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Enhancing prediction of primary 
site recurrence in head and neck 
cancer using radiomics and 
uncertainty estimation 

Yu Hu, Kimberly Taing, Jing Wang, David Sher and 
Michael Dohopolski* 

Medical Artificial Intelligence and Automation Lab, Department of Radiation Oncology, UT 
Southwestern Medical Center, Dallas, TX, United States 

Introduction: Head and neck squamous cell carcinomas (HNSCC) present a 
significant clinical challenge due to high recurrence rates despite advances 
in radiation and chemotherapy. Early detection of recurrence is critical for 
optimizing treatment outcomes and improving patient survival. 
Methods: We developed two artificial intelligence (AI) pipelines—(1) machine 
learning models trained on radiomic and clinical data and (2) a Vision 
Transformer-based model directly applied to imaging data—to predict HNSCC 
recurrence using pre- and post-treatment PET/CT scans from a cohort of 
249 patients. We incorporated Test-Time Augmentation (TTA) and Conformal 
Prediction to quantify prediction uncertainty and enhance model reliability. 
Results: The machine learning models achieved an average AUC of 0.820. 
The vision transformer model showed moderate performance (AUC = 0.658). 
Uncertainty quantification enabled the exclusion of ambiguous predictions, 
improving accuracy among more confident cases. 
Discussion: Our machine learning models achieved strong performance in 
predicting HNSCC recurrence from radiomic and clinical features. Incorporating 
uncertainty quantification further improved predictive performance and 
reliability. 

KEYWORDS 
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selection, SAM-Med3D, test-time augmentation, conformal prediction 

1 Introduction 

Head and neck squamous cell carcinomas (HNSCC) account for nearly 4% of all new 
cancer diagnoses in the United States, with over 60,000 new cases reported annually and a 
25% mortality rate (Pfister et al., 2020; Shen et al., 2015). Radiation therapy is a cornerstone 
of HNSCC treatment, often combined with chemotherapy depending on tumor type and 
stage (Pfister et al., 2020; De Felice et al., 2023). Although recent therapeutic advances have 
improved survival (Guo et al., 2021), recurrence remains a serious challenge: ∼10% of 
early-stage HNSCCs recur within the first year of treatment (Borsetto et al., 2021), and 
30%–40% of advanced-stage cancers eventually relapse (5). Risk factors for recurrence 
include tumor subtype, treatment modality, disease stage, age, and comorbidities (Leeman 
et al., 2017; Haring et al., 2023). Given these complexities, accurately predicting and 
detecting tumor recurrence is crucial for guiding more personalized clinical decisions 
after radiation therapy. Early detection allows low-risk patients to avoid unnecessary 
follow-up scans, while high-risk patients can benefit from more aggressive treatments or 
closer monitoring. 
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Standard methods for detecting recurrence include clinical 
examination and endoscopy for mucosal lesions, while 18F-
fluorodeoxyglucose positron emission tomography/computed 
tomography (FDG-PET/CT) is preferred for deeper tissue 
evaluation (Gule-Monroe et al., 2020; Pfister et al., 2020). 
Conducted at least 12 weeks post-treatment, FDG-PET/CT 
remains the first-line surveillance tool for detecting residual or 
recurrent disease (Gule-Monroe et al., 2020; Cheung et al., 2016). 
Early detection of recurrence using FDG-PET/CT or other types 
of advanced imaging is critical for improving patient outcomes, 
as it allows for prompt intervention by clinicians. This can 
potentially reduce the need for aggressive treatments, as well as 
improve survival rates while minimizing unnecessary treatments 
for low-risk patients. As a result, it would not only reduce side 
effects but also optimize use of healthcare resources. Furthermore, 
early detection and intervention can prevent disease progression, 
lowering the disease burden on patients and thus leading to a better 
overall quality of life. However, false-positive and false-negative 
findings from the imaging can undermine early detection. To 
address these limitations, radiomics has emerged as a promising 
adjunctive approach for improving surveillance accuracy and 
treatment plans. However, false-positive and false-negative 
findings can undermine early detection. 

Radiomics involves extracting quantitative features from 
medical imaging, such as CT and PET scans, many of which are not 
readily visible to the human eye. These features can reveal critical 
information about tumor heterogeneity and patient response to 
treatment. By applying advanced computational techniques and 
machine learning, this imaging data is transformed into models 
that can predict disease outcomes, such as recurrence. In doing 
so, radiomics can optimize personalized treatment planning by 
offering a more detailed and objective understanding of the disease 
(Van Timmeren et al., 2020). 

Numerous studies have demonstrated radiomics’ potential 
for predicting recurrence and treatment outcomes in HNSCC 
with encouraging results (Tortora et al., 2023; Zhang et al., 
2022; Wang K. et al., 2023). For instance, Gangil et al. (2022) 
found that integrating clinical and radiomics data using Kernel 
Support Vector Machine (KSVM) significantly enhanced predictive 
accuracy compared to clinical or radiomics data alone, improving 
the ability to predict distant metastases, locoregional recurrences, 
new primaries, and residual disease. Similarly, Wang K. et al. 
(2023) showed that models built with delta-radiomics features— 
combining clinical and radiomics data—improved locoregional 
recurrence prediction accuracy. Fh et al. (2021) developed models 
for HNSCC recurrence using radiomics data from both the 
planning target volume (PTV) and gross tumor volume (GTV), 
achieving high sensitivity, specificity, and accuracy, demonstrating 
that incorporating features from multiple regions of interest 
can further enhance prediction accuracy. Additionally, Oka 
et al. (2024) demonstrated the power of combining radiomics 
with Gaussian noise upsampling (GNUS), which improved both 
sensitivity and specificity for predicting recurrence. These studies 
illustrate radiomics’ capacity to extract meaningful insights from 
imaging data. 

However, a critical yet underexplored dimension of predictive 
modeling in oncology is uncertainty quantification—the ability 
to assess how confident the model is in each individual 

prediction. Techniques such as TTA and conformal prediction 
offer principled methods to measure and control this uncertainty. 
While prior studies have applied methods like data augmentation 
or ensemble learning for robustness, the explicit integration of 
formal uncertainty frameworks in radiomics-based recurrence 
prediction remains rare. Furthermore, few studies leverage both 
TTA and conformal prediction in tandem or systematically 
assess how filtering uncertain predictions may impact overall 
diagnostic accuracy. 

To address this gap, our study integrates both TTA and 
conformal prediction into radiomics-based recurrence models 
using a relatively large and paired PET/CT dataset of over 
200 patients. By identifying and excluding high-uncertainty 
cases, we aim to improve model robustness and interpretability, 
particularly in detecting local recurrence. In this paper, we 
evaluate the impact of uncertainty-guided filtering on model 
performance, and demonstrate how uncertainty estimation can 
enhance the clinical reliability of radiomics models for HNSCC 
recurrence prediction. 

2 Methods 

We sought to develop artificial intelligence (AI) models to 
predict the local recurrence of head and neck cancer using 
pre and post treatment PET/CT imaging. We developed two 
AI pipelines: (1) machine learning models trained on tabular 
data combining extracted radiomic features with clinical features, 
and (2) a vision transformer-based model applied directly to 
the imaging data. The performance of the two pipelines was 
compared. Finally, uncertainty analysis was performed to evaluate 
prediction robustness. 

2.1 Patient demographics 

This study included 322 patients with pre-treatment CT and 
PET images and 331 patients with post-treatment CT and PET 
images. Of these, 249 patients had paired pre- and post-treatment 
images. Treatments were administered between 2005 and 2020, 
with 96.7% of patients treated between 2007 and 2015. The 
cohort was predominantly male (79.5%). The most common cancer 
histology was squamous cell carcinoma (95.6%), and the primary 
disease site was the oropharynx (68.3%). Detailed demographic 
characteristics are provided in Supplementary Tables S1, S2. 

2.2 Classical machine learning models 

The machine learning pipeline consisted of feature selection 
to reduce dimensionality, model development with threshold 
optimization for class imbalance, model selection to determine 
the optimal fold-wise classifier, and evaluation to assess final 
predictive performance. Prediction uncertainty was assessed using 
TTA (Wang K. et al., 2023) and Conformal Prediction (Molnar, 
2023). Model performance was evaluated using metrics such as 
Area Under the Receiver Operating Characteristic Curve (AUC), 
sensitivity, and specificity. 
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2.2.1 Data preparation and partitioning 
A total of 107 radiomic features were extracted from the pre-

and post-treatment CT and PET images using the Pyradiomics 
library (Van Griethuysen et al., 2017). Additionally, 15 clinical 
features, including demographic, staging, and treatment-related 
information, were obtained from medical records, resulting in a 
combined dataset of 107 × 4 + 15 = 443 features. 

The distribution of the outcome variable (local recurrence) was 
imbalanced, with 22.9% positive cases and 77.1% negative cases. We 
addressed this imbalance using threshold optimization, described 
in detail below. 

We employed five-fold cross-validation. This technique 
partitions the available dataset into five equally sized folds. During 
each of the five iterations of the cross-validation process, one fold 
is held out as the validation set, one fold is held out as the test set, 
while the remaining three folds are used for training the model. 
The process is repeated five times, such that each fold serves as the 
validation and test set exactly once. 

2.2.2 Feature selection 
To address high dimensionality and improve model 

generalizability, we applied a two-stage feature selection procedure 
focused on radiomic features, while retaining all clinical variables. 

First, correlation-based filtering was applied to reduce 
redundancy among radiomic features (Teng et al., 2022). Pearson 
correlation coefficients were computed between all feature pairs, 
and any pair with a correlation coefficient >0.7 was considered 
highly correlated. For each such pair, the feature with the higher 
average absolute correlation to all other features was removed. This 
step typically reduced the 428 radiomic features to <100. 

Next, the Least Absolute Shrinkage and Selection Operator 
(LASSO) was used to identify the most predictive subset of 
radiomic features. By adjusting the regularization strength, we 
generated multiple candidate feature sets containing between six 
and 10 radiomic variables. These sets were then evaluated by 
training a Support Vector Classifier (SVC) on the training data and 
computing the Youden Index on the validation set. The feature 
set achieving the highest validation Youden Index was selected for 
downstream model development. 

Finally, each selected radiomic feature set was combined with 
the full set of 15 clinical variables, yielding a final set of ∼21–25 
features per fold. All feature selection steps were performed using 
only training and validation data within each fold. 

2.2.3 Model development and evaluation 
We constructed five candidate classifiers for each fold: 

Logistic Regression, SVC with linear and polynomial kernels, 
Explainable Boosting Classifier (EBC), and eXtreme Gradient 
Boosting (XGBoost). All models were trained on the selected 
feature set, which included all clinical variables and the radiomic 
features selected via LASSO. 

For each model, threshold optimization was performed to 
determine the probability cutoff that maximized the Youden Index 
on the validation set. Rather than defaulting to 0.5, we evaluated 
thresholds between 0 and 0.5 in small increments 0.01, selecting 
the value that yielded the best trade-off between sensitivity and 

specificity. This validation-derived threshold was then applied to 
the test set in the corresponding fold. 

To identify the best-performing model within each fold, for 
each model, we performed training on the designated training data 
and evaluated its performance on the validation set. The Youden 
Index (Sensitivity + Specificity – 1) was used as the primary 
selection criterion to identify the most balanced and clinically 
relevant classifier. Among all candidate models, the one achieving 
the highest Youden Index on the validation set was selected as the 
optimal model for that fold. 

The chosen model was then evaluated on the test set, and its 
predictions were recorded. This process was repeated across all 
five folds. To summarize overall performance, predictions from 
the test sets of all folds were aggregated. Performance metrics, 
including AUC, accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and PRAUC, were 
reported for the final evaluation. The full machine learning 
workflow is illustrated in Figure 1. 

2.2.4 Evaluating variability across random states 
To assess how random states affect data splitting and model 

initialization, we used a predefined list of random states. The model 
was run for each random state, and the test metrics were collected to 
evaluate variability in the results. Averaging these metrics provides 
a more reliable assessment of the model’s overall performance 
compared to relying on a single data split, while the standard 
deviation of the metrics offers insight into the model’s stability. 

2.3 Vision transformer-based model 

Transformer architectures have recently shown promising 
performance in computer vision tasks through self-attention 
mechanisms that capture both local and global contextual 
information (Dosovitskiy et al., 2020). Vision Transformers 
are transformer models that process image data as sequences 
of patches, using self-attention mechanisms to capture spatial 
relationships. In this study, we adopted SAM-Med3D (Wang H. 
et al., 2023), a ViT-based architecture adapted from the Segment 
Anything Model (SAM) for volumetric medical image analysis. 
SAM-Med3D comprises three primary components: an image 
encoder that processes 3D image volumes, a prompt encoder for 
optional user-defined inputs (e.g., points or bounding boxes), and 
a mask decoder that generates segmentation outputs. We used only 
the image encoder as a feature extractor to enable downstream 
binary classification. 

2.3.1 Model implementation details 
For each patient, we used paired pre- and post-treatment CT 

and PET images. These four volumes were arranged along the 
channel dimension, forming a 4-channel input with a shape of 
[B, 4, 64, 64, 64], where B is the batch size. All images were cropped 
to the smallest bounding box encompassing the primary tumor site 
and then resized to 64×64×64 via center cropping or zero-padding. 
Voxel intensities were min-max normalized using the 0.5th and 
99.5th percentiles computed from the training dataset to reduce the 
influence of outliers. 

Frontiers in Artificial Intelligence 03 frontiersin.org 

https://doi.org/10.3389/frai.2025.1623393
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Hu et al. 10.3389/frai.2025.1623393 

FIGURE 1 

Workflow of the machine learning pipeline. Radiomic and clinical features are combined to form the dataset. Radiomic features are first filtered using 
a correlation-based method (threshold = 0.7). A five-fold cross-validation strategy is then employed. In each fold, LASSO is applied to the filtered 
radiomic features from the training set to select 6–10 informative variables, which are then combined with the full set of clinical features. Multiple 
models are trained and evaluated on the validation set, and the model achieving the highest Youden Index is selected as the optimal model for that 
fold. This model is then evaluated on the corresponding test set. Performance metrics are aggregated across all folds to obtain final results. 

We used the pretrained SAM-Med3D model (Wang H. et al., 
2023), which is based on the Vision Transformer-Base (ViT-B) 
backbone adapted for 3D medical imaging tasks. In our pipeline, we 
used the image encoder as a fixed feature extractor and appended a 
lightweight binary classification head consisting of a global average 
pooling layer followed by a fully connected layer with sigmoid 
activation. To enable effective transfer learning, we partially fine-
tuned the SAM-Med3D encoder by freezing. 

The model was trained for 70 epochs using the AdamW 
optimizer with an initial learning rate of 2 × 10−4 , weight decay of 
0.002, and a OneCycleLR scheduler with a peak learning rate of 2 × 
10−3 . We used binary cross-entropy with logits as the loss function. 
A batch size of 8 was used for all experiments. To address class 
imbalance in the dataset, we applied weighted random sampling 
with a target ratio of 60:40 between negative and positive cases. 

To improve robustness during training, random augmentations 
were applied to each input volume, including affine 
transformations (rotation and translation) with a probability 
of 0.4 and random flips along the coronal and sagittal planes with a 
probability of 0.3. All preprocessing and augmentation steps were 
implemented using the TorchIO library. The model was trained 
and evaluated using the PyTorch Lightning framework, and results 
were averaged across five-fold cross-validation. 

2.4 Uncertainty analysis 

We assessed and compared prediction uncertainty across 
different cohorts using TTA and Conformal Prediction. 

2.4.1 TTA 
TTA was implemented by introducing variability to the input 

data during inference. Specifically, Gaussian noise was added to the 
radiomic features five times per sample, with a magnitude of 0.1× 
the variable-wise standard deviation—deliberately higher than the 
noise used during training. The model generated predictions for 
each augmented version, and the final output for each sample was 
computed by averaging the predicted probabilities. Labels remained 
unchanged throughout the process. 

To quantify prediction uncertainty, we computed an off-
centered entropy score from the averaged predicted probabilities 
for each sample (Guermazi et al., 2018; Lenca et al., 2010). Let 
p denote the predicted probability of the positive class, and let 
τ ∈ (0, 1) be the optimal decision threshold determined on the 
validation set in a given fold, the off-centered entropy shifts the 
maximum entropy from p = 0.5 to p = τ , aligning the uncertainty 
peak with the decision boundary actually used during evaluation. 
This adaptation provides a more accurate measure of predictive 
uncertainty, particularly in settings where class imbalance or 
threshold optimization justifies using τ = 0.5. The mathematical 
formulation is detailed in the Supplementary material. 

We then selected entropy values corresponding to the 70th, 
77.5th, 85th, 92.5th, and 100th percentiles of the validation set’s 
entropy distribution to define exclusion thresholds for the top 30%, 
22.5%, 15%, 7.5%, and 0% most uncertain predictions, respectively. 
These entropy thresholds were then directly applied to the test set 
to exclude high-uncertainty samples. Performance metrics were 
calculated on the remaining, more confident test samples and 
aggregated across folds. 
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2.4.2 Conformal prediction 
To quantify the reliability of model predictions, we employed 

inductive conformal prediction, a model-agnostic framework that 
produces prediction sets with guaranteed error bounds under 
minimal assumptions. In our study, we targeted a 95% confidence 
level by setting the significance level to α = 0.05. The 
conformal prediction process was carried out within each cross-
validation fold. 

The procedure involved three main steps. First, we designated 
the validation set within each fold as a calibration set and applied 
the trained model to obtain predicted probabilities for the true class 
labels. From these, we computed nonconformity scores to quantify 
how well each calibration sample conformed to the model’s 
predictions—lower scores indicating higher model confidence. 

Second, we used the distribution of nonconformity scores from 
the calibration set to determine a threshold value corresponding to 
the desired confidence level. This threshold served as a cutoff for 
defining conformity during inference. 

Finally, for each test sample, we computed class-conditional 
nonconformity scores (Papadopoulos et al., 2008) and formed a 
prediction set containing all classes that satisfied the conformity 
threshold. A prediction was labeled as certain if the prediction set 
contained exactly one class label, and uncertain if it contained either 
none or both labels. 

The full mathematical formulation is provided in the 
Supplementary material. 

3 Results 

3.1 Results from machine learning models 

The ROC curves and AUC scores for each fold, along with 
the aggregated results across all folds using both pre- and post-
treatment CT and PET images, are presented in Figure 2. In this 
case, the overall sensitivity is 0.614, while the overall specificity 
is 0.838. The combined AUC is 0.829 and the AUC for each fold 
ranges from 0.730 to 0.909. Out of the total test samples, 161 were 
true negatives, 22 were false positives, 31 were false negatives, and 
35 were true positives. 

Table 1 shows the results from model selection for a specific 
fold. Based on the selection criteria, the XGBoost model was chosen 
as the optimal model. 

We collected the test metrics from running the model with 
different random states, and the results are summarized in Table 2. 
The first five rows indicate the optimal model selected for each 
fold, with LR and XGBoost being the most frequently chosen. The 
last four rows present the key overall performance metrics, along 
with their mean and standard deviation on the right. Across five 
repeated runs, the model achieved a mean accuracy of 0.797 (95% 
CI: 0.780–0.813), AUC of 0.820 (95% CI: 0.800–0.840), sensitivity 
of 0.608 (95% CI: 0.586–0.631), and specificity of 0.852 (95% CI: 
0.826–0.878). 

3.2 Results from SAM-Med3D 

The SAM-Med3D image encoder was evaluated using its 
pretrained weights and the checkpoints corresponding to the 

highest validation AUC achieved on the validation sets. The 
resulting performance metrics were as follows: Accuracy of 0.722, 
AUC of 0.658, Sensitivity of 0.525, and Specificity of 0.781. The test 
AUC values obtained from five-fold cross-validation were 0.642, 
0.699, 0.684, 0.609, and 0.877, respectively. 

3.3 Uncertainty analysis 

After excluding test samples based on entropy values derived 
from predicted probabilities, we obtained five sets of performance 
metrics corresponding to exclusion thresholds at ∼0%, 7.5%, 
15%, 22.5%, and 30% of the most uncertain samples. These 
thresholds were determined from the validation sets and then 
directly applied to the test sets. The results, aggregated over five-
fold cross-validation, are summarized in Figure 3. At the 0% 
exclusion level, all 249 samples served as test data across the 
folds. As increasingly uncertain samples were excluded, overall test 
performance improved consistently. Notably, sensitivity exhibited 
a marked increase-from 0.526 to 0.629-indicating better detection 
of true positive cases among the retained, more certain predictions. 

The model performance on the certain and uncertain cohorts 
are shown in Table 3. Notably, the uncertain cohort includes a 
higher proportion of patients with failure. This suggests that these 
cases may inherently involve greater clinical complexity. Despite 
this, the prediction AUC for the uncertain cohort remains relatively 
high at 0.787. 

4 Discussion 

In this study, we proposed a predictive modeling framework 
for assessing local recurrence risk in HNSCC using paired pre- and 
post-treatment PET/CT imaging. Its strength lies in a structured 
model ensemble strategy: we systematically constructed a diverse 
set of classical machine learning models—varying by feature 
selection and algorithm type—and selected the best-performing 
model in each fold using a data-driven criterion. This multi-
model approach was designed to mitigate the risk of overfitting 
or model instability, ensuring that if one model underperforms 
on a given split, others can compensate. We further validated 
this robustness by repeating the pipeline across multiple random 
data splits, consistently achieving high performance (mean AUC = 
0.820, standard deviation = 0.015). A Vision Transformer-based 
model (SAM-Med3D) was also incorporated as an independent 
modeling path to diversify the overall predictive structure and 
evaluate deep learning approaches under the same task. 

Integrating clinical data with radiomic features has been shown 
to enhance predictive performance in head and neck cancer 
recurrence studies. For instance, a study by Gangil et al. (2022) 
demonstrated that combining clinical and radiomic data using a 
Kernel Support Vector Machine (KSVM) significantly improved 
the prediction of locoregional recurrences in HNSCC patients. 
Similarly, Furukawa et al. developed Cox proportional hazard 
models that incorporated both clinical variables and multimodal 
radiomics features extracted from tumor regions in CT and PET 
images, achieving a concordance index of 0.74—outperforming 
the model that relied solely on clinical data (C-index of 0.67). 
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FIGURE 2 

ROC curves for each epoch and the combined curve for RS 8463. Five individual curves are shown with different colors, each representing a data 
split with specific AUC values ranging from 0.730 to 0.908. The combined ROC curve is depicted in red with an AUC of 0.829. The graph plots true 
positive rate against false positive rate. 

TABLE 1 Performance metrics of models based on various feature selection and cross-validation methods for a single fold are presented. 

FS method Model Accuracy PRAUC AUC Sensitivity Specificity NPV PPV 

LASSO LR 0.8 0.493 0.717 0.538 0.892 0.846 0.636 

LASSO SVC 0.72 0.407 0.449 0.230 0.892 0.767 0.429 

LASSO SVCP 0.72 0.576 0.576 0.385 0.838 0.795 0.455 

LASSO EBC 0.82 0.600 0.790 0.462 0.946 0.833 0.75 

LASSO XGB 0.84 0.596 0.800 0.769 0.865 0.914 0.667 

In this case, XGBoost achieved the highest Youden Index (1.634), making it the optimal model for this fold. 
FS, feature selection; PRAUC, precision-recall area under the curve; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; LR, logistic regression; SVC, 
support vector classifier; SVC, support vector classifier with polynomial kernel; EBC, explainable boosting classifier; XGB, XGBoost. 

Wang K. et al. (2023) further reinforced this finding, showing 
that integrating clinical and radiomic features improved predictive 
accuracy while leveraging a combination of SVM, Discriminant 
Analysis (DA), and Logistic Regression (LR). Motivated by these 
findings, we incorporated clinical data into our radiomics-based 
models, which resulted in strong predictive performance. In a 
complementary line of research, Eralp and Sefer proposed a 
reference-free transcriptomic analysis method in single-cell cancer 
data, emphasizing the potential of data-driven approaches in cancer 
characterization (Eralp and Sefer, 2024). 

The most important clinical features selected by our models 
included Clinical T stage, smoking status, total fractions received, 
p16 status, and prescribed total radiation therapy (RT) dose. These 
variables are clinically relevant for predicting HNSCC recurrence, 
as they reflect both tumor burden and treatment intensity. Clinical 
T stage provides a measure of primary tumor extent, which strongly 
influences recurrence risk. Smoking status is a well-established 

prognostic factor associated with poorer outcomes and higher 
recurrence rates. Total fractions received and prescribed RT dose 
indicate the intended and delivered treatment intensity; deviations 
from the prescribed regimen could reflect treatment interruptions 
or modifications, potentially compromising effectiveness. Lastly, 
p16 status serves as a surrogate marker for HPV association, with 
p16-positive tumors typically showing better response to therapy 
and improved prognosis. Collectively, these features capture key 
clinical dimensions that influence recurrence risk and reinforce the 
interpretability of our model outputs. 

The prescribed radiation doses and received radiation doses are 
similarly important, as discrepancies in these doses may suggest 
under-treatment or failure to complete treatment, potentially 
leading to tumor regrowth. Age is another key factor, as it is a well-
known clinical prognostic factor for cancer outcomes, especially 
given that older adults often have greater comorbidities (Cadoni 
et al., 2017). Interestingly, Raab et al. (2024) found that older 
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TABLE 2 Models and decision thresholds selected as the best-performing for each fold across different random states (top five rows), alongside 
performance metrics: accuracy, AUC, sensitivity, and specificity (middle four rows). 

Metric / Fold Random 
state 
8,463 

Random 
state 
7,053 

Random 
state 
2,194 

Random 
state 
4,727 

Random 
state 
3,929 

Mean ± SD 

Fold 1 best model XGB, 0.31 LR, 0.23 XGB, 0.31 XGB, 0.24 LR, 0.27 – 

Fold 2 best model LR 0.2 LR 0.2 XGB, 0.2 LR, 0.21 LR, 0.22 – 

Fold 3 best model LR, 0.25 LR, 0.35 XGB, 0.5 XGB, 0.24 XGB, 0.24 – 

Fold 4 best model XGB, 0.2 XGB, 0.2 XGB, 0.25 LR, 0.3 XGB, 0.2 – 

Fold 5 best model LR, 0.38 LR, 0.21 XGB, 0.2 LR, 0.43 LR, 0.47 – 

Accuracy 0.787 0.787 0.819 0.791 0.799 0.797 ± 0.012 

AUC 0.829 0.797 0.838 0.823 0.813 0.820 ± 0.015 

Sensitivity 0.614 0.632 0.586 0.614 0.596 0.608 ± 0.017 

Specificity 0.839 0.833 0.885 0.843 0.859 0.852 ± 0.019 

Importance clinical 
vs. radiomic 

64.8%: 
35.2% 

77.0%: 
23.0% 

43.2%: 
56.0% 

62.2%: 
37.8% 

61.5%: 
38.5% 

-

The final row summarizes the average proportion of feature importance attributed to clinical and radiomic variables across folds. The last column summarizes the mean and standard deviation 
of the performance metrics. 

FIGURE 3 

Variation in performance metrics (Accuracy, AUC, Sensitivity, Specificity) as increasingly uncertain test samples are excluded based on entropy 
percentiles. Entropy thresholds were computed from the validation sets and applied to the test sets at five levels of uncertainty exclusion 
(approximately 0%, 7.5%, 15%, 22.5%, and 30%). The results are aggregated over five-fold cross-validation, with the 0% exclusion level representing 
performance across all 249 test samples. Metrics are presented as point estimates. 

adults with head and neck cancer had higher rates of receiving 
inadequate radiation doses and are more likely to prematurely 
terminate treatment, which could lead to higher recurrence rates. 

Most studies applying machine learning to radiomics data 
develop multiple types of models. For example, Fatima et al. 
(2021) employed quantitative ultrasound delta-radiomics with 
SVM and k-Nearest Neighbors (KNN), while Kim et al. (2022) 
utilized a LASSO and Logistic Regression (LR) model based 
on apparent diffusion coefficient maps from MRI. Wang et al. 
(2020) constructed SVM, Discriminant Analysis (DA), and LR 

models, combining their outputs through a weighted sum to 
generate the final prediction. Each of these approaches yielded 
promising results, with AUCs ranging from 0.75 to 0.8 on their 
respective datasets. In our study, we leveraged the advantages of 
EBC and XGBoost. EBC’s iterative boosting process adaptively 
refines weak learners while maintaining interpretability, whereas 
XGBoost effectively captures complex nonlinear relationships 
through its regularized, scalable tree-boosting framework. Among 
five candidate models (LR, SVC, polynomial SVC, EBC, and 
XGBoost), the optimal model for each fold was selected based on 
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TABLE 3 Performance and distribution metrics for certain and uncertain 
cohorts are presented, with cohort classification determined based on a 
significance level of α = 0.05. 

Metric Certain cohort Uncertain cohort 

Total patients 112 137 

Successes (0) 95 (84.8%) 97 (70.8%) 

Failures (1) 17 (15.2%) 40 (29.2%) 

Accuracy 0.911 0.781 

AUC 0.899 0.787 

Sensitivity 0.529 0.525 

Specificity 0.979 0.887 

The samples with p-values below α were classified as uncertain, and those above were 
considered certain. Categorical outcomes are expressed as counts and percentages (N, %), 
and performance metrics (Accuracy, AUC, Sensitivity, Specificity) are represented as point 
estimates. A p-value < 0.05 was considered statistically significant. The certain cohort exhibits 
higher performance metrics, while the uncertain cohort also demonstrates relatively strong 
performance. Additionally, the uncertain cohort contains a higher proportion of cases with 
local failures (label 1). 

performance. The impact of introducing EBC and XGBoost was 
evident: they were chosen as the best-performing model in 12 out 
of 25 cases. A study by Azeroual et al. (2024) also demonstrated that 
XGBoost performed well in predicting breast cancer recurrence, 
achieving good precision, recall, and F1 scores. Importantly, we 
employed cross-validation to ensure a comprehensive performance 
evaluation and conducted multiple runs with different random 
states to assess robustness. This approach ensures that model 
performance is not overly dependent on a specific data split or 
initialization, making the results more reliable. 

The predictive models developed in this study have the 
potential to be highly valuable in the clinical setting by providing 
personalized risk evaluation for patients with HNSCC. These 
models could assist clinicians in identifying patients at higher 
risk for recurrence, allowing for more individualized treatment 
strategies. Our best-performing model achieved an AUC of 0.820, 
with a specificity of 0.852 and a sensitivity of 0.608—results that are 
strong by machine learning standards. However, we acknowledge 
that these metrics remain inferior to human performance using 
PET/CT surveillance, which has demonstrated sensitivities of 95%– 
96% and negative predictive values as high as 96% (Kim et al., 
2013; Mehanna et al., 2016; Sheikhbahaei et al., 2015). While our 
model is not yet ready for clinical implementation, it represents a 
scalable and promising foundation for recurrence risk stratification, 
particularly in settings where imaging or specialist access may 
be limited. 

We observed that the classical machine learning models 
outperformed the Vision Transformer-based model, despite the 
latter’s more complex architecture and direct application to 
image data. This outcome may be attributed to several factors. 
Firstly, transformer models typically require large-scale datasets 
to effectively learn and generalize. Ma et al. (2022) explored 
the application of transformer models in medical imaging and 
highlighted that their performance is often limited by the 
relatively small size of medical datasets. Given that our dataset is 
relatively small, this limitation likely contributed to the suboptimal 
performance of the transformer model. Additionally, as Heidari 
et al. (2023) pointed out in their study, where they introduced a 

hybrid model combining convolutional neural networks (CNNs) 
and transformers, transformers excel at capturing long-range 
dependencies in medical images but often struggle to extract fine-
grained, localized features. Because tumors are often small in 
size, this limitation may have reduced the Vision Transformer’s 
ability to effectively distinguish their characteristics. Moreover, our 
approach used bounding boxes around the tumors to reduce input 
size and concentrate on the most relevant regions for analysis. 
While effective for focusing on the tumor itself, this strategy 
may limit the model’s access to contextual information from the 
surrounding anatomy. 

While transformer-based models offer architectural flexibility 
and the ability to model complex dependencies, their performance 
in this study was limited—likely due to factors such as small 
dataset size, restricted contextual input, and the localized nature 
of the target structures. Future improvements may be achieved 
through strategies such as hybrid CNN-transformer architectures 
to better capture local features (Lan et al., 2025), the use of larger 
input fields to preserve anatomical context, and the incorporation 
of pretraining or regularization techniques to reduce overfitting. 
Nonetheless, our primary objective was not to benchmark 
architectural complexity but to identify models that demonstrated 
strong and reliable performance in cross-validation. In this setting, 
classical models that combined handcrafted radiomic features 
with static clinical variables consistently outperformed the Vision 
Transformer and were selected for downstream analysis. These 
results align with previous findings Dai et al. (2021), which 
highlight the challenges of applying transformer-based models in 
data-constrained medical imaging scenarios. 

Accurate uncertainty quantification is essential when deploying 
predictive models in high-stakes domains like healthcare. To this 
end, we used Test-Time Augmentation (TTA) to assess prediction 
uncertainty by introducing input perturbations and measuring 
entropy. As shown in Figure 3, excluding high-entropy samples 
led to consistent performance gains, particularly in AUC and 
sensitivity. We also employed conformal prediction to stratify 
model outputs into "certain" and "uncertain" cohorts, revealing 
that patients in the uncertain group exhibited a higher incidence 
of recurrence. This suggests that predictive uncertainty may 
correspond to more complex or atypical clinical presentations 
and could provide actionable insights for clinical practice. For 
instance, identifying patients with high uncertainty could prompt 
more intensive follow-up, potentially including additional imaging 
(e.g., MRI) or earlier follow-up assessments. Moreover, such 
stratification could inform multidisciplinary discussions, helping 
clinicians tailor follow-up strategies beyond standard protocols. It 
is important to emphasize that the model is intended as an assistive 
tool, not a standalone diagnostic system; ultimately, the decision-
making authority rests with the treating physician, who will 
incorporate these outputs alongside other clinical information. Our 
findings align with prior studies, including the review by Vazquez 
and Facelli (2022), which highlights the utility of conformal 
prediction in providing valid, individualized confidence measures 
in clinical settings. Integrating uncertainty quantification into 
predictive models may thus enhance their clinical trustworthiness 
and facilitate more proactive decision-making. 

Despite the promising findings, this study has several 
limitations. First, the dataset size remains limited. A larger dataset 
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would allow for more comprehensive validation and improved 
model performance. While the current models have demonstrated 
strong predictive capabilities, their external applicability remains 
untested. We acknowledge that external validation on independent 
datasets is essential before clinical deployment, as it is necessary 
to ensure generalizability and robustness across different patient 
populations and imaging protocols. Future work should evaluate 
these models on independent external datasets. Second, a 
substantial proportion of patients had unknown HPV and p16 
status. This missing information may have limited the model’s 
ability to fully capture relevant recurrence patterns. Lastly, 
the Vision Transformer-based model may benefit from further 
hyperparameter tuning, alternative architectural configurations to 
improve predictive performance, or the integration of clinical 
features. Additional experiments optimizing its structure and 
training strategies could lead to improved results. Nonetheless, 
its inclusion in this study was purposeful: our overarching goal 
was to evaluate a diverse set of models and select the most 
effective one based on empirical validation performance. While 
the transformer did not outperform simpler classical models, this 
outcome highlights the importance of data-driven model selection. 

5 Conclusion  

This study demonstrates the effectiveness of AI-driven models 
in predicting HNSCC local recurrence using radiomic and 
clinical features. Traditional machine learning models, particularly 
XGBoost and EBC, achieved strong predictive power. Selecting 
the optimal model from a diverse pool enhanced the overall 
model’s robustness and stability. The integration of uncertainty 
quantification methods provided additional insights into model 
reliability and potential clinical applicability. 
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