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Background: The advancement of artificial intelligence technologies has 
opened new avenues for depression prevention and management in older 
adults with disability (defined by basic or instrumental activities of daily living, 
BADL/IADL). This study systematically developed machine learning (ML) models 
to predict depression risk in disabled elderly individuals using longitudinal data 
from the China Health and Retirement Longitudinal Study (CHARLS), providing a 
potentially generalizable tool for early screening.

Methods: This study utilized longitudinal data from the CHARLS 2011–2015 
cohort. A three-stage serial consensus approach feature selection framework 
(LASSO, Elastic Net, and Boruta) was employed to identify 21 robust predictors 
from 74 candidate variables. Ten ML algorithms were evaluated: LR, HistGBM, 
MLP, XGBoost, bagging, DT, LightGBM, RF, SVM, and CatBoost. Temporal external 
validation was performed using an independent 2018–2020 cohort to assess 
model generalizability. Performance was comprehensively evaluated using 
accuracy, AUC, F1-score, precision, and recall metrics. The SHAP framework 
was employed to interpret feature contribution mechanisms.

Results: Results demonstrated that the HistGBM model achieved optimal 
overall performance on the testing sets (AUC = 0.779, F1-score = 0.735, 
accuracy = 0.713), with only an 8.5% AUC difference between training and 
testing sets and a 10% difference between external validation and testing 
sets, indicating temporal stability. SHAP interpretability analysis revealed that 
sleep time (mean SHAP value = 0.344) in the health behavior domain and life 
satisfaction (0.339) and episodic memory (0.220) in the subjective perception 
domain contributed more significantly to prediction than traditional biomedical 
indicators.

Conclusion: This study developed an AI-based tool for depression risk 
assessment in older adults with disability through a multi-stage feature 
selection process and a temporal external validation framework. These findings 
provide a practical screening instrument and a methodological reference for 
implementing AI technologies in geriatric mental health applications, thereby 
facilitating clinical translation of predictive analytics in this field.
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1 Introduction

The comorbidity of disability and depression among older adults 
is a growing concern. Disability refers to a state of limited activities of 
daily living due to physical or mental impairments. At the same time, 
depression is a neuropsychiatric condition principally manifested 
through sustained affective dysregulation, significantly compromising 
physiological functioning and social adaptability (Kupferberg et al., 
2016). A well-established bidirectional association exists between 
disability and depression (Zhou et al., 2024; Zhu et al., 2024). Disability 
contributes to depression through loss of social roles and restricted 
mobility, whereas depression exacerbates functional decline by 
reducing rehabilitation adherence and impairing immune function. 
Epidemiological studies indicate that the global prevalence of major 
depressive disorder in older adults is approximately 13.3% (Abdoli 
et al., 2022), with disabled elders exhibiting significantly higher risks 
than their unimpaired counterparts (Asdaq SMB et  al., 2024). In 
China, the prevalence of geriatric depression reaches 34.1% (Feng 
et al., 2021), with rural areas demonstrating elevated vulnerability due 
to limited healthcare access and weaker familial support systems. This 
vicious cycle between disability and depression not only accelerates 
individual functional deterioration but also imposes substantial 
healthcare burdens and societal costs (Wang et  al., 2023; Ni 
et al., 2024).

Previous studies have predominantly employed cross-sectional 
designs and conventional statistical approaches (e.g., logistic 
regression, fixed-effects models) to identify risk factors. Regarding 
risk association validation, Mu et al. (2022) demonstrated through 
binary logistic regression that individuals with disability exhibit 
significantly elevated risks of depressive symptoms. Using multivariate 
logistic regression, Yan et  al. (2023) further revealed urban–rural 
differential effects in the disability-depression association. In terms of 
disease trajectory research, Tian et al. (2022) found that individuals 
with disability were more likely to follow trajectories of worsening 
depressive symptoms. Musliner et al. (2016) associated prevalence 
rates, Çağan and Ünsal (2014) reported a 57.8% depression rate 
among disabled individuals, while McGillivray and McCabe (2007) 
documented a 39.1% depression prevalence among those with mild-
to-moderate intellectual disabilities. Individual emotional states, life 
satisfaction, self-rated health, and social support systems have been 
systematically validated as critical predictors (Turner and Noh, 1988; 
Song et al., 2023). However, traditional linear models demonstrate 
limited capacity in analyzing high-dimensional nonlinear 
relationships, and their static data frameworks fail to capture the 
temporal cumulative effects of risk factors.

In summary, as shown in Table 1, existing studies exhibit three 
major limitations: (1) Design dimension: Prior studies predominantly 
rely on cross-sectional data, failing to capture the temporal cumulative 
effects of risk factors (e.g., the progressive impact of disability 

deterioration on depression). (2) Methodological dimension: Although 
conventional linear models (e.g., logistic regression) can validate risk 
associations, they struggle to handle high-dimensional nonlinear 
relationships. In contrast, ML algorithms significantly enhance 
predictive performance by extracting feature interactions and 
identifying temporal patterns. (3) Feature dimension: Existing research 
excessively focuses on physiological indicators (e.g., disease burden, 
functional impairment) while neglecting the contributions of subjective 
cognition (e.g., life satisfaction) and health behaviors (e.g., sleep). This 
study advances beyond conventional paradigms by integrating a 
longitudinal design, ML approaches, and a multidimensional feature 
structure to address these limitations. Specifically, we utilize multi-
wave longitudinal data from CHARLS (2011–2020) and incorporate a 
temporal external validation framework (using an independent 2018–
2020 cohort) to track the evolving trajectories of disability and 
depression dynamically. We systematically compare 10 ML algorithms 
and introduce the SHapley Additive exPlanations (SHAP) 
interpretability framework to balance predictive accuracy with 
mechanistic insights. Furthermore, we construct a multidimensional 
feature matrix and employ a three-stage serial consensus feature 
selection (LASSO, Elastic Net, and Boruta), demonstrating that 
subjective perceptions (SHAP value: life satisfaction = 0.339) and 
health behaviors (sleep time = 0.344) exhibit stronger predictive power 
than conventional biomedical indicators. This integrative approach not 
only overcomes prior methodological constraints but also provides a 
robust, interpretable, and clinically actionable framework for 
depression risk stratification in older adults with disabilities.

Although machine learning (ML) offers innovative solutions to 
address these limitations (Zhao et al., 2025; Fan et al., 2025), recent 
studies based on CHARLS data still exhibit notable shortcomings: (1) 
Overreliance on a single algorithm for feature selection. For instance, 
Huang et al. (2025) employed LASSO exclusively for feature selection 
in cardiovascular disease risk prediction among middle-aged and 
older adults (Huang et al., 2025), which may inadequately address the 
challenges of high-dimensional feature collinearity and stability; (2) 
Insufficient temporal external validation in the evaluation framework. 
As demonstrated by Chu et al. (2025), the disability prediction model 
for older adults lacked external validation (Chu et  al., 2025), 
potentially compromising the generalizability of the findings.

ML offers innovative solutions to overcome these methodological 
limitations (Vu et al., 2025; Ai et al., 2024). Compared to conventional 
approaches, ML demonstrates superior predictive performance through 
its capacity for feature interaction mining and temporal pattern 
recognition (Nickson et  al., 2023). Xin and Ren (2022) developed 
random forest models to predict disability risk in urban and rural 
populations, achieving AUC values of 0.71 and 0.78, respectively. In a 
systematic comparison, Hong et al. (2025) demonstrated that XGBoost 
models exhibited excellent performance in training sets (AUC = 0.76), 
while logistic regression models performed well in validation sets 

TABLE 1 Paradigm comparison between this study and previous depression prediction studies.

Dimension Previous mainstream research The innovation point of this study

Design Cross-sectional data Multi-wave longitudinal data + temporal external verification

Method Traditional statistical models Comparison of 10 ML Algorithms + SHAP interpretation

Feature Physiological indicators
Integration of subjective perception/health behavior/physiological 

multidimensional characteristics
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(AUC = 0.73). Handing et al. (2022) employed random forest analysis 
and identified social isolation and self-rated health as significant 
determinants of depression. Despite these advancements, few studies in 
China have utilized longitudinal data and multiple ML algorithms to 
construct risk prediction models specifically for depressive disorders 
within geriatric populations with functional limitations (Hong et al., 
2025). Furthermore, methodological weaknesses in validation 
frameworks among existing studies may compromise the reliability of 
findings (Huang et al., 2025; Han and Wang, 2023).

This study utilized multi-wave data (2011–2020) from the 
China Health and Retirement Longitudinal Study (CHARLS) to 
construct a predictive computational framework for geriatric 
populations with functional limitations. We integrated three waves 
of panel data (2011–2015) to construct a comprehensive feature 
matrix encompassing baseline characteristics, disease profiles, and 
disability progression patterns. A three-stage serial consensus 
approach was utilized to identify robust predictors combining 
elastic net regularization, least absolute shrinkage and selection 
operator (LASSO), and Boruta algorithms. We identified 21 robust 
predictors from 74 candidate variables. A temporal external 
validation strategy was implemented using an independent 2018–
2020 cohort to systematically evaluate the cross-temporal stability 
of 10 ML models, including HistGBM. The study aims to provide 
a high-accuracy tool for early identification of depression risk in 
disabled older populations and establish evidence-based priorities 
for psychosocial interventions.

2 Methods

2.1 Data sources and research design

This study utilized data from the CHARLS, which implements 
multistage stratified sampling with probability-proportional-to-size 
weighting based on demographic stratification. The survey 
encompasses 150 county-level units across 28 provincial 
administrative regions in China. The baseline survey was conducted 
in 2011, with follow-up waves completed in 2013, 2015, 2018, and 
2020, collecting comprehensive data on demographic characteristics, 
socioeconomic status, health behaviors, and medical history. The 
study protocol obtained ethical certification from Peking University’s 
Biomedical Ethics Committee (Approval ID: IRB00001052-11015). 
Sample selection followed three inclusion criteria: (1) age ≥60 years 
at baseline; (2) exclusion of individuals with pre-existing depression 
diagnosis or without basic or instrumental activities of daily living 
(BADL/IADL) disability at baseline; (3) completion of at least two 
consecutive follow-up assessments. Through integration of baseline 
(2011–2013, N = 2,440) and follow-up (2013–2015, N = 2,943) data, 
we  constructed a longitudinal panel dataset containing 5,383 
observations (2011–2015). The dataset was partitioned using 
stratified random sampling, allocating samples in a 7:3 ratio to 
training (N = 3,768) and testing (N = 1,615) sets. An independent 
2018–2020 follow-up cohort (N = 3,254) served as the external 
validation set. The study flowchart is presented in Figure 1.

FIGURE 1

Research flowchart.
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2.2 Variable definitions and measurements

Depression was assessed using the 10-item Center for 
Epidemiological Studies Depression Scale (CESD-10), a widely 
validated screening tool for depressive symptoms in older adults 
(Zhang et al., 2024; Wang et al., 2023). The scale demonstrates good 
reliability and validity (Chen and Mui, 2014; Cheng and Chan, 2005). 
In CHARLS, the CESD-10 evaluates the frequency of 10 symptoms 
experienced in the past week: feeling bothered, trouble concentrating, 
feeling depressed, difficulty in doing things, feeling hopeful about the 
future (reverse-coded), feeling fearful, restless sleep, feeling happy 
(reverse-coded), feeling lonely, feeling unable to carry on. Each item 
is scored from 0 to 3, yielding a total score ranging from 0 to 30. 
Following established international criteria, a score ≥10 was used to 
define clinically significant depressive symptoms.

Disability in this study specifically refers to functional limitations 
in BADL or IADL, consistent with geriatric assessment standards 
(Katz et  al., 1963; Lawton and Brody, 1969). BADL evaluates six 
fundamental self-care functions (dressing, bathing, eating, bed 
transferring, toileting, and continence control). IADL assesses five 
complex daily living skills (housekeeping, cooking, shopping, 
medication management, and financial management), where each 
item was scored 1 for inability to perform independently or 0 
otherwise, resulting in total score ranges of 0–6 for BADL and 0–5 for 
IADL. The BADL/IADL-based criteria were applied during data 
screening to select eligible participants with BADL≥2 or IADL≥2 
scores. This operational definition excludes sensory or cognitive 
disabilities alone, ensuring a homogeneous cohort with physical 
functional impairments.

The definitions and measurement approaches of covariates 
encompassed four domains: (1) demographic characteristics (gender, 
age, registered residence, educational level, marital status, number of 
children, and region); (2) health behaviors, including chronic disease 
history (14 conditions such as hypertension and diabetes), sensory 
functions (visual, auditory, and oral health assessed through assistive 
device use, functional scores, and tooth loss status), bodily pain, sleep 
time, physical activity intensity, social engagement, and lifestyle 
factors; (3) subjective perceptions comprising episodic memory, 
cognitive ability, life satisfaction, and self-rated health; (4) health care 
and insurance, incorporating health insurance type, healthcare 
utilization (frequency, duration, and costs of inpatient and outpatient 
services), as well as pension status, with detailed variable specifications 
and coding schemes provided in Supplementary Table 1.

2.3 Data preprocessing and feature 
selection

Data preprocessing included four key steps: (1) Outlier 
handling: We  applied the interquartile range (IQR) method to 
detect and truncate outliers for all continuous variables. Values 
beyond ±1.5IQR of the 25th-75th percentile range were clipped to 
the lower/upper bounds. This mitigated the impact of extreme 
values on tree-based models while preserving data distribution 
integrity. (2) One-hot encoding: Categorical variables (e.g., gender, 
region) were converted into binary dummy variables to avoid 
misinterpreting ordinal relationships. (3) Normalization: 
Continuous features were standardized using z-score normalization 

(mean = 0, variance = 1) to enhance convergence speed for linear 
models. (4) Missing value imputation: Among 78 candidate 
variables, 4 variables (5.13%) with missing rates >30% were 
excluded; (5) Missing value imputation: The remaining 74 variables 
had an average missing rate of 8.27% (range: 0.09–25.18%). A total 
of 15,918 missing records (8.82% of total training observations) 
were iteratively imputed using the MissForest algorithm. (6) Class 
imbalance adjustment: We  implemented the SMOTE-Tomek 
hybrid sampling technique, combining synthetic minority 
oversampling (SMOTE) with Tomek links under sampling. This 
approach effectively enhanced the model’s sensitivity in detecting 
depression risk and improved clinical utility by generating 
synthetic samples.

We refer to existing studies for feature selection (Huang et al., 
2025; Zheng et  al., 2024; Zhu et  al., 2025). A three-stage serial 
consensus approach was utilized to identify robust predictors in this 
study. This serial consensus approach integrates complementary 
strengths of distinct selection paradigms. (1) LASSO (L1 
regularization): Efficiently screens out zero-importance features (73 
variables) by imposing sparsity constraints. Although its linearity 
assumption may oversimplify relationships, it serves as a high-recall 
initial filter. (2) Elastic Net (L1 + L2 regularization): Reduces 
multicollinearity-induced instability by retaining correlated but 
biologically plausible features. The α = 0.5 setting balances sparsity 
and grouping effects, mitigating LASSO’s limitation in correlated 
feature selection, retaining 42 stable features. (3) The Elastic Net 
output variables were fed into the Boruta algorithm, which identified 
28 significant predictors by comparing random forest importance 
scores with shadow variables (p < 0.01). To ensure reproducibility, a 
random seed (random_state = 42) was set for both the MissForest 
imputation and Boruta’s shadow variable generation.

Integration of feature selection results via a strict intersection 
strategy. The three feature selection outcomes were consolidated 
through a stringent intersection strategy. Specifically, we quantified 
the selection frequency of each variable across LASSO, elastic net, and 
Boruta algorithms, retaining only variables unanimously selected by 
all three methods (i.e., frequency ≥3). This approach yielded 21 high-
confidence predictors, including age, self-rated health, arthritis, renal 
disease, stomach, asthma, memory-related disorders, observe the 
situation up close, hearing ability, self-reported pain in head, wrist, leg, 
toes, neck, sleep time, social activities, episodic memory, life 
satisfaction, medical insurance types, hospitalization expenses (total 
expenses), outpatient expenses (out of pocket expenses) (as shown in 
Figure 2). Compared to individual methods, this strategy significantly 
enhanced feature stability.

2.4 Model construction and performance 
evaluation

Ten ML algorithms were implemented, including logistic 
regression (LR), support vector machine (SVM), extreme gradient 
boosting (XGBoost), light gradient boosting machine (LightGBM), 
categorical boosting (CatBoost), random forest (RF), bootstrap 
aggregating (Bagging), histogram-based gradient boosting machine 
(HistGBM), multilayer perceptron (MLP), and decision tree (DT). To 
optimize model generalizability, hyperparameter tuning was 
performed using grid search with 3-fold stratified cross-validation 
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(specific hyperparameter configurations are provided in 
Supplementary Table 2). Model performance was comprehensively 
evaluated through five metrics: (1) the area under the receiver 
operating characteristic curve (AUC), measuring the model’s ability to 
discriminate between positive and negative cases (Formulas 1–3); (2) 
accuracy, representing the proportion of correctly classified samples 
(Formula 4); (3) precision, indicating the ratio of true positives among 
all predicted positives (Formula 5); (4) recall, reflecting the model’s 
capacity to identify actual positive cases (Formula 6); and (5) the 
F1-score, the harmonic mean of precision and recall, which provides 
a balanced assessment of the model’s performance on the positive class 
(Formula 7). The mathematical formulations were derived from 
established methodologies (Theerthagiri, 2022; Yang and Ying, 2022).

 
=

+
TPTPR

TP FN  
(1)

 
=

+
FPFPR

FP TN 
(2)

 ( ) ( )= ∫
1

0
AUC TPR FPR d FPR

 
(3)

 
+

=
+ + +
TN TPAccuracy

FP TN TP FN  
(4)

 
=

+
TPPrescision

TP FP  
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=

+
TPRecall

TP FN  
(6)

 
×

= ×
+

precision RecallF1 2
Precision Recall  

(7)

In these formulations, TPR denotes the true positive rate, FPR 
represents the false positive rate, TP indicates true positives, FP 
signifies false positives, TN refers to true negatives, and FN stands for 
false negatives.

2.5 Statistical analysis

Statistical analyses were performed using Stata 18.0 for data 
description and Python 3.13 for subsequent modeling. Continuous 

FIGURE 2

Feature selection results using three methods (LASSO, Elastic Net, Boruta).
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variables were characterized differentially based on their distribution: 
normally distributed variables were presented as mean ± standard 
deviation, while non-normally distributed variables were summarized 
using median and interquartile range, with normality assessed via the 
Shapiro–Wilk test. Categorical data were expressed as cardinality 
measures (absolute frequencies) with proportional composition. The 
statistical significance threshold was set at p < 0.05 for all analyses.

3 Results

3.1 Baseline characteristic

The analysis included samples from the training sets (N = 3,768), 
testing sets (N = 1,615), and external validation sets (N = 3,254). 
Table 2 summarizes the baseline demographic characteristics, disease 
status, and depression status across the three cohorts. The median ages 
were 71, 71, and 72 years in the training, testing, and validation sets, 
respectively, with statistically significant inter-group differences (all 
p < 0.05). In terms of gender, the proportion of females is similar in 
the training sets (57.94%), testing sets (57.28%), and external 
validation sets (60.97%). There was no statistically significant 
difference in gender distribution between groups (all p > 0.05), 
indicating that the gender ratio remained balanced in the data 
partitioning. In terms of marital status, the married group accounts 
for 70.25, 70.59, and 69.61% of the three groups, respectively, which is 
much higher than the unmarried group. In terms of registered 
residence, the proportion of rural registered residence registration 
slightly decreased in training sets (79.91%), testing sets (79.57%), and 
external verification sets (78.83%), but all exceeded 78%. There was a 
significant difference in the distribution of registered residence among 
groups (p < 0.05). The proportion of “3 or more children” in the three 
groups was 72.24, 73.32, and 66.04%, respectively, with a significant 
decrease in the proportion of external validation sets. There were 
significant differences in distribution between groups (all p < 0.05). 
There was no significant difference in regional distribution between 
groups (all p > 0.05). In terms of education level, the proportion of 
people who have not received formal education gradually decreased 
in the training sets (68.21%), testing sets (69.05%), and external 
validation sets (65.43%), while the proportion of high school and 
above education increased from 4.03 to 5.53%. There was a significant 
difference between the groups (all p < 0.05). In terms of disease 
characteristics, there was no significant difference (p > 0.05) in the 
prevalence of memory-related diseases and stroke diseases among the 
training sets, testing sets, and external validation sets. The incidence 
of heart disease was significant in the training and testing sets 
(p < 0.05), but not significant in the validation sets (p > 0.05). The 
incidence of arthritis disease remained stable among the three groups 
(56.22–56.61%), with no significant difference between the groups 
(p > 0.05). The proportion of depression showed a significant 
increasing trend among the training sets (56.32%), testing sets 
(56.35%), and validation sets (64.20%), with no significant difference 
(p > 0.05).

Figure 3 reveals the demographic differences in the prevalence of 
depression among disabled individuals. The gender distribution shows 
that the prevalence of depression in the female population (80.80%) is 
significantly higher than that in the male population (37.15%). 
Analysis of marital status shows that unmarried individuals have a 

higher risk of depression (61.18%) compared to married individuals 
(53.35%). In age stratification, the prevalence of depression in the 
elderly group aged 80 and above reached 60.06%, which was higher 
than that in the 70–80 age group (52.49%) and the 60–70 age group 
(56.41%). The regional distribution shows that the incidence rate in 
the western region (59.24%) and rural areas (57.29%) is significantly 
higher than that in the eastern region (52.50%) and urban areas 
(49.07%). Education level analysis shows that the illiterate population 
has the highest incidence of disease (57.86%), and there is a non-linear 
relationship between educational attainment and morbidity 
probability. The dimension of family support shows that the risk of 
depression in the childless group (75.18%) is significantly higher than 
that in the childbearing group (53.07–56.50%).

3.2 Model performance

This study systematically evaluated the performance of 10 ML 
algorithms in predicting depression risk among older adults with 
disability across training, testing, and external validation sets (as 
shown in Table  3). In terms of accuracy, RF (0.741), LightGBM 
(0.728), and HistGBM (0.713) demonstrated the highest performance 
in the testing sets. While LR and DT exhibited relatively stable 
performance between training and testing sets, their overall accuracy 
was the lowest (LR: 0.667; DT: 0.633). For AUC metrics, RF (0.797) 
achieved the strongest discriminative capacity, followed closely by 
LightGBM (0.785), XGBoost (0.781), and HistGBM (0.779). XGBoost, 
LightGBM, and HistGBM showed superior generalizability, whereas 
DT (0.636) performed the poorest. Regarding the F1-score, RF (0.762) 
exhibited the optimal balance between precision and recall, with 
LightGBM (0.749), CatBoost (0.741), and HistGBM (0.735) 
maintaining stable performance in the testing sets. For precision, RF 
(0.791), LightGBM (0.778), XGBoost (0.767), and HistGBM (0.723) 
achieved the highest positive predictive values and lowest false positive 
rates, significantly outperforming DT (0.691). In recall analysis, RF 
(0.735), HistGBM (0.723), and HistGBM (0.707) demonstrated the 
strongest ability to identify true positive cases, while DT (0.633) 
exhibited markedly higher missed-detection risks compared to 
ensemble methods.

Through comprehensive evaluation of 10 ML models, HistGBM 
was selected as the optimal model based on three key criteria: (1) 
superior performance on testing sets metrics (AUC = 0.779, 
F1-score = 0.735, accuracy = 0.713), (2) excellent generalizability 
demonstrated by a minimal training–testing AUC gap (8.5%), and (3) 
consistent performance across validation sets. HistGBM exhibited 
well-balanced predictive capabilities, showing above-average 
performance across all evaluation metrics without significant 
weaknesses in either precision (0.766) or recall (0.707), indicating 
robust discriminative power between positive and negative cases along 
with stable predictive performance. The model’s exceptional 
generalizability was particularly noteworthy, with only a 10% 
difference in AUC between the testing sets and validation sets, as 
shown in Figure  4, significantly outperforming other models and 
demonstrating strong robustness across different data distributions. 
Although RF achieved the highest individual metrics on the specific 
testing set used in Table 3, the substantial performance degradation 
observed on the external validation set raised concerns about its real-
world applicability and stability. HistGBM, while having marginally 
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TABLE 2 Baseline features of training, testing, and validation sets.

Characteristics Training sets Testing sets External validation sets

N = 3,768 p-value N = 1,615 p-value N = 3,254 p-value

Demographic characteristics

Age (years) 71 [65–77] p < 0.05 71 [65–77] p < 0.05 72 [66–79] p < 0.05

Gender, n (%)

Female 2,183 (57.94)
p > 0.05

925 (57.28)
p > 0.05

1984 (60.97)
p > 0.05

Male 1,585 (42.06) 690 (42.72) 1,270 (39.03)

Marital status, n (%)

Married 2,647 (70.25)
p > 0.05

1,140 (70.59)
p < 0.05

2,265 (69.61)
p > 0.05

Unmarried 1,121 (29.75) 475 (29.41) 989 (30.39)

Registered residence, n (%)

Urban 757 (20.09)
p < 0.05

330 (20.43)
p < 0.05

689 (21.17)
p < 0.05

Rural 3,011 (79.91) 1,285 (79.57) 2,565 (78.83)

Number of children, n (%)

0 children 111 (2.95)

p < 0.05

38 (2.35)

p < 0.05

51 (1.57)

p < 0.05
1 child 224 (5.94) 99 (6.13) 226 (6.94)

2 children 711 (18.87) 294 (18.20) 828 (25.45)

3 children and above 2,722 (72.24) 1,184 (73.32) 2,149 (66.04)

Region, n (%)

Eastern 1,066 (28.29)

p > 0.05

450 (27.86)

p > 0.05

1,007 (30.95)

p > 0.05Central 1,326 (35.19) 571 (35.36) 1,131 (34.76)

Western 1,376 (36.52) 594 (36.78) 1,116 (34.29)

Educational level, n (%)

Illiteracy 2,570 (68.21)

p < 0.05

1,115 (69.05)

p < 0.05

2,129 (65.43)

p < 0.05
Elementary schools 740 (19.64) 308 (19.07) 603 (18.53)

Junior high schools 306 (8.12) 127 (7.86) 342 (10.51)

High school and above 152 (4.03) 65 (4.02) 180 (5.53)

Disease history

History of memory-related diseases, n (%)

No 3,175(84.26)
p < 0.05

1,377(85.26)
p < 0.05

2,760(84.82)
p < 0.05

Yes 593(15.74) 238(14.74) 494(15.18)

History of heart disease, n (%)

No 2,667(70.78)
p < 0.05

1,159(71.76)
p < 0.05

2,102(64.60)
p > 0.05

Yes 1,101(29.22) 456(28.24) 1,152(35.40)

History of stroke disease, n (%)

No 3,245(86.12)
p < 0.05

1,370(84.83)
p < 0.05

2,591(79.63)
p < 0.05

Yes 523(13.88) 245(15.17) 663(20.37)

History of arthritis disease, n (%)

No 1,648(43.74)
p > 0.05

707(43.78)
p > 0.05

1,412(43.39)
p > 0.05

Yes 2,120(56.26) 908(56.22) 1842(56.61)

Outcome measurements

Depressed, n (%)

No 1,646(43.68)
p > 0.05

705(43.65)
p > 0.05

1,165(35.80)
p > 0.05

Yes 2,122(56.32) 910(56.35) 2089(64.20)
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lower peak testing set scores than RF, offered the best overall package 
of strong predictive performance, minimal overfitting (small train-test 
gap), and exceptional stability across the independent validation set. 
This superior generalizability was the primary reason for selecting 
HistGBM as the optimal model for potential clinical application, 
where reliability across diverse data sources is paramount.

XGBoost demonstrated strong performance on testing sets 
metrics (AUC = 0.781, F1-score = 0.735, accuracy = 0.713), though it 
exhibited a relatively large training–testing AUC gap (10.1%) 
compared to LR, HistGBM, MLP, and CatBoost. However, its 
validation set’s AUC showed a 10.7% difference from testing sets’ 

performance (Figures 5–7), suggesting reasonable stability across data 
partitions and potential suitability for resource-constrained scenarios. 
RF achieved excellent testing set results (AUC = 0.797, 
F1-score = 0.762, accuracy = 0.741), but displayed concerning 
generalization issues with substantial training–testing and testing-
validation AUC differences, indicating potential overfitting to training 
data noise or specific patterns. LightGBM ranked second in testing 
sets AUC (0.785) with stable validation performance (0.654). However, 
the difference between the testing set AUC and the validation set is 
too large (13.1%). CatBoost performed comparably to top models in 
testing set metrics (AUC = 0.774, F1-score = 0.741) with excellent 

FIGURE 3

The demographic differences.

TABLE 3 Performance of 10 ML algorithms on training and testing sets.

Model Accuracy AUC F1-score Precision Recall

Train Test Train Test Train Test Train Test Train Test

LR 0.702 0.667 0.781 0.723 0.689 0.685 0.721 0.734 0.661 0.642

HistGBM 0.782 0.713 0.864 0.779 0.778 0.735 0.793 0.766 0.763 0.707

MLP 0.805 0.698 0.882 0.761 0.797 0.718 0.830 0.758 0.767 0.682

XGBoost 0.801 0.713 0.882 0.781 0.797 0.735 0.813 0.767 0.782 0.705

Bagging 0.772 0.709 0.852 0.770 0.765 0.731 0.788 0.764 0.744 0.700

DT 0.651 0.633 0.653 0.636 0.648 0.661 0.654 0.691 0.642 0.633

LightGBM 0.803 0.728 0.883 0.785 0.799 0.749 0.816 0.778 0.782 0.723

RF 0.822 0.741 0.901 0.797 0.817 0.762 0.840 0.791 0.796 0.735

SVM 0.818 0.708 0.899 0.768 0.812 0.727 0.838 0.766 0.787 0.692

CatBoost 0.776 0.716 0.857 0.774 0.772 0.741 0.787 0.763 0.757 0.720

The highest value in each column is highlighted in bold. Final model selection prioritized generalizability across training, testing, and external validation sets, as detailed in the text.
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categorical feature handling, though its relatively lower F1-score 
(0.741) and recall (0.720) scores suggested weaker minority class 
identification, limiting its utility for imbalanced datasets. Among the 
remaining models, SVM exhibited severe overfitting, while MLP and 
DT significantly underperformed ensemble methods in both AUC 
and F1-score metrics.

3.3 Model explanation

The SHAP values quantify the absolute average impact of each 
feature on model predictions across all possible feature 
combinations, revealing their global importance. As shown in 
Figure 8, the SHAP analysis of the HistGBM model demonstrated 

FIGURE 4

AUC comparison of training sets, testing sets, and validation sets.

FIGURE 5

Training sets ROC curves.
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significant variability in feature contributions. Sleep time (mean 
SHAP = 0.344), life satisfaction (0.339), episodic memory (0.220), 
and self-rated health (0.197) emerged as the top four predictive 
features, indicating that health behaviors, subjective perceptions, 
and cognitive function were the core drivers of model predictions. 

The high contribution of sleep time likely reflects its well-
established associations with chronic diseases, metabolic disorders, 
and cognitive decline. Life satisfaction and self-rated health, as 
subjective health indicators, capture the interplay between 
psychosocial factors and physiological health. Episodic memory 

FIGURE 6

Testing sets the ROC curves.

FIGURE 7

External validation sets ROC curves.
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directly influences prediction through cognitive and sensory 
pathways. Moderate contributions were observed for features such 
as stomach diseases, observing the situation up close, and memory-
related disorders. While self-reported pain in the head, wrist, leg, 
toes, neck, and mental health conditions showed limited predictive 
importance, suggesting either weak signals or sparse data 
distributions. These results validate the model’s multidimensional 
feature selection approach and provide actionable insights for 
intervention prioritization. Health management strategies 
targeting high-contribution features could enhance the model’s 
real-world utility. Additionally, domain knowledge should guide 
the evaluation of low-contribution features to optimize the balance 
between model complexity and interpretability.

Figure 9 presents the SHAP value distributions, revealing the 
heterogeneous directional effects and magnitudes of various 
features on depression probability predictions among older adults 
with disability. The x-axis (SHAP value) indicates each feature’s 
influence on model output, where positive values increase and 
negative values decrease predicted risk. The color gradient (red 
means high feature value, blue means low feature value) 
demonstrates that: (1) higher values of sleep time, life satisfaction, 
and self-rated health (red clusters with negative SHAP) were 
strongly protective against depression, consistent with established 
epidemiological mechanisms; (2) better episodic memory 
performance (blue with positive SHAP) correlated with reduced 
depression risk, potentially through preserved cognitive resilience; 
(3) stomach diseases (red with positive SHAP) elevated risk 
through chronic somatic burden and psychological stress pathways; 
and (4) bodily pain (head, wrist, leg, toes, neck; red with positive 

SHAP) increased depression vulnerability in this population. These 
findings highlight the central role of health behaviors and 
psychosocial factors in depression comorbidity risk while 
identifying specific physiological pain features as 
contributory predictors.

4 Discussion

This study identified significant associations between depressive 
risk among disabled older adults and demographic characteristics, 
health status, and social support factors. The external validation 
cohort’s higher median age than training sets and elevated depression 
risk in advanced age align with existing literature (Zhao et al., 2012; 
Gao et  al., 2023), potentially mediated by cognitive decline and 
reduced social roles. Consistent with Girgus et al. (2017), females 
demonstrated significantly higher risk than males, possibly due to 
gender-specific social expectations, somatic symptom expression 
patterns, and help-seeking behaviors (Handing et  al., 2022). The 
elevated risk among unmarried individuals supports the marital 
support hypothesis, where spousal emotional and economic support 
may serve as protective factors (Soulsby and Bennett, 2015), 
corroborating Zhai et al. (2024). Notably, the higher prevalence in 
rural western regions reflects China’s geographic disparities in 
healthcare resource allocation, echoing Fan et al. (2022) on primary 
mental health service accessibility. Higher education levels were 
protective, consistent with prior studies (Li et al., 2022; Kondirolli and 
Sunder, 2022), likely through multiple pathways: enhanced cognitive 
capacity, improved socioeconomic resources, greater mental health 

FIGURE 8

SHAP feature importance.
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awareness, and healthier behaviors. The elevated risk among childless 
individuals suggests family support network deficiencies may 
exacerbate disability-related stress, particularly relevant in East Asian 
familial care traditions (Feng, 2018), though some studies report no 
direct mental health impact of childlessness (Koropeckyj-Cox, 1998; 
Quashie et al., 2021).

This study systematically evaluated 10 ML models (LR, SVM, 
XGBoost, LightGBM, CatBoost, RF, Bagging, HistGBM, MLP, DT) 
for predicting depressive risk among disabled older adults, 
demonstrating the superior performance of ensemble methods 
over traditional approaches. The HistGBM algorithm achieved 
optimal predictive accuracy, with AUC values of 0.779 (testing 
sets), aligning with current trends in medical prediction research. 
While Busi and Stephen (2023) similarly compared extreme 
gradient boosting methods for early kidney disease diagnosis, their 
study did not examine the generalization enhancement effects of 
histogram optimization. Lee et  al. (2022) likewise identified 
extreme gradient boosting as the top performer for chronic disease 
prediction (AUC ≥ 0.80). HistGBM’s minimal AUC divergence 
between validation and testing sets (10%) confirms that histogram 
binning effectively mitigates overfitting caused by high-
dimensional sparse features characteristic of healthcare data.

Notably, while RF achieved the highest testing sets AUC 
(0.797), its validation performance showed significant degradation 
(ΔAUC = 12.7%), contrasting sharply with its training sets 
performance (AUC = 10.4%). This suggests that RF’s majority 
voting mechanism may amplify localized features in training data 
when strong collinearity or noise exists in the feature space (Anil 
and Singh, 2023). In comparison, HistGBM maintained tighter 
training–testing consistency (8.5% AUC difference), outperforming 
both XGBoost (10.1%) and LightGBM (9.8%), indicating its 
superior suitability for handling elderly health data with 
measurement errors. Regarding class imbalance handling, 
XGBoost demonstrated significantly lower recall (0.705) than 
HistGBM (0.707), consistent with findings by Baba and Bunji 
(2023). HistGBM’s adaptive histogram partitioning mechanism 
balanced class weights while maintaining high precision (0.766), 
yielding a 5% F1-score improvement over LR (0.685). This 
enhancement likely stems from our feature engineering strategy 
that deeply explored disability-related psychosocial variables. 
These findings provide new empirical evidence for model selection 
in medical ML applications.

The SHAP interpretability framework revealed 
multidimensional drivers of depressive risk prediction among 

FIGURE 9

SHAP value distribution.
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disabled older adults. Sleep time emerged as the primary predictor 
(SHAP = 0.344), demonstrating significantly greater contribution 
than reported in the Song et al. (2022) study (SHAP = 0.133). This 
enhanced predictive importance may reflect disability-associated 
sleep fragmentation, potentially activating inflammatory pathways 
and amplifying pathological effects. Notably, life satisfaction 
(SHAP = 0.339) and self-rated health (SHAP = 0.197) 
demonstrated greater predictive influence than conventional 
biomedical indicators, establishing psychosocial factors as pivotal 
determinants in depression comorbidity mechanisms among 
individuals with disability (Santos et al., 2013). Within cognitive 
domains, episodic memory (SHAP = 0.220) showed higher 
predictive contribution than observing the situation up close 
(SHAP = 0.192). Conversely, the relatively low importance of 
somatic pain features suggests the need to reevaluate clinical 
assessment priorities for pain screening in this population.

This study achieves a breakthrough by integrating longitudinal 
design, ML techniques, and multidimensional feature engineering. 
First, compared to cross-sectional designs, our multi-wave feature 
construction quantitatively captures the cumulative effects of factors 
such as sleep disturbance (SHAP value = 0.344). Second, in contrast 
to conventional statistical models, the HistGBM algorithm 
significantly enhances generalizability through histogram 
optimization (training–testing AUC gap: 8.5%). Third, the predictive 
contribution of subjective perception indicators (life satisfaction 
SHAP value = 0.339) surpasses that of traditional physiological 
measures, validating our novel finding that psychosocial features 
dominate depression risk prediction. These methodological 
innovations collectively advance the field by providing a more robust, 
dynamic, and interpretable framework for risk stratification.

While this study provides valuable insights into depressive 
disorder risk stratification in functionally impaired geriatric 
populations, several limitations should be acknowledged. First, the 
reliance on the CHARLS self-reported measures may lead to an 
underestimation of both disability severity and depressive 
symptoms. Second, the exclusion of biomarkers limits the model’s 
ability to differentiate depression subtypes. Third, the absence of 
real-time dynamic health monitoring data potentially reduces the 
predictive value of temporal features. Future research should 
incorporate wearable device data and multi-omics approaches to 
develop dynamic prediction systems, complemented by cross-
cohort validation to enhance generalizability. Fourth, our disability 
definition focused exclusively on BADL/IADL limitations. While 
this is consistent with geriatric assessment standards, it may not 
capture populations with pure cognitive or sensory disabilities. 
However, this standardized approach minimized cohort 
heterogeneity, facilitating model training on uniformly defined 
functional impairments. Future studies should validate these 
findings in other disability subtypes.

5 Conclusion

This study constructed a clinically generalizable prediction 
model for depressive risk among disabled older adults by 
integrating longitudinal data from multiple CHARLS waves. Our 
three-stage serial consensus approach feature selection system 

identified 21 robust predictors spanning physiological function, 
social support, and health behaviors, overcoming limitations of 
traditional linear modeling approaches. The HistGBM algorithm 
demonstrated optimal predictive stability through its histogram 
binning technique and adaptive learning mechanism. SHAP 
interpretability analysis revealed that health behavior (sleep time) 
and subjective perception indicators (life satisfaction, self-rated 
health) contributed significantly more to predictions than 
biomedical features, underscoring the central importance of 
psychosocial interventions in depression prevention for this 
population. The study identified significantly elevated depression 
risks among specific demographic subgroups with disability, 
including individuals residing in western rural regions, elderly 
females, those with limited educational attainment, and childless 
older adults. These findings highlight the urgent need for 
community-based mental health service networks and family 
support policies. These results provide an evidence base for 
preventing psychological disorders and implementing mental 
health interventions among the aging population with disability.
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