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Under low-light conditions, the accuracy of drone-view object detection algorithms 
is frequently compromised by noise and insufficient illumination. Herein, we propose 
a parallel neural network that concurrently performs image enhancement and 
object detection for drone-view object detection in nighttime environments. 
Our innovative coevolutionary framework establishes bidirectional gradient 
propagation pathways between network modules, improving the robustness of 
feature representations through the joint optimization of the photometric correction 
and detection objectives. The illumination enhancement network employs Zero-
DCE++, which adaptively adjusts the brightness distribution without requiring 
paired training data. In our model, object detection is performed using a lightweight 
YOLOv5 architecture that exhibits good detection accuracy while maintaining 
real-time performance. To further optimize feature extraction, we introduce a 
spatially adaptive feature modulation module and a high- and low-frequency 
adaptive feature enhancement block. The former dynamically modulates the 
input features through multiscale feature fusion, enhancing the ability of the 
model to perceive local and global information. The latter module enhances 
semantic representation and edge details through the parallel processing of spatial 
contextual information and feature refinement. Experiments on the two data 
sets of VisDrone2019 (Night) and Drone Vehicle (Night) show that the proposed 
method improves 3.13 and 3.1% compared with the traditional YOLOv5 method 
mAP@0.5:0.95, and improves 6.3 and 2% in mAP@0.5, especially in the extreme 
low light and high noise environment.
Thus, the proposed parallel model is an efficient and reliable solution for drone-
based nighttime visual monitoring.

KEYWORDS

drone-view object detection, image enhancement, unmanned aerial vehicle, low-light 
conditions, parallel neural network

1 Introduction

With the exponential advancement of unmanned aerial vehicles (UAVs), they have been 
increasingly used for object detection, particularly in nighttime surveillance, disaster rescue, 
and military reconnaissance (Nguyen et al., 2024; Nguyen et al., 2024; Dao et al., 2025). 
However, nighttime object detection is challenging because of insufficient illumination, noise 
interference, and low target–background contrast (Deng et al., 2022; Ni et al., 2024), which 
severely worsen the performance of traditional detection algorithms.

In previous studies, two strategies have been primarily used for improving nighttime 
detection performance: (1) improvement of the input quality through image enhancement and 
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preprocessing (2) optimization of the structure of the detection 
network to enhance feature representation. Nevertheless, these 
methods are typically realized through serial processing frameworks 
and suffer from three following limitations: (1) isolated training of 
enhancement and detection networks without task-oriented feature 
optimization; (2) over-enhancement potentially introduces artifacts 
that degrade detection performance; (3) computational redundancy 
leads to suboptimal real-time performance (Xu et al., 2024).

To address these issues, we  devised a parallel fusion neural 
network (PFNN) consisting of concurrently operating illumination 
enhancement and detection networks with end-to-end joint 
optimization. First, we designed a parallel fusion architecture that 
deeply integrates the Zero-DCE++ illumination enhancement 
network with the YOLOv5 detection network, with feature 
co-optimization through shared gradients, which improves mAP@0.5 
by 2.6% compared to the traditional serial methods. Second, 
we employed a spatially adaptive feature modulation (SAFM) module 
to enhance the ability of the model to perceive local and global 
information via dynamic multiscale feature fusion, effectively 
improving target discernibility in low-light conditions. Third, a high- 
and low-frequency adaptive feature enhancement (HLAFE) block was 
added to the model to strengthen the semantic representation and 
edge details through spatial context modeling and feature refinement. 
In experiments on two nighttime drone-view datasets, the complete 
model showed a 6.3% higher mAP@0.5:0.95 and a 7.1% higher recall 
rate than the baselines, particularly excelling in extreme 
low-light environments.

2 Research theory

2.1 Nighttime image enhancement

Nighttime image enhancement is a critical step in improving 
object detection performance under low-light conditions. Although 
classical methods such as histogram equalization, gamma transform, 
and the Retinex algorithm can improve the image quality to a certain 
extent, these methods inherently depend on precise a priori knowledge 
to achieve an accurate fit to the data. However, given that the 
construction of appropriate and effective a priori models for complex 
and variable lighting environments is a challenging task, this 
dependence inevitably results in the weak generalization ability of 
such methods in diverse scenarios. Specifically, because of the 
complexity and uncertainty of lighting conditions, a universally 
applicable a priori framework is difficult to predefine, which limits the 
effectiveness and adaptability of these methods to different scenarios. 
Therefore, the key to enhancing the generalization performance of 
such methods is the development of more flexible and robust a priori 
modeling strategies that could be  adapted to different 
lighting conditions.

Recently developed deep learning approaches can be divided 
into supervised and unsupervised methods. In supervised learning, 
the success of the SENet (Hu et al., 2018) attention module has led 
to the active research and application of attention-based 
algorithms. This development has considerably enriched the 
arsenal of processing techniques for visual tasks and markedly 
improved the performance of image enhancement models under 
low-light conditions. The MIRNetv1 (Zamir et al., 2020) and v2 

(Zamir et al., 2023) models proposed by Zamir et al. employ a 
multi-resolution convolutional stream architecture that captures 
multiscale features while effectively fusing feature information of 
different levels through information exchange between 
convolutional streams. A key advantage of these models is their 
nonlocal attention mechanism, which facilitates adaptive multiscale 
feature fusion via a selective kernel network, thereby preserving 
image details. Building upon distribution modeling, a normalized 
flow framework (Wang et al., 2022) has been developed based on a 
normalized flow model, providing a robust reference benchmark 
for low-light image enhancement by simulating the capture of 
image characteristics under daytime conditions. The self-attentive 
SNR transformer proposed in (Xu et  al., 2022) features a self-
attentive machine SNR transformer module that dynamically 
assesses the contributions of individual pixels based on peak 
signal-to-noise ratios in various regions of an image, enabling the 
selective extraction of either local or global information depending 
on the assessed contribution size.

In supervised learning, training is performed on labeled samples, 
whereas in unsupervised learning, it is done on unlabeled samples. Jin 
et al. (2022) highlighted the necessity of balancing the enhancement 
of low-light areas with overexposure suppression in bright regions 
because of the complexity of nighttime images. They proposed an 
innovative unsupervised integration framework that combines layer 
decomposition with light effect suppression to intelligently optimize 
the light intensity distribution. However, this unsupervised approach 
struggles with noise suppression. To address this issue, Xiong et al. 
(2022) designed a decoupling network containing two GAN 
subnetworks for the fine decomposition and denoising of images, 
respectively. This method has shown good noise suppression 
performance through the use of an adaptive content loss function.

The Zero-DCE series, as a representative unsupervised method, 
enhances images without requiring paired training data (Nguyen 
et al., 2024). Thus, herein, Zero-DCE++ was fused in parallel with the 
object detection network, enabling task-oriented image enhancement 
through end-to-end joint optimization, thereby overcoming the 
limitations of conventional serial processing.

2.2 Drone-view object detection

Traditional object detection methods usually perform well in 
scenes with clear visibility but show notably worse performance on 
nighttime and high-altitude imagery. To address this issue, the joint 
training of end-to-end image enhancement and object detection 
networks has been considered.

Liu et al. (2021) introduced the ED-TwinsNet architecture, which 
seamlessly integrates image enhancement with face detection in a 
low-light environment through the deep fusion of intermediate 
feature levels across two subnetworks. Chen et al. (2020) proposed a 
related but distinct approach: a comprehensive framework that 
unprecedentedly unifies illumination enhancement and target 
detection. This framework initially employs a dynamic filter network 
to generate a set of adaptive convolutional kernels for the fine-grained 
enhancement of the input. Subsequently, the processed images are fed 
to an optimized variant of the Fast R-CNN. Notably, in this 
framework, the weights computed during the enhancement phase are 
directly applied to the classification loss function of the region 

https://doi.org/10.3389/frai.2025.1622100
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Liu et al.� 10.3389/frai.2025.1622100

Frontiers in Artificial Intelligence 03 frontiersin.org

proposal network, resulting in substantial improvements in the 
overall detection performance as well as exceptional flexibility 
and efficiency.

Wang et  al. (2020) adopted a distinct methodology: they 
developed a hybrid illumination enhancement technology that 
elegantly integrates the optimal hyperbolic tangent with the enhanced 
BM3D (Dabov et al., 2007) denoising algorithm. Hao et al. (2021), in 
contrast, focused on real-time detection and introduced the Low-Light 
Enhancement Detector, a single-lens real-time target detector tailored 
for night environments. They bolstered the adaptability of the 
detection model to such environments through the efficient 
integration of features and the meticulous adjustment of channel 
attention mechanisms, substantially improving real-time object 
detection performance in challenging low-light settings.

Drone-view object detection presents unique challenges, 
including significant scale variations, complex backgrounds, and 
perspective distortion. The YOLO algorithms have been widely 
adopted in UAV applications because of their efficiency and accuracy 
(Nguyen et al., 2024; Zeng et al., 2023). Thus, herein, we employed 
lightweight YOLOv5 as the detection backbone of our parallel fusion 
architecture. Overall, owing to the optimized network structure and 
training strategy, our model showed enhanced detection accuracy 
while maintaining real-time performance.

2.3 Feature enhancement and modulation

Feature enhancement and modulation are vital for boosting the 
detection performance. The SAFM enhances the ability of the model 
to capture local and global information through dynamic multi-scale 
feature selection. The HLAFE block combines a spatial context 
module (SCM) and a high- and low-frequency feature extraction 
module (HLFEM). The SCM employs large-kernel group convolutions 
to expand the receptive field and strengthen global contextual 
understanding, whereas the HLFEM accentuates critical edges and 
structural information through feature sharpening and contrast 
enhancement (Nguyen et al., 2024). The integration of SAFM and 
HLAFE enables the model to accurately capture target features in 
complex nighttime scenarios, thereby equipping the PFNN with 
robust feature extraction capabilities.

3 Experimental methodology

3.1 PFNN architecture

To address the limitations of traditional two-stage networks 
(enhancement followed by detection), including limited feature 
correlation and excessive processing latency, we  propose a PFNN 
architecture (Figure 1). This framework integrates an illumination 
enhancement network with an object detection network through 
end-to-end joint optimization, enabling cross-feature fusion and 
adaptive adjustment. The core advantages of our architecture include 
(1) enhanced computational efficiency with reduced processing delay; 
(2) stronger feature interactions between subnetworks, allowing the 
enhancement network to learn detection-favorable representations; 
and (3) task-oriented feature optimization via gradient sharing, 
mitigating artifact issues caused by over-enhancement.

In our framework, Zero-DCE++ (Guo et al., 2020) is employed as 
the illumination enhancement module and lightweight YOLOv5 as 
the detection module. As shown in Figure 1, the input images are 
simultaneously processed by Zero-DCE++ to enhance brightness and 
by the YOLOv5 backbone for feature extraction. Using the zero-
reference depth method, Zero-DCE++ adaptively adjusts the 
luminance distribution through unsupervised learning, considerably 
improving detection performance in low-light conditions and 
eliminating the need for paired training data or external supervision 
(Liu et al., 2024). Parallel processing ensures that enhanced visual 
features directly participate in detection, enhancing model robustness 
and accuracy.

3.2 SAFM

Noise interference and insufficient illumination in low-light 
imagery hinder effective feature extraction. The SAFM module was 
introduced to address this issue (Dao et  al., 2025); this module 
improves feature discriminability through multiscale processing and 
dynamic modulation.

As shown in Figure 2, the SAFM module first performs channel 
splitting on the normalized input features (X ) (Equation 1). The 
features are divided into four partitions for differential processing. The 

FIGURE 1

Architecture of the PFNN.
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first partition undergoes depth-wise separable convolution 
(DW-Conv) for local feature extraction (Equation 2):

	
 ( )0 3 3 0X DW Conv X×= −

	 (1)

	 ( )=  0 1 2 3, , ,X X X X Split X 	 (2)

The remaining partitions are processed through multiscale operations 
(down-sampling, convolution, and up-sampling) (Equation 3):

	

 ( )×

  
  =↑ − ↓ ≤ ≤

    
3 3

2

DW Conv ,1 3
i

i p p iX X i
	

(3)

The obtained multiscale features are aggregated via max-pooling 
and 1×1 convolution (Equation 4):

	
 ( )( )1 1 0 1 2 3Conv Concat ,ˆ ˆ ˆ ˆ, ,X X X X X×  =   	

(4)

The integrated features undergo GELU activation (Cao et  al., 
2021) to generate attention maps for dynamic feature weighting 
(Equations 5, 6):

	
 ( )GELUX X=

	 (5)

	
( )X X Xφ= 

	 (6)

This mechanism enables the automatic selection of 
discriminative features across multiple scales, considerably 

enhancing the detection robustness in low-light conditions. The 
experimental results indicate that SAFM improves detection 
precision in complex nighttime environments while maintaining 
computational efficiency, benefiting the autonomous navigation and 
environmental perception of UAVs.

3.3 HLAFE block

The HLAFE block was employed to optimize feature 
representations and improve the capability of the model to 
identify critical targets and thereby address challenges such as 
scale variations and background interference. As shown in 
Figure 3, HLAFE employs multi module collaboration to enhance 
features, enabling the comprehensive learning of global semantics 
and local details.

The HLAFE module operates through coordinated processing by 
the SCM (Hu et al., 2018) and HLFEM, enhancing features via two 
parallel pathways to capture rich contextual information and fine-
grained semantic features (Nie et al., 2019; Shi et al., 2016).

3.4 HLFEM design

The design of the HLFEM module draws inspiration from 
image sharpening and contrast enhancement techniques. In 
image sharpening, high-frequency information is accentuated to 
improve image clarity, whereas in contrast enhancement, the 
contrast of low-frequency information is increased to improve 
the overall structural perception. Inspired by this, the HLFEM 
acquires low-frequency information through down-sampling and 
smoothing while extracting high-frequency details by computing 

FIGURE 2

Architecture of the SAFM module.
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residuals between the original features and low-frequency 
information. Subsequently, different frequency information is 
integrated to enhance both the local details and the semantics of 
the features, thereby optimizing the segmentation  
performance.

3.5 HLAFE module architecture

The HLAFE module consists of a convolutional embedding 
(CE) module, an SCM, an HLFEM, and a convolutional multilayer 
perceptron (ConvMLP). The input features are first processed by 
the Layer Norm and 1 × 1 convolution layer (CE), which 
compresses the number of channels to half of the original 
dimension. This reduces the computational cost while promoting 
feature mixing. The compressed features are subsequently 
channeled into the SCM consisting of grouped convolutions with 
expansive kernel configurations (kernel size of 7 × 7). 
Concurrently, the compressed feature vectors derived from the CE 
layer are fed to the HLFEM for progressive feature optimization 
through attention-guided recalibration. The concatenated outputs 
from the SCM and HLFEM undergo dimensional projection via a 
1 × 1 convolutional layer coupled with a ConvMLP, synergistically 
enhancing the discriminative feature representations for 
downstream tasks.

3.6 Module implementation details

The SCM employs 7 × 7 group convolutions to enlarge the 
receptive field and enhance global contextual features. This large-
receptive-field design effectively adapts to scale variations in complex 
scenes, allowing the model to comprehensively discern targets at 
different scales. At the same time, the HLFEM applies depth-wise 
convolutional layers to down-sample and smooth features for 
low-frequency information extraction while simultaneously 
computing the residuals between the original features and the 
low-frequency information to extract the high-frequency details. 
These different frequency features are concatenated and further fused 
through a projection layer, improving the overall feature representation.

3.7 Feature integration

Features processed by SCM and HLFEM are concatenated and 
fused via 1 × 1 convolution to integrate multiscale and multifrequency 
information. The fused information is then input into ConvMLP to 
further improve feature representation. The ConvMLP enhances the 
nonlinear expressive capabilities of the model through multilayer 
perception, enabling more effective learning of semantic information 
in complex scenes, thereby boosting the accuracy and robustness 
of segmentation.

FIGURE 3

Architecture of the HLAFE module.
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4 Experiments and results

4.1 Datasets and experimental setup

Based on prior research, we selected two representative nighttime 
datasets: VisDrone2019 (Night) and Drone Vehicle (Night), for 
training and evaluation.

The original VisDrone2019 datasets (Hendrycks and Gimpel, 2016) 
contains UAV-captured video sequences of 10 object categories under 
daytime and low-light conditions. To construct the nighttime subset, 
we extracted 2,023 training images and 56 test images from the original 
data. This subset covers 10 categories, including pedestrians, bicycles, and 
cars, with an image resolution of 2000 × 1,500 pixels and a minimum target 
size of 16 × 16 pixels. The scenarios include urban streets and intersections.

The Drone Vehicle datasets contains 56,878 paired RGB and 
infrared images. To assemble the nighttime subset, we selected 11,406 
training and 880 test RGB images captured at night with ground-truth 
annotations. These 640 × 512 pixel images contain five vehicle 
categories (e.g., buses, trucks) with substantial illumination unevenness.

The experiments were implemented in PyTorch and run on a PC 
with an NVIDIA GTX 3090Ti GPU, CUDA 11.0, and CUDNN 8.0. 
The training hyper parameters include:

Optimizer: Adam with an initial learning rate of 0.015 and a 
momentum of 0.937.

Batch size: 8 (prevents memory overflow).
Epochs: 300 with Mosaic data augmentation.
The YOLOv5 detector was initialized with pretrained weights, and its 

parameters were frozen during the initial training stages to preserve the 
baseline detection capability. In the first 100 epochs, the Zero-DCE++ 
enhancement network remained frozen to stabilize feature learning. After 
epoch 100, both networks were jointly optimized end-to-end, enabling 
gradual coordination between the enhancement and detection modules.

4.2 Evaluation metrics

We assessed model performance using the following standard 
evaluation criteria:

Average Precision (AP): Measures the detection capability for 
individual categories by balancing precision and recall, the detailed 
calculation method is shown in Equation 7:

	
+

=
+ +

TP TNAP
TP TN FP 	

(7)

Recall Rate (R), it evaluates the model’s capacity to capture all 
positive samples, representing the proportion of avoided false 
negatives, the detailed calculation method is shown in Equation 8:

	
=

+
TPR

TP FN 	
(8)

Precision Rate (P), it measures the proportion of samples predicted as 
positive that are actually positive, reflecting the model’s ability to avoid false 
positives, the detailed calculation method is shown in Equation 9:

	
=

+
TPP

TP FP 	
(9)

where TP is true positives, is true negatives,TN FN  is false 
negatives, and FP is false positives.

Mean AP (mAP): Evaluates the overall classification and 
localization performance across all categories, the detailed calculation 
method is shown in Equation 10:

	 =
= ∑

1

1 n

i
i

mAP AP
n 	

(10)

where n is the number of categories and iAP  is the AP  for the thi  
category.

4.3 Experimental analysis

A series of comparative experiments and ablation studies were 
conducted to determine the contributions of each module in our 
model to the overall object detection performance. The experiments 
were performed on VisDrone2019(Night), Drone Vehicle(Night) and 
ExDark datasets. The training period in each experiment was 300. In 
the baseline comparison experiments, the original YOLOv5 model 
(YOLOv5n) was trained for 300 epochs. As shown in Table 1, our 
parallel algorithm exhibits the best detection performance. Compared 
with the YOLOv5 algorithm, our model shows the mAP@0.5 and 
mAP@0.5:0.95 higher by 3.26 and 4.87%, respectively. Furthermore, 
compared to the two-stage networks (LIME + YOLOv5, ZeroDCE + 
YOLOv5, ENGAN + YOLOv5, and RUAS + YOLOv5), our single-
stage network exhibits mAP@0.5:0.95 higher by 3.82, 2.07, 1.78, and 
1.56%, and mAP@0.5 higher by 2.17, 1.20, 0.60, and 2.89%, 
respectively. Our model shows higher mAP@0.5:0.95 and mAP@0.5 
even than the YOLOv6 and YOLOv7 networks combined with RUAS 
and ENGAN.

The results of the comparative experiments indicate that our 
parallel architecture, integrating an illumination enhancement 
network with an object detection network (end-to-end joint training 
framework), outperforms traditional two-stage serial paradigms 
(independent enhancement followed by detection). Our model 
achieves an average mAP@0.5 improvement of 1.7% over the 
existing models in the extreme low-light scenarios. The core 
mechanism of the proposed approach is the collaborative 
optimization of the dual-network parameters, enabling the 
enhancement module to dynamically adapt to the detection task. 
This eliminates edge artifacts caused by over-enhancement in serial 
modes and mitigates interference from illumination compensation 
on target geometric features via gradient back propagation through 
the shared intermediate layer (Wang et al., 2023). These findings 

TABLE 1  Performance of different object detection algorithms on ExDark.

Ablation mAP@0.5 mAP@0.5:0.95 F1-Score

YOLOv5 0.6845 0.4020 0.705

LIME + YOLOv5 0.6954 0.4125 0.713

ZeroDCE + YOLOv5 0.7051 0.4295 0.728

ENGAN + YOLOv5 0.7111 0.4329 0.735

ENGAN + YOLOv7 0.7142 0.4494 0.758

RUAS + YOLOv5 0.6982 0.4351 0.719

RUAS + YOLOv6 0.7101 0.4454 0.752

Ours 0.7171 0.4507 0.772
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provide critical theoretical support for designing real-time vision 
systems for dynamic environments such as UAVs for 
nighttime inspections.

Next, we introduced the SAFM module into the Neck part of 
the YOLOv5 model. SAFM effectively enhances the capability of 
the model to learn local and global information through 
multiscale feature processing. The SAFM module further 
improves the recovery of details in the images via dynamic feature 
adjustment, particularly under low-light conditions. Subsequently, 
the HLAFE module was independently incorporated into the 
YOLOv5 parallel architecture. The HLAFE module integrates the 
SCM with the HLFEM to enhance feature representation through 
parallel processing. This module captures richer contextual 
information and semantic cues, substantially boosting the 
detection accuracy.

Building on these results, we combined the HLAFE and SAFM 
modules in the final model. In this configuration, HLAFE enhances 
features while SAFM modulates them to improve recognition in 
complex scenes. After 300 training epochs, the final model shows 40.6 
GFLOPs on the VisDrone2019(Night) datasets, with considerably 
improved detection accuracy. Ablation experiments were performed 
to systematically validate the contributions of each component of the 
PFNN to the overall performance in Table 2. The results indicate that 
the parallel architecture (YOLOv5 + Zero-DCE++) shows a 2.3% 
higher mAP@0.5 than the serial-structured YOLOv5 + Zero-DCE 
(mAP@0.5 = 0.178). These results confirm that the proposed parallel 
design preserves more effective features from enhanced images, 
thereby overcoming feature degradation observed in serial structures. 
The YOLOv5 parallel + SAFM model exhibits a mAP@0.5:0.95 of 
0.116 (2.06% improvement over the baseline parallel framework), and 
an R of 0.236. This indicates that SAFM considerably enhances the 
perception of blurred targets in nighttime scenes through dynamic 
feature selection (Li et al., 2025).

The complete YOLOv5 parallel + HLAFE + SAFM model 
shows optimal balanced performance, with mAP@0.5:0.95 
reaching 0.115, a 3.13% improvement over the initial YOLOv5 

baseline. The full model maintains the high precision of the base 
architecture while exhibiting a 7.1% higher R owing to the 
synergistic interaction between the two key modules, validating 
the effectiveness of the dual feature optimization mechanism 
under parallel processing.

On the Drone Vehicle(Night) datasets, YOLOv5 parallel + SAFM 
network shows a mAP@0.5 of 0.738 and an R of 0.692. Notably, the R 
is higher by 7.2% than that of the baseline (original 0.580), 
preliminarily validating the effectiveness of the feature modulation 
strategy in reducing missed detections. For buses—the most stable 
category in complex urban scenarios—mAP@0.5 reaches 0.916 and 
mAP@0.5:0.95 reaches 0.618, substantially higher than those for other 
traffic objects. This improvement correlates with the dynamic 
adjustment capabilities of SAFM.

For cars, the YOLOv5 (Parallel) + HLAFE architecture shows a 
mAP@0.5 of 0.902 but an R of 0.66, indicating a potential trade off 
between the localization precision and the target search capability. The 
full model (YOLOv5 (Parallel) + HLAFE + SAFM) exhibits an R of 
0.697 and a mAP@0.5 of 0.749 owing to coordinated optimization. 
The spatial weight allocation of SAFM improves truck detection 
performance mAP@0.5 from 0.528 (SAFM-only) to 0.563, whereas 
the channel attention of HLAFE maintains car detection precision at 
0.902. The complementarity of these two mechanisms mitigates their 
individual limitations, verifying the cascaded enhancement in the 
parallel frameworks (Table 3).

To address low-light interference and feature representation 
insufficiency in nighttime detection, our PFNN framework integrates 
image enhancement and feature optimization. The experimental 
results indicate the superior performance of our model on both the 
VisDrone2019(Night) and Drone Vehicle(Night) datasets. 
Comparative analysis reveals that the Zero-DCE++ & YOLOv5 
parallel structure improves mAP@0.5:0.95 by 1.37% (from 0.0827 to 
0.0945), highlighting its advantages in feature preservation and joint 
optimization. The synchronized feature extraction between the 
enhancement and detection networks prevents the loss of information 
inherent in the traditional two-stage approaches. Training convergence 

TABLE 2  Results of the ablation study on VisDrone2019 (night).

Ablation P R mAP@0.5 mAP@0.5:0.95 F1-Score

YOLOv5 0.408 0.183 0.175 0.0837 0.253

YOLOv5(parallel) 0.494 0.198 0.201 0.0954 0.283

YOLOv5(parallel) + SAFM 0.506 0.236 0.233 0.116 0.322

YOLOv5(parallel) + HLAFE 0.495 0.208 0.209 0.0992 0.293

YOLOv5(parallel) + HLAFE + SAFM 0.493 0.254 0.238 0.115 0.335

TABLE 3  Results of the ablation study on Drone Vehicle (night).

Ablation P R mAP@0.5 mAP@0.5:0.95 F1-SCORE

YOLOv5 0.79 0.63 0.729 0.432 70.09

Yolov5(PARALLEL) 0.821 0.63 0.729 0.447 71.29

YOLOv5(parallel) + SAFM 0.757 0.692 0.738 0.465 72.30

YOLOv5(parallel) + HLAFE 0.796 0.66 0.736 0.46 72.16

YOLOv5(parallel) + HLAFE + SAFM 0.773 0.697 0.749 0.463 73.30
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trends (Figure 4) further confirm stable improvements in key metrics 
such as R and mAP owing to multitask joint training.

The SAFM module improves the R by 5.3% (from 0.183 to 0.236) 
over the baseline owing to its multiscale dynamic feature fusion, 
substantially improving the perception of blurred targets. The HLAFE 
block boosts the detection precision for fine-grained objects via spatial 
context modeling and feature sharpening. On the 
VisDrone2019(Night) datasets, the highest mAP@0.5 (0.545) is 
observed for the car category, representing an 8.2% improvement over 

the baseline, as evidenced by classification accuracy gains in the 
precision–recall curves (Figure 5).

The integrated HLAFE + SAFM model shows a mAP@0.5 of 0.749 
(2.5% improvement over YOLOv5) and an R of 0.697 on Drone 
Vehicle(Night), with mAP@0.5 for the truck category reaching 0.563 
(4.3% baseline gain). These results confirm the synergistic effects of 
the dual feature optimization in complex nighttime scenarios, further 
validated by improvements observed in the precision–recall curve 
(Figure 6).

FIGURE 4

Metric evolution curves.

FIGURE 5

Precision–recall curves on VisDrone2019 (Night).
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Thus, owing to the dual feature optimization mechanism, our 
model exhibits excellent performance in practical nighttime detection. 
The comparative detection results in Figure  7 visually validate 
improved boundary localization accuracy for vehicles and reduced 
false positives for pedestrians.

5 Conclusion

Here, we propose an innovative PFNN to address challenges in 
UAV nighttime object detection such as low illumination and high 
noise. In our method, illumination enhancement and target detection 
are synergistically optimized through a jointly optimized dual-branch 
architecture. Specifically, the unsupervised Zero-DCE++ 
enhancement module performs adaptive luminance correction, 

effectively eliminating the dependency on paired training data 
inherent in conventional methods. At the same time, the improved 
lightweight YOLOv5 detection network substantially improves feature 
representation in complex scenarios via SAFM and HLAFE. The 
SAFM module enhances the local–global feature perception through 
multiscale feature fusion, and HLAFE preserves the target edge details 
via parallel context modeling and feature refinement.

In the experiments on the VisDrone2019(Night) and Drone 
Vehicle(Night) datasets, our model showed 6.3% higher 
mAP@0.5:0.95 and 7.1% higher R than the baseline under extremely 
low illumination conditions. This work not only provides a reliable 
algorithm for drone-view nighttime visual monitoring but also offers 
new research perspectives for multi-modal sensor fusion (e.g., 
infrared/visible-light coordination) through the proposed feature 
modulation mechanisms and parallel optimization framework. 

FIGURE 6

Precision–recall curves on Drone Vehicle (Night).

FIGURE 7

Visual comparison of the detection results.
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Future research should focus on cross modal feature alignment 
strategies and dynamic resource allocation mechanisms to further 
enhance system robustness in complex illumination environments 
(Wei and Du, 2023; Lian et al., 2023).
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