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Parallel joint encoding for
drone-view object detection
under low-light conditions

Liwen Liu?, Bo Zhou?, Qiqin Li*, Gui Fu*?*, You Wang* and
Hongyu Chu?

!Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan,
China, ?School of Information Engineering, Southwest University of Science and Technology,
Mianyang, China

Under low-light conditions, the accuracy of drone-view object detection algorithms
is frequently compromised by noise and insufficient illumination. Herein, we propose
a parallel neural network that concurrently performs image enhancement and
object detection for drone-view object detection in nighttime environments.
Our innovative coevolutionary framework establishes bidirectional gradient
propagation pathways between network modules, improving the robustness of
feature representations through the joint optimization of the photometric correction
and detection objectives. The illumination enhancement network employs Zero-
DCE++, which adaptively adjusts the brightness distribution without requiring
paired training data. In our model, object detection is performed using a lightweight
YOLOVS5 architecture that exhibits good detection accuracy while maintaining
real-time performance. To further optimize feature extraction, we introduce a
spatially adaptive feature modulation module and a high- and low-frequency
adaptive feature enhancement block. The former dynamically modulates the
input features through multiscale feature fusion, enhancing the ability of the
model to perceive local and global information. The latter module enhances
semantic representation and edge details through the parallel processing of spatial
contextual information and feature refinement. Experiments on the two data
sets of VisDrone2019 (Night) and Drone Vehicle (Night) show that the proposed
method improves 3.13 and 3.1% compared with the traditional YOLOvV5 method
mMAP@0.5:0.95, and improves 6.3 and 2% in mAP@O0.5, especially in the extreme
low light and high noise environment.

Thus, the proposed parallel model is an efficient and reliable solution for drone-
based nighttime visual monitoring.

KEYWORDS

drone-view object detection, image enhancement, unmanned aerial vehicle, low-light
conditions, parallel neural network

1 Introduction

With the exponential advancement of unmanned aerial vehicles (UAVs), they have been
increasingly used for object detection, particularly in nighttime surveillance, disaster rescue,
and military reconnaissance (Nguyen et al., 2024; Nguyen et al., 2024; Dao et al., 2025).
However, nighttime object detection is challenging because of insufficient illumination, noise
interference, and low target-background contrast (Deng et al., 2022; Ni et al., 2024), which
severely worsen the performance of traditional detection algorithms.

In previous studies, two strategies have been primarily used for improving nighttime
detection performance: (1) improvement of the input quality through image enhancement and
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preprocessing (2) optimization of the structure of the detection
network to enhance feature representation. Nevertheless, these
methods are typically realized through serial processing frameworks
and suffer from three following limitations: (1) isolated training of
enhancement and detection networks without task-oriented feature
optimization; (2) over-enhancement potentially introduces artifacts
that degrade detection performance; (3) computational redundancy
leads to suboptimal real-time performance (Xu et al., 2024).

To address these issues, we devised a parallel fusion neural
network (PFNN) consisting of concurrently operating illumination
enhancement and detection networks with end-to-end joint
optimization. First, we designed a parallel fusion architecture that
deeply integrates the Zero-DCE++ illumination enhancement
network with the YOLOvV5 detection network, with feature
co-optimization through shared gradients, which improves mAP@0.5
by 2.6% compared to the traditional serial methods. Second,
we employed a spatially adaptive feature modulation (SAFM) module
to enhance the ability of the model to perceive local and global
information via dynamic multiscale feature fusion, effectively
improving target discernibility in low-light conditions. Third, a high-
and low-frequency adaptive feature enhancement (HLAFE) block was
added to the model to strengthen the semantic representation and
edge details through spatial context modeling and feature refinement.
In experiments on two nighttime drone-view datasets, the complete
model showed a 6.3% higher mAP@0.5:0.95 and a 7.1% higher recall
rate than the baselines, particularly excelling in extreme
low-light environments.

2 Research theory
2.1 Nighttime image enhancement

Nighttime image enhancement is a critical step in improving
object detection performance under low-light conditions. Although
classical methods such as histogram equalization, gamma transform,
and the Retinex algorithm can improve the image quality to a certain
extent, these methods inherently depend on precise a priori knowledge
to achieve an accurate fit to the data. However, given that the
construction of appropriate and effective a priori models for complex
and variable lighting environments is a challenging task, this
dependence inevitably results in the weak generalization ability of
such methods in diverse scenarios. Specifically, because of the
complexity and uncertainty of lighting conditions, a universally
applicable a priori framework is difficult to predefine, which limits the
effectiveness and adaptability of these methods to different scenarios.
Therefore, the key to enhancing the generalization performance of
such methods is the development of more flexible and robust a priori
modeling strategies that could be adapted to different
lighting conditions.

Recently developed deep learning approaches can be divided
into supervised and unsupervised methods. In supervised learning,
the success of the SENet (Hu et al., 2018) attention module has led
to the active research and application of attention-based
algorithms. This development has considerably enriched the
arsenal of processing techniques for visual tasks and markedly
improved the performance of image enhancement models under
low-light conditions. The MIRNetvl (Zamir et al., 2020) and v2
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(Zamir et al., 2023) models proposed by Zamir et al. employ a
multi-resolution convolutional stream architecture that captures
multiscale features while effectively fusing feature information of
different through
convolutional streams. A key advantage of these models is their

levels information exchange between
nonlocal attention mechanism, which facilitates adaptive multiscale
feature fusion via a selective kernel network, thereby preserving
image details. Building upon distribution modeling, a normalized
flow framework (Wang et al., 2022) has been developed based on a
normalized flow model, providing a robust reference benchmark
for low-light image enhancement by simulating the capture of
image characteristics under daytime conditions. The self-attentive
SNR transformer proposed in (Xu et al., 2022) features a self-
attentive machine SNR transformer module that dynamically
assesses the contributions of individual pixels based on peak
signal-to-noise ratios in various regions of an image, enabling the
selective extraction of either local or global information depending
on the assessed contribution size.

In supervised learning, training is performed on labeled samples,
whereas in unsupervised learning, it is done on unlabeled samples. Jin
et al. (2022) highlighted the necessity of balancing the enhancement
of low-light areas with overexposure suppression in bright regions
because of the complexity of nighttime images. They proposed an
innovative unsupervised integration framework that combines layer
decomposition with light effect suppression to intelligently optimize
the light intensity distribution. However, this unsupervised approach
struggles with noise suppression. To address this issue, Xiong et al.
(2022) designed a decoupling network containing two GAN
subnetworks for the fine decomposition and denoising of images,
respectively. This method has shown good noise suppression
performance through the use of an adaptive content loss function.

The Zero-DCE series, as a representative unsupervised method,
enhances images without requiring paired training data (Nguyen
etal, 2024). Thus, herein, Zero-DCE++ was fused in parallel with the
object detection network, enabling task-oriented image enhancement
through end-to-end joint optimization, thereby overcoming the
limitations of conventional serial processing.

2.2 Drone-view object detection

Traditional object detection methods usually perform well in
scenes with clear visibility but show notably worse performance on
nighttime and high-altitude imagery. To address this issue, the joint
training of end-to-end image enhancement and object detection
networks has been considered.

Liu et al. (2021) introduced the ED-TwinsNet architecture, which
seamlessly integrates image enhancement with face detection in a
low-light environment through the deep fusion of intermediate
feature levels across two subnetworks. Chen et al. (2020) proposed a
related but distinct approach: a comprehensive framework that
unprecedentedly unifies illumination enhancement and target
detection. This framework initially employs a dynamic filter network
to generate a set of adaptive convolutional kernels for the fine-grained
enhancement of the input. Subsequently, the processed images are fed
to an optimized variant of the Fast R-CNN. Notably, in this
framework, the weights computed during the enhancement phase are
directly applied to the classification loss function of the region
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proposal network, resulting in substantial improvements in the
overall detection performance as well as exceptional flexibility
and efficiency.

Wang et al. (2020) adopted a distinct methodology: they
developed a hybrid illumination enhancement technology that
elegantly integrates the optimal hyperbolic tangent with the enhanced
BM3D (Dabov et al., 2007) denoising algorithm. Hao et al. (2021), in
contrast, focused on real-time detection and introduced the Low-Light
Enhancement Detector, a single-lens real-time target detector tailored
for night environments. They bolstered the adaptability of the
detection model to such environments through the efficient
integration of features and the meticulous adjustment of channel
attention mechanisms, substantially improving real-time object
detection performance in challenging low-light settings.

Drone-view object detection presents unique challenges,
including significant scale variations, complex backgrounds, and
perspective distortion. The YOLO algorithms have been widely
adopted in UAV applications because of their efficiency and accuracy
(Nguyen et al., 2024; Zeng et al., 2023). Thus, herein, we employed
lightweight YOLOVS5 as the detection backbone of our parallel fusion
architecture. Overall, owing to the optimized network structure and
training strategy, our model showed enhanced detection accuracy
while maintaining real-time performance.

2.3 Feature enhancement and modulation

Feature enhancement and modulation are vital for boosting the
detection performance. The SAFM enhances the ability of the model
to capture local and global information through dynamic multi-scale
feature selection. The HLAFE block combines a spatial context
module (SCM) and a high- and low-frequency feature extraction
module (HLFEM). The SCM employs large-kernel group convolutions
to expand the receptive field and strengthen global contextual
understanding, whereas the HLFEM accentuates critical edges and
structural information through feature sharpening and contrast
enhancement (Nguyen et al., 2024). The integration of SAFM and
HLAFE enables the model to accurately capture target features in
complex nighttime scenarios, thereby equipping the PFNN with
robust feature extraction capabilities.

10.3389/frai.2025.1622100

3 Experimental methodology

3.1 PFNN architecture

To address the limitations of traditional two-stage networks
(enhancement followed by detection), including limited feature
correlation and excessive processing latency, we propose a PFNN
architecture (Figure 1). This framework integrates an illumination
enhancement network with an object detection network through
end-to-end joint optimization, enabling cross-feature fusion and
adaptive adjustment. The core advantages of our architecture include
(1) enhanced computational efficiency with reduced processing delay;
(2) stronger feature interactions between subnetworks, allowing the
enhancement network to learn detection-favorable representations;
and (3) task-oriented feature optimization via gradient sharing,
mitigating artifact issues caused by over-enhancement.

In our framework, Zero-DCE++ (Guo et al., 2020) is employed as
the illumination enhancement module and lightweight YOLOV5 as
the detection module. As shown in Figure 1, the input images are
simultaneously processed by Zero-DCE++ to enhance brightness and
by the YOLOv5 backbone for feature extraction. Using the zero-
reference depth method, Zero-DCE++ adaptively adjusts the
luminance distribution through unsupervised learning, considerably
improving detection performance in low-light conditions and
eliminating the need for paired training data or external supervision
(Liu et al., 2024). Parallel processing ensures that enhanced visual
features directly participate in detection, enhancing model robustness
and accuracy.

3.2 SAFM

Noise interference and insufficient illumination in low-light
imagery hinder effective feature extraction. The SAFM module was
introduced to address this issue (Dao et al., 2025); this module
improves feature discriminability through multiscale processing and
dynamic modulation.

As shown in Figure 2, the SAFM module first performs channel
splitting on the normalized input features (X) (Equation 1). The
features are divided into four partitions for differential processing. The
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FIGURE 1
Architecture of the PFNN.
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Architecture of the SAFM module.

first partition undergoes depth-wise separable convolution
(DW-Conv) for local feature extraction (Equation 2):

5-((\) =DW—C011V3><3(X0) (1)

[ X0.X1,X2,X3 |= Split (X)) )

The remaining partitions are processed through multiscale operations
(down-sampling, convolution, and up-sampling) (Equation 3):

;?FTP DW—Conv3X3[¢p(X,-)] J1<i<3 (3)
>

The obtained multiscale features are aggregated via max-pooling
and 1x1 convolution (Equation 4):

X = Conlel(Concat([)}o,j(l,ﬁz)f(ﬂ)) 4)

The integrated features undergo GELU activation (Cao et al.,
2021) to generate attention maps for dynamic feature weighting

(Equations 5, 6):
X =GELU(X ) 5)
X= ¢(.§(\ ) 0X (6)
This mechanism enables the automatic selection of

discriminative features across multiple scales, considerably
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enhancing the detection robustness in low-light conditions. The
experimental results indicate that SAFM improves detection
precision in complex nighttime environments while maintaining
computational efficiency, benefiting the autonomous navigation and
environmental perception of UAVs.

3.3 HLAFE block

The HLAFE block was employed to optimize feature
representations and improve the capability of the model to
identify critical targets and thereby address challenges such as
scale variations and background interference. As shown in
Figure 3, HLAFE employs multi module collaboration to enhance
features, enabling the comprehensive learning of global semantics
and local details.

The HLAFE module operates through coordinated processing by
the SCM (Hu et al., 2018) and HLFEM, enhancing features via two
parallel pathways to capture rich contextual information and fine-
grained semantic features (Nie et al., 2019; Shi et al., 2016).

3.4 HLFEM design

The design of the HLFEM module draws inspiration from
image sharpening and contrast enhancement techniques. In
image sharpening, high-frequency information is accentuated to
improve image clarity, whereas in contrast enhancement, the
contrast of low-frequency information is increased to improve
the overall structural perception. Inspired by this, the HLFEM
acquires low-frequency information through down-sampling and
smoothing while extracting high-frequency details by computing

frontiersin.org
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residuals between the original features and low-frequency
information. Subsequently, different frequency information is
integrated to enhance both the local details and the semantics of
the features, thereby

optimizing the segmentation

performance.

3.5 HLAFE module architecture

The HLAFE module consists of a convolutional embedding
(CE) module, an SCM, an HLFEM, and a convolutional multilayer
perceptron (ConvMLP). The input features are first processed by
the Layer Norm and 1 x 1 convolution layer (CE), which
compresses the number of channels to half of the original
dimension. This reduces the computational cost while promoting
feature mixing. The compressed features are subsequently
channeled into the SCM consisting of grouped convolutions with
of 7x7).
Concurrently, the compressed feature vectors derived from the CE

expansive kernel configurations (kernel size
layer are fed to the HLFEM for progressive feature optimization
through attention-guided recalibration. The concatenated outputs
from the SCM and HLFEM undergo dimensional projection via a
1 x 1 convolutional layer coupled with a ConvMLP, synergistically
enhancing the discriminative feature representations for

downstream tasks.

Frontiers in Artificial Intelligence

3.6 Module implementation details

The SCM employs 7 x 7 group convolutions to enlarge the
receptive field and enhance global contextual features. This large-
receptive-field design effectively adapts to scale variations in complex
scenes, allowing the model to comprehensively discern targets at
different scales. At the same time, the HLFEM applies depth-wise
convolutional layers to down-sample and smooth features for
low-frequency information extraction while simultaneously
computing the residuals between the original features and the
low-frequency information to extract the high-frequency details.
These different frequency features are concatenated and further fused

through a projection layer, improving the overall feature representation.

3.7 Feature integration

Features processed by SCM and HLFEM are concatenated and
fused via 1 x 1 convolution to integrate multiscale and multifrequency
information. The fused information is then input into ConvMLP to
further improve feature representation. The ConvMLP enhances the
nonlinear expressive capabilities of the model through multilayer
perception, enabling more effective learning of semantic information
in complex scenes, thereby boosting the accuracy and robustness
of segmentation.
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4 Experiments and results
4.1 Datasets and experimental setup

Based on prior research, we selected two representative nighttime
datasets: VisDrone2019 (Night) and Drone Vehicle (Night), for
training and evaluation.

The original VisDrone2019 datasets (Hendrycks and Gimpel, 2016)
contains UAV-captured video sequences of 10 object categories under
daytime and low-light conditions. To construct the nighttime subset,
we extracted 2,023 training images and 56 test images from the original
data. This subset covers 10 categories, including pedestrians, bicycles, and
cars, with an image resolution of 2000 x 1,500 pixels and a minimum target
size of 16 x 16 pixels. The scenarios include urban streets and intersections.

The Drone Vehicle datasets contains 56,878 paired RGB and
infrared images. To assemble the nighttime subset, we selected 11,406
training and 880 test RGB images captured at night with ground-truth
annotations. These 640 x 512 pixel images contain five vehicle
categories (e.g., buses, trucks) with substantial illumination unevenness.

The experiments were implemented in PyTorch and run on a PC
with an NVIDIA GTX 3090Ti GPU, CUDA 11.0, and CUDNN 8.0.
The training hyper parameters include:

Optimizer: Adam with an initial learning rate of 0.015 and a
momentum of 0.937.

Batch size: 8 (prevents memory overflow).

Epochs: 300 with Mosaic data augmentation.

The YOLOV5 detector was initialized with pretrained weights, and its
parameters were frozen during the initial training stages to preserve the
baseline detection capability. In the first 100 epochs, the Zero-DCE++
enhancement network remained frozen to stabilize feature learning. After
epoch 100, both networks were jointly optimized end-to-end, enabling
gradual coordination between the enhancement and detection modules.

4.2 Evaluation metrics

We assessed model performance using the following standard
evaluation criteria:

Average Precision (AP): Measures the detection capability for
individual categories by balancing precision and recall, the detailed
calculation method is shown in Equation 7:

_ TP+1IN
TP+TN + FP

Recall Rate (R), it evaluates the model’s capacity to capture all

@)

positive samples, representing the proportion of avoided false
negatives, the detailed calculation method is shown in Equation 8:

R=—1P
TP+FN

Precision Rate (P), it measures the proportion of samples predicted as

(8)

positive that are actually positive, reflecting the models ability to avoid false
positives, the detailed calculation method is shown in Equation 9:

TP

P=—— 9
TP+ FP ©)

where TP is true positives, TN is true negatives,FN is false
negatives, and FP is false positives.
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Mean AP (mAP): Evaluates the overall classification and
localization performance across all categories, the detailed calculation
method is shown in Equation 10:

1 n
mAP:;ZAP,- (10)

i=1

where n is the number of categories and AP, is the AP for the ith
category.

4.3 Experimental analysis

A series of comparative experiments and ablation studies were
conducted to determine the contributions of each module in our
model to the overall object detection performance. The experiments
were performed on VisDrone2019(Night), Drone Vehicle(Night) and
ExDark datasets. The training period in each experiment was 300. In
the baseline comparison experiments, the original YOLOv5 model
(YOLOV5n) was trained for 300 epochs. As shown in Table 1, our
parallel algorithm exhibits the best detection performance. Compared
with the YOLOV5 algorithm, our model shows the mAP@0.5 and
mAP@0.5:0.95 higher by 3.26 and 4.87%, respectively. Furthermore,
compared to the two-stage networks (LIME + YOLOV5, ZeroDCE +
YOLOV5, ENGAN + YOLOV5, and RUAS + YOLOV5), our single-
stage network exhibits mAP@0.5:0.95 higher by 3.82, 2.07, 1.78, and
1.56%, and mAP@0.5 higher by 2.17, 1.20, 0.60, and 2.89%,
respectively. Our model shows higher mAP@0.5:0.95 and mAP@0.5
even than the YOLOv6 and YOLOV7 networks combined with RUAS
and ENGAN.

The results of the comparative experiments indicate that our
parallel architecture, integrating an illumination enhancement
network with an object detection network (end-to-end joint training
framework), outperforms traditional two-stage serial paradigms
(independent enhancement followed by detection). Our model
achieves an average mAP@0.5 improvement of 1.7% over the
existing models in the extreme low-light scenarios. The core
mechanism of the proposed approach is the collaborative
optimization of the dual-network parameters, enabling the
enhancement module to dynamically adapt to the detection task.
This eliminates edge artifacts caused by over-enhancement in serial
modes and mitigates interference from illumination compensation
on target geometric features via gradient back propagation through
the shared intermediate layer (Wang et al., 2023). These findings

TABLE 1 Performance of different object detection algorithms on ExDark.

Ablation mAP@0.5 mAP@O0.5:0.95 F1-Score
YOLOVS 0.6845 0.4020 0.705
LIME + YOLOVv5 0.6954 0.4125 0713
ZeroDCE + YOLOV5 0.7051 0.4295 0.728
ENGAN + YOLOvV5 0.7111 0.4329 0.735
ENGAN + YOLOv7 0.7142 0.4494 0.758
RUAS + YOLOV5 0.6982 04351 0.719
RUAS + YOLOV6 0.7101 0.4454 0.752
Ours 0.7171 0.4507 0.772
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provide critical theoretical support for designing real-time vision

systems for dynamic environments such as UAVs for
nighttime inspections.

Next, we introduced the SAFM module into the Neck part of
the YOLOvV5 model. SAFM effectively enhances the capability of
the model to learn local and global information through
multiscale feature processing. The SAFM module further
improves the recovery of details in the images via dynamic feature
adjustment, particularly under low-light conditions. Subsequently,
the HLAFE module was independently incorporated into the
YOLOVS5 parallel architecture. The HLAFE module integrates the
SCM with the HLFEM to enhance feature representation through
parallel processing. This module captures richer contextual
information and semantic cues, substantially boosting the
detection accuracy.

Building on these results, we combined the HLAFE and SAFM
modules in the final model. In this configuration, HLAFE enhances
features while SAFM modulates them to improve recognition in
complex scenes. After 300 training epochs, the final model shows 40.6
GFLOPs on the VisDrone2019(Night) datasets, with considerably
improved detection accuracy. Ablation experiments were performed
to systematically validate the contributions of each component of the
PENN to the overall performance in Table 2. The results indicate that
the parallel architecture (YOLOV5 + Zero-DCE++) shows a 2.3%
higher mAP@0.5 than the serial-structured YOLOV5 + Zero-DCE
(mAP@0.5 = 0.178). These results confirm that the proposed parallel
design preserves more effective features from enhanced images,
thereby overcoming feature degradation observed in serial structures.
The YOLOVS5 parallel + SAFM model exhibits a mAP@0.5:0.95 of
0.116 (2.06% improvement over the baseline parallel framework), and
an R of 0.236. This indicates that SAFM considerably enhances the
perception of blurred targets in nighttime scenes through dynamic
feature selection (Li et al., 2025).

The complete YOLOV5 parallel + HLAFE + SAFM model
shows optimal balanced performance, with mAP@0.5:0.95

reaching 0.115, a 3.13% improvement over the initial YOLOv5

TABLE 2 Results of the ablation study on VisDrone2019 (night).

10.3389/frai.2025.1622100

baseline. The full model maintains the high precision of the base
architecture while exhibiting a 7.1% higher R owing to the
synergistic interaction between the two key modules, validating
the effectiveness of the dual feature optimization mechanism
under parallel processing.

On the Drone Vehicle(Night) datasets, YOLOV5 parallel + SAFM
network shows a mAP@0.5 of 0.738 and an R of 0.692. Notably, the R
is higher by 7.2% than that of the baseline (original 0.580),
preliminarily validating the effectiveness of the feature modulation
strategy in reducing missed detections. For buses—the most stable
category in complex urban scenarios—mAP@0.5 reaches 0.916 and
mAP®@0.5:0.95 reaches 0.618, substantially higher than those for other
traffic objects. This improvement correlates with the dynamic
adjustment capabilities of SAFM.

For cars, the YOLOV5 (Parallel) + HLAFE architecture shows a
mAP@0.5 of 0.902 but an R of 0.66, indicating a potential trade off
between the localization precision and the target search capability. The
full model (YOLOvV5 (Parallel) + HLAFE + SAFM) exhibits an R of
0.697 and a mAP@0.5 of 0.749 owing to coordinated optimization.
The spatial weight allocation of SAFM improves truck detection
performance mAP@0.5 from 0.528 (SAFM-only) to 0.563, whereas
the channel attention of HLAFE maintains car detection precision at
0.902. The complementarity of these two mechanisms mitigates their
individual limitations, verifying the cascaded enhancement in the
parallel frameworks (Table 3).

To address low-light interference and feature representation
insufficiency in nighttime detection, our PFNN framework integrates
image enhancement and feature optimization. The experimental
results indicate the superior performance of our model on both the
VisDrone2019(Night) and Drone Vehicle(Night) datasets.
Comparative analysis reveals that the Zero-DCE++ & YOLOvV5
parallel structure improves mAP@0.5:0.95 by 1.37% (from 0.0827 to
0.0945), highlighting its advantages in feature preservation and joint
optimization. The synchronized feature extraction between the
enhancement and detection networks prevents the loss of information
inherent in the traditional two-stage approaches. Training convergence

Ablation mAP@0.5:0.95 F1-Score
YOLOV5 0.408 0.183 0.175 0.0837 0.253
YOLOv5(parallel) 0.494 0.198 0.201 0.0954 0.283
YOLOv5(parallel) + SAFM 0.506 0.236 0.233 0.116 0.322
YOLOv5(parallel) + HLAFE 0.495 0.208 0.209 0.0992 0.293
YOLOv5(parallel) + HLAFE + SAFM 0.493 0.254 0.238 0.115 0.335
TABLE 3 Results of the ablation study on Drone Vehicle (night).
Ablation P R mAP@O0.5 mAP@0.5:0.95 F1-SCORE
YOLOV5 0.79 0.63 0.729 0.432 70.09
Yolov5(PARALLEL) 0.821 0.63 0.729 0.447 71.29
YOLOv5(parallel) + SAFM 0.757 0.692 0.738 0.465 72.30
YOLOv5(parallel) + HLAFE 0.796 0.66 0.736 0.46 72.16
YOLOv5(parallel) + HLAFE + SAFM 0.773 0.697 0.749 0.463 73.30
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Metric evolution curves.

Precision-Recall Curve

Precision

pedestrian 0.329

people 0.030

bicycle 0.000

car 0.545

van 0.146

truck 0.332

bus 0.331

motor 0.194

all classes 0.238 mAP@0.5

FIGURE 5
Precision—recall curves on VisDrone2019 (Night).

trends (Figure 4) further confirm stable improvements in key metrics
such as R and mAP owing to multitask joint training.

The SAFM module improves the R by 5.3% (from 0.183 to 0.236)
over the baseline owing to its multiscale dynamic feature fusion,
substantially improving the perception of blurred targets. The HLAFE
block boosts the detection precision for fine-grained objects via spatial
context modeling and feature sharpening. On the
VisDrone2019(Night) datasets, the highest mAP@0.5 (0.545) is
observed for the car category, representing an 8.2% improvement over
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the baseline, as evidenced by classification accuracy gains in the
precision-recall curves (Figure 5).

The integrated HLAFE + SAFM model shows a mAP@0.5 of 0.749
(2.5% improvement over YOLOv5) and an R of 0.697 on Drone
Vehicle(Night), with mAP@0.5 for the truck category reaching 0.563
(4.3% baseline gain). These results confirm the synergistic effects of
the dual feature optimization in complex nighttime scenarios, further
validated by improvements observed in the precision-recall curve
(Figure 6).
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FIGURE 7
Visual comparison of the detection results.

Thus, owing to the dual feature optimization mechanism, our
model exhibits excellent performance in practical nighttime detection.
The comparative detection results in Figure 7 visually validate
improved boundary localization accuracy for vehicles and reduced
false positives for pedestrians.

5 Conclusion

Here, we propose an innovative PENN to address challenges in
UAV nighttime object detection such as low illumination and high
noise. In our method, illumination enhancement and target detection
are synergistically optimized through a jointly optimized dual-branch
Specifically, the

architecture. unsupervised  Zero-DCE++

enhancement module performs adaptive luminance correction,
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effectively eliminating the dependency on paired training data
inherent in conventional methods. At the same time, the improved
lightweight YOLOV5 detection network substantially improves feature
representation in complex scenarios via SAFM and HLAFE. The
SAFM module enhances the local-global feature perception through
multiscale feature fusion, and HLAFE preserves the target edge details
via parallel context modeling and feature refinement.

In the experiments on the VisDrone2019(Night) and Drone
Vehicle(Night) datasets, our model showed 6.3% higher
mAP@0.5:0.95 and 7.1% higher R than the baseline under extremely
low illumination conditions. This work not only provides a reliable
algorithm for drone-view nighttime visual monitoring but also offers
new research perspectives for multi-modal sensor fusion (e.g.,
infrared/visible-light coordination) through the proposed feature
modulation mechanisms and parallel optimization framework.
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Future research should focus on cross modal feature alignment
strategies and dynamic resource allocation mechanisms to further
enhance system robustness in complex illumination environments
(Wei and Du, 2023; Lian et al., 2023).
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