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Purpose: The most important parameter influencing performance in endurance 
sports is aerobic fitness, the quality of the cardiovascular system for efficient 
oxygen supply of working muscles to produce mechanical work. Each individual 
athlete responds differently to training. However, for coaches it is not always 
easy to see improvement, accumulated fatigue, or overreaching. In the new era 
of technology, we propose an experimental method using machine learning (ML) 
to measure response quantified as aerobic fitness level based on cardiovascular 
drift and aerobic decoupling data.

Methods: Twenty well-trained athletes in cycling-based sports performed 
monthly aerobic fitness tests over five months, riding at 75% of their functional 
threshold power for 60 min. Based on aerobic decoupling (power-to-heart 
rate ratio) and cardiovascular drift of each test ride, a prediction model was 
created using ML (Logistic regression, Variational Gaussian Process models 
and k-nearest neighbors algorithm) that indicated whether or not an athlete 
was responding to the training. Athletes were spitted as responders (i.e., those 
showing improvements in cardiovascular drift and aerobic decoupling) or non-
responders.

Results: Cardiovascular drift and aerobic decoupling demonstrated a significant 
strong linear correlation. All ML models achieved good predictive performance 
in classifying athletes as responders or non-responders, with cross-validation 
accuracy ranging from 0.87 to 0.9. Average predictive accuracy of 0.86 was for 
k-nearest neighbors, 0.91 for logistic regression, 0.93 for Variational Gaussian 
Process model. The Variational Gaussian Process model achieved the highest 
classification for training response.

Conclusion: Cardiovascular drift and aerobic decoupling are reliable indicators 
of response to training stimulus. ML is a promising tool for monitoring training 
response in endurance sports, offering early and sensitive insights into fitness 
adaptations or fatigue that can support more personalized training decisions for 
coaches and athletes.
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1 Introduction

Aerobic fitness is fundamental for success in endurance sports, 
reflecting the capacity of the cardiovascular and metabolic systems to 
sustain prolonged exercise (MacInnis and Gibala, 2017). High aerobic 
fitness, often indexed by maximal oxygen uptake (VO₂max), enables 
athletes to maintain output with greater efficiency (Jones, 2023). 
During steady-state endurance exercise, a phenomenon known as 
cardiovascular (CV) drift is commonly observed: over time, heart rate 
gradually rises despite a constant workload (Souissi et al., 2021). This 
drift is accompanied by a decline in stroke volume and arterial 
pressure. This is attributed to physiological adjustments such as 
increased skin blood flow (redirecting blood from central circulation) 
and elevated sympathetic drive together prompting a compensatory 
heart rate increase (Ferri Marini et al., 2022). In well-trained athletes, 
cardiovascular drift tends to be attenuated; a smaller rise in heart rate 
for a given power output is often interpreted as a sign of robust aerobic 
endurance (Hellsten and Nyberg, 2015; Ferri Marini et al., 2022). 
Conversely, excessive drift can signify fatigue or underdeveloped 
aerobic base, as the cardiovascular system struggles to maintain 
output over time (Lajoie et al., 2000). Recent evidence supports this 
practical insight, showing that athletes who exhibit minimal 
cardiovascular drift or aerobic decoupling during prolonged exercise 
perform better in endurance events (Smyth et al., 2022). A large study 
in marathon runners found that those with the lowest heart rate–pace 
decoupling maintained higher speeds and achieved faster finish times 
compared to those with a greater drift. This relationship has led to the 
concept of using heart rate drift as an indicator of endurance 
“durability,” where a stable heart rate relative to output denotes 
superior aerobic fitness (Hunter et al., 2025).

Modern advancements in sports technology have transformed how 
athletes and coaches monitor training and detect cardiovascular drift 
in real time (Seçkin et al., 2023; Assalve et al., 2024). Wearable devices 
such as chest-strap heart rate monitors, GPS watches, and cycling 
power meters continuously track internal load (heart rate), external 
load (speed or power), or mix of load (power-to-heart rate ratio), 
providing detailed data on an athlete’s physiological responses (Gao 
et  al., 2018). These tools enable objective assessment of heart rate 
behavior during workouts and races. For example, wireless heart rate 
monitoring has been used by cyclists for years to gauge training 
intensity and detect early signs of CV-drift or overtraining (Migliaccio 
et al., 2024). Similarly, power meters measure output (e.g., watts in 
cycling or running) with high precision, allowing the calculation of 
heart rate–to–power ratios over time (Andriolo et al., 2024; De Leeuw 
et al., 2025). The integration of heart rate and power data has given rise 
to metrics like power-heart rate decoupling, which are now accessible 
to athletes outside of laboratory settings. The continuous stream of data 
from these devices helps in quantifying an athlete’s training response: 
coaches can observe how an athlete’s heart rate trends relative to a 
constant pace or power and adjust training accordingly (Muggeridge 
et al., 2021). The proliferation of wearable sensors and performance 

tracking has led to an explosion of physiological data, from daily 
training sessions to entire season logs. These big data hold valuable 
information about an athlete’s fitness and fatigue status, but its volume 
and complexity pose analytical challenges (Halson, 2014). Traditional 
statistical methods often struggle to interpret the nonlinear, multivariate 
relationships inherent in such physiological datasets. By contrast, 
modern machine learning (ML) techniques excel at extracting hidden 
patterns from complex data and can handle large-scale, continuous 
records more effectively (Boudry et al., 2024). ML algorithms have 
already shown promise in endurance sports science. For example, they 
have been used to predict key fitness indicators like VO₂max from 
routine training data, providing practical alternatives to exhaustive 
laboratory tests (Beltrame et al., 2017). The strength of ML lies in its 
ability to model interactions between numerous variables (heart rate, 
power, duration, environmental factors, etc.) and to learn from 
longitudinal data of individual athletes (Reis et al., 2024; Beato et al., 
2025). This makes it a powerful approach for interpreting cardiovascular 
drift in context. Furthermore, ML enables real-time analysis: recent 
studies have demonstrated that ML models fed with wearable sensor 
data can continuously estimate an athlete’s physiological state and even 
deliver personalized exercise feedback based on individual responses 
(Fang et al., 2024; Zhu, 2025). Such capabilities highlight why applying 
ML to heart rate drift data is a logical next step in advancing endurance 
training science. Modern wearable devices have made cardiovascular 
drift and aerobic decoupling (Power: heart rate) metrics accessible to 
athletes, but most monitoring systems remain descriptive and 
retrospective in nature. Current tools often lack the capacity to process 
and interpret high-volume, high-frequency data in a way that supports 
real-time, personalized decision-making. This highlights a critical gap 
that machine learning techniques are well-positioned to address.

Despite the widespread availability of wearable sensors, there 
remains a lack of predictive tools that can utilize continuous heart rate 
and power data to assess an athlete’s aerobic training response in a 
meaningful and individualized way. This study seeks to address this 
gap by applying machine learning to cardiovascular drift data as a 
practical indicator of training effectiveness in well-trained athletes.

The present study aimed to investigate the use of ML algorithms 
to analyse cardiovascular drift and aerobic decoupling as a real-time, 
personalized indicator of aerobic fitness in endurance athletes. 
We tried to determine whether ML-driven models of cardiovascular 
drift (during sustained, steady-state exercise) can reliably track or 
predict positive response to training. In other words, athletes with 
higher aerobic fitness (as measured by traditional benchmarks) will 
exhibit distinctive cardiovascular drift profiles that our ML models 
can identify.

2 Materials and methods

2.1 Participants and data collection

Twenty-one well trained healthy individuals (21 males, age 
31 ± 3 years; training > 6 h per.week were recruited for this study). All 
athletes had at least 4 years of structured endurance training 
experience, primarily in road and gravel cycling. Participants were 
recruited via regional cycling clubs and personal contacts, resulting in 
a convenience sample of well-trained, competitive cyclists. While this 
approach may introduce some selection bias, the study was designed 

Abbreviations: CV, Сross validation; CV, drift Cardiovascular drift; GPS, Global 

Positioning System; HR, Heart rate; KNN, K-nearest neighbors; k-FCV, k-fold 

cross-validation; ML, Machine learning; PCA, Principal Component Analysis; Pw, 

HR power-to-heart rate ratio; VGR, Variational Gaussian Process; VO₂max, Maximal 

oxygen uptake; W, Watt.
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as an exploratory investigation within a performance-homogeneous 
population. All subjects were screened and confirmed free from 
chronic illnesses or conditions known to influence cardiovascular 
function. One participant was excluded due to acute cholecystitis 
during the study period, leaving a final sample size of 20 athletes.

This study was conducted in accordance with the Declaration of 
Helsinki (2013) and the ethics committee of the Philipps University of 
Marburg approved the study (24–327 RS). Informed consent was 
obtained from all participants after they had been informed verbally 
and in writing about the experimental protocol. The study was not 
formally registered. The data are available on reasoned request to the 
corresponding author.

2.1.1 Experimental setup
Each participant performed a standardized cycling test monthly 

for a period of 5 months. Tests were integrated into the participants’ 
regular training schedules as a controlled training session. Each test 
consisted of a 10-min incremental warm-up followed by a 60-min 
steady-state effort at 75% of their current functional threshold power 
(FTP). FTP was verified and updated monthly using the cycling 
analytics software WKO 5 (build 590, Peaksware LLC, Lafayette, CO, 
USA), ensuring the intensity remained consistent with the athlete’s 
current fitness level. Participants were not blinded to their power 
output during testing, as visual feedback was necessary to maintain 
the prescribed target intensity of 75% FTP.

To minimize confounding factors affecting cardiovascular drift, 
such as environmental conditions, hydration status, circadian 
rhythms, and nutritional influences, a standardized testing protocol 
was strictly enforced. All tests occurred at the same time of day in a 
controlled indoor environment with adequate ventilation and fan 
cooling directed towards the participants’ torso. Fluid intake was 
standardized at 500 mL h−1 of water or electrolyte solution. 
Participants refrained from food consumption during the tests and 
were instructed to consume a standardised meal 2 h before the test, 
eliminate caffeine 4 h prior, and avoid alcohol and strenuous exercise 
24 h preceding the test. Between tests, participants followed their 
habitual coach-directed training plans. Training content and load were 
not standardized, as the goal was to evaluate physiological responses 
under realistic, valid training conditions.

Tests were performed on participants’ personal racing bicycles 
mounted on electromagnetically braked, direct-drive cycling trainers 
(Kickr v5, Wahoo Fitness, Atlanta, USA or Tacx, Wassenaar, 
Netherlands). Trainers were calibrated according to manufacturer 
guidelines to ensure reliable performance data. Power output was 
recorded using either Garmin Rally (Garmin Ltd., Olathe, Kansas, 
USA) or Favero Assioma (Favero Electronics, Treviso, Italy) power 
meters, paired to Garmin Edge devices (Edge 520 or Edge 1,040, 
Garmin Ltd., Olathe, Kansas, USA). Participants completed a zero-
offset calibration prior to each session as per manufacturer 
instructions. Heart rate data were recorded continuously throughout 
each test using a heart rate chest strap (Garmin HRM-Pro, Garmin 
Ltd., Olathe, Kansas, USA) coupled with portable head units.

2.2 Data analysis and preprocessing

Data collection was performed, analysed and visually inspected 
for errors by two independent researchers using commercially 

available cycling software TrainingPeaks (version 9.3.0, Peaksware 
LLC, Lafayette, CO, USA) and WKO 5. Sessions exhibiting 
physiological artifacts or technical errors—such as sudden spikes or 
drops in power not accompanied by corresponding changes in 
cadence or heart rate, prolonged zero-output segments during active 
testing, or loss of signal due to device malfunction—were excluded 
from analysis. No data imputation was performed, and only complete, 
clean sessions were included for model training and evaluation. The 
variables extracted for each test included FTP (watt), heart rate (bpm), 
average power output (watt), cardiovascular drift, aerobic decoupling.

Cardiovascular drift was calculated using following Equation 1:
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And aerobic decoupling Equation 2:
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2.3 Machine learning development

Since the goal of this study is to train ML models and maximize 
their predictive accuracy on out-of-distribution data, we have chosen 
two non-parametric ML models as the main candidates. In addition 
to that, we have included one simpler model candidate which we use 
as a benchmark. The simpler model is the logistic regression, which 
predicts the probability of a binary outcome using the logistic function 
(Zaidi and Al Luhayb, 2023). The candidate models are K-nearest 
neighbors (KNN) algorithm, which uses non-parametric techniques 
to classify a sample based on the majority vote of its KNN (Shi, 2020) 
and Variational Gaussian Process (VGP), which uses a non-parametric 
variational inference integration technique to approximate the 
posterior distribution over functions and performs probabilistic 
classification (Rasmussen and Williams, 2006). All three models were 
implemented to identify the most suitable and accurate predictive 
model for classifying athletes’ training responses based on 
cardiovascular drift.

We selected the three models—logistic regression, kNN, and 
VGP—based on complementary modeling strengths suited to the 
characteristics of our dataset. kNN and VGP were chosen because 
both are non-parametric models known to perform well in small data 
regimes. Their flexibility allows them to model complex relationships 
without requiring strong parametric assumptions, which are often 
difficult to justify or verify in real-world sports science data. Logistic 
regression was included as a widely used and interpretable baseline 
model. Its simplicity makes it a useful reference point against which 
to compare the performance of more flexible models like kNN and 
VGP. Together, these models provide a balanced perspective: from a 
classical linear baseline to non-parametric methods with differing 
complexity and generalization behavior.

The ML models were structured as follows: logistic regression 
utilized a standard linear classifier with L2 regularization, which is 
necessary to improve stability and generalization quality for predictive 
purposes. The KNN algorithm was optimized using Euclidean 
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distance. Optimal k value was selected with line search, using stratified 
10-fold cross-validation within each training set, repeated across 
multiple random seeds to ensure robustness (see Model Validation 
chapter). The best-performing k was then used in the final reporting. 
Gaussian Process classification employed the Matern52 kernel 
function and was optimized by minimizing Kullback–Leibler 
divergence with gradient-type method. Prior to model training, all 
input features were standardized using z-score normalization (zero 
mean, unit variance).

In addition, we  placed strong emphasis on the dataset 
development for our experiment. Specifically, we  optimized the 
models using three forms of the dataset: the original, the difference-
transformed dataset as described in Results and the transformation 
using the Principal Component Analysis (PCA) technique (Gewers 
et al., 2021). We discussed the caveats of each representation in detail 
in the Results chapter, highlighting how each transformation impacts 
model performance and interpretability.

The study used Python 3.12.3., with libraries such as scikit-learn, 
GPflow, numpy, and TensorFlow (Pedregosa et  al., 2011; Abadi 
et al., 2015).

2.4 Performance evaluation

We assessed athletes’ responses to training by comparing the 
results of two consecutive tests. Given that each of the 20 athletes 
completed one standardized test monthly over a period of 5 months, 
a total of 80 paired comparisons were obtained (four comparisons per 
athlete). Specifically, each athlete’s test results at the beginning of 
1 month were compared with the subsequent test results 1 month 
later. A positive training response was defined as an improvement in 
cardiovascular drift and aerobic decoupling metrics, whereas the 
absence of such improvement indicated no response to the preceding 
training. This month-to-month comparison allowed for a detailed 
assessment of individual training adaptations over the course of 
the study.

For further analysis, responses were coded in a binary format: a 
positive response was recorded as “1” and no response as “0.” This 
binarization enabled structured data handling and facilitated 
modeling of training adaptations. A “responder” was defined as an 
athlete who demonstrated a physiologically meaningful improvement 
between two consecutive tests, reflected by a combined decrease in 
both cardiovascular drift (i.e., a smaller rise in heart rate relative to 
power over time) and aerobic decoupling. These changes indicate 
enhanced cardiovascular stability and efficiency, consistent with 
improved aerobic fitness or durability. Conversely, a “non-responder” 
was defined as an athlete who exhibited no meaningful change or a 
worsening in one or both metrics compared to the prior test. This 
includes scenarios where cardiovascular drift or aerobic decoupling 
remained stable or increased, suggesting stagnation, accumulated 
fatigue, or a lack of adaptation to the preceding training load.

For the purposes of modeling these responses, we treated each of 
the 80 comparisons as approximately independent observations, given 
the presence of random factors influencing individuals’ performance 
improvements. Furthermore, the models employed—logistic 
regression with L2 regularization, KNN, and Gaussian processes—
either do not rely on parametric assumptions (KNN and VGP), or, in 

the case of logistic regression, remain valid when used strictly for 
predictive purposes.

To evaluate model accuracy, we used precision, recall, and F1 
score, which offer a balanced view of classification quality. To evaluate 
model performance, we employed a stratified 10-fold cross-validation 
process (StratifiedKFold), which helps preserve the percentage of 
samples for each class in each fold, ensuring that each fold is 
representative of the overall distribution of the data. For each fold, 
accuracy scores were recorded, and these were averaged to obtain a 
reliable estimate of the model’s performance across different training 
and validation splits. To further assess the model’s robustness, the 
model was retrained on the entire training dataset using the optimized 
hyperparameters and evaluated on the unseen test set. The final 
performance of the model was assessed based on its accuracy in 
predicting the test set, with the results of both the cross-validation and 
the unseen test set being used to compare the models’ predictive 
power (Wilimitis and Walsh, 2023).

3 Results

3.1 Model validation

The hyperparameters of each model were tuned, and the 
generalizability of each model was tested using a custom cross-
validation procedure. This procedure involved splitting the data into 
multiple subsets while incorporating two sets of random seeds to 
ensure that the results were unbiased and reproducible. First, the data 
were split into a training and a testing set using a randomized seed for 
the split. A second layer of randomization was applied during the 
k-fold cross-validation (k-FCV) process to further enhance the 
robustness of the evaluation and reduce the influence of any random 
initialization on the final results.

Specifically, two sets of random seeds were used: one for the initial 
train-test split (denoted as seeds_o) and another for the stratified 
k-fold cross-validation within each training set (denoted as seeds_i). 
The use of different seed sets ensured that both, the train-test splitting 
and the subsequent k-fold validation process were independent, 
reducing any potential bias that may arise from a specific choice of 
seed. The seed values for both, the splits and the folds were shuffled to 
eliminate any patterns that might skew the model evaluation, allowing 
the performance metrics to reflect the generalizability of the model 
rather than artifacts from data splitting.

The overall procedure began by performing a randomized train-
test split with 80% of the data used for training and 20% for testing. 
When PCA was utilized, the training data were first transformed using 
PCA to reduce dimensionality before applying it to the test data.

3.2 Exploratory data analysis and feature 
engineering

Prior to modeling, we  conducted exploratory data analysis to 
better understand the structure of the features and their relationship 
to the response variable. Visualizations including pair plots and box 
plots (Figures 1, 2) highlighted strong linear dependencies between 
several raw features—e.g., CV-drift and aerobic decoupling across test 
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intervals—as well as indications that certain metrics may be more 
predictive than others.

For every figure in this manuscript, Power_mean_1 represents the 
mean power output (in watts) from the initial test, CV_drift_1 
indicates the cardiovascular drift (%) observed during the initial test, 
and A_Decoupling_1 refers to aerobic decoupling (%) from the same 
session. Similarly, Power_mean_2, CV_drift_2, and A_Decoupling_2 
correspond to the same metrics collected during the comparison test. 
Each point in the scatter plots is color-coded according to the response 
outcome: red circles represent responders (yes), and blue squares 
indicate non-responders (no).

In particular, the box plots revealed that the most pronounced 
differences between the response groups were found in cardiovascular 
drift_2 and aerobic decoupling_2, which suggest that these features 

may serve as key indicators of an athlete’s adaptation to training 
(Figure 2).

To reduce redundancy and potentially improve model 
performance, we transformed the dataset by computing differences 
between consecutive measurements. Such transformation allows to 
represent features as relative changes, achieved during the training 
period, rather than absolute values recorded on specific test intervals 
(Figures 3, 4). This transformation aligns well with training theory, 
where improvements are typically assessed as trends over time 
rather than isolated snapshots. Semantically, a large negative 
difference in CV-drift between consecutive tests indicates its 
decrease over time. This can be interpreted as a positive physiological 
response to training. In particular, this pattern reflects improved 
cardiovascular efficiency. Such a change is something that an 

FIGURE 1

Pair plots of covariates in original dataset.
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experienced coach might recognize intuitively, and therefore, it is 
reasonable to assume that ML model should also be able to detect 
and leverage this signal effectively. As a result, while some 
correlations remained, this feature engineering reduced 
multicollinearity and aligned better with the biological interpretation 
of a training response as a change over time.

The pair plot of the differences demonstrates that the linear 
dependence between CV-drift and aerobic decoupling has been 
reduced, though it is still present (Figure 3). The differences between 
the means of the response groups have shrunk, but it remains notable 
that they are most prominent in CV-drift and aerobic decoupling 
(Figure 4).

Finally, another feature transformation was applied to the original 
dataset using the dimensionality reduction technique PCA and 
visualized in the corresponding pair and box plots for the 
PCA-transformed features (Figures 5, 6). PCA was used to reduce 
complexity in the modeling process and to only use covariates that 
correlate highly with the main components in order to rule out 
possible distortions caused by irrelevant covariates. At the same time, 
this approach increases the robustness of the overall results.

From Table 1 we can see how contribution of the features from the 
original dataset is reflected in the transformation under PCA.

The Table 1 reveals that most of the variance in PCA feature 1 is 
explained by the power means from tests 1 and 2, while most of the 
variance in PCA feature 2 is carried from cardiovascular drift and A 
decoupling. This separation of variance aligns well with physiological 
interpretations, where power output reflects to overall performance 
capacity, while drift and decoupling metrics reflect internal response 
and fatigue. Both classes of metrics are key elements in interpreting 
training responses.

3.3 Performance analysis and comparative 
analysis

After training and evaluating the Logistic Regression, KNN, and 
VGP models, we compared their performance metrics side by side, 
along with their computational efficiency. All three models 
demonstrated strong predictive accuracy in classifying training 
response categories. The reported outcomes reflect the highest values 
achieved across multiple runs, representing the best-case performance 
for each configuration. However, there were notable differences in 
computational cost. Gaussian Process models, including VGPs, are 
flexible and robust in small data regimes, but are also computationally 
intensive. In particular training scales as 𝑂(n3) due to the matrix 
inversion involved in computing the posterior over functions. This 
might become a limiting factor within some applications. In contrast, 
Logistic Regression scales much more efficiently, with training 
complexity of 𝑂(nd) where n is the number of samples and d is the 
number of features. Furthermore, KNN, takes the 𝑂(knd) cost during 
training, where k is the number of neighbours. These theoretical 
asymptotic scaling rules were confirmed during practical experiments.

Our analysis focused on evaluating the predictive performance of 
different models using three distinct feature representations: the 
original full feature set, a manually crafted difference-based 
transformation, and a PCA-transformed dataset. The models tested 
included Logistic Regression, KNN, and VGP.

The best performance across all models was achieved using the 
original full feature set (Table 2). Specifically, the Logistic Regression, 
KNN, and VGP models showed mean cross-validation accuracies of 
approximately 0.902, with test set accuracies reaching 0.906 and 
0.931, respectively. Model performance was additionally evaluated 

FIGURE 2

Box plots of covariates with respect to response and non-response groups.
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using precision, recall and F1 score, providing a comprehensive 
assessment of classification quality, including both overall 
correctness and the balance between sensitivity and specificity 
(Table 3).

In contrast, the manual difference-based transformation, where 
metrics’ changes between test sessions for specific features were 
examined, consistently resulted in a decrease in predictive 
performance. For example, in the Logistic Regression model, the 
mean cross-validation accuracy dropped from 0.902 (using the full 
feature set) to 0.827 when using the difference-transformed features. 
Similarly, the test set accuracy decreased from 0.906 to 0.869. These 
results highlight that manually handcrafting features, while might 
seem potentially insightful and even intuitive for specific use cases, 
may also reduce the model’s ability to generalize effectively across 

different datasets. The performance drop suggests that this 
transformation might remove valuable information or fail to capture 
underlying patterns in the data.

The PCA transformation, which aims to reduce dimensionality 
while removing unnecessary complexity, showed reduced 
performance when compared to the full feature set. For instance, the 
mean cross-validation accuracy for Logistic Regression dropped to 
0.836, and the test set accuracy decreased to 0.806. This result is 
expected since during dimensionality reduction some potentially 
useful information might get removed as well.

Finally, we visualized the classification boundaries created by each 
of the three tested algorithms in a two-dimensional plane, after 
reducing the dimensionality of the original six-dimensional data using 
PCA (Figures 7–9).

FIGURE 3

Pair plots of covariates in difference transformed dataset.
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The classification boundary produced by the VGP differs 
significantly from those created by KNN and Logistic Regression 
(Figures 7–9). As a linear classifier, Logistic Regression produced a 
simple, linear boundary that failed to capture the non-linear patterns 
in the data, leading to inaccurate predictions. In contrast, KNN 
generated a highly complex and irregular boundary, attempting to fit 
every data point, which can result in overfitting and 
poor generalization.

The VGP, however, created a non-linear boundary that is more 
flexible but not overly complex. While the model can make mistakes, 
it has the advantage of providing an uncertainty estimate for each 
prediction. The uncertainty is visualized as a purple fading circle 
around the point, with the radius of the circle representing the level of 
uncertainty with larger circles indicating higher uncertainty. This 
feature allows the VGP not only to make predictions but also to 
convey confidence in those predictions, offering a more nuanced 
understanding of the model’s performance. The interpretability of 
VGP is supported by its probabilistic nature: rather than providing 
solely a point estimate it also gives an uncertainty score, which can 
be interpreted as the model’s confidence about its prediction.

4 Discussion

This study aimed to investigate the response to training when 
estimating cardiovascular drift using ML methods. We evaluated three 
machine learning models, Logistic Regression, KNN and VGP, for 
estimating cardiovascular drift. The VGP model outperformed the 
others, achieving the highest cross-validation and test set accuracies 
(up to 0.931), likely due to its ability to capture complex patterns in 
small, low-dimensional datasets. Results showed that a decrease in 
cardiovascular drift over time, as detected by the models, corresponded 

to positive physiological adaptations such as improved cardiovascular 
efficiency. The observed reductions in cardiovascular drift and aerobic 
decoupling may reflect improvements in endurance-specific 
physiological traits—particularly durability, defined as the ability to 
maintain physiological stability during prolonged submaximal 
exercise. Lower cardiovascular drift over time suggests improved 
stroke volume maintenance, reduced sympathetic compensation, and 
enhanced thermoregulatory efficiency. These findings highlight the 
potential of VGP-based analysis for more sensitive and individualized 
monitoring of fitness improvements in sports science.

Systematic reviews show interest in using ML in sports 
applications as a way to optimize training, estimation of physiological 
thresholds and potentially increase athletes performance (Krstić et al., 
2023; Zignoli, 2023). The heart rate is one of the most captured 
physiological metrics in sports (Lundstrom et al., 2022).

One of the key strengths of ML is its ability to handle large, high-
dimensional data sets. ML algorithms can uncover complex, 
non-linear relationships between variables that traditional statistical 
methods may miss (Reis et  al., 2024). This ability is particularly 
valuable when analysing physiological data, which often involves 
multiple interrelated variables (Sarker, 2021).

The capacity to process real-time data from wearable sensors is 
another significant advantage (Fang et al., 2024). Wearable devices 
continuously collect high-frequency data on variables such as HR and 
activity metrics. ML models can analyze these data instantaneously, 
providing immediate feedback that enables dynamic adjustments to 
training plans (Fang et  al., 2024). For example, Gao et  al. (2018) 
demonstrated how real-time analysis can enhance 
performance monitoring.

The effectiveness of different structured training approaches for 
endurance is still debated. Common models, such as various training 
intensity distributions based on heart rate or power zones, are 

FIGURE 4

Box plots of covariates of difference transformed dataset with respect to response and non-response groups.
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frequently compared. However, studies have not consistently shown 
that one approach leads to superior improvements in key endurance 
metrics like VO₂max or time trial performance (Rosenblat et al., 
2025). Indeed, the meta-analysis by Rosenblat et al. (2025) using 
individual participant data reported no overall significant difference 
in VO₂max gains or time-trial performance improvements when 
comparing polarized versus pyramidal intensity distributions, 
suggesting that different well-structured training approaches guided 
by effective monitoring tools (like HR monitors or power meters) 
can stimulate significant endurance adaptations (Rosenblat et al., 
2025). These advancements underscore how technology has 
enhanced the monitoring of cardiovascular drift and overall training 
load, enabling more informed adjustments to training programs on 
a day-to-day basis (Fang et al., 2024; Jones, 2023; Montero, 2022; Reis 
et al., 2024). By integrating diverse data types, ML facilitates the 
analysis of individual responses to exercise, accounting for the 
unique physiological profile of each athlete (Muniz-Santos 
et al., 2023).

The primary advantage of using two separate random seed sets 
and multiple evaluation steps is that it helps to minimize bias from 
specific data splits. By averaging the results across multiple splits and 
folds, a more reliable estimate of model generalizability can 
be obtained, and by using different random seeds for the train-test 
split and k-fold cross-validation, it is ensured that the evaluation is not 
overly sensitive to a particular random initialization. While these 
results appear promising, the presence of multicollinearity raises 
concerns regarding the model’s stability and generalizability, as it can 
lead to overfitting in real-world data regime.

When comparing the performance of the different models, it was 
observed that Logistic Regression consistently outperformed KNN 
and VGP in terms of both cross-validation and test set accuracies 
across all feature transformations. In particular, the full feature set 
consistently provided the highest accuracy for Logistic Regression and 
VGP, but KNN performed similarly to GP when using the full feature 
set. However, the difference-transformed dataset and PCA both 
resulted in a drop in performance across all models, with PCA 

FIGURE 5

Pair plots of covariates in PCA transformed dataset.
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showing the least degradation in accuracy. Interestingly, while KNN 
was more stable with the full feature set, its performance dropped 
significantly with the handcrafted difference features and PCA 

transformation. The key advantage of PCA is that it removes 
multicollinearity, which can enhance model robustness. Despite the 
reduced predictive accuracy, the absence of multicollinearity in the 

FIGURE 6

Box plots of covariates of PCA transformed dataset with respect to response and non-response groups.

TABLE 1 Contribution of the features under PCA transformation.

Features PCA feature 1 PCA feature 2

Power mean 1 0.703214 0.082183

Cardiovascular drift 1 0.006465 0.486538

A decoupling 1 0.014372 0.515771

Power mean 2 0.710670 −0.109335

Cardiovascular drift 2 0.007638 0.0493126

A decoupling 2 0.011509 0.485160

TABLE 2 Performance comparison of different models.

Model Full Diff PCA

Mean CV 
accuracy

Mean test set 
accuracy

Mean CV 
accuracy

Mean test set 
accuracy

Mean CV 
accuracy

Mean test set 
accuracy

Logistic regression 0.902 ± 0.105 0.906 ± 0.031 0.827 ± 0.122 0.869 ± 0.044 0.836 ± 0.116 0.806 ± 0.086

KNN 0.869 ± 0.118 0.869 ± 0.052 0.770 ± 0.129 0.781 ± 0.075 0.771 ± 0.148 0.762 ± 0.092

VGP 0.902 ± 0.108 0.931 ± 0.044 0.811 ± 0.122 0.831 ± 0.049 0.833 ± 0.127 0.825 ± 0.083

CV, cross validation; ±, standard deviation.

TABLE 3 Comparison of evaluation of model performance using different methods.

Model Full Diff PCA

Mean test 
set 

precision

Mean 
test set 
recall

Mean 
test set 

F1

Mean test 
set 

precision

Mean 
test set 
recall

Mean 
test set 

F1

Mean test 
set 

precision

Mean 
test set 
recall

Mean 
test set 

F1

Logistic 

regression

0.916 ± 0.038 0.967 ± 0.055 0.939 ± 0.021 0.864 ± 0.043 0.983 ± 0.033 0.919 ± 0.026 0.820 ± 0.068 0.958 ± 0.042 0.882 ± 0.050

KNN 0.863 ± 0.044 0.983 ± 0.033 0.919 ± 0.032 0.799 ± 0.052 0.950 ± 0.055 0.867 ± 0.046 0.822 ± 0.081 0.883 ± 0.085 0.848 ± 0.060

VGP 0.945 ± 0.036 0.967 ± 0.055 0.954 ± 0.030 0.836 ± 0.038 0.967 ± 0.055 0.896 ± 0.031 0.844 ± 0.077 0.950 ± 0.041 0.892 ± 0.049

±, standard deviation.
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PCA-transformed dataset makes it a more robust representation of the 
data. This suggests that while PCA might not always maximize 
predictive performance, it could lead to more stable and generalizable 
models, especially in the presence of highly correlated features, which 
are prominent in real world scenarios.

In conclusion, while the full feature set yields the best 
performance, it is likely sensitive to multicollinearity, which could 
affect model stability. The handcrafted difference features provide a 
more interpretable approach but significantly reduce model 
performance. PCA, although leading to a decrease in accuracy, 
presents a more robust solution by mitigating multicollinearity, 
suggesting its potential for more stable models in future applications. 
The choice of feature representation depends on the trade-off 
between predictive performance and model stability, with PCA 
offering a more reliable option in contexts where generalizability is 
important. However, the high performance of the full feature set may 
be  influenced by multicollinearity among certain features, 

particularly between variables such as CV-drift and 
aerobic decoupling.

4.1 Limitations

The limited cohort size would likely negatively impact the 
generalizability of this work. For this reason, we  strongly 
recommend future studies considering a larger cohort. Our study 
included only male athletes; future research should investigate 
whether similar patterns and predictive accuracy apply to female 
athletes, who may exhibit different cardiovascular and hormonal 
responses to training. Future studies should focus on expanding 
the dataset to capture more data from a wider range of participants 
with different fitness level, in order to better facilitate models that 
require large datasets. In this study, we did not explore factors 
such as accumulated fatigue, overreaching, or chronic daily stress, 

FIGURE 7

Logistic regression classification for PCA transformed dataset across 8 random splits.
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that might explain why some athletes did not respond. 
Additionally, our findings stem from a specific cycling interval 
protocol. Physiological responses—particularly heart rate 
dynamics and cardiovascular drift characteristics—may differ 
under steady-state conditions, at other intensities or durations, or 
during different exercise modalities. While the current model was 
developed using cycling data, its conceptual framework may 
be transferable to other endurance sports such as running, rowing, 
or cross-country skiing, which share similar cardiovascular and 
metabolic demands. However, sport-specific validation is 
essential, as biomechanical and neuromuscular factors could 
influence the predictive accuracy of the model. Finally, potential 
confounding factors common in physiological studies, such as 
variations in environmental conditions, diet, or prior fatigue 
levels, might have influenced individual responses. Employing 

external validation datasets and investigating alternative ML 
architectures would substantially strengthen the conclusions 
regarding the use of these methods for estimating 
cardiovascular responses.

5 Conclusion

In this study, three models of ML were evaluated. The VGP model 
performed better than logistic regression and KNN, which was 
expected due to his ability to capture more complex relationships. The 
results of our study demonstrated the potential value of VGP in sports 
field research, where data is often small sample size and low 
dimensional. By training on large datasets, ML models can discern 
how cardiovascular drift correlates with aerobic capacity or fatigue 

FIGURE 8

KNN Classification for PCA transformed dataset across 8 random splits.
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under different conditions, potentially identifying early warning signs 
or confirming improvements that might be  missed by simple 
summary statistics.

These findings have practical implications for coaches and 
athletes. By analyzing cardiovascular drift and aerobic decoupling 
trends over time, ML models can help detect early signs of positive 
adaptation or excessive fatigue—insights that might not be apparent 
through traditional training metrics alone. In practice, coaches 
could use these models to tailor training intensity, adjust recovery 
strategies, or individualize periodization plans based on the 
athlete’s physiological feedback. Ultimately, this approach could 
support more responsive and personalized training prescriptions, 
improving both performance outcomes and athlete 
health management.
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