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Healthcare data quality is a critical factor in clinical decision-making, diagnostic 
accuracy, and the overall efficacy of healthcare systems. This study addresses 
key challenges such as missing values and anomalies in healthcare datasets, 
which can result in misdiagnoses and inefficient resource use. The objective is to 
develop and evaluate a machine learning-based strategy to improve healthcare 
data quality, with a focus on three core dimensions: accuracy, completeness, and 
reusability. A publicly available diabetes dataset comprising 768 records and 9 
variables was used. The methodology involved a comprehensive data preprocessing 
workflow, including data acquisition, cleaning, and exploratory analysis using 
established Python tools. Missing values were addressed using K-nearest neighbors 
imputation, while anomaly detection was performed using ensemble techniques. 
Principal Component Analysis (PCA) and correlation analysis were applied to 
identify key predictors of diabetes, such as Glucose, BMI, and Age. The results 
showed significant improvements in data completeness (from 90.57% to nearly 
100%), better accuracy by mitigating anomalies, and enhanced reusability for 
downstream machine learning tasks. In predictive modeling, Random Forest 
outperformed LightGBM, achieving an accuracy of 75.3% and an AUC of 0.83. 
The process was fully documented, and reproducibility tools were integrated 
to ensure the methodology could be replicated and extended. These findings 
demonstrate the potential of machine learning to support robust data quality 
improvement frameworks in healthcare, ultimately contributing to better clinical 
outcomes and predictive capabilities.
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1 Introduction

Healthcare data quality is a critical determinant of clinical decision-making, diagnostic 
accuracy, and overall patient outcomes. According to ISO 9000 quality guidelines, quality is 
defined as the extent to which a product or service meets customer needs by embodying all 
the necessary characteristics to achieve its intended purpose (ISO, 2015). In healthcare, data 
are treated as a “product” that must be  tailored to specific user requirements, such as 
supporting clinical decisions or developing machine learning models. This dynamic and 
context-dependent nature of data quality is especially significant in healthcare, where the 
availability of high-quality data directly influences clinical prognoses and treatment outcomes.
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The importance of data quality in healthcare is underscored by the 
potential consequences of poor-quality data, which may lead to 
misdiagnoses, treatment errors, and inefficient resource utilization. 
Prior studies have highlighted that data quality is intrinsically linked 
to dimensions such as accuracy, completeness, consistency, and 
timeliness (Liu et al., 2023). For instance, Moses et al. (2021) describe 
data quality as the “health” of data across its lifecycle—from 
acquisition to analysis—emphasizing its impact on operational 
efficiency and decision-making.

Moreover, the literature reveals that effective data quality 
improvement requires both technical and organizational approaches. 
Brownlee (2020) outlines a multi-step data cleaning process that 
includes missing value imputation, removal of duplicate records, noise 
reduction, and normalization. Industry sources support this view, 
highlighting that effective data quality strategies also require proactive 
monitoring, metadata-driven automation, and stakeholder alignment 
across data pipelines (Acceldata, 2024). Techniques such as the 
k-nearest neighbors (KNN) imputation (Thomas and Rajabi, 2021) 
and anomaly detection methods like Isolation Forest and Local 
Outlier Factor (LOF) (Liu et al., 2008) have been shown to effectively 
address common issues such as missing values and outliers, which are 
particularly prevalent in healthcare datasets.

The open science movement further emphasizes the necessity for 
broad access to research methods and datasets to foster collective 
innovation, reproducibility, and transparency in scientific research 
(Open Science Guidebook, 2024). However, this approach must 
be balanced with stringent data protection requirements to safeguard 
patient confidentiality and data security.

Given the critical role of data quality in ensuring reliable clinical 
outcomes and the proven impact of quality issues on machine learning 
model performance (Gong et al., 2023; Wei et al., 2025; Miller et al., 
2024), this study aims to develop and evaluate a machine learning-
based strategy to enhance healthcare data quality. The strategy focuses 
on three key dimensions: accuracy, completeness, and reusability. 
Specifically, the study seeks to:

 1 Assess the quality of healthcare datasets based on their 
accuracy, completeness, and fitness for purpose;

 2 Apply state-of-the-art imputation and anomaly detection 
methods to mitigate data quality issues; and

 3 Validate the effectiveness of these methods through 
comparative analysis of predictive models.

By integrating advanced machine learning techniques with 
rigorous data preprocessing, this research contributes to the growing 
body of work dedicated to improving healthcare data quality—a 
critical prerequisite for reliable clinical decision-making and effective 
healthcare delivery.

2 Literature review

2.1 Data quality and its dimensions

Data quality is a fundamental element in any organizational 
process as it directly influences data usability, reliability, and the value 
derived during decision-making. In healthcare, poor data quality can 
result in severe consequences such as misdiagnosis, treatment errors, 

and increased operational costs, thereby compromising patient safety 
(Southekal, 2017). Early definitions of quality, including Crosby’s 
concept of “fit for purpose” (Crosby, 1979) and Redman’s focus on data 
suitability (Redman, 2016), have evolved into more nuanced 
frameworks. Moses et al. (2021) describe data quality as the “health” 
of data throughout its lifecycle—from acquisition to analysis—
highlighting its critical impact on both clinical outcomes and 
operational efficiency. Schmidt et al. (2021) further categorize data 
quality into key dimensions—integrity, completeness, consistency, and 
accuracy—which ensure that data are structurally sound, fully 
populated, statistically precise, and contextually relevant. These 
dimensions are especially important in healthcare, where they 
underpin reliable clinical decisions and effective ML model 
performance (Wei et al., 2025). Recent developments by Miller et al. 
(2024) extend this perspective by proposing an expanded framework 
that incorporates modern challenges such as reproducibility, 
transparency, and ethical responsibility. These additional dimensions 
are essential in AI-driven healthcare environments, where 
accountability and explainability are as critical as technical correctness.

2.2 Data quality improvement

Improving data quality requires both technical and organizational 
interventions. Technically, processes such as deduplication, 
normalization, and adherence to data standards are essential. 
Brownlee (2020) outlines a multi-step data cleaning process that 
includes missing value imputation, duplicate removal, noise reduction, 
and data format alignment. Imputation methods—such as the 
k-nearest neighbors (KNN) algorithm—are particularly effective in 
healthcare settings where missing values are common (Thomas and 
Rajabi, 2021). Additionally, anomaly detection techniques like 
Isolation Forest and LOF are critical for identifying and correcting 
outliers, thereby enhancing overall data accuracy (Liu et al., 2008; 
Rakhi Gupta and Lamba, 2024). Furthermore, modern approaches to 
data quality emphasize the need to expand beyond traditional 
dimensions such as accuracy and completeness. Miller et al. (2024) 
propose a revised framework that includes traceability, reproducibility, 
and governability—factors that are increasingly critical in data-
intensive environments such as healthcare and machine learning. 
These new dimensions ensure that data can be  tracked across its 
lifecycle, validated through repeatable processes, and managed 
transparently within organizational systems, thus strengthening both 
operational and analytical reliability.

2.3 Data quality strategies in healthcare

Effective data quality strategies in healthcare are vital for clinical 
decision-making, diagnostic precision, and system efficiency. Loshin 
(2010) argues that such strategies must define explicit quality 
dimensions—namely accuracy, completeness, and consistency—and 
be embedded within a robust data management framework. Recent 
studies advocate for the incorporation of artificial intelligence and ML 
techniques to automate quality improvement. For example, Azimi and 
Pahl (2024) highlight the potential of ML-driven anomaly detection 
and correction, while Stanley and Schwartz (2024) stress the need for 
flexible, real-time monitoring systems that can adapt to evolving data 
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landscapes. Industry sources similarly emphasize the importance of 
proactive, metadata-driven quality monitoring and alignment across 
stakeholders to ensure end-to-end data reliability (Acceldata, 2024). 
The present study’s objective—to develop a machine learning-based 
strategy focusing on accuracy, completeness, and reusability—aligns 
with these approaches, emphasizing that a balanced improvement 
across these dimensions is essential for successful data-driven 
healthcare solutions (Ehrlinger and Wöß, 2022; Moses et al., 2021). 
Data management is one of the most prominent challenges which 
complicates deep learning in industrial deployment. Although the deep 
learning technology has achieved very promising results, there is still a 
significant need for further research in the field of data management to 
build high-quality datasets and streams that can be used for building 
production-ready deep learning systems (Munappy et al., 2022).

2.4 Machine learning approaches in data 
analysis

Machine learning has emerged as a transformative tool for 
analyzing large and complex datasets. Sarker (2021) notes that ML 
techniques enable the extraction of hidden patterns, trend forecasting, 
and informed decision-making through data-driven insights. In 
healthcare, ML methods are particularly valuable for standardizing 
disparate data sources, addressing missing values, and detecting 
anomalies—factors that directly impact the performance of predictive 
models (Wei et al., 2025).

2.5 Supervised and unsupervised learning 
methods

ML techniques can be  broadly classified into supervised and 
unsupervised learning methods. Supervised learning, which involves 
training models on pre-labeled data, is widely used for both 
classification and regression tasks (Müller and Guido, 2016). In 
contrast, unsupervised learning identifies inherent data structures, 
clusters, or outliers without pre-assigned labels, thereby enabling 
automated quality monitoring and improvement (Stanley and 
Schwartz, 2024; Usama et al., 2019). Such methods are particularly 
useful in validating the integrity and consistency of healthcare data. 
Figure  1 presents a visual summary of the key data quality 
dimensions—accuracy, completeness, and reusability—and illustrates 
the integration of technical methods (such as KNN imputation, 

Isolation Forest, and LOF with organizational strategies) and ML 
approaches to enhance overall data quality.

Based on the analyzed literature, the presented conceptual 
framework emphasizes that healthcare data quality hinges on three core 
dimensions—accuracy, completeness, and reusability—while 
integrating both technical and organizational approaches to ensure 
consistent, reliable, and adaptable data. Accuracy underscores the need 
for real-world representation and outlier detection (e.g., Isolation 
Forest, LOF), completeness focuses on mitigating missing values 
through imputation techniques such as KNN, and reusability stresses 
metadata management and version control to facilitate data 
repurposing. (Southekal, 2023). This is in line with insights from 
software engineering, where reuse mechanisms and traceability are 
identified as key drivers of transformation quality (Höppner and Tichy, 
2024). This structure is supported by data cleaning, normalization, and 
deduplication (Brownlee, 2020), continuous monitoring and assessment 
within an organizational strategy (Loshin, 2010), and the incorporation 
of machine learning methods—both supervised and unsupervised—to 
automate anomaly detection and clustering (Müller and Guido, 2016; 
Stanley and Schwartz, 2024). By aligning these dimensions with 
advanced computational tools and robust management frameworks, the 
framework aims to enhance data reliability, thereby contributing to 
more accurate predictive modeling, improved clinical decision-making, 
and overall healthcare innovation (Zhao et al., 2024).

The literature reviewed provides a solid theoretical foundation for 
the current study, which aims to develop a machine learning-based 
strategy to enhance healthcare data quality. The reviewed sources 
emphasize that improvements in completeness (through imputation), 
accuracy (via anomaly detection), and reusability (through proper 
documentation) are interdependent and critical for reliable predictive 
analytics (Ehrlinger and Wöß, 2022; Moses et al., 2021).

3 Methods

The primary objective of this study is to develop and evaluate a 
machine learning-based strategy to improve healthcare data quality. 
The specific research aims are to (1) assess the current quality of 
healthcare datasets using defined metrics, (2) apply state-of-the-art 
imputation and anomaly detection methods to mitigate data quality 
issues, and (3) validate the effectiveness of these methods through a 
comparative analysis of predictive models. This aligns with practical 
guidance on implementing real-world data quality strategies, which 
emphasize measurable standards, scalable techniques, and integration 

FIGURE 1

Conceptual framework for healthcare data quality.
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into data workflows (Hawker, 2023). This research endeavors to 
contribute a systematic, reproducible approach to enhancing data 
integrity, ultimately supporting more accurate clinical analytics and 
informed healthcare decisions.

3.1 Data extraction, cleaning, and 
preparation

The dataset used in this study is publicly available on GitHub 
under the title “Diabetes Dataset.” It contains clinical and demographic 
data of diabetic patients, including variables such as age, body mass 
index (BMI), blood glucose levels, diastolic blood pressure, skin fold 
thickness, serum insulin, diabetes pedigree function, and a binary 
outcome variable indicating diabetes status. The dataset consists of 768 
rows and 9 columns, provided in CSV format. Ethical considerations 
are addressed as the dataset is anonymized and publicly available (ISO, 
2015; Moses et al., 2021).

3.1.1 Data loading and initial analysis
Data loading was performed using the Python library pandas 

(McKinney, 2010), enabling efficient manipulation and exploration 
of the dataset. An initial analysis was conducted to determine the 
dataset’s structure, identify data types, and detect missing values. 
Visualization libraries such as matplotlib and seaborn were employed 
to generate preliminary insights into the distribution of variables and 
the extent of missing data (Waskom, 2021).

3.1.2 Missing value treatment
Given the critical importance of data completeness, missing values 

were identified and addressed using the KNN Imputer from the scikit-
learn library. The imputer was configured with n_neighbors = 5, a 
parameter commonly adopted in medium-sized datasets to balance the 
trade-off between data volume and imputation accuracy. Using too few 
neighbors (e.g., k = 1–2) can make imputations overly sensitive to noise 
or outliers, leading to unreliable values. Conversely, using too many 
neighbors may dilute the imputed values by averaging over data points 
that are not truly similar, especially in datasets with heterogeneous 
subgroups. Choosing k = 5 offers a compromise: it smooths out 
individual anomalies while maintaining sufficient local similarity for 
accurate value estimation (Pan et al., 2015; Emery et al., 2024).

3.1.3 Anomaly detection
To enhance data accuracy, outlier detection was performed using 

two complementary machine learning techniques: Isolation Forest and 
LOF. The analysis was conducted on a publicly available diabetes dataset 
containing 768 samples and 9 clinical features (YBI Foundation, 2025).

To enhance data accuracy, outlier detection was performed using 
two robust techniques: Isolation Forest and LOF (Liu et al., 2008). 
Isolation Forest isolates anomalies through hierarchical segmentation 
of the data distribution, whereas LOF identifies local outliers by 
comparing the density of a data point to that of its neighbors. These 
methods enabled the identification and subsequent correction or 
exclusion of approximately 20% anomalous data, ensuring that only 
representative data contributed to model training. To enhance data 
accuracy, outlier detection was performed using two robust 
techniques: Isolation Forest and LOF. Isolation Forest isolates 
anomalies by recursively partitioning the data using random splits. 
Anomalies are more susceptible to isolation and thus have shorter 

average path lengths in the resulting trees. The anomaly score for a 
given data point x is calculated as shown in Equation 1:
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Where:

 • E(h(x)) is the expected path length of point xxx in the trees,
 • n is the number of samples,
 • c(n) is the average path length of unsuccessful searches in a 

Binary Search Tree, estimated using Equation 2:
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with H(i) ≈ l(i) + γ + being the harmonic number, and γ ≈ 0.577 
(Euler-Mascheroni constant).

Lower scores (closer to 1) indicate higher anomaly likelihood.
LOF, in contrast, assesses how isolated a point is relative to its local 

neighborhood. The LOF score is based on local density, defined using 
reachability distance. The LOF of a point x is defined in Equation 3:
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where:

 • Nk(x) is the set of kkk nearest neighbors of x,
 • lrdk(x) is the local reachability density.

The reachability distance is defined in Equation 4:
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reach-distk (x,y) = max {k-distance(y), d(x,y)}.
Values of LOF greater than 1 indicate potential outliers. The 

higher the value, the stronger the anomaly.
By combining Isolation Forest (global context) and LOF (local 

context), a more comprehensive anomaly detection strategy was 
achieved. This dual-method approach successfully identified 
approximately 20.1% of the dataset as anomalous, ensuring that only 
representative data were used for training downstream machine 
learning models. To enhance the robustness of the outlier detection 
process, two complementary techniques—Isolation Forest and LOF—
were applied independently to the imputed dataset. Isolation Forest 
detected 78 anomalies based on global feature distribution, while LOF 
identified 115 local anomalies by comparing neighborhood density 
This parallel approach provided a richer diagnostic perspective, 
supporting a more informed refinement of data quality before model 
training. Moreover, this unsupervised detection approach illustrates 
the strength of machine learning in automated anomaly detection 
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without the need for labeled data, a capability increasingly used in 
data-centric healthcare systems (Usama et al., 2019).

3.1.4 Data normalization and feature engineering
Normalization and standardization were applied using 

StandardScaler from scikit-learn to ensure that all features contributed 
equally during model training. A correlation matrix was generated to 
evaluate inter-variable relationships, and Principal Component 
Analysis (PCA) was employed to reduce dimensionality and highlight 
the most significant predictors—such as Glucose, BMI, and Age—thus 
reinforcing model accuracy (Jolliffe, 2002; Jolliffe and Cadima, 2016). 
Feature selection and dimensionality reduction not only improve 
learning efficiency but also enhance interpretability, especially when 
combined with model explanation techniques (Lundberg and Lee, 
2017). Moreover, well-designed preprocessing pipelines that include 
normalization and feature engineering are critical to ensuring reliable 
model outcomes in clinical settings (Lawson et al., 2021).

3.1.5 Overall data processing flow
As illustrated in Figure 1, the data processing flow comprises 

several key stages, from data acquisition and initial analysis to 
missing-value handling, anomaly detection, and feature engineering. 
Each step is aligned with one of the three core dimensions of data 
quality—accuracy, completeness, and reusability. Specifically, 
anomaly detection and processing contribute to accuracy, missing-
value handling and normalization address completeness, and final 
model validation and results analysis focus on reusability.

3.2 Prototype development and testing

The end-to-end data quality improvement strategy is outlined in 
Figure 2, which illustrates the stepwise process from data acquisition 
to model deployment. Each component directly contributes to one or 
more of the three quality dimensions—accuracy, completeness, and 
reusability—and reflects the core principles of a robust data 
preprocessing and modeling pipeline.

3.2.1 Platform and environment
The prototype was developed and tested using the Google 

Colaboratory platform, which offers free access to high-performance 
computing infrastructure, including GPUs and TPUs. This cloud-based 
environment is well-suited for data science workflows and supports the 
seamless integration of key Python libraries such as pandas, numpy, 
scikit-learn, LightGBM, and seaborn, enabling collaborative and 
reproducible research (Bisong, 2019; Raschka et al., 2022).

3.2.2 Model training and validation
Following the preprocessing stages—including imputation, 

anomaly detection, normalization, and correlation filtering—the 
dataset was partitioned using an 80/20 train-test split. Two machine 
learning models, Random Forest and LightGBM, were implemented 
using scikit-learn and the native LightGBM library, respectively. 
Hyperparameter tuning was performed within a k-fold cross-
validation framework (typically 5-fold), optimizing variables such as 
n_estimators, max_depth, and learning_rate (Bergstra and Bengio, 

FIGURE 2

Overview of the data processing flow and its alignment with accuracy, completeness, and reusability.
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2012). To ensure reproducibility and consistency in model 
development, techniques such as version control, metadata tracking, 
and runtime logging were integrated (Lawson et al., 2021; Erden, 
2023). Model performance was evaluated using metrics like accuracy, 
ROC AUC, and precision-recall curves-especially useful for 
imbalanced datasets (Fawcett, 2006) ensuring both predictive 
performance and methodological robustness (Li et al., 2021; James 
et al., 2013).

3.2.3 Real-time analysis and metadata generation
To ensure reproducibility and iterative tracking, the entire 

process was logged using MLflow and TensorBoard. These tools 
provided real-time monitoring of training performance and model 
configurations, supporting transparency, reusability, and traceability 
in line with FAIR data principles.

3.3 Iterative improvement and model 
enhancement

3.3.1 Model refinement
The iterative development phase involved systematic fine-tuning 

and retraining to improve model generalizability. Advanced 
optimization strategies such as Grid Search, Random Search, and 
Bayesian Optimization were applied to identify optimal parameter 
combinations (Yang and Shami, 2020). In addition, ensemble learning 
techniques, including stacking (e.g., combining logistic regression and 

gradient boosting models), were explored to reduce overfitting and 
improve accuracy (Naimi and Balzer, 2018).

3.3.2 Automated pipeline and documentation
A fully automated machine learning pipeline was implemented 

using scikit-learn, ensuring that all steps—from preprocessing and 
feature engineering to model validation—could be reproduced with 
minimal human intervention. Process metadata, configuration files, and 
pipeline outputs were version-controlled and documented throughout, 
reinforcing the reusability of the approach (Stanley and Schwartz, 2024).

4 Results

The dataset, obtained from a public GitHub repository, comprises 
768 rows and 9 columns representing key health indicators. Initial 
quality assessment revealed significant issues affecting overall data 
quality, including missing values, anomalies, and class imbalance. 
Prior to any improvements, data completeness was only 90.57%—with 
9.43% of data missing—primarily in Serum_Insulin (48.70% missing) 
and Skin_Fold (29.56% missing), while variables such as Glucose, 
BMI, and Diastolic_BP exhibited minimal missing data (0.65, 1.43, 
and 4.56% respectively).

Descriptive statistical analysis provides critical insights into the 
distribution of the dataset. For example, the variable Pregnant has a mean 
of 3.845, a standard deviation of 3.370, and a median of 3, with values 
ranging from 0 to 17, reflecting considerable variability in the number of 

FIGURE 3

Heatmap of missing values in the diabetes dataset.
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pregnancies. Glucose shows a mean of 121.687 (SD = 30.536) and a 
median of 117, with a range from 44 to 199, suggesting moderate 
dispersion in blood glucose levels. Similarly, Diastolic_BP exhibits a mean 
of 72.405 (SD = 12.382) and a median of 72, while Skin_Fold 
(mean = 29.153, SD = 10.477) and Serum_Insulin (mean = 155.548, 
SD = 118.776) indicate significant variability, with the latter suggesting 
potential outliers or measurement variability. Other features, such as BMI 
(mean = 32.457, median = 32.3), Diabetes_Pedigree (mean = 0.472), and 
Age (mean = 33.241, median = 29, range 21–81), further illustrate the 
diverse characteristics of the sample. The Class variable, indicating the 
presence of diabetes, has a mean of 0.349 and an SD of 0.477, highlighting 
an imbalanced distribution between diabetic and non-diabetic subjects.

4.1 Missing values

In the primary variables, Serum_Insulin exhibited 48.70% missing 
values and Skin_Fold 29.56%, indicating substantial data 
incompleteness that could compromise subsequent analyses. In 
contrast, other variables such as Glucose, BMI, and Diastolic_BP 
showed minimal missing data.

As shown in Figure 3, this heatmap visualizes the presence of 
missing values across the dataset. The x-axis represents individual 
variables (features), while the y-axis corresponds to the dataset’s 768 
patient records (each row is one observation). Yellow lines indicate 
missing values (value = 1), while purple areas represent complete data 
(value = 0). Notably, the features Serum_Insulin and Skin_Fold show 
a high density of yellow, reflecting significant data 

incompleteness—48.70 and 29.56% missing values, respectively. In 
contrast, other variables like Glucose, BMI, and Diastolic_BP exhibit 
few or no missing entries. The colorbar on the right shows a binary 
scale from 0 (no missing) to 1 (missing), allowing a clear visual 
distinction. This plot helps to pinpoint which variables require 
imputation and to what extent, guiding targeted data cleaning decisions.

4.2 Anomalies

Outlier detection was performed using Isolation Forest and 
LOF. Approximately 20.1% of the dataset was flagged as potential 
anomalies, with Isolation Forest identifying 77 anomalous points 
and LOF detecting 24. These outliers deviate from the underlying 
distribution and, if unaddressed, may significantly impact 
model accuracy.

Figure  4 presents the correlation matrix for all variables, 
including the engineered anomaly indicators anomaly_isolation and 
anomaly_lof. The x-axis and y-axis represent individual features in 
the dataset, and the color intensity reflects the strength and direction 
of correlation (positive in red, negative in blue). Notably, the 
correlations between the anomaly flags and features such as Serum_
Insulin, Skin_Fold, and BMI show moderate negative relationships 
(e.g., −0.41 with Serum_Insulin for Isolation Forest), suggesting that 
these variables are key contributors to detected anomalies. 
Additionally, the Class variable, representing diabetes presence, 
exhibits an uneven distribution (mean = 0.349, SD = 0.477), which 
implies class imbalance. While this is not shown in a separate figure, 

FIGURE 4

Correlation matrix for the diabetes dataset.
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it was taken into account during model evaluation through metrics 
such as AUC and Precision-Recall curves.

Following this anomaly assessment, missing values were imputed 
using the KNN Imputer with n_neighbors = 5, which raised data 
completeness from 90.57% to nearly 100%. Combined with anomaly 
detection and correction, this preprocessing phase substantially 
improved data integrity and modeling reliability (Emery et al., 2024).

The quantitative impact of data preprocessing on dataset quality 
and model performance is summarized in Table 1. The comparison 
highlights substantial improvements in completeness and model 
reliability following imputation, anomaly detection, and 
preprocessing enhancements.

The preprocessing procedures implemented in this study led to 
substantial improvements in both data quality and model 
performance, as outlined in Table 1. A comparative analysis of key 
indicators before and after preprocessing reveals several 
noteworthy findings.

Data completeness was significantly enhanced, increasing from 
90.57 to 99.99%. This was achieved by imputing missing values, 
particularly in the Serum_Insulin and Skin_Fold variables, which 
initially exhibited high missingness (48.70 and 29.56%, respectively). 
The application of the KNN imputation method (with n_
neighbors = 5) successfully addressed these gaps, resulting in a fully 
complete dataset. This improvement provides a more stable foundation 
for downstream analysis, reduces bias, and improves model 
robustness. Anomaly detection effectiveness also improved. The 
anomaly rate increased from 11.99% (using Isolation Forest on a 
subset of complete cases) to approximately 20.1% after applying both 
Isolation Forest and Local Outlier Factor on the fully imputed dataset. 
This dual-method approach enabled more comprehensive 
identification of outliers, capturing subtle irregularities that could 
otherwise skew model training.

PCA analysis conducted after preprocessing revealed a clearer 
separation between anomalous and normal observations (Manjón et 
al., 2015). This indicates a more structured and interpretable feature 
space, which is beneficial for subsequent modeling tasks and 
visualization. In terms of model performance, the Random Forest 
classifier showed a slight AUC improvement, rising from 0.81 to 0.83. 
This suggests enhanced discriminative ability post-preprocessing. 

Conversely, LightGBM experienced a modest decrease from 0.82 to 
0.80, potentially due to increased variance introduced by imputation 
or sensitivity to altered data distributions. Nevertheless, both models 
remained comparably robust overall.

One of the most significant advancements is in reproducibility. 
Before preprocessing, no documentation or tracking mechanisms 
were used. After preprocessing, the integration of MLflow and 
structured metadata tracking allowed full traceability of data 
transformations and model configurations (Erden, 2023). This 
ensures that the entire analytical pipeline is reproducible and can 
be extended in future studies. The developed preprocessing pipeline—
incorporating imputation, anomaly detection, data normalization, 
and process documentation—clearly improved data quality and 
model stability. These findings highlight the importance of systematic 
data refinement, particularly in healthcare, where missing or 
inconsistent data are common challenges.

At the same time, it is essential to emphasize that interpreting 
biomedical indicators such as Serum_Insulin requires clinical 
validation. Apparent abnormalities in such values may reflect not just 
technical issues, but also physiological, pathological, or contextual 

TABLE 1 Comparison of dataset quality and model performance before and after preprocessing.

Indicator Before preprocessing After preprocessing Improvement

Data completeness 90.57% 99.99%
Missing values fully addressed across all 

variables

Serum_Insulin – missing values 48.70% 0% Imputed using KNN (n_neighbors = 5)

Skin_Fold – missing values 29.56% 0% Imputed using KNN

Anomaly rate
11.99% (Isolation Forest on dropna 

subset)

~20.1% (combined Isolation Forest + LOF 

on full dataset)

Enhanced outlier detection with dual-

method approach

PCA variance explained 0.32
Clear separation between normal and 

anomalous observations

Improved data structure and visual 

interpretability

Random forest – AUC 0.81 0.83 Slight improvement in model robustness

LightGBM – AUC 0.82 0.80
Slight drop, but performance remains 

comparable

Reproducibility Not established
Documented (via MLflow and metadata 

tracking)

Ensures replicability and traceability for 

future iterations

FIGURE 5

PCA visualization.
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factors. Without medical expertise, these interpretations could lead to 
misdiagnosis or flawed conclusions.

Therefore, the safe and effective application of this approach in 
clinical settings demands collaboration with domain experts. 
Future studies should integrate clinical insights into the data 
interpretation process and validate the proposed methods on 
broader, more diverse medical datasets to ensure real-world 
relevance and generalizability.

A Principal Component Analysis (PCA) was conducted to visually 
examine the structure of the dataset after preprocessing. This 
dimensionality reduction technique helps to reveal patterns and 
separations between normal and anomalous observations in a 
simplified two-dimensional space.

As shown in Figure 5, the PCA visualization clearly illustrates that 
the majority of data points form a dense central cluster. These points 
correspond to observations classified as “normal” based on prior 
outlier detection using Isolation Forest and LOF.

In contrast, the detected anomalies are spatially segregated from 
this cluster, appearing more dispersed and isolated across the plot. 
This separation supports the validity of the anomaly detection 
methods and indicates that the feature space was successfully refined 
during preprocessing.

The color gradient used in the figure represents the binary 
anomaly labels, enhancing the interpretability of the distribution. 
Overall, PCA confirms that preprocessing led to a more structured 
and distinguishable data representation, which is beneficial for 
downstream machine learning tasks.

To further explore the distribution and variability of each variable 
in the cleaned dataset, a boxplot analysis was performed.

As illustrated in Figure 6, the boxplot summarizes the spread, 
central tendency, and presence of outliers for all key features. Each 
box represents the interquartile range (IQR), with the horizontal line 
indicating the median. Whiskers extend to show variability outside 
the upper and lower quartiles, while dots denote potential outliers.

Notably, the Insulin variable exhibits a large number of extreme 
values beyond the upper whisker, suggesting significant skewness or 
physiological variability in insulin levels among patients. Similarly, 
minor outliers are visible in features like BMI, Glucose, and Age, 
whereas variables such as Diabetes Pedigree Function (dpf) show 
compact distributions with few anomalies.

This visualization supports earlier findings from anomaly 
detection and reinforces the importance of preprocessing to mitigate 
outlier influence. Combined with PCA insights, the boxplot confirms 
the effectiveness of the cleaning process in shaping a more 
interpretable and balanced dataset for modeling.

To gain a deeper understanding of the cleaned dataset’s internal 
structure and feature distributions, a series of histograms was generated.

As shown in Figure 7, the histograms illustrate the frequency 
distribution of each variable, revealing patterns such as skewness, 
modality, and spread. This visual assessment helps to verify the 
impact of preprocessing steps—such as imputation and anomaly 
removal—on variable consistency and interpretability. It also provides 
insight into feature ranges and potential outlier influence that may 
affect model performance.

Following the data cleaning and exploratory analysis, supervised 
machine learning models were applied to assess the predictive 
potential of the dataset. The goal was to classify the presence or 
absence of diabetes using the preprocessed variables. Model 

FIGURE 6

Boxplot of key variables in the cleaned diabetes dataset.
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performance was evaluated using multiple metrics, including accuracy 
and Area Under the Curve (AUC), to ensure robust comparison.

This figure presents a comparison of two classification 
models—Random Forest and LightGBM—based on ROC and 
Precision-Recall curves. The left panel shows the ROC curve, 
which plots the true positive rate (sensitivity) against the false 
positive rate, and is widely used to assess a model’s discriminative 
ability across different thresholds (Fawcett, 2006). The Random 
Forest model achieved an AUC of 0.83, slightly outperforming 
LightGBM with an AUC of 0.80, indicating better overall 
discriminative ability.

The right panel displays the Precision-Recall curve, particularly 
informative for imbalanced datasets. Here, Random Forest again 
outperformed LightGBM, achieving a PR AUC of 0.73 compared to 
0.64, suggesting greater precision at various recall levels.

The results of this study underscore the critical role of 
structured data preprocessing in enhancing healthcare dataset 
quality and downstream machine learning performance. The 
application of KNN imputation (n_neighbors = 5) significantly 
improved data completeness—from 90.57 to 99.99%—by addressing 
extensive missingness in Serum_Insulin and Skin_Fold variables. 
Parallel use of Isolation Forest and LOF enabled the detection of 
101 distinct anomalies, providing a multi-perspective view on 
data integrity.

Dimensionality reduction via PCA revealed a clearer separation 
between normal and anomalous data points post-cleaning, while 
boxplots and histograms confirmed improved distributional 
consistency across variables. These refinements positively influenced 
model training outcomes. Random Forest outperformed LightGBM, 
achieving higher classification accuracy (75.3%) and superior AUC 
(0.83 vs. 0.80), as well as higher precision-recall performance in the 
presence of class imbalance.

Importantly, the study also introduced reproducibility 
measures—via MLflow and metadata tracking—ensuring the 
transparency and replicability of all preprocessing and modeling 
steps (Erden, 2023). Collectively, these results validate the proposed 
pipeline as a robust framework for healthcare data refinement and 
predictive modeling. Future extensions should explore domain-
specific feature engineering, clinical validation, and broader cross-
dataset generalizability to strengthen real-world applicability 
(Figure 8).

5 Dataset metadata and model results 
overview

The processed dataset comprises 768 observations and 11 
columns, including both clinical features and engineered 

FIGURE 7

Histograms of the cleaned diabetes dataset.
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columns for anomaly detection. Notably, all variables exhibit 
complete data with zero missing values, indicating that the 
imputation process (using the KNN Imputer with n_
neighbors = 5) successfully increased the dataset’s completeness 
from an initial 90.57% to nearly 100%. Descriptive statistics 
reveal that key features such as Glucose, BMI, and Age exhibit 
reasonable variation, with means of 121.60, 32.43, and 33.24 
respectively, and standard deviations that reflect expected clinical 
variability. The engineered anomaly indicators (anomaly_
isolation and anomaly_lof) display binary-like outputs (with 
means of 0.80 and 0.94 respectively), confirming that outlier 
detection methods effectively classified observations into normal 
and anomalous categories.

In terms of predictive performance, the Random Forest model 
achieved an accuracy of approximately 75.3% and an AUC of 0.83, 
while the LightGBM model yielded an accuracy of 72.7% and an 
AUC of 0.80. These results, as presented in the model results 
metadata, suggest that both models perform robustly; however, the 
Random Forest model demonstrates a slight edge in discriminative 
ability. The comprehensive metadata output serves as a critical 

component for reproducibility and transparency in this study, 
ensuring that subsequent analyses or external validations can 
be performed with confidence in the underlying data integrity and 
model performance.

The Pima Indians Diabetes Dataset was selected for its strong 
relevance to real-world clinical applications and for its suitability in 
evaluating data quality enhancement methods. This dataset includes 
physiological and demographic variables collected from adult female 
patients of Pima Indian heritage, offering a focused use case for 
binary classification of diabetes onset. Moreover, the dataset is 
publicly available via the UCI Machine Learning Repository, making 
it a widely recognized benchmark for reproducibility and comparative 
model evaluation.

Importantly, the dataset is characterized by known issues in data 
quality—such as implausible zero values for features like BMI or 
glucose concentration—thus providing an ideal scenario to test and 
demonstrate the efficacy of data cleaning, imputation, and anomaly 
detection strategies.

While this study focused on the Pima dataset, the proposed 
preprocessing and modeling framework is not limited to it. The 

FIGURE 8

ROC and precision-recall curves for random forest and LightGBM models.

TABLE 2 Comparative analysis of data quality improvement strategies in healthcare.

Study Methods used Accuracy/AUC Completeness Reproducibility/strategy

This study KNN imputation, anomaly detection (IF, 

IQR, LOF), PCA, RF

75.3%, AUC 0.83 ~100% MLflow tracking, reproducible pipeline

Chen et al. (2021) Transfer learning, data quality 

evaluation, CNN/RNN

~ + 11% accuracy 

improvement after cleaning

Implicitly improved Structured pipeline with medical 

concept normalization

Kale and Pandey (2024) KNN, SMOTE, clustering-based 

anomaly detection, multiple classifiers

Accuracy 70% → 91%, F1-

score 0.65 → 0.89

Substantial post-

imputation

Clear before/after metric reporting

Emery et al. (2024) Imputation: MICE, hot-deck, log-linear, 

MICT-timing

65–74% (simulated data) Trajectory coverage 

improved

Reproducible in R, used on longitudinal 

data

Azimi and Pahl (2024) Anomaly analytics, ML quality metadata 

exploration

Not quantified; improved ML 

output reliability

Qualitative evaluation Anomaly visualization and root cause 

strategy
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modular pipeline is highly generalizable and can be extended to other 
healthcare datasets that involve:

 • Missing or incomplete numerical attributes,
 • Presence of anomalies or outliers,
 • Supervised learning tasks (binary or multiclass).

Such datasets include Electronic Health Records (EHRs), 
national surveillance registries, or domain-specific collections (e.g., 
cardiovascular risk data). With minor feature adjustments, the 
framework can facilitate improved data quality and model 
interpretability across varied medical domains.

To evaluate the efficacy of the proposed approach, the results 
were compared against four peer-reviewed studies that address data 
quality in healthcare through machine learning. The comparison 
focuses on accuracy, completeness, and reproducibility, and is 
summarized in Table 2.

This study demonstrates a balanced and effective approach to 
improving healthcare data quality. Although some studies reported 
higher raw accuracy (e.g., Kale & Pandey using SMOTE), the proposed 
pipeline excels in data completeness, model interpretability, and 
reproducibility, offering a practical and well-documented solution 
suitable for real-world deployment.

6 Discussion

The aim of this study was to develop and evaluate a machine 
learning-based strategy to improve healthcare data quality with a 
focus on three dimensions: accuracy, completeness, and reusability. 
The results indicate that significant data quality issues, such as the 
high proportion of missing values in Serum_Insulin and Skin_Fold 
as well as the presence of anomalies, can adversely affect 
model performance.

The successful application of the KNN Imputer (n_
neighbors = 5) significantly enhanced data completeness by 
replacing missing values. This finding aligns with previous studies 
(Pan et al., 2015; Emery et al., 2024) that emphasize the importance 
of balancing the number of neighbors to obtain a representative 
imputation. Moreover, the use of Isolation Forest and LOF for 
anomaly detection helped improve the dataset’s accuracy by 
identifying data points that did not conform to the expected 
distribution, thereby mitigating potential bias in model training 
(Liu et al., 2008).

Correlation analysis and PCA further confirmed that Glucose, 
BMI, and Age are the key variables associated with diabetes, a result 
that is consistent with existing literature on the subject (Jolliffe, 
2002; Jolliffe and Cadima, 2016). The clear separation of anomalies 
in the PCA visualization supports the need for rigorous 
preprocessing to ensure that the model learns from high-quality, 
representative data.

The comparative analysis of the Random Forest and LightGBM 
models shows that while both models are viable for this application, 
the Random Forest model’s higher accuracy (75.3%) and AUC 
(0.83) indicate that it is more robust in handling the inherent data 
variability and class imbalance observed in healthcare datasets. 
These results are in agreement with other studies that have found 
ensemble methods, particularly Random Forest, to be effective in 

complex clinical settings (Li et  al., 2021). The slightly lower 
performance of LightGBM suggests that further hyperparameter 
optimization and adjustments in data preparation may be necessary 
to fully leverage its potential.

Importantly, this study’s methodology was evaluated in the 
context of four peer-reviewed works focusing on data quality in 
healthcare machine learning tasks. Compared to Chen et al. (2021), 
who used transfer learning and observed an ~11% increase in 
model performance after data cleaning, our results demonstrate a 
similarly strong performance uplift with added transparency and 
traceability. In Kale and Pandey’s (2024) work, the combination of 
KNN imputation, SMOTE, and anomaly detection yielded an 
increase in accuracy from 70 to 91%, highlighting the role of 
oversampling. However, our study emphasizes completeness and 
reproducibility through MLflow documentation and structured 
anomaly filtering.

Emery et al. (2024), working with longitudinal categorical data, 
achieved modest accuracy (65–74%) using MICE and other 
statistical imputers but placed strong emphasis on temporal 
consistency. In contrast, Azimi and Pahl (2024) proposed anomaly 
detection through metadata analytics, though without numerical 
performance benchmarks. Overall, the present work shows a 
balanced trade-off across accuracy, completeness (~100%), and 
reproducibility, offering a robust and transferable framework for 
real-world healthcare settings.

Additionally, the detailed documentation of the process using 
tools such as MLflow and TensorBoard supports the reusability of the 
developed methodology. This approach ensures that the methods can 
be  replicated and extended to other healthcare datasets, thereby 
contributing to more reliable and reproducible research outcomes 
(Stanley and Schwartz, 2024).

Future research should focus on optimizing LightGBM’s 
hyperparameters through techniques like Grid Search or Random 
Search and exploring sample balancing methods to address the 
class imbalance in the Outcome variable. Moreover, applying these 
enhanced data quality improvement and machine learning 
approaches to larger and more diverse datasets may further 
validate the robustness and scalability of the proposed strategy.

While this study focuses on the technical evaluation of data 
quality and model performance, clinical interpretation and validation 
were beyond its current scope. Given the healthcare context, future 
research should incorporate expert input from medical professionals 
to assess the real-world relevance of data refinement strategies and 
predictive variables such as glucose and BMI, which have established 
clinical significance.
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