AUTHOR=Nezami Zeinab , Zaidi Syed Ali Raza , Hafeez Maryam , Xu Jie , Djemame Karim TITLE=Toward standardization of GenAI-driven agentic architectures for radio access networks JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1621963 DOI=10.3389/frai.2025.1621963 ISSN=2624-8212 ABSTRACT=The adoption of Generative Artificial Intelligence (GenAI) in Radio Access Networks (RAN) presents new opportunities for automation and intelligence across network operations. GenAI-powered agents, leveraging Large Language Models (LLMs), can enhance planning, execution, and decision-making for orchestration and real-time optimisation of 6G networks. Standardizing the implementation of the Agentic architecture for RAN is now essential to establish a unified framework for RANOps and AgentOps. One of the key challenges is to develop a blueprint that incorporates best practices for memory integration, tool generation, multi-agent orchestration, and performance benchmarking. This study highlights key areas requiring standardization, including agent tool specifications, RAN-specific LLM fine-tuning, validation frameworks, and AI-friendly documentation. We propose a dedicated research initiative on GenAI-for-RAN and GenAI-on-RAN to address these gaps and advance AI-driven network automation.