number of T cells, ensuring greater accuracy in predicting 
tumor clearance potential.

One of the primary weaknesses of traditional models was their 
reliance on T cell population numbers alone, without considering the 
functionality and migration patterns of immune cells. AI-driven 
models correct this by incorporating spatial and temporal immune 
dynamics, showing that T-cell homing to tumor sites is just as critical 
as their activation levels. AI-driven simulations suggest that dendritic 
cells and regulatory T cells play crucial roles in determining long-term 
immune memory and the sustainability of adaptive responses 
(Figure  5B). AI has also enhanced our understanding of tumor 
resistance mechanisms. Unlike earlier models that treated tumor cells 
as a uniform population, AI-driven frameworks integrate 
heterogeneous tumor subpopulations, including drug-resistant and 
immune-sensitive variants. These models accurately predict tumor cell 
evolution during treatment, enabling the optimization of combination 
immunotherapies, immune checkpoint blockade strategies, and 
personalized T-cell therapies. Early computational models attempted 
to link immune response strength to tumor burden, often using 
oversimplified growth-decline equations that failed to capture the real-
world dynamics of treatment accurately. AI-driven models overcome 
this limitation by incorporating single-cell sequencing data, immune 
evasion modeling, and simulations of treatment responses. AI-driven 
predictions suggest that early immune activation promotes long-term 
tumor suppression, whereas delayed or weak responses are associated 
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with a poor prognosis and increased resistance to therapy. Figure 5A 
illustrates how Artificial Intelligence (AI) plays a crucial role in 
understanding and optimizing tumor-immune interactions, 
particularly in the regulation of checkpoint inhibitors, which have 
transformed cancer immunotherapy. Tumor cells often evade immune 
detection by suppressing T cell activation, a process mediated through 
immune checkpoints such as PD-1/PD-L1 and CTLA-4 pathways 
(Yoo et al., 2025). Checkpoint inhibitors, such as anti-PD-1 and anti-
CTLA-4 monoclonal antibodies, help restore T-cell activity against 
tumor cells. However, determining the most effective checkpoint 
blockade strategies requires advanced computational approaches, and 
this is where AI-driven models have shown significant promise. 
Figure 5A illustrates this mechanism by showing how tumor cells 
inhibit T cells (immune suppression) while AI-driven models predict 
and optimize checkpoint blockade strategies. AI aids in identifying 
patient-specific responses to checkpoint inhibitors, enhances 
biomarker discovery, and improves the efficacy of combination 
immunotherapies (Yoo et al., 2025). Moreover, AI-assisted analysis of 
multi-omics data (genomics, transcriptomics, proteomics) enables 
personalized immunotherapy approaches, ensuring better treatment 
outcomes with reduced toxicity (Li et al., 2024).

The role of Artificial Intelligence (AI) in understanding and 
optimizing memory T cell differentiation, as illustrated in Figure 5B, 
presents a key process in adaptive immunity. Naïve T cells, upon 
encountering an antigen, undergo activation and differentiation into 
effector T cells, which mediate immediate immune responses. A 
subset of these effector T cells subsequently transitions into memory 
T cells, which provide long-term immune protection and faster 
responses upon reinfection. AI-driven approaches enhance this 
differentiation process by analyzing large-scale immunological 
datasets, predicting T-cell activation dynamics, and optimizing 
memory cell formation for vaccine development and 
immunotherapy applications (Li et  al., 2024). In the figure, AI 
contributes to three key stages of T-cell differentiation. First, it 
predicts activation by analyzing antigen exposure and T cell receptor 
(TCR) signaling, allowing for a deeper understanding of when and 
how naïve T cells transition into effector T cells. Second, AI analyzes 
differentiation markers, evaluating gene expression and molecular 
pathways that distinguish short-lived effector T cells from long-
lasting memory T cells, which is critical in immunotherapy and 
vaccine design. Finally, AI plays a crucial role in optimizing memory 
formation by refining models that predict T cell persistence and 
longevity, ensuring that immune memory is robust and effective for 
long-term protection. This is particularly valuable in the 
development of next-generation vaccines and personalized cancer 
immunotherapies (Garg et al., 2024). AI-based models, trained on 
single-cell RNA sequencing (scRNA-seq) and epigenetic data, 
enable researchers to identify key molecular pathways that regulate 
immune memory. Recent work by van Dorp introduces a variational 
deep-learning framework that jointly models the phenotypic 
heterogeneity and temporal dynamics of lung-resident memory 
CD4+ and CD8+ T cells (van Dorp et  al., 2025). Their approach 
integrates stochastic variational inference with flow cytometry data, 
enabling the discovery of novel insights into the persistence and 
differentiation of memory T cells over time. These AI-driven 
insights offer new avenues for designing durable vaccine strategies, 
refining T-cell-based immunotherapies, and deepening our 
understanding of chronic infections and immune exhaustion. By 

integrating AI into immunology, researchers can develop more 
precise, data-driven treatment strategies that enhance immune 
responses and improve long-term health outcomes.

Unlike traditional models that assume a linear relationship 
between tumor growth and immune response, AI simulations have 
revealed that immune-tumor interactions are inherently non-linear, 
influenced by T-cell infiltration rates, antigen exposure, and regulatory 
immune pathways. Earlier models incorrectly suggested that immune 
failure was solely due to antigen depletion. In contrast, AI-driven 
insights reveal that immune exhaustion and the expansion of 
regulatory T cells are the primary factors contributing to immune 
escape. AI-driven modeling has been crucial in guiding the 
development of cancer vaccines t and optimizing immunotherapy 
protocols. By integrating deep learning, multi-omics data, and patient-
specific immune profiling, AI-driven approaches can predict 
personalized success rates for immunotherapy. Unlike previous 
models that focused only on T cell proliferation rates, AI simulations 
emphasize the importance of immune memory retention, migration 
dynamics, and metabolic fitness, leading to more precise and 
individualized cancer treatment plans. Ultimately, AI-driven modeling 
bridges the gap between computational immunology and real-world 
clinical applications, providing unparalleled insights into cancer-
immune system interactions and optimizing therapy. Future research 
will focus on refining AI frameworks to integrate real-time clinical 
trial data, ensuring that AI-generated predictions translate into 
clinically actionable strategies. By leveraging AI, researchers can 
accelerate breakthroughs in cancer immunotherapy, precision 
medicine, and vaccine development, ultimately improving outcomes 
for cancer patients worldwide.

1.6 Future directions in AI-driven vaccine 
and immunotherapeutic development

Despite recent breakthroughs, AI-driven vaccine development 
remains in its early stages and faces several key challenges that define 
future research priorities. A significant obstacle is the fragmentation 
and inconsistency of available data, which impacts the accuracy and 
scalability of AI-driven vaccine models. The development of effective 
vaccines relies on extensive datasets, including genomic sequences, 
protein structures, immune response metrics, and clinical trial results. 
However, these datasets often suffer from incompleteness, bias, and a 
lack of standardization, which limits the ability of AI models to 
generate robust and generalizable predictions across diverse 
populations. Moving forward, future efforts must prioritize 
harmonizing global data collection methodologies, fostering 
international data-sharing collaborations, and establishing 
standardized frameworks tailored for AI-driven immunology 
research. Another critical future direction involves optimizing the 
computational infrastructure for AI-based vaccine development. 
Cutting-edge deep learning algorithms require substantial processing 
power, memory resources, and access to high-performance computing 
(HPC) clusters or cloud-based AI infrastructure. However, these 
resources are not universally accessible, particularly in low-resource 
research settings. Future strategies must focus on expanding equitable 
access to AI tools, developing more computationally efficient models, 
and implementing distributed learning techniques to democratize 
vaccine innovation globally.
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Improving model interpretability will also remain a central 
priority. Many deep-learning vaccine prediction models operate as 
black boxes, making it difficult for researchers to fully understand the 
rationale behind specific predictions. This lack of transparency raises 
concerns about the model’s reliability, potential biases, and the 
biological relevance of AI-generated vaccine candidates. To enhance 
trust in AI-driven vaccine solutions, the scientific community is 
actively developing explainable AI (XAI) techniques (Garg et  al., 
2024), including feature attribution methods, visualization tools, and 
interpretable surrogate models. These approaches aim to increase 
transparency and align AI-generated predictions with immunological 
principles and experimental validation.

Furthermore, interdisciplinary collaboration between 
computational biologists, immunologists, clinicians, and data 
scientists will be essential for refining AI-driven vaccine strategies. By 
combining domain expertise with AI advancements, researchers can 
improve vaccine candidate selection, refine AI-driven immune 
response models, and address data inconsistencies. Strengthening 
such partnerships will help ensure that AI-generated insights translate 
into actionable and biologically meaningful vaccine designs.

Ethical considerations, model fairness, and regulatory readiness 
will also be  critical moving forward. Establishing guidelines for 
equitable vaccine distribution, mitigating algorithmic biases, and 
maintaining data privacy will be  crucial in building trust and 
accelerating the integration of AI into real-world applications. Future 
directions will also involve aligning AI innovation with global health 
priorities, ethics, and policy standards to enhance vaccine accessibility 
and improve public health outcomes worldwide.

1.7 Ethical considerations in AI-driven 
vaccine development

The growing integration of AI in vaccine research raises several 
critical ethical considerations. First, data privacy is a primary concern, 
especially when models are trained on sensitive clinical or genomic 
data. Ensuring that patient-level information is anonymized and 
securely handled is critical. Second, algorithmic bias remains a pressing 
issue. AI models trained on unbalanced or demographically skewed 
datasets may produce inequitable outcomes, underrepresenting certain 
ethnicities or regions in epitope prediction or immune response 
modeling. Third, equitable access to AI-derived vaccines must 
be prioritized. If advanced AI tools are only accessible to high-resource 
settings, global vaccine equity will worsen. Responsible AI 
implementation should include open-access platforms, transparent 
model interpretability, and public-private collaboration to ensure 
ethical oversight. As AI becomes further embedded in biomedical 
innovation, aligning its deployment with principles of fairness, 
accountability, and global health equity will be essential.

Despite their promise, AI-driven approaches are not without 
limitations. Predictive accuracy can vary significantly depending 
on the quality and representativeness of the training data. 
Moreover, AI models may produce unreliable outputs when 
applied to novel or out-of-distribution inputs. In some cases, 
traditional experimental methods may be more reliable, especially 
for validating immunogenicity and efficacy. Additionally, time-to-
result for AI systems is not always shorter; preprocessing, model 
tuning and iterative retraining can be  time-intensive. Thus, AI 

methods should be  viewed as complementary to, rather than 
replacements for, traditional approaches.

Similarly, while AI holds the potential to reduce reliance on 
animal testing in early-stage immunological research, current models 
remain adjunctive rather than fully autonomous. In silico simulations 
can support hypothesis generation and candidate screening, but 
experimental validation, including in vitro assays and in vivo models, 
remains essential for confirming immunogenicity, toxicity, and 
efficacy. Overstating the standalone potential of AI risks premature 
deployment or overconfidence in unverified models. It is, therefore, 
critical to position AI as a complementary tool within a broader 
experimental and regulatory framework.

1.8 The future of AI-driven preclinical 
in vivo testing of drugs, vaccines, and 
immunotherapeutics

The traditional reliance on animal models for preclinical testing 
of drugs, vaccines, and immunotherapeutics is being challenged by 
the emergence of AI-driven computational models. These approaches 
promise to overcome significant limitations of animal studies, 
including interspecies differences, ethical concerns, high costs, and 
long development timelines. As illustrated in Figure  8, artificial 
intelligence platforms leveraging deep learning, reinforcement 
learning, and generative models can simulate complex biological 
systems at the molecular, cellular, and tissue levels, providing 
predictive insights into drug efficacy, toxicity, and immunogenicity 
(Zushin et  al., 2023; Jimenez-Luna et  al., 2021). The recent FDA 
Modernization Act 2.0 officially recognizes non-animal technologies, 
including AI models, as acceptable alternatives for specific preclinical 
evaluations (Zushin et al., 2023). Innovative systems such as Vaxi-DL, 
a deep learning-based platform for vaccine antigen prediction, 
demonstrate how in silico models can prioritize vaccine candidates 
with high sensitivity and accuracy, significantly reducing dependence 
on animal testing (Rawal et al., 2022). Furthermore, emerging AI 
frameworks are capable of modeling pharmacokinetics, drug 
metabolism, and host immune responses, enabling the rapid virtual 
screening of therapeutic candidates before clinical trials (Guo 
et al., 2023).

Regulatory agencies such as the U.S. Food and Drug 
Administration (FDA) are increasingly recognizing the value of 
AI-driven modeling tools in preclinical evaluation. For instance, 
the DILIsym platform, a quantitative systems toxicology model, has 
been used to simulate and predict drug-induced liver injury and 
has been referenced in multiple New Drug Application (NDA) and 
Investigational New Drug (IND) submissions accepted by the FDA 
(Watkins, 2020). Similarly, the FDA’s Office of Clinical 
Pharmacology has developed Virtual Clinical Trial (VCT) 
platforms that use population PK/PD models to predict patient-
specific drug exposures. These tools have been used internally to 
guide regulatory decision-making for drug labeling and dose 
optimization (Samei et  al., 2020). Such examples illustrate the 
growing regulatory acceptance of AI models in formal drug 
development pipelines.

These AI-enabled platforms integrate diverse data modalities, 
including omics profiles, organoid models, and electronic health 
records, to produce human-specific predictions that are often more 
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relevant than results obtained from animal experiments. As a result, 
AI-driven preclinical models not only offer ethical and financial 
advantages but also promise to enhance the translational success rate 
of novel drugs and immunotherapies, accelerating their path to 
clinical application.

One critical future priority is the ability of AI models to 
dynamically incorporate emerging biological data, such as pathogen 
mutations (e.g., SARS-CoV-2 variants), updated immune signatures, 
or new clinical trial outcomes. Real-time modeling requires adaptive 
learning frameworks that include automated data pipelines, regular 
retraining schedules, and mechanisms for integrating experimental 
feedback. In practice, model retraining can be triggered periodically 
(e.g., weekly or monthly) or event-driven (e.g., when a significant 
number of new sequences or immune profiles are available). For 
example, as new variants emerge, epitope prediction and 
immunogenicity models must be updated to reflect antigenic drift 
and shifting population immunity. These updates often rely on 
feedback loops that incorporate lab assay results, population-level 
immunogenicity data, and in silico validation to refine model 
parameters. Establishing robust, automated retraining workflows can 

enhance responsiveness, accuracy, and public health relevance in 
dynamic settings involving infectious diseases.

1.9 Enabling real-time in vivo modeling of 
immune bridging and prediction of 
protection in clinical trials

Artificial intelligence (AI) and deep learning (DL) are 
increasingly transforming clinical trial methodologies by enabling 
real-time in vivo modeling of immune responses, thereby facilitating 
immune-bridging strategies and predictive protection assessments. 
Instead of relying solely on traditional endpoints, such as disease 
occurrence, AI models now enable researchers to simulate human 
immune dynamics and predict vaccine efficacy based on surrogate 
markers, including antibody titers, T-cell responses, and cytokine 
profiles. Recent advances in AI-driven approaches have shown that 
models trained on multi-omics datasets, immune phenotyping, and 
clinical biomarkers can identify correlates of protection with high 
accuracy, dramatically accelerating clinical trial timelines (Mak and 

FIGURE 8

Artificial intelligence is revolutionizing the pre-clinical and clinical development of vaccines and immunotherapeutics. The traditional pathway (top 
panels) relies heavily on empirical antigen discovery, animal-based preclinical testing, conventional clinical trial designs, and retrospective regulatory 
evaluation, which can lead to ethical concerns, interspecies variability, and prolonged development timelines. In contrast, the AI-powered pathway 
(bottom panels) illustrates how emerging computational models can replace or reduce the need for animal preclinical testing, as endorsed by the 
United States FDA under the Modernization Act 2.0. AI-driven platforms leverage deep learning to predict protective antigens, simulate human immune 
responses in silico, and enable real-time immune-bridging strategies during clinical trials. These advancements accelerate candidate selection, 
optimize clinical trial design, predict protection based on immune markers, and enhance the speed and precision of regulatory approval and post-
market surveillance.

https://doi.org/10.3389/frai.2025.1620572
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elfatimi et al. 10.3389/frai.2025.1620572

Frontiers in Artificial Intelligence 20 frontiersin.org

Pichika, 2019) (Figure 8). For instance, deep learning models have 
been successfully employed to analyze longitudinal immunological 
data and forecast protection levels across diverse demographic 
groups, improving the stratification and adaptive design of clinical 
studies (Vamathevan et al., 2019). Moreover, AI-based platforms are 
being integrated into clinical trial infrastructures to facilitate real-
time data monitoring, optimize dosing strategies, and dynamically 
adjust trial protocols based on predictive safety and efficacy outcomes 
(Rawal et al., 2022; Guo et al., 2023). Such capabilities are crucial for 
vaccine development, particularly in rapidly evolving scenarios, such 
as the emergence of new infectious diseases and viral variants (Mak 
and Pichika, 2019). By replacing retrospective analysis with real-time 
immune-bridging predictions, AI holds the potential to enhance the 
precision, speed, and ethical conduct of clinical trials, leading to 
faster and more reliable delivery of vaccines and immunotherapeutics 
(Zushin et al., 2023).

2 Conclusion

The relationship between wet-lab immunological research and 
artificial intelligence (AI) modeling is both complex and critical. 
Immunologists often view AI researchers as theoreticians who make 
oversimplified assumptions, abstracting biological processes into 
computational models that may not fully capture the intricacies. 
Integration of AI into immunology is paving the way for rapid, 
precision-driven vaccine development. AI-powered models can 
predict cross-reactive immune responses, optimize multi-epitope 
vaccine candidates, and streamline clinical trials. As demonstrated in 
AI-driven vaccine research, integrating AI with experimental 
immunology enables real-time adaptation to emerging pathogens, 
ensuring scalable and effective vaccine solutions. Future research 
should focus on refining AI explainability, enhancing multimodal 
data integration, and promoting AI-immunology collaborations to 
accelerate global vaccine development efforts. Conversely, AI 
researchers sometimes view immunologists as hard-nosed 
experimentalists who overlook the complex, non-linear interactions 
within the immune system. AI-driven models capture these 
non-linear relationships and generate insights that may not be evident 
through traditional wet-lab approaches. AI researchers believe that 
computational models can validate immunological hypotheses and 
distinguish between competing theories of immune response 
mechanisms. Given these perspectives, interdisciplinary collaboration 
between AI researchers and immunologists is crucial for advancing 
scientific knowledge. AI models should not attempt to simulate entire 
immune systems in exhaustive detail; instead, they should focus on 
identifying meaningful biological patterns. Moreover, AI-driven 
conclusions must be experimentally validated to avoid the pitfalls of 
algorithmic overfitting and reliance on biased datasets. 
Misapplications of AI in immunology often stem from using 
conventional machine learning techniques in dynamic, non-linear 
biological processes without appropriate adaptation. Immunologists 
must acquire foundational knowledge of AI to effectively evaluate 
computational models and select suitable methods for their research.

AI modeling in immunology often employs a reductionist approach, 
whereby specific biological processes are isolated and formalized into 
computational algorithms. While this allows for detailed analysis of 
immune interactions, it can sometimes result in models that fail to 

capture the complexity of immune dynamics. Despite AI’s ability to 
analyze immune system behaviors and predict outcomes, translating 
these insights into real immunological applications remains a challenge.

Although AI-driven modeling has demonstrated impressive 
capabilities in simulating immune responses, epitope prediction, and 
vaccine optimization, many of these frameworks are still at the proof-
of-concept or simulation level. The real-world application of these 
models remains limited by the lack of large-scale experimental and 
clinical validation. Translating AI insights into clinical practice 
requires rigorous prospective studies, multi-center validations, and 
continuous feedback from biological assays to ensure reliability and 
reproducibility. As such, we emphasize that current AI models should 
be considered complementary to empirical approaches rather than 
replacements until further validation is achieved.

Some models suffer from excessive parameterization, which can 
obscure biological relevance and lead to misinterpretations of 
experimental data. Additionally, the effectiveness of AI models is 
often limited by the quality and completeness of the input data. 
Poorly annotated datasets or insufficient immunological information 
can lead to inaccurate computational predictions. To enhance AI 
integration in immunology, effective communication between AI 
researchers and immunologists is essential. AI researchers must 
engage with experimental immunology literature, understand the 
limitations of immunological assays, and design models that align 
with real-world biological mechanisms. AI models often prioritize 
efficiency by minimizing the number of variables considered, 
frequently reducing immune system simulations to two-dimensional 
dynamic models (e.g., protein concentration over time). Few AI 
models incorporate spatial dimensions of immune responses, as 
spatial modeling significantly increases computational complexity.

Furthermore, immunological spatial datasets remain limited, 
making AI-driven spatial modeling more challenging. Immunologists 
must emphasize that both the position and movement of immune-
related molecules are critical for any AI-driven model. While 
AI-driven immunology often focuses on cellular interactions, future 
models should integrate the immune tissue environment and the 
dynamics of both lymphoid and non-lymphoid organs. AI-driven 
models that consider only immune cell counts may overlook crucial 
spatial interactions that impact immune responses. The lack of 
understanding among AI researchers regarding immune cell 
dynamics, protein transport pathways, and tissue-specific interactions 
remains a significant challenge.

AI-based models can incorporate multivariate immune cell 
populations; however, increasing the model’s complexity may 
compromise its interpretability and usability. AI researchers often 
favor simpler models that yield interpretable outputs, whereas 
immunologists require models that accurately reflect the behaviors of 
the real immune system. This trade-off must be carefully managed to 
ensure AI models remain useful and clinically relevant. Many 
AI-driven models make naïve assumptions that oversimplify the 
complexity of immune responses. For example, some AI models treat 
T cell immunity as consisting solely of effector CD4+ or CD8+ T cells, 
failing to account for regulatory T cells (CD4+CD25+), which play a 
crucial role in balancing immune activation and suppression. While 
similar AI modeling approaches have been successfully applied in 
fields like chemical engineering (e.g., modeling population dynamics 
in industrial bioreactors), their application to immunology requires 
additional complexity. The primary goal of AI modeling in 
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immunology is to generate hypotheses and identify key experimental 
variables. AI models should guide experimental immunologists 
toward promising research directions by highlighting immune 
mechanisms that warrant further investigation. Testing and refining 
AI-driven models with experimental data will improve their reliability 
and applicability in immunology research. AI has been increasingly 
applied in studying the interactions between HIV, HSV, and immune 
target cells. While AI-driven models have provided valuable insights 
into AIDS and herpes disease progression, most models assume that 
target cells are infected with a single virus (e.g., either HIV or HSV). 
This assumption fails to reflect real-world co-infection scenarios, 
where multiple viruses can simultaneously infect cells. AI-driven 
models must evolve to simulate better multi-pathogen interactions 
and the immune system’s response to complex infections. To account 
for co-infections, AI modeling must integrate data on how different 
pathogens interact within the immune environment. Traditional AI 
models struggle to capture the full dynamics of viral replication, 
immune evasion strategies, and immunotherapeutic interventions. 
Future models must incorporate real-world biological complexities to 
simulate disease progression and treatment outcomes accurately.

AI researchers serve as translators of experimental immunology 
findings, converting empirical data into computational frameworks. 
However, for AI models to be meaningful, AI researchers must develop 
a solid foundation in modern immunological principles. This will 
enable them to formulate biologically relevant hypotheses and create 
models that accurately reflect the behavior of the actual immune 
system. Within AI research, there are distinct groups: (a) theoretical 
AI researchers who focus on algorithm development with little interest 
in immunology, (b) applied AI researchers who aim to integrate AI 
into biomedical sciences but often lack deep immunology knowledge, 
and (c) computational biologists who specialize in translating 
immunological data into AI models. The latter group is best suited to 
drive forward AI-driven immunological research. Regardless of their 
expertise, AI researchers must dedicate significant time to 
understanding immunological mechanisms to create meaningful 
models. The complexity of the immune system presents challenges not 
only for AI researchers but also for immunologists themselves. Even 
with advances in experimental techniques, immunologists frequently 
encounter unexpected immune behaviors that require continuous 
reevaluation of existing theories. AI can aid in identifying patterns and 
refining immunological hypotheses, but collaboration with 
experimental immunologists is essential to validate AI-generated 
insights. To bridge this gap, interdisciplinary teams should comprise 
immunologists, computational biologists, and AI researchers who 
collaborate to develop AI-driven models of immunology. Ultimately, 
AI-driven immunology holds immense potential; however, its success 
depends on interdisciplinary collaboration, careful validation, and the 
continuous refinement of computational models. By integrating AI 
into immunology, researchers can accelerate discoveries, enhance our 
understanding of immune responses, and improve immunotherapeutic 
strategies and patient outcomes.
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