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Research on the robustness of
the open-world test-time
training model

Shu Pi*, Xin Wang and Jiatian Pi

National Center for Applied Mathematics In Chongqing, Chongqing Normal University, Chongqing,

China

Introduction:Generalizing deep learning models to unseen target domains with

low latency has motivated research into test-time training/adaptation (TTT/TTA).

However, deploying TTT/TTA in open-world environments is challenging due to

the di�culty in distinguishing between strong out-of-distribution (OOD) samples

and regular weak OOD samples. While emerging Open-World TTT (OWTTT)

approaches address this challenge, they introduce a new vulnerability: test-time

poisoning attacks. These attacks di�er fundamentally from traditional poisoning

attacks that occur during model training, as adversaries cannot intervene in the

training process itself.

Methods: In response to this threat, we design a novel test-time poisoning attack

method specifically targetingOWTTTmodels. Capitalizing on the fact thatmodel

gradients dynamically change during testing, our method employs a single-

step query-based approach to dynamically generate and update adversarial

perturbations. These perturbations are then input into the OWTTT model during

its adaptation phase.

Results: We extensively test our attack method on an OWTTT model. The

experimental results demonstrate a significant vulnerability, showing that the

OWTTT model’s performance can be e�ectively compromised by our test-time

poisoning attack.

Discussion: Our findings reveal that OWTTT algorithms lacking rigorous security

assessment against such attacks are unsuitable for real-world deployment.

Consequently, we strongly advocate for the integration of defenses against

test-time poisoning attacks into the fundamental design of future open-world

test-time training methodologies.

KEYWORDS

adversarial attacks, testing time poisoning, robustness, open world learning, test-time

training/adaptation

1 Introduction

The distribution gap between training and testing data poses great challenges to the

generalization of modern deep learning methods (Joaquin et al., 2008; Ben-David et al.,

2010). To improve the generalization of the model to testing data that may feature a

different data distribution from the training data, domain adaptation has been extensively

studied (Wang and Deng, 2018) to learn domain-invariant characteristics. However, the

existing unsupervised domain adaptation paradigm requires simultaneous access to the

data of both the source and the target domain with an offline training stage (Ganin and

Lempitsky, 2015; Tang and Jia, 2020). In a realistic scenario, access to target domain

data may not become available until the inference stage, and an instant prediction on

testing data is required without further ado. Therefore, these requirements lead to the

emergence of a new paradigm of adaptation at test time, a.k.a. test-time training/adaptation

(TTT/TTA) (Sun et al., 2020; Wang et al., 2021).
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The success of TTT has been demonstrated on many

synthesized corrupted target domain data (Hendrycks and

Dietterich, 2019), manually selected hard samples (Recht et al.,

2019) and adversarial samples (Croce et al., 2022). Recently, many

major language models have also been using TTA to adjust their

models (Hu et al., 2025). However, there are a number of problems

with enabling TTT in open-world (OWTTT). One of the problems

is that the target domain may contain testing data drawn from a

significantly different distribution, e.g., different semantic classes

than source domain, or simply random noise (Li et al., 2023). To

address this challenge, Li et al. (2023) developed an adaptive strong

OOD pruning to improve the effectiveness of the self-training TTT

method, while they further proposed a method to dynamically

extend the prototype to represent the strong OOD samples to

improve the weak/strong OOD data separation.

While this approach has proven successful in ameliorating this

problem, it may introduce a new attack surface for the adversary

to tamper with the parameters of the target model by fine-tuning

them during testing using potentiallymalicious samples. To explore

this possibility, in this work, we propose a method of test-time

poisoning attacks (TePAs) against this models. TePAs (Cong et al.,

2024) was proposed by Cong et al. i.e., an adversary aims to degrade

a TTA model’s performance at test time. Compared to TrPAs,

TePAs face the following non-trivial challenges: (i) TrPAs require

modification access to the target model’s training dataset, while

TePAs do not poison the training dataset nor control the training

process of the target model. (ii) For TrPAs, poisoned samples are

mixed with clean training samples where they can be learned in

multiple epochs by the model and become more memorable. or

trpa, the poisoned samples aremixed with clean training samples so

that the model can learn the poisoned samples at multiple epochs

and is easier to memorize. However, considering effectiveness and

efficiency, the TTA approach usually uses an update of the model

based on one calendar element arriving from each test data, hence

the different setup for tepa. (iii) In TePAs, poisoned and benign

samples are in the same pipeline, and the model is in a state of

dynamic adjustment. (iv) Since TePAs are test-time attacks, the

adversary must take into account the query budget to maintain the

stealthiness of the attack. (v) To avoid the targetmodels “forgetting”

the original task, TTAmethods usually only update part parameters

of the model. However, for TrPAs, the poisoned samples are used to

update the whole model parameters.

In summary, these differences make TePAs harder to succeed

than TrPAs.

Our work. In this paper, our study aims to demonstrate

that current OWTTT methods are prone to tepa. Considering

their use in safety-critical applications where a deterioration in

their efficacy could result in severe consequences, exposing the

model modification right to the adversaries is irresponsible, and

taking into account TePAs during the design of OWTTT methods

becomes crucial.

We propose a Tepa method for the OWTTTmodel: Single step

query attack data poisoning method (SQDP) which uses queries to

dynamically generate perturbations and inputs toxic test samples

into the model while querying to cause damage to the model.

Experiments show that even when mixed with normal test samples

in a ratio of 3:2, only a small number of queries are needed, the

attack method still has good results and can produce good results

on models that have already received a large number of normal

test samples.

Meanwhile, we conduct recovery experiments for the models

after the attack using normal samples and find that the models

of some datasets cannot be recovered, and the phenomenon

remains to be further verified. In summary, we make the

following contributions.

• We propose a Tepa method: the single-step query attack data

poisoning method.

• We conducted experiments using this method, which show

that our attack can effectively degrade the performance of

the target model with a small number of queries even with

a limited number of poisoned samples and after training the

model with a large number of normal samples.

• The experiments show that the OWTTT model is difficult to

recover effectively after poisoning with normal samples.

2 Background

2.1 TTT/TTA

Consider that in some cases we would like models already

deployed to the target domain to automatically adapt to the new

environment without accessing the source domain data. With these

considerations in mind, in response to the demand for adaptation

to arbitrary unknown target domain with low inference latency, test

time training/adaptation (TTT/TTA) (Sun et al., 2020; Wang et al.,

2021) have emerged (Li et al., 2023).

We first give an overview of the self-training based TTT

paradigm, following the protocol defined in Su et al. (2022). In

specific, we define the source and target n datasets as Ds =

{xi, yi}i=1...Ns with label space Cs = {1 . . .Ks}i=1...Ns and Dt =

{xi, yi}i=1...Nt with label space Ct = {1 . . .Ks,Ks+1...Ks+Kt }i=1...Nt .

In closed-world TTT. Ct = Cs, while Cs ⊆ Ct is true under open-

world TTT.We further denote the representation learning network

as zi = f (xi; θ) ∈ R
D and the classifier head as h(zi;ω,β). Test-

time training is achieved by updating the representation network

and/or classifier parameters on the target domain dataset Dt .

TTT is often realized by three types of paradigms. Self-

supervised learning in the testing data enables adaptation to the

target domain without considering any semantic information (Sun

et al., 2020; Liu et al., 2021). Sun et al. (2020) proposed a method

consisting of a main task and a self-supervised auxiliary task.

The main task and the auxiliary task share the feature extraction

module. The two tasks are trained together during training, and

only the auxiliary task updates themodel parameters during testing.

Liu et al. (2021) addressed the problem that TTT can cause severe

overfitting of the updated encoder to the self-supervised learning

task in the absence of any constraints on feature distribution and

proposed imposing a distribution-based constraint during the test

phase training period so that the feature distribution of the test data

is close to the feature distribution of the training domain.

Self-training reinforces the prediction of themodel in unlabeled

data and has been shown to be effective for TTT (Wang et al.,

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1621025
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pi et al. 10.3389/frai.2025.1621025

2021; Chen et al., 2022; Liang et al., 2020; Goyal et al., 2022;

Lee et al., 2025). Wang et al. (2021) made adjustments to model

parameters by minimizing the loss of entropy in model output

during the testing phase, while reducing the hardware burden

by updating only normalized statistics and affine parameters for

all layers and channels. Liang et al. (2020) divided the model

into a feature extractor module and a classifier module, and fine-

tuned the feature extractor module with the target domain data

in the hope of generating source-like representations for the target

domain samples.

Lastly, distribution alignment provides another viable approach

toward TTT by adjusting model weights to produce features

following the same distribution as the source domain (Su et al.,

2022; Liu et al., 2021). Su et al. (2022) proposed TTAC by matching

the statistics of the target clusters with those of the source clusters

and updating the target statistics by using a moving average of the

filtered pseudo-labels.

Recent research also exists on methods that do not require

gradient descent on the model (Niu et al., 2024; Khurana et al.,

2021). Niu et al. (2024) proposed a method that does not require

gradient updates to themodel. Themethod targets the transformer-

vit model by inserting several embeddings to optimize learning

cues during the testing process and improving the derivative-

free optimizer covariance matrix adaptation (CMA) evolutionary

strategy to achieve the purpose without updating the gradient.

Khurana et al. (2021), on the other hand, computed the distribution

of a single image by augmenting the data of that image with the data

of that image, and used this distribution to design AugBN layer

instead of the normal BN layer to achieve distribution alignment

for a single image.

Despite efforts to developmore sophisticated TTTmethods, the

certification of the robustness of TTT is still to be fully investigated.

2.2 Poisoning attacks and adversarial
attacks

2.2.1 Poisoning attacks
Poisoning attacks are one of the most dangerous threats to

ML models (Carlini and Terzis, 2022; Yang et al., 2017). These

attacks assume that the adversary can inject poisoned samples into

the ML model’s training dataset. The assumption is reasonable, as

the training datasets of ML models are usually collected from the

Internet and it is hard to detect the poisoned samples manually

given the size of the dataset. In poisoning attacks, the adversary’s

goal is to degrade the performance of the model on a validation

dataset Dval through some malicious modifications A to the

training dataDtrain as:

max
A

L(Dval; θ
∗)

where θ∗ = argmin
θ

L(A(Dtrain); θ) (1)

After being trained on the poisoned dataset A(Dtrain), the

model’s performance degrades at test time (Pang et al., 2021).

Poisoning attacks can be broadly grouped into two categories,

untargeted poisoning attacks (Muñoz-González et al., 2017; Yang

et al., 2017) and targeted poisoning attacks (Biggio et al., 2012;

Shafahi et al., 2018). The goal of untargeted poisoning attacks

is to reduce the overall performance of the target model. The

goal of targeted poisoning attacks is to force the target model to

perform abnormally on a specific input class. Backdoor attacks

(Pang et al., 2020) are a special case of targeted poisoning attacks in

which poisoned target models only misclassify samples that contain

specific triggers (Cong et al., 2024). Vasu et al. (2021) proposed an

attack method that will not be restricted to model categories, i.e.,

gradient-based label flipping attack on binary classification models.

The proposed attack method is not restricted to model categories,

which means that it can be applied to different binary classification

models with good portability. For special types of data, Ma et al.

also propose effective attacks. To address the problem that pairwise

ranking is vulnerable to poisoning attacks, Khurana et al. (2021)

proposed a poisoning attack method that can significantly degrade

the performance of the sorter, that is, poisoning attack on pairwise

comparison estimation. The poisoning attack for pairwise ranking

proposed by the authors is a data poisoning attack that can be

applied to all attack models with strong robustness. However, all of

the above poisoning attack methods are for offline data, and some

of them rely on the model’s labeling, which is not applicable to test

time training/adaptation poisoning.

Recently, Test-Time Poisoning (TePAs) (Cong et al., 2024)

was proposed by Cong et al. The attacker aims to degrade the

performance of the TTA model at test time. However, there are

fewer current studies in this direction, and most of them are

untargeted poisoning attacks. This study in this paper focuses

on targeted poisoning attacks and for TTT/TTA under OWTTT,

which is closer to real-world scenarios.

2.2.2 Adversarial attacks
Adversarial attacks aim to find a perturbed example xadv

around x which can be misclassified by the model. Such xadv is

called an adversarial example. Find such adversarial examples can

be formulated as the following constrained optimization problem:

xadv = argmax
x′

L(x′, y; θ)

s.t.‖x′ − x‖p ≤ ǫ (2)

where y is the ground-truth label, ‖.‖p is the lp-norm, and L(.) is the

loss.

Adversarial attacks can be roughly divided into four

categories: gradient-based, score-based, transfer-based, and

decision-based attacks.

Most existing attacks rely on detailed model information

including the gradient of the loss w.r.t. the input. Examples are

the Fast-Gradient SignMethod (FGSM), the Basic IterativeMethod

(BIM) (Kurakin et al., 2018), DeepFool (Moosavi-Dezfooli et al.,

2016), the Jacobian-based Saliency Map Attack (JSMA) (Papernot

et al., 2016), Houdini (Cisse et al., 2017), and the Carlini &

Wagner attack (Carlini and Wagner, 2017). Goodfellow et al.

(2014) proposed the FGSM method, which works by computing

the gradient of the input loss function and generating a small

perturbation by multiplying a small selected constant by the

sign vector of the gradient. BIM (Kurakin et al., 2018) performs

multiple small perturbations in the direction of increasing the
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gradient in an iterative manner and recalculates the direction of

the gradient after each small step. Moosavi-Dezfooli et al. (2016)

proposed a new method DeepFool without limiting the range of

original sample perturbations, which is an early adversarial sample

generation method that can generate perturbations smaller than

the fast gradient attack. DeepFool first initializes the original image

and assumes that the decision boundaries of the classifier limit

the results of the image classification, and then, through each

iteration, performs multiple steps of small perturbations along the

decision direction of the decision boundary, gradually moving the

classification result to the other side of the decision boundary,

making the classifier misclassification.

Some attacks are more agnostic and only rely on the predicted

scores (e.g., class probabilities or logits) of the model. On a

conceptual level, these attacks use the predictions to numerically

estimate the gradient. This includes black-box variants of JSMA

(Narodytska and Kasiviswanathan, 2016) and of the Carlini &

Wagner attack (Chen et al., 2017) as well as generator networks that

predict adversaries (Hayes and Danezis, 2017). JSMA (Narodytska

and Kasiviswanathan, 2016) proposed Jacobi based significance

map attack (JSMA). Instead of utilizing the gradient information of

the loss function of the model output, JSMA uses the probabilistic

information of the model output categories for backpropagation

to obtain the gradient information and then constructs adversarial

significance maps for the purpose of the attack. Chen et al.

(2017) proposed three adversarial attack methods (L0 attack, L2
attack, and L∞ attack) to find perturbations that minimize various

similarity measures.

Transfer-based attacks do not rely on model information, but

need information about the training data. This data is used to

train a fully observable substitute model from which adversarial

perturbations can be synthesized (Nayebi and Ganguli, 2017). They

rely on the empirical observation that adversarial examples often

transfer between models. If adversarial examples are created on

an ensemble of substitute models, the success rate on the attacked

model can reach 100% in certain scenarios (Liu et al., 2016).

Decision-based adversarial attacks are based entirely on the

final decision of the model (Brendel et al., 2018), which is closer to

the black-box model in real-world scenarios, and at the same time,

it does not require a lot of knowledge of attackmodels, whichmakes

it easy to migrate attacks during implementation.

3 Methodology

In this chapter, we first review the method of boundary

attack. Then we introduce the open-world TTT method based on

prototype extension. Finally, we introduce how to apply Single-step

Query-attack Data Poisoning(SQDP) to degrade the performance

of the model. The overall workflow of SQDP is illustrated in

Figure 1.

3.1 Open-world TTT algorithm

When calculating strong OOD samples to estimate the target

domain distribution, methods based on distribution alignment will

be affected. The global distribution alignment (Liu et al., 2021) and

the category distribution alignment (Su et al., 2022) can be affected

and lead to an incorrect distribution of features.

Therefore, Li et al. proposed an open-world TTT method

based on prototype expansion. This method has developed a super

parameter-free method to trim strong OOD samples, defining a

strong OOD score for each test sample:

osi = 1− max
pk∈Ps

< f (x), pk > (3)

The function f (x) extracts features from the target and ps
represents the cluster centers of various class features in the

prototype clustering pool. Then, by using a certain step exhaustive

method to minimize the algorithm (Equation 4), we obtain the

threshold τ to separate strong OOD and weak OOD data, where

N+ ∈
∑n l(osi > τ ), N− ∈

∑n l(osi ≤ τ ):

min
τ

1

N+

∑

i

[osi −
1

N+
sumjl(osj > τ )osj]

2

+
1

N−

∑

i

[osi −
1

N−
sumjl(osj ≤ τ )osj]

2 (4)

Simultaneously, dynamically expand the prototype pool to

include prototypes representing strong out-of-distribution (OOD)

samples. Then, self-training was applied to the source domain

prototypes and strong OOD prototypes to create a larger gap in

the feature space between the weak and strong OOD samples.

The losses of self-training are as algorithm (Equation 5), while

N(µs,6s) is the Gaussian distribution for the source domain

feature, N(µt ,6t) is the Gaussian distribution for the target

domain feature

LPC = −
∑

k∈Cs

I(ŷi = k)log
exp(

<pk ,zi>
θ

)
∑

l∈Cs
exp(

<pl ,zi>
θ

)

−
∑

k∈Ct

I(ŷi = k)log
exp(

<pk ,zi>
θ

)
∑

l∈Cs+1 exp(
<pl ,zi>

θ
)

(5)

3.2 Single-step query-attack data
poisoning

Traditional adversarial attacks target models whose gradients

are unmetered, and most methods generate adversarial samples

from either acquired gradient information or inferred gradient

information. However, OWTTT methods continuously update

their models based on test data, so the gradients of their models

are not constant. Also, because of the existence of strong and weak

OOD clustering pools, its gradient information is more difficult to

simulate with agent models. Therefore, it is a great challenge to

generate samples for models with changing gradient information

that can cause a misdiagnosis of the model. Compared to other

methods, the query attack can dynamically obtain the boundary

information of the model while performing the query, and at

the same time requires less model information, so the Single-step

Query-attack Data Poisoning (SQDP) method is based on this.

The SQDP is based on boundary attack (Brendel et al., 2018).

It is initialized from a point that is already adversarial and

then performs a random walk along the boundary between the
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FIGURE 1

Workflow of SQDP. The adversary uses SQDP to generate poisoned samples which will be fed into the test data stream. The target model f will be

updated via OWTTT methods to ft (the blue one) according to the arrived test data. When meeting benign samples, the performance of ft(Acc) will be

improved. However, the poisoned samples could degrade the prediction ability of f.

adversarial and the non-adversarial region such that (1) it stays

in the adversarial region and (2) the distance toward the target

image is reduced. In other words it perform rejection sampling

with a suitable proposal distribution P to find progressively smaller

adversarial perturbations ηk according to a given adversarial

criterion c(:) (Brendel et al., 2018). ηk is sampled from N(0, 1) and

then processed to satisfy the following conditions:

• The perturbed sample lies within the input domain,

õk−1
i + ηki ∈ [0, 255] (6)

• The perturbation has a relative size of δ,

‖ηk‖2 = δ · d(o, õk) (7)

• The perturbation reduces the distance of the perturbed image

toward the original input by a relative amount ǫ,

d(o, õk−1)− d(o, õk−1 + ηk) = ǫ · d(o, õk−1) (8)

In practice, it is difficult to sample from such distributions,

so a simpler heuristic is used here: first, we sample from an

iid Gaussian distribution ηk N(0, 1), and then rescale and clip

the samples so that Equations 6, 7 hold. In the second step, we

project ηk onto the sphere around the original image o such that

d(o, õk−1)− d(o, õk−1 + etak) = ǫ · d(o, õk−1) and Equation 6 hold.

We refer to this as the orthogonal perturbation and use it later

in the hyperparameter tuning. In the last step, we make a small

shift to the original image so that Equations 6, 8 hold. For high-

dimensional inputs and small δ; σ the constraint (Equation 7) will

also hold approximately.

Unlike the general query attack, our goal is not to

generate adversarial samples, but to degrade the model

performance by feeding poisoned samples to the model,

while taking into account the dynamics of the model

gradient, we fix the number of queries, and at the same

time, even if a certain sample is queried for its being a toxic

sample in a certain query, it is still queried and adjusted the

next time.

Single-Step Query Attack Data Poisoning (SQDP), as an

adversarial attack paradigm designed for Open-World Test-

Time Training (OWTTT) scenarios, formalizes its execution

flow into a three-phase iterative architecture: poisoned sample

generation, query mixing with label mapping, and dynamic

sample updating. This mechanism adaptively adjusts perturbation

strategies through active querying of model feedback, with

its core advantage lying in independence from gradient

information. This characteristic ensures the robustness of

the attack in gradient-dynamic environments induced by

test-time training.

• Poisoned sample generation. Based on the perturbed sample

õk−1 from initialization or step k − 1, generate candidate

poisoned samples:

õki = õk−1
i + ηki (9)

where ηki ∼ P(õk−1) is random perturbation sampled from

proposal distribution and complies with the provisions of

Equations 6–8. The method of ηki generation is introduced in

the third paragraph of this section.

• Query mixing and label mapping. To simulate data

heterogeneity in open-world environments, a hybrid dataset

strategy constructs query inputs:

Dmixed = αDpoison + (1− α)Dclean (0.0 ≤ α ≤ 1.0) (10)
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where α is the preset mixing ratio, and αDpoison =

õk. Then feed candidate poisoned samples to model and

obtain prediction:

ỹkmixed = f (Dmixed) (11)

This achieves dual objectives:

– Model poisoning attack: Induce the model to output error

labels on õk to reduce the performance of the model.

– Mapping yki to ci, while ci refers to the true label of õ
k
i :

M
k = {(ci, ỹ

k
i )|y

k
i = f (õki )} (12)

• Sample update. Update perturbed samples based on attack

result via Equation 13:

õki =

{

õk−1
i if ỹki = ci and (ci, ỹ

k
i ) ∈ Mk

õk−1
i + ηki otherwise

(13)

The update strategy follows the following principles: when

the disturbance successfully leads to misclassification, keep

the current disturbance increase, otherwise keep the image

the same as the õk−1
i . This feedback driven closed-loop

optimization significantly improves the attack efficiency.

In conclusion, the core of SQDP methodology resides

in alternately executing the aforementioned three-phase

process during model testing. Through iterative query-

feedback mechanisms, it achieves progressive degradation of

the model performance. Compared to conventional gradient-based

approaches, its gradient-independent nature effectively overcomes

gradient drift caused by test-time training, establishing a novel

paradigm for adversarial robustness research in open dynamic

environments. Complete algorithmic workflow is detailed in

Algorithm 1.

4 Experiments

4.1 Settings

4.1.1 Datasets
For the corruption datasets, we selected CIFAR10-

C/CIFAR100-C (Hendrycks and Dietterich, 2019) as a small

corruption dataset, each containing 10,000 corrupt images with

10/100 categories, and ImageNet-C (Hendrycks and Dietterich,

2019) as a large-scale corruption dataset, which contains 50,000

corruption images within 1,000 categories. We also introduced

some style transfer datasets. ImageNet-R (Hendrycks et al., 2021)

is a large-scale realistic style transfer dataset that has renditions of

200 ImageNet classes resulting in 30,000 images. Tiny-ImageNet

(Pouransari and Ghili, 2014) consists of 200 categories with each

category containing 500 training images and 50 validation images.

We also introduce some digits datasets. MNIST (LeCun et al.,

2002) is a handwritten digit dataset, which contains 60,000 training

images and 10,000 testing images. SVHN (Netzer et al., 2011) is

a digital dataset in a real street context, including 50,000 training

images and 10,000 testing images.

Require: original image o = {xi}i=1...N, OWTTT model f,

target image t, original labels c, dataset D

1: function SQDP(o,c,f,t,D)

2: while k < maximum number of steps do

3: draw random perturbation from proposal

distribution ηki P(õk−1)

4: ỹk = f(õk−1 + ηki)

5: Dmixed = αDpoison + (1 − α)Dclean (0.0 ≤ α ≤

1.0) where αDpoison = õk

6: ỹkmixed = f(Dmixed)

7: Mk = {(ci, ỹ
k
i)|y

k
i = f(õki)}

8: while i < N do

9: if ỹki = ci and (ci, ỹ
k
i) ∈ Mk then

10: set õki = õk−1i

11: else

12: set õki = õk−1i + ηki

13: end if

14: end while

15: end while

16: end function

Algorithm 1. SQDP.

4.1.2 Evaluation metric
Our experiments expose a flaw in OWTTTmetrics: cumulative

indicators (AccS/N) (Li et al., 2023) systematically misrepresent

adaptation progress under distribution shift. As Figure 2

demonstrates, when instantaneous weak OOD accuracy fails

to exceed the decaying AccS threshold (batcht
weak

< Acct−1
S ),

the legacy metric declines despite rising weak OOD

performance—revealing critical temporal metric discordance.

To establish weak OOD generalization as the primary

evaluation standard, we adjusted AccS propose the core metric

Accweak as Equation 14, where Bs refers to the weak OOD samples

in each batch, ŷi refers to the predicted label and l(yi ∈ Bs) is true if

yi is in the set Bs:

Accweak =

∑

xi ,yi∈Bs
I(yi = ŷi) · I(yi ∈ Bs)

∑

xi ,yi∈Bs
I(yi ∈ Bs)

(14)

Contrasted with the AccS as Equation 15, where Cs refers to

the cumulative set of all weak OOD samples processed through

OWTTT model:

AccS =

∑

xi ,yi∈Dt
I(yi = ŷi) · I(yi ∈ Cs)

∑

xi ,yi∈Dt
I(yi ∈ Cs)

(15)

The defining distinction lies in the temporal scope—not data

domain. Whereas AccS aggregates the accuracy over all historical

batches (batches 1 to t − 1) calculates the instantaneous accuracy

exclusively on the current batch.

4.1.3 Training details
Before using SQDP, we pre-train the OWTTT model with the

appropriate data and obtain the model’s Accweak for each training.
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FIGURE 2

Divergence between cumulative weak OOD accuracy Acc_s (left) and and instantaneous weak OOD accuracy Acc_weak (right). When acc
t

weak
fails

to exceed the decaying Acc_s threshold, the cumulative metric declines despite actual model improvement.

After that, we use SQDP to poison the model and use normal

samples to test the Accweak of the model after the poisoning. Below

are the parameters of each model:

For the OWTTT part, we follow the parameters specified in Li

et al. (2023). We followed the sequential test-time training protocol

specified in Su et al. (2022) and choose ResNet-50 (He et al., 2016)

as the backbone network for all experiments. For optimization, we

choose SGD with momentum to optimize the backbone network.

We set the learning rate α = {1e − 3, 1e − 4, 2.5e − 5, 2.5e −

5, }, the batch size NB = {256, 256, 128, 128}, λ = {1, 1, 0.4, 0.4},

respectively, for experiments on Cifar10-C, Cifar100-C, ImageNet-

C, and ImageNet-R, respectively. To further reduce the effect of

incorrect pseudo-labeled, we only use 50% samples with odi far

from τ ∗ to perform prototype clustering for each batch. For all

experiments, we use temperature scaling δ = 0.1, the length of

strong OOD prototypes queue Nq = 100, and the length of moving

average Nm = 512.

Although there are known security vulnerabilities in the test

time adaptation framework, there is still a lack of research on

targeted poisoning attackmethods for open world test time training

(OWTTT). To establish the baseline evaluation, we used the

Diverse Input-FGSM (DIM) attack as a benchmark method, which

was used in recent research (Cong et al., 2024). The empirical

results show that DIM has a significant destructive effect in a

variety of test time training (TTT) and test time adaptation (TTA)

paradigms (Cong et al., 2024). For the DIM model, we follow the

parameters specified in Cong et al. (2024). We set the perturbation

budget ǫ = 32/255 (l∞-norm) for default. And we set α = 4/255.

For the SQDP model, we used the boundary attack under

foolbox,1 and we set the parameters as follows: epsilons =

0.3, steps = 100, spherical_step = 0.01, source_step = 0.01,

source_step_convergance = 1e-7, step_adaptation = 1.5, and

update_stats_every_k = 10. All of the parameters are default except

the epsilons and steps.

For the calculation of expenses, we use the A40 graphics card

for calculation. For the CIFAR10 and 100 datasets, the OWTTT

algorithm consumes 10.21 GB of video memory during runtime,

while SQDP attacks the OWTTT model with 13.13 GB of video

memory. It takes 82.52 seconds for a hundred queries. For the

Imagenet dataset, the OWTTT algorithm consumes 17.24 GB of

video memory during runtime, while SQDP attacks the OWTTT

1 https://github.com/bethgelab/foolbox.git

model with 40.60 GB of video memory. It takes 84.5 seconds for a

hundred queries. Considering the low query time under the current

computational load, and the fact that the video memory overhead

of this algorithm includes the occupied space of the attacked

algorithm, and only the adversarial sample images and target

images to be generated need to be loaded during actual operation,

the video memory consumption will be greatly reduced. Even

graphics cards with lower configurations than A40 can run SQDP

algorithm, resulting in lower overall computational overhead.

4.2 SQDP against OWTTT models

We introduce here SQDP against the OWTTT model. In order

to fully demonstrate the vulnerability of the OWTTT model to

SQDP, we adapt all datasets with poisoned samples and evaluate the

impact on the prediction performance. Considering the fluctuation

of the results of Accweak for a single batch, the comparison of the

results takes the average of the last 5 times of the pre-training and

the 5 times of the OWTTT model’s Accweak before testing using

normal data after the completion of the SQDP, respectively. The

results are shown in Tables 1–4 and Figure 3. The first row in the

table represents the category of week ood dataset, and the first

column represents the category of strong OOD dataset. There is

no weak OOD data in Imagenet-r dataset, so there is no weak OOD

data identifier.

In our study, we first observe that our poisoned samples

almost always lead to a significant decrease in the predictive

power of the target model, regardless of which combination of

strong-OOD and weak-OOD datasets is used. This phenomenon

suggests that the quality and characteristics of the data have a non-

negligible impact on the performance of the model. By analyzing

the experimental results, we find that the poisoned samples can

significantly interfere with the normal operation of the model and

cause its accuracy to decrease dramatically in the face of unknown

data, which also provides an important experimental basis for our

subsequent research.

In addition to analyzing the comparability of different

combinations of strong-OOD and weak-OOD data, we note

that there is a significant difference in the magnitude of model

performance degradation. For example, the data in Table 1 shows

that when the weak OOD data is SNOW and the strong OOD data

is MNIST, the accuracy of the model plummets from 0.88 to 0.24,
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TABLE 1 Poisoning results on CIFAR10-C.

Snow Fog Frost Shot_noise

Before Ours DIM Before Ours DIM Before Ours DIM Before Ours DIM

MNIST 0.88 0.24 0.83 0.87 0.61 0.81 0.90 0.71 0.86 0.87 0.62 0.83

noise 0.91 0.03 0.84 0.88 0.80 0.80 0.91 0.20 0.89 0.88 0.05 0.85

SVHN 0.91 0.10 0.84 0.88 0.10 0.80 0.91 0.44 0.86 0.89 0.24 0.85

Tiny-Imagenet 0.80 0.38 0.78 0.85 0.11 0.84 0.88 0.67 0.84 0.82 0.32 0.87

Cifar100 0.72 0.31 0.72 0.87 0.11 0.82 0.87 0.27 0.81 0.77 0.20 0.87

Bold value means that the result is better than other comparison models and has achieved better results.

TABLE 2 Poisoning results on CIFAR100-C.

Snow Fog Frost Shot_noise

Before Ours DIM Before Ours DIM Before Ours DIM Before Ours DIM

MNIST 0.59 0.002 0.51 0.55 0.01 0.45 0.65 0.02 0.86 0.61 0.03 0.29

Noise 0.61 0.50 0.55 0.60 0.47 0.44 0.65 0.51 0.58 0.62 0.53 0.47

SVHN 0.61 0.02 0.57 0.60 0.01 0.45 0.65 0.04 0.58 0.62 0.05 0.46

Tiny-Imagenet 0.45 0.24 0.36 0.36 0.30 0.34 0.50 0.02 0.84 0.48 0.41 0.18

Cifar10 0.43 0.27 0.35 0.33 0.42 0.28 0.49 0.34 0.40 0.47 0.30 0.05

Bold value means that the result is better than other comparison models and has achieved better results.

TABLE 3 Poisoning results on Imagenet-C.

Snow Fog Frost

Before Ours DIM Before Ours DIM Before Ours DIM

MNIST 0.59 0.02 0.28 0.55 0.01 0.42 0.65 0.00 0.11

noise 0.61 0.02 0.31 0.60 0.00 0.41 0.65 0.01 0.03

SVHN 0.61 0.05 0.32 0.60 0.01 0.41 0.65 0.01 0.05

Bold value means that the result is better than other comparison models and has achieved better results.

which shows great vulnerability. Comparatively, when the weak

OOD data is replaced with frost, the model performs relatively

poorly, with the accuracy similarly dropping to 0.71. This suggests

that themodel’s resistance and adaptability are significantly affected

in different data combinations, which depend on the specific

characteristics of the dataset.

Finally, our experimental results also show that, compared

to the DIM method, our proposed method performs

better in most cases. This is evident from our streamlined

querying process, where only a small number of queries

can effectively degrade the performance of the target

model. In our experiments, a significant suppression of

the predictive ability of the target model was successfully

achieved by performing only 100 queries. This finding not

only highlights the effectiveness of our approach but also

provides new ideas and approaches for further research

and applications.

4.3 The recovery of OWTTT model

In this study, we investigate the effects of incorporating

independent and identically distributed (i.i.d.) samples into the

TABLE 4 Poisoning results on Imagenet-R.

Before Ours DIM

MNIST 0.44 0.01 0.38

Noise 0.45 0.00 0.39

SVHN 0.46 0.26 0.39

Bold value means that the result is better than other comparison models and has achieved

better results.

target model post-poisoning. Specifically, we examine a scenario

where poisoned samples are introduced first, followed by the

feeding of i.i.d. samples. Using the performance on CIFAR-10-

C (as illustrated in Figure 4) as a reference, we observe that in

some cases, the utility of the model can recover to near normal

levels. For example, when combining weak OOD samples from

MNIST with strong OOD samples affected by fog, we note that

the accuracy of weak OOD samples can return to 0.86, indicating

a substantial recovery from the effects of poisoning. This suggests

that the degradation in model performance caused by poisoned

samples can be substantially mitigated by careful selection of the

data fed to the model after the poisoning process.
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FIGURE 3

Poisoning results on di�erent datasets. The y-axis and x-axis represent the accuracy (Accweak) and dataset names of di�erent datasets under SQDP.

The x-axis name follows the naming rule of “weak OOD category_strong OOD data.” The above picture e�ectively proves the feasibility of our

method.

However, it is important to note that, in most combinations

of strong and weak OOD datasets, the efficiency of the model

does not exhibit significant recovery. For instance, when the

weak OOD sample is MNIST and the strong OOD sample

is snow, the accuracy after recovery only reaches 0.05, which

is drastically lower than the pre-poisoning performance

levels. This result underscores a troubling aspect of model

vulnerability; it illustrates that certain combinations of

datasets may lead to conditions from which the model

cannot effectively recover. Thus, these findings suggest the

potential for enduring detrimental effects on the model’s

predictive capabilities following an attack, raising concerns

about the resilience of machine learning models in similar

threat scenarios.
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FIGURE 4

Recover after poisoning. The weak OOD samples are CIFAR-10-C. The y-axis and the x-axis represent the accuracy (Accweak) of each batch and the

number of batch. Each title of the picture follows the naming rule of “weak OOD category_strong OOD data.”

Finally, our experimental results show that our proposed

method outperforms the DIM method in most cases. In TePAs,

the TTA method attacked using the DIM method is recoverable

after accepting normal samples; however, the present method

makes recovery impossible on some datasets. Note that we

effectively degrade the performance of the target model using only

a small number of queries. In our experiments, the predictive

power of the target model was significantly suppressed with only

100 queries, which proves the effectiveness of our method. At

the same time, the unrecoverable nature of the attack shows

that the attack method is fatal to the model and needs to be

highly emphasized.

4.4 Factors that may a�ect the
e�ectiveness of the attack

In this chapter, we systematically explore the various factors

that may affect the effectiveness of an attack. To achieve

this, we design a series of experiments utilizing two different

datasets: the MNIST dataset as out-of-distribution (OOD)

data and the CIFAR-10-C dataset as in-distribution data.

Without additional instructions, the rest of the parameters

TABLE 5 Poisoning results on strong oods.

Target Snow Fog Frost Shot_noise

Strong 0.47 0.01 0.04 0.08

Weak 0.24 0.61 0.71 0.62

in the experiment are the same as in Section 4.1. Through

the experiments in this chapter, we aim to demonstrate the

effectiveness of the attack methodology and gain insight

into how different factors can change the dynamics of the

attack’s effectiveness.

4.4.1 The settings of target
The previous attacks used strong OOD data as the target, and

added perturbations to the weak OOD data and input them into

the model. To confirm whether the target setting has any effect on

the attack effect, in this chapter, we set weak OOD as the target, add

perturbation to the strong OOD data and input it into the model,

and other experimental conditions remain unchanged. The results

are shown in Table 5.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1621025
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pi et al. 10.3389/frai.2025.1621025

TABLE 6 Poisoning results on models without pre-training.

Target Snow Fog Frost Shot_noise

Origin 0.73 0.68 0.73 0.61

After 0.05 0.02 0.00 0.23

From the table, it can be seen that there is a significant

difference in the attack effect for different datasets with different

target settings. Specifically, when the weak OOD data category is

set to “snow,” the attack effect partially decreases; while in the

other three categories, the attack effect increases significantly. These

results suggest that the effect of target setting on attack effectiveness

cannot be ignored. However, it is worth noting that even if the

target setting is changed, the attack method itself remains valid and

does not lead to a fundamental failure of the attack effect. Therefore,

differences in target settings do not impede the effectiveness of the

attack methods.

4.4.2 Poisoning models without pre-training
In this section, we conduct systematic attack experiments on

models that are not pre-trained and provide data on normal

samples after the attack to test whether the performance of the

model is significantly affected by its performance in the pre-trained

state. The experimental results are detailed in Table 6, where the

row named origin represents the mean value of acc_weak for the

untrained model on the initial 5 normal sample batch sets. The

row named after indicates the mean value of acc_weak on the

initial 5 normal sample batch for the model after accepting the

poisoned samples.

The experimental results shown in Figure 5 show that

generating poisoned samples against an uninitialized model can

effectively reduce its initial accuracy in open-world scenarios, and

that this attack does not negatively affect the attack performance

of the model. In addition, the attacked model has more difficulty

in recovering its performance when faced with normal samples,

which further emphasizes the importance of pre-training for model

stability and recovery.

4.4.3 The times of queries
In this chapter, we aim to investigate the relationship between

attack effectiveness and the number of queries. It is evident that

attack effectiveness is closely related to the number of queries;

however, the precise nature of this relationship remains to be

explored further. To systematically analyze the impact of varying

query counts on attack effectiveness, we have designed experiments

with the number of queries set at 50, 75, 100, 125, and 150. The

experimental results are presented in Table 7 and Figure 6, which

will provide significant empirical support for understanding how

query counts influence attack effectiveness.

Firstly, the effectiveness of the attacks increases steadily with

the number of attacks. Based on the data presented in the table,

it is evident that all combinations demonstrate a general decline

in accuracy as the number of queries increases. This observation

not only indicates the effectiveness of the attacks but also confirms

that the decrease in model accuracy during the experiments is not

limited to a specific query point; rather, it represents a widespread

and systematic phenomenon. This finding suggests that the model

consistently exhibits vulnerability in the face of increasing attack

frequency. Therefore, we can conclude that the efficacy of the

attacks is robust, and the decline in model performance is not an

isolated incident, but rather a clear reflection of the cumulative

impact of the attacks.

Second, the relationship between the effectiveness of the

attack and the number of queries does not grow linearly. In the

experiments with snow as the weak OOD dataset, the model

accuracy decreases significantly after the 100th query is performed,

while the decrease is limited in the first 100 queries, showing that

there is a specific query threshold; when the threshold is reached,

the attack effectiveness increases significantly. The query threshold

also varies across datasets; for example, for the frost dataset, the

threshold is not reached until the 125th query. Considering that

the frequency of calls against the same interface is usually limited

in open-world scenarios, too high a number of queries does not

meet the practical application requirements. Therefore, the attack

strategy of limiting the number of queries is more applicable in

real-world applications and provides a more realistic reference for

model security evaluation.

4.4.4 The percentage of mixed samples
In this section, we explore the effect of sample mixing ratio

on the proposed method. The data in Table 8 show that there is

a significant correlation between the attack effect and the mixing

ratio, but the exact pattern of the relationship still needs to be

studied in depth. To this end, we will input the generated toxic

data into the model according to five different ratios, namely 0.2,

0.4, 0.6, 0.8 and 1.0, with the aim of observing the changes in

model performance.

First, we note that the poisoned samples generated at different

mixing ratios all have a significant negative impact on the

performance of the model. This phenomenon not only clearly

demonstrates the effectiveness of the attack method, but also shows

that the poisoned samples generated by the method are capable

of causing substantial damage to the model even at very low

mixing ratios. This important finding highlights the importance of

giving high priority to this attackmethod when performing security

evaluations of models, as the magnitude of the potential threat may

be much higher than we expect.

Second, we observe that changes in the mixing proportions

of different samples directly affect the performance of the attack

model. Under most datasets, the model performance generally

shows a decreasing trend as the proportion of poisoned samples

gradually increases, especially when the weak OOD dataset is

snow, fog, and frost. However, when the weak OOD dataset used

is shot_noise, the model performance is relatively superior, and

only at mixing ratios of 0.2 and 1.0, the model performance can

still be maintained at a relatively good level. This result suggests

that how to specifically define and select the mixing ratio of the

samples is still an important topic worthy of in-depth research,

especially in the process of optimizing the model’s ability to resist

attacks. Further exploration in this research direction will provide a
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FIGURE 5

Recover after Poisoning in no per-trained model. The weak OOD samples are CIFAR-10-C. The y-axis and the x-axis represent the accuracy(Accweak)

of each batch and the number of batch. Each title of the picture follows the naming rule of “weak OOD category_strong OOD data.”

TABLE 7 Poisoning resultes on di�erent queries.

Times 0 50 60 70 80 90 100 110 120 130 140 150

Snow 0.88 0.78 0.74 0.71 0.52 0.44 0.24 0.17 0.17 0.17 0.07 0.06

Fog 0.87 0.71 0.63 0.67 0.70 0.68 0.61 0.36 0.39 0.22 0.39 0.09

Frost 0.90 0.85 0.73 0.70 0.69 0.70 0.71 0.54 0.41 0.24 0.09 0.05

Shot_noise 0.87 0.74 0.77 0.76 0.75 0.74 0.62 0.60 0.27 0.26 0.20 0.43

FIGURE 6

Poisoning results on di�erent queries The y-axis and x-axis represent the accuracy (Accweak) and query count for di�erent query counts.

theoretical basis and practical guidance to improve the robustness

and security of the model.

5 Discussion

The main findings of the study reveal that the robustness of

current TTT/TTA models, especially TTT/TTA (OWTTT) models

in open-world environments, is in dire need of enhancement

and has significant security concerns and risks. Specifically,

we propose a Single Query Data Poisoning (SQDP) attack

methodology, by which we are able to significantly reduce the

accuracy of models on different datasets with only 100 queries.

This finding implies the vulnerability of the model against

potential attacks. It is worth noting that previous studies (e.g.,

Tepas) have focused on traditional TTT/TTA models, which are

not as effective against attacks in open-world environments. In

addition, we observe that some instances of the models that

have been attacked by SQDP appear to be unrecoverable by

normal samples, which further emphasizes the vulnerability of

the models. Due to the fact that the ImageNet dataset contains

1,000 fine-grained object categories (Russakovsky et al., 2015),

covering most visual concepts in the real world (Deng et al.,

2009), the robustness results validated on this dataset have broad

representativeness and transferability (Hendrycks and Dietterich,

2019).
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TABLE 8 Poisoning results on di�erent mixed percentage.

Per 0 0.2 0.4 0.6 0.8 1.0

Snow 0.88 0.74 0.63 0.24 0.32 0.11

Fog 0.87 0.71 0.68 0.61 0.30 0.09

Frost 0.90 0.74 0.78 0.71 0.46 0.18

Shot_noise 0.87 0.40 0.72 0.62 0.75 0.11

The importance of this finding is not only on the technical level,

but also relates to the practical application of TTT/TTA technology

in critical areas such as medical diagnosis and autonomous driving.

In the current context of rapid development, models with high

accuracy and strong adaptability will provide more efficient and

reliable solutions in these fields. However, the popularization

of technology is accompanied by security risks that cannot be

ignored. For example, attacks on models through specific means

can lead to significant degradation of model performance, which

can have serious consequences. Despite the growing interest in

this area, research in this area still appears to be relatively

scarce, making the results of this study of great academic and

practical significance.

Despite the results of this study, we must also recognize

its limitations. First, although the experiments prove the

effectiveness of the SQDP attack method, in some cases,

when the percentage of poisoned samples is very low, the

model performance decreases relatively slowly or requires

more queries, increasing the cost of the attack. In addition,

this paper does not provide an in-depth discussion of

strategies for defending against this attack method, whereas

SQDP attacks are more necessary to cope with potentially

changing attack methods than traditional adversarial

defense strategies.

Based on the findings of this study, future research directions

can focus on the following two areas:

• Designing more efficient attack algorithms to generate

poisoned samples and execute attacks against the model.

• Exploring practical and effective defense strategies aimed at

countering attacks against OWTTT models.

In conclusion, this study clearly demonstrates the possible

robustness issues and security risks of OWTTT techniques. We

call on researchers to pay more attention to the security issues of

AI while pursuing technological advances in order to realize the

sustainable development of AI technology.

6 Conclusion

In this article, we conducted an in-depth study of targeting

test-time poisoning attacks (TePAs) for the Open-world Test-

time Training (OWTTT). Specifically, we propose a toxic sample

generation framework that relies on query-based adversarial attack

techniques to construct disruptive adversarial samples. These

adversarial samples are then used as poisoned samples designed

to significantly degrade the performance of OWTTT models by

maliciously manipulating the inputs to the target model. Through

empirical evaluation, our experimental results show that this attack

methodology is largely successful in weakening the performance

of the target OWTTT model, demonstrating the effectiveness and

relevance of our attack strategy.

In addition, we note that the target model has an extremely

low probability of recovering its performance after experiencing

our attack. This finding reveals the fatal flaws of the OWTTT

model in the face of the target test-time poisoning attack, and

suggests that the existing models have serious shortcomings

in terms of security and robustness. Therefore, how to

conduct an effective defense against such attacks becomes an

interesting research direction that deserves in-depth exploration.

We believe that the research on defense mechanisms for

OWTTT models not only has important academic value, but

also has practical significance for security enhancement in

practical applications.

In conclusion, our study shows that current OWTTT methods

are vulnerable to test-time poisoning attacks, a finding that

provides important insights for future research. Based on this,

we advocate the active integration of defenses against test-time

poisoning attacks in the design of future OWTTT methods to

enhance the security and robustness of the model. Through such

efforts, we hope to promote the further development of the

OWTTT field in resisting adversarial attacks and lay the foundation

for building more secure and reliable target tracking systems.
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