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Attention deficit hyperactivity disorder (ADHD) diagnosis traditionally relies on 
subjective assessments, which lead to challenges like symptom overlap, heterogeneity, 
and misdiagnosis risk. Artificial intelligence (AI), especially machine learning (ML) 
and deep learning (DL), offers objective assessment opportunities by processing 
complex multimodal data (behavioral, neurophysiological, neuroimaging, genetic). 
This paper reviews AI’s current applications in objective ADHD assessment, covering 
early screening, risk prediction, diagnostic assistance, classification, assistance in 
precise differential diagnosis, symptom quantification, and heterogeneous subtype 
identification. While AI models show significant potential in extracting objective 
biomarkers and improving assessment efficiency, the field faces challenges: insufficient 
standardized data, limited generalization, interpretability issues, potential biases, 
and lack of rigorous clinical validation. Future research must establish large-scale, 
standardized multimodal databases, develop robust, interpretable, and fair AI 
models, and conduct rigorous clinical translation validation to achieve responsible, 
precise, objective, and personalized ADHD assessment and management.
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is characterized by persistent patterns of 
inattention and/or hyperactivity-impulsivity that are inconsistent with developmental level 
and significantly interfere with functioning or development (Faraone et al., 2021). It primarily 
manifests as three presentation types: predominantly inattentive presentation, predominantly 
hyperactive–impulsive presentation, and combined presentation (Willcutt, 2012). Globally, 
ADHD affects approximately 5.9% of children and adolescents, with a significant proportion 
persisting into adulthood, where prevalence rates range from 2.5–2.8% (Faraone et al., 2021; 
Salari et al., 2023). Gender distribution also shows variation, with ADHD more commonly 
diagnosed in boys during childhood, though this ratio tends to narrow in adolescence and 
adulthood, and females often present with predominantly inattentive symptoms (Mowlem 
et al., 2019; Faraone et al., 2021). While this review encompasses research across all age groups, 
particular emphasis is placed on pediatric populations (children aged 6–18 years), as this 
represents the critical period for early identification, intervention, and the establishment of 
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long-term management strategies. ADHD’s clinical presentation, 
underlying neurobiological mechanisms, and response to 
interventions can vary significantly across developmental stages, with 
children often exhibiting more pronounced hyperactivity symptoms 
compared to adolescents and adults, who may present with more 
subtle inattentive symptoms and internalizing behaviors (Biederman 
et  al., 2000). This developmental heterogeneity necessitates 
age-appropriate assessment approaches and biomarker identification 
strategies, which will be addressed throughout this review.

This disorder significantly impacts academic achievement, peer 
relationships, and social adaptation during childhood and adolescence. 
Its symptoms and functional impairments often persist into 
adulthood, causing profound and lasting adverse effects on educational 
attainment, career development, interpersonal relationships, daily 
functioning, and overall mental health (Shaw et al., 2012; Faraone 
et al., 2021). It may even be associated with increased risk of certain 
chronic physical diseases in adulthood (Cortese et  al., 2016), 
collectively constituting a substantial personal, familial, and 
socioeconomic burden (Doshi et al., 2012; Shaw et al., 2012).

Current ADHD diagnosis primarily relies on DSM or ICD 
diagnostic criteria, which are often applied in conjunction with 
clinical interviews and standardized behavioral rating scales for 
comprehensive assessment. This process faces severe challenges due 
to over-reliance on subjective reports. Scale completion is susceptible 
to reporter bias, observational environment differences, and varying 
levels of understanding, with significant discrepancies often existing 
between different reporters, leading to insufficient objectivity in 
assessment results (Zysset et al., 2023). More complexly, symptom 
overlap and differential diagnostic difficulties are particularly 
prominent. ADHD’s core symptoms (especially inattention) 
significantly overlap with various other mental or developmental 
disorders, including anxiety, depression, and learning disabilities 
(Furman, 2005). Notably, some gifted children’s “overexcitability 
traits” (such as high energy, intense curiosity) are behaviorally very 
similar to ADHD, increasing the risk of misdiagnosis (François-
Sévigny et  al., 2022). Meanwhile, distinguishing Inattentive 
presentations from Cognitive Disengagement Syndrome (CDS) 
neurocognitive characteristics also highlights the ongoing complexity 
of differential diagnosis (Durak et al., 2025).

Furthermore, ADHD frequently co-occurs with ODD, CD, and 
anxiety disorders (Kaplan et al., 2001; Lange et al., 2018; Haan et al., 
2022), and environmental factors [such as the COVID-19 pandemic 
(Gosselin et  al., 2025)] may also influence disease assessment. 
Moreover, ADHD itself exhibits high heterogeneity, with patients 
showing significant individual differences in symptoms, cognitive 
deficits, and potential neurobiological mechanisms (Nigg et al., 2020), 
which existing classification criteria cannot fully capture. Finally, 
limitations in professional resources (such as insufficient experienced 
clinicians, time-consuming assessments, and uneven resource 
distribution) also restrict the accessibility of early identification 
and intervention.

Against this background, artificial intelligence (AI), particularly 
machine learning (ML) and deep learning (DL) technologies, has 
garnered significant attention due to its immense potential in 
processing complex, high-dimensional medical data (Handelman 
et al., 2018; Choi et al., 2020). AI can learn complex nonlinear patterns 
from multidimensional, multimodal data (such as behavioral 
observations, cognitive tests, neurophysiological signals EEG/eye 

movement, neuroimaging MRI, genomics, etc.), potentially 
discovering more objective and quantifiable disease-related 
biomarkers (Nayarisseri et  al., 2021; Prelaj et  al., 2024). Through 
integrated analysis of these data, AI shows promise in improving the 
accuracy, efficiency, and consistency of ADHD diagnostic assessment, 
and may assist in achieving earlier screening, auxiliary in more precise 
differential diagnosis, and more data-supported personalized 
assessment methods.

Given AI’s potential value and increasing research exploration in 
ADHD assessment, this paper aims to systematically review and 
analyze the current applications of AI in objective ADHD assessment. 
The core objective is to comprehensively demonstrate how AI utilizes 
multimodal data across various stages of ADHD assessment—from 
early screening and risk prediction to diagnostic assistance and 
classification, to assisting precise differential diagnosis, as well as 
symptom quantification and heterogeneous subtype identification. 
Compared to existing reviews, the unique contributions of this paper 
include: (1) explicitly focusing on the paradigm shift from traditional 
subjective methods to AI-driven “quantitative assessment support”; 
(2) emphasizing and deeply discussing AI’s potential and limitations 
in “assisting precise differential diagnosis” as a key clinical challenge; 
(3) conducting systematic, structured analysis and outlook on current 
research challenges and future directions across multiple dimensions 
including data, algorithms, validation and translation, ethics and 
society, while integrating cutting-edge concepts in the field.

In the following sections, this paper will first overview the AI 
methodology and main data sources used for ADHD assessment, then 
detail AI applications in specific ADHD assessment scenarios, 
evaluate the performance, advantages, and limitations of existing 
research, followed by in-depth discussion of core challenges and 
future research directions, and finally conclude (Figure 1).

2 Data sources and modalities for 
artificial intelligence analysis

AI-driven objective ADHD assessment relies on diverse data 
inputs that reflect information from different levels, from macroscopic 
behavior to microscopic biology. Integrating multimodal data is 
considered a key strategy for improving assessment accuracy, 
comprehensiveness, and ultimately achieving more objective and 
reliable evaluation.

2.1 Digital phenotyping data

Digital phenotyping data offers a new, ecological, and continuous 
approach to ADHD assessment. Digital Phenotyping data utilizes 
ubiquitous personal computing devices to passively collect users’ daily 
behavioral data, aiming to capture more ecologically valid and 
objective behavioral patterns. These data include physical activity 
levels [step count, activity intensity (Park et al., 2023)], sleep patterns 
and circadian rhythms (Kim et al., 2023), social interaction patterns, 
screen usage habits, keyboard input patterns, and even voice features. 
AI can extract digital biomarkers reflecting attention, impulsivity, 
activity levels, mood fluctuations, and circadian rhythms from these 
dense, longitudinal, ecologically valid data streams (Lindhiem et al., 
2022), providing possibilities for more natural, continuous, and 
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low-burden ADHD assessment and monitoring (Loh et al., 2022; Loh 
et al., 2024). Studies often compare digital behavioral patterns between 
individuals with ADHD and neurotypical controls to identify 
distinctive digital phenotypes. For instance, deviations in sleep 
regularity, increased screen time, or characteristic movement patterns 
can serve as objective indicators. The experimental paradigms 
typically involve passive data collection through smartphone apps, 
wearable sensors, or digital platforms, often over extended periods to 
capture real-world behavior.

However, the application of digital phenotyping data also faces 
severe challenges, including privacy protection, data noise processing, 
high variability in individual behavioral patterns, and how to 
effectively associate digital indicators with clinical symptoms. These 
data are typically collected passively in individuals’ daily lives through 
“human-machine interfaces” such as smartphone applications and 
wearable sensors, and then analyzed by AI models, aiming to achieve 
more natural, continuous, and low-burden ADHD assessment 
and monitoring.

2.2 Biological and genetic data

Biological and genetic data provide molecular-level evidence for 
ADHD susceptibility and mechanistic research. Deeper objective 
information comes from biological and genetic data. Genomic data 
analysis is an important direction, where AI can be used to process 
high-dimensional genetic data [such as analyzing the association of 
single nucleotide polymorphisms (SNPs), copy number variations 
(CNVs), and other genetic variations with ADHD risk (Faraone and 

Larsson, 2019)] and build Polygenic Risk Score (PRS) models to assess 
individual genetic susceptibility (Ribasés et al., 2023). Studies in this 
area often compare genetic profiles between ADHD patients and 
healthy controls to identify risk variants or polygenic scores associated 
with the disorder.

Furthermore, some studies have begun to explore using AI to 
integrate other biomarkers, such as epigenetic data [DNA methylation 
(Silk et al., 2022)], metabolomic data [metabolite profiles in blood, 
urine (Predescu et  al., 2024)], and even gut microbiome data 
(Nikolova et al., 2021) to assess ADHD likelihood. These approaches 
involve comparing biomarker concentrations or patterns between 
ADHD and control groups, often using advanced analytical techniques 
to identify subtle differences. Although these areas are still in 
preliminary exploration stages, they provide potential pathways for 
understanding ADHD’s complex pathophysiological mechanisms and 
developing new biomarkers.

2.3 Behavioral and clinical data

Behavioral and clinical data serve as the most foundational source 
for ADHD assessment, which AI can enhance for objectivity. The 
most traditional and fundamental data source is behavioral and 
clinical data, which includes standardized parent/teacher/self-rating 
scale scores, structured or semi-structured clinical interview records, 
computer-based neuropsychological test performance, and direct 
behavioral observation data obtained through video analysis or 
motion capture technology. AI models, especially when combined 
with other modal data, aim to extract more stable and objective 

FIGURE 1

Schematic flowchart of AI-driven objective assessment for ADHD.
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assessment patterns from this information, going beyond the 
limitations of traditional scoring (Loh et al., 2022; Chiu et al., 2024). 
In research studies, these data are collected from both ADHD patients 
and neurotypical controls to identify characteristic behavioral patterns 
and cognitive deficits. Experimental paradigms often involve 
administering a battery of neuropsychological tests (e.g., tasks 
assessing attention, working memory, inhibitory control), structured 
clinical interviews based on diagnostic criteria (e.g., DSM-5 or 
ICD-11), and observations of behavior in controlled or naturalistic 
settings. AI is used to identify subtle deviations and complex 
interactions within these data, which serve as objective biomarkers 
distinguishing ADHD from other conditions or identifying specific 
symptom profiles.

2.4 Neurophysiological data

Neurophysiological data provides highly objective biomarkers for 
ADHD assessment. Neurophysiological data directly reflects brain 
activity or physiological states and has high inherent objectivity, 
making it an important source for AI to search for biomarkers. 
Electroencephalography (EEG) is a typical representative, where 
different frequency band power and their ratios in resting-state EEG, 
as well as functional connectivity indicators between brain regions, are 
widely considered potential biomarkers (Lenartowicz and Loo, 2014; 
Slater et al., 2022). Studies have explored brain network indices in boys 
with ADHD-C (Aydin et  al., 2022). Additionally, the latency and 
amplitude of Event-Related Potentials (ERPs) are also extensively 
studied and used in AI classification models (Kim et al., 2021; Lutz 
et  al., 2021). EEG data plays a crucial role in ADHD diagnosis, 
classification, and feature extraction, for instance, by utilizing 
autoencoder feature extraction and ResNet with a double augmented 
attention mechanism for ADHD classification (Bansal et al., 2025), or 
through Tunable Q-Factor Wavelet Transform for detection and 
classification of EEG signals (Joy et  al., 2022). The impact of 
preprocessing and temporal segmentation on classification accuracy 
has also been highlighted (Garcia-Ponsoda et  al., 2024). Recent 
research has also investigated automated EEG-based characterization 
of ADHD and CD using explainable deep neural network techniques 
(Loh et al., 2024), and the effect of methylphenidate treatment on 
neuro-cortical complexity in children with ADHD through 
embedding entropy estimations (Cetin et al., 2022).

Eye-Tracking technology indirectly reflects processes such as 
attentional control, impulse inhibition, and cognitive load by 
recording eye movement parameters during specific visual tasks 
(Maron et  al., 2021). These parameters include saccadic latency, 
fixation duration, gaze patterns, and pupil dilation, often measured 
during sustained attention tasks (e.g., Continuous Performance Test) 
or visual search paradigms. Using ML to analyze these objective eye 
movement biomarkers has been successfully applied to assist in 
ADHD screening and diagnosis, by identifying distinctive patterns in 
ADHD patients compared to healthy controls (Yoo et al., 2024).

2.5 Neuroimaging data

Neuroimaging data offers objective evidence of brain structure 
and function for ADHD assessment. Neuroimaging data provides 

macroscopic objective views of brain structure and function. 
Structural Magnetic Resonance Imaging (sMRI) is used to measure 
morphological indicators such as volume, cortical thickness, and 
surface area of different brain regions. AI can be used for automatic 
segmentation of brain regions and extraction of these features, which 
have been found to be related to ADHD. Comparative studies between 
ADHD patients and control groups often reveal significant structural 
differences in areas like the prefrontal cortex, basal ganglia, and 
cerebellum, which are then used to build AI classification models 
(Qureshi et al., 2017; Albajara Sáenz et al., 2019).

Functional magnetic resonance imaging (fMRI), particularly 
resting-state fMRI (rs-fMRI), is used to study the connectivity patterns 
of intrinsic functional networks in the brain, such as the default mode 
network (DMN), salience network (SN), and central executive 
network (CEN). Task-based fMRI is used to observe brain activation 
patterns during specific cognitive tasks, like inhibitory control or 
working memory tasks, often comparing activation differences 
between ADHD and control groups. AI is commonly used to analyze 
complex spatiotemporal patterns and functional connectivity matrices 
extracted from fMRI data to distinguish ADHD patients from 
controls, identifying neural biomarkers indicative of the disorder 
(Qureshi et al., 2017; Albajara Sáenz et al., 2019; Pereira-Sanchez and 
Castellanos, 2021).

Diffusion Tensor Imaging (DTI) is used to assess the 
microstructural integrity and connectivity of white matter fiber tracts. 
Studies have shown that ADHD patients have altered white matter 
microstructure (Aoki et al., 2018; Parlatini et al., 2023), and AI can 
be used for fiber tract tracking and connectome analysis, utilizing 
DTI-derived features for classification. Biomedical images are also 
utilized for analysis in various medical contexts (Khekare et al., 2024).

2.6 Experimental paradigms and research 
designs

Beyond the raw data modalities, the specific experimental 
paradigms and overall research designs employed significantly 
influence the type of biomarkers identified and the generalizability of 
AI models in ADHD assessment. A diverse array of paradigms is 
utilized to probe different facets of ADHD symptomatology and 
underlying neurobiology.

For behavioral and neurophysiological data (e.g., EEG, 
eye-tracking), common paradigms include sustained attention tasks 
(e.g., Continuous Performance Test, CPT), inhibitory control tasks 
(e.g., Go/No-Go, Stop-Signal Task), working memory tasks (e.g., 
N-back), and reward processing tasks (Riccio et al., 2002; Owen et al., 
2005; Aron, 2011). These tasks are designed to elicit specific cognitive 
or motor responses that are often impaired in individuals with ADHD, 
allowing for the extraction of objective performance metrics (e.g., 
reaction time variability, error rates) and physiological responses (e.g., 
ERP components, specific EEG frequency band power changes). The 
design choice (e.g., block design vs. event-related design in fMRI) 
influences the temporal resolution and the types of brain activity 
patterns that can be  analyzed (Friston et  al., 1998). Resting-state 
paradigms, where participants are asked to simply relax without 
engaging in specific tasks, are also widely used, particularly for fMRI 
and EEG, to assess intrinsic brain network connectivity and 
spontaneous brain activity (Broyd et al., 2009).
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In neuroimaging studies (sMRI, fMRI, DTI), experimental 
designs typically involve comparing structural volumes, cortical 
thickness, or functional connectivity patterns between ADHD patients 
and matched healthy controls (Shaw et al., 2007; Castellanos and Aoki, 
2016). Task-based fMRI paradigms in neuroimaging studies are often 
similar to those used for behavioral and neurophysiological 
assessments, but focus on mapping brain activation during the 
performance of these tasks. Longitudinal study designs are crucial for 
understanding developmental trajectories of ADHD and the long-
term effects of interventions, while cross-sectional studies provide 
snapshots of differences at specific ages (Halperin and Schulz, 2006).

Data diversity and age sensitivity are critical considerations across 
all paradigms. Research designs must account for the heterogeneity of 
ADHD presentations across different developmental stages (e.g., 
childhood, adolescence, adulthood) and varying symptom profiles 
(e.g., predominantly inattentive, hyperactive–impulsive, combined) 
(Sonuga-Barke and Fairchild, 2012). Tailoring experimental tasks and 
data collection protocols to be  age-appropriate ensures ecological 
validity and optimizes the capture of relevant biomarkers. The careful 
selection and rigorous implementation of experimental paradigms, 
along with consideration for age-specific manifestations and broader 
data diversity, are paramount for developing robust and clinically 
meaningful AI models in ADHD assessment (Figure 2).

3 Overview of artificial intelligence 
methodology for ADHD assessment

In objective ADHD assessment research, various AI are applied 
to analyze complex data and mine potential patterns. These 

technologies are primarily categorized into two branches: ML and 
DL. As model complexity increases, interpretability methods aimed at 
enhancing model transparency and credibility have gained increasing 
attention (Khekare et al., 2025).

3.1 Machine learning (ML)

Unsupervised learning and feature engineering are key to 
discovering potential subtypes and improving model interpretability 
in objective ADHD assessment. Traditional ML methods demonstrate 
robust performance in processing structured data and physiological 
or imaging features extracted through feature engineering, laying the 
foundation for achieving more objective and consistent assessment 
(Sharma and Chariar, 2024). Supervised Learning is the most 
commonly used paradigm, aiming to learn mapping relationships 
from input features to known labels. Common classification 
algorithms include Support Vector Machine (SVM), often employed 
for classifying ADHD based on neuroimaging features, and Random 
Forest, widely utilized for its robustness in handling diverse clinical 
and behavioral data, alongside XGBoost, and Logistic Regression. 
These are widely used to build models distinguishing ADHD patients 
from healthy controls (HC) or differentiating various ADHD subtypes 
(Jiang et al., 2017). Regression algorithms, such as Support Vector 
Regression (SVR) or Ridge Regression, can be  used to predict 
continuous variables, for example, predicting specific scores on 
ADHD rating scales.

Unsupervised Learning aims to discover inherent structures or 
patterns from unlabeled data. Clustering algorithms (such as K-means, 
hierarchical clustering) are commonly used to explore potential 

FIGURE 2

Classification framework of multimodal data fusion strategies for AI in ADHD assessment.
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subtypes defined by biological or behavioral characteristics within 
ADHD patient populations, helping to deepen understanding of 
ADHD’s high heterogeneity (Zhang et al., 2022). Additionally, when 
processing high-dimensional data, it is often necessary to combine 
Feature Selection (such as LASSO) and Dimensionality Reduction 
(such as Principal Component Analysis, PCA) techniques to reduce 
data redundancy, improve model performance, and 
enhance interpretability.

3.2 Deep learning (DL)

DL models have gained prominence for their particular expertise 
in automatically learning complex, hierarchical representations from 
raw or low-level feature data, especially suitable for processing high-
dimensional, unstructured medical data. Convolutional Neural 
Networks (CNNs), for instance, are widely applied to analyze 
neuroimaging data (e.g., fMRI scans for brain activity patterns) and 
time-frequency representations of EEG signals (e.g., detecting 
abnormal brain rhythms in ADHD patients) (Quaak et al., 2021), due 
to their excellent performance in processing data with grid-like 
topological structures.

For sequence data, Recurrent Neural Networks (RNNs) and their 
variants, such as Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU), can effectively capture temporal dependencies 
and are thus applied to analyze time series signals from EEG/MEG 
(e.g., identifying dynamic brain network connectivity associated with 
ADHD) (Chang et al., 2022; Wang et al., 2022), scan path data from 
eye tracking recordings, reaction time sequences in continuous 
cognitive tasks, and even language sequence features extracted from 
speech or interview texts. Transformer Models, initially successful in 
Natural Language Processing (NLP), have recently begun to be applied 
to biomedical sequence data, such as EEG signal analysis (e.g., 
capturing long-range dependencies in EEG rhythms for ADHD 
diagnosis) (He et al., 2023), fMRI time series, and clinical text analysis 
in Electronic Health Records (EHR) (Pillai et al., 2024). Cognitive-
based ADHD detection using autoencoder-based hidden Markov 
models has also shown promising results (Mahesh et al., 2022).

For data representing relationships between entities, such as 
graph-structured brain functional or structural connectomes, Graph 
Neural Networks (GNNs) provide a unique analytical perspective, 
capable of simultaneously learning node features and graph 
topological structure, helping to understand ADHD-related brain 
network connectivity abnormalities from a network science 
perspective (Heck, 2021; Yang et al., 2023).

3.3 Machine learning (ML) and deep 
learning (DL) comparison

ML and DL, while both subsets of AI, possess distinct characteristics 
that dictate their suitability for various applications in ADHD assessment. 
DL, a specialized form of ML, utilizes multi-layered neural networks to 
learn intricate patterns directly from data. This section will compare their 
respective strengths, weaknesses, and common application scenarios.

Traditional ML models generally perform well with structured or 
tabular data. Their advantages include requiring less data for training and 
often offering greater interpretability, which is crucial for clinical trust 

and validation (Cao et al., 2023; Kerz et al., 2023). They also typically 
demand less computational power. However, a significant limitation is 
their reliance on manual feature engineering; for complex, high-
dimensional, unstructured data, extensive pre-processing and feature 
extraction are necessary. In ADHD assessment, ML is widely applied for 
classification tasks using pre-extracted features from behavioral data, 
neurophysiological signals, or structural neuroimaging (Sharma and 
Chariar, 2024). They are also effective for identifying potential subtypes 
through clustering (Zhang et al., 2022) and for early risk prediction.

DL models excel at automatically extracting hierarchical features 
from raw, high-dimensional, and unstructured data, such as entire 
neuroimaging scans, raw EEG time series, or video data (Choi et al., 
2020), significantly reducing the need for manual feature engineering. 
DL models scale exceptionally well with large datasets and have 
achieved state-of-the-art results in areas like image processing and 
natural language understanding. Conversely, they typically require 
substantial data for optimal performance, are computationally 
intensive, and their “black box” nature can pose challenges for clinical 
interpretability, though Explainable AI (XAI) techniques are actively 
addressing this (Amado-Caballero et al., 2023). DL is extensively used 
for analyzing raw neuroimaging data, processing eye-tracking scan 
paths, and interpreting clinical texts or speech patterns in ADHD 
research (Quaak et al., 2021; Chang et al., 2022; Wang et al., 2022; He 
et  al., 2023; Pillai et  al., 2024), particularly valuable when large, 
complex multimodal datasets are available.

Despite their differences, ML and DL are complementary. DL can 
serve as a powerful feature extractor, with its learned features then 
utilized by traditional ML models for final classification or regression. 
This hybrid approach can combine DL’s representation learning 
capabilities with ML’s interpretability or efficiency. The optimal choice 
between ML and DL often depends on the nature and volume of the 
available data, the specific task, and the importance of model 
interpretability within the clinical context.

3.4 Explainable artificial intelligence (XAI)

With increasing model complexity, especially the “black box” 
nature of DL models, their clinical application faces challenges in trust 
and adoption. Consequently, Explainable Artificial Intelligence (XAI) 
techniques have emerged and become increasingly important in 
ADHD research. Methods such as SHAP (SHapley Additive 
exPlanations) (Wicker et  al., 2017) or Local Interpretable Model-
agnostic Explanations (LIME) aim to reveal the key objective features 
or data patterns that models rely on for making specific predictions. 
By enhancing model transparency, XAI helps clinicians understand, 
validate, and trust model results, which is crucial for promoting 
reliable AI applications in mental health (Cao et al., 2023; Kerz et al., 
2023). XAI not only helps clarify the basis for model decisions but may 
also assist in discovering new potential biomarkers, thereby deepening 
understanding of ADHD’s objective pathophysiological mechanisms.

4 Specific applications of AI in ADHD 
screening, diagnosis and assessment

AI have been widely applied in multiple aspects of the ADHD 
assessment process, demonstrating great potential from early warning 
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to precise classification, with the core goal of improving the objectivity, 
accuracy, and efficiency of assessment.

4.1 AI-driven early screening and risk 
prediction

In the early stages of the process, AI is used for early screening and 
risk prediction. Given that early identification of ADHD is crucial for 
improving patient outcomes, AI models are being explored to 
integrate known early risk factors [such as premature birth, low birth 
weight, family genetic risk (Cabana-Domínguez et al., 2023), prenatal 
exposure factors (Ji et al., 2020)] and behavioral observation indicators 
during infancy [such as temperament characteristics, motor 
development milestones, early attention patterns (Gair et al., 2021)]. 
By building early risk prediction models, AI has the potential to 
identify high-risk children who need further professional assessment. 
For example, ML algorithms can analyze data extracted from parent-
completed early screening questionnaires or community health 
records to predict the likelihood of individuals developing ADHD 
symptoms during school age, thereby facilitating early intervention.

4.2 AI-assisted diagnosis and classification

In the diagnostic phase, AI-assisted diagnosis and classification is 
one of its most widely applied areas. Research aims to build classifiers 
that can accurately distinguish ADHD patients from healthy controls 
(HC) based on objective data, typically using single or multimodal 
data. For instance, ML models like Support Vector Machines (SVMs) 
and Random Forests have been applied to analyze EEG signal features, 
achieving high accuracy in distinguishing ADHD from HC 
(Lenartowicz and Loo, 2014; Tenev et al., 2014; Öztoprak et al., 2017). 
DL models, such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) or Transformer Models, are 
increasingly used for analyzing raw neuroimaging data (fMRI, sMRI) 
and time-series EEG/fMRI signals, respectively, demonstrating robust 
performance in identifying ADHD patients and representing a current 
research hotspot (Riaz et al., 2020; Joy et al., 2022; Zhang-James et al., 
2023; Firouzi et al., 2024; Loh et al., 2024; Taspinar and Ozkurt, 2024; 
Bansal et al., 2025). It is generally believed that models integrating 
multiple modalities can achieve better classification performance than 
single modalities and potentially provide more comprehensive and 
reliable assessment results (Qureshi et al., 2017; Riaz et al., 2018).

4.3 AI applications in precise differential 
diagnosis

AI’s application in precise differential diagnosis is particularly 
prominent, addressing a core challenge in current ADHD clinical 
assessment. Due to overlapping symptom presentations, accurately 
distinguishing ADHD from other neurodevelopmental/mental 
disorders with similar presentations or comorbidities is extremely 
challenging. AI technology, with its ability to analyze complex 
patterns, aids in achieving more precise differential diagnosis.

In distinguishing ADHD from gifted children, their behavioral 
presentations may be  very similar, leading to misdiagnosis. AI 
research is attempting to assist this differentiation process through 

more refined data analysis. For example, using ML models to analyze 
parent and teacher behavioral rating scale data to identify subtle but 
distinctive differences in specific behavioral patterns between the two 
groups (François-Sévigny et al., 2022). In the future, combining more 
objective biobehavioral indicators and using AI for comprehensive 
analysis may provide more objective and reliable evidence.

For distinguishing ADHD from anxiety/depression disorders, 
inattention is a common symptom, increasing the difficulty of 
differentiation. AI technology can assist in differentiation by 
integrating and analyzing multiple data sources. Using AI models to 
analyze neuroimaging data can help find differential biomarkers 
(Hettwer et al., 2022). In addition, applying NLP techniques to analyze 
clinical interview records or social media text can help identify 
language patterns that reflect different potential emotional states 
(Thorstad and Wolff, 2019); utilizing AI models to analyze 
neuroimaging data (such as structural or functional connectivity 
patterns of the amygdala and prefrontal cortex) can help find 
differential biomarkers; or analyzing physiological signals such as 
Heart Rate Variability (HRV) can explore their potential in objective 
differentiation (Sun et al., 2023).

In distinguishing ADHD from learning disabilities (SLD)/
developmental coordination disorder (DCD), careful differentiation 
is needed due to frequent co-occurrence or similar symptoms. AI 
models have the potential to train classifiers by integrating multiple 
aspects of information (such as standardized neuropsychological test 
results, academic performance records (Czerniak et  al., 2023), 
objective motor coordination assessment based on video analysis 
(Ouyang et al., 2024), etc.) to identify characteristic presentations 
under different disorder patterns and improve differentiation accuracy.

Regarding the challenge of distinguishing ADHD from Autism 
Spectrum Disorder (ASD), although their core symptoms differ, they 
have high comorbidity rates and behavioral overlap. AI provides 
multiple approaches, including using ML/DL to analyze neuroimaging 
data [comparing whole-brain functional connectivity patterns or 
specific brain region structural differences (Eslami et al., 2020; Song 
et al., 2020)], or analyzing other behavioral/physiological data (such 
as quantifying behavioral features in social interaction videos through 
computer vision, analyzing social scene gaze preferences using eye 
tracking, etc.), aiming to discover objective and effective biobehavioral 
markers that distinguish the two (Moreau et al., 2023).

Furthermore, recent research has begun to focus on the challenge 
of distinguishing ADHD inattentive type (ADHD-RI) from cognitive 
disengagement syndrome (CDS) (Durak et al., 2025). Using AI to 
analyze detailed neurocognitive test data or specific objective 
neurophysiological indicators, may help identify characteristic 
patterns that distinguish between these two conditions and improve 
differential diagnostic accuracy.

4.4 AI quantification of symptom severity 
and cognitive function

Beyond classification and differential diagnosis, AI is also applied 
to quantify symptom severity and cognitive function, which helps 
more precisely track disease progression and treatment response. For 
example, by analyzing objective behavioral or physiological data [such 
as CPT performance metrics, activity levels and sleep patterns 
collected by wearable devices (Lindhiem et al., 2022; Kim et al., 2023)], 
AI models have the potential to objectively quantify the severity of 
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individual inattention, hyperactivity, and impulsivity. This assessment 
may be more sensitive in capturing subtle changes than traditional 
subjective rating scales. Some studies also use ML models, based on 
objective biomarkers or other objective measurement data, to directly 
predict individual scores on standard ADHD rating scales (such as 
ADHD-RS) (Cervantes-Henríquez et al., 2022), aiming to provide 
more objective reference for clinical assessment.

In terms of cognitive function, AI algorithms can integrate and 
analyze objective performance data from multiple neuropsychological 
tests (especially those evaluating executive functions) (Duff and Sulla, 
2015; Takahashi et al., 2024), potentially going beyond traditional 
single total score evaluation to more precisely characterize individual 
specific impairment levels and unique patterns in different cognitive 
subdomains, providing objective information for understanding 
individual differences and guiding personalized cognitive interventions.

4.5 AI-driven ADHD subtype identification

Finally, to address ADHD’s high heterogeneity (Nigg et al., 2020), 
researchers use unsupervised learning (such as clustering algorithms) 
and other AI methods to identify ADHD subtypes. By analyzing 
objective biological or clinical features (such as based on resting-state 
fMRI functional connectivity patterns (Miranda et al., 2021) or EEG 
microstate features (Alves et al., 2024)), researchers attempt to identify 
subgroups within the ADHD patient population that have different 
brain network abnormalities, cognitive deficit patterns, or treatment 
responses (Karalunas and Nigg, 2020). These data-driven discovered 
subtypes aim to go beyond traditional clinical classification and lay the 
foundation for achieving more precise stratified diagnosis (stratified 
diagnosis) and personalized interventions.

5 Performance evaluation, advantages 
and current limitations

5.1 Overview of existing AI model 
performance

Based on a comprehensive review of existing literature, AI models 
demonstrate encouraging performance in specific ADHD assessment 
tasks. For instance, in binary classification tasks distinguishing ADHD 
from healthy controls (HC), models utilizing high-quality multimodal 
neuroimaging data and advanced DL algorithms often achieve accuracy 
or Area Under the Curve (AUC) values of 0.8 or higher (Quaak et al., 
2021; Zhang-James et al., 2023; Sharma and Chariar, 2024; Taspinar 
and Ozkurt, 2024). However, when facing more challenging differential 
diagnostic tasks [such as distinguishing ADHD from ASD (Duda et al., 
2017)] or ADHD internal subtype identification (Qureshi et al., 2016; 
Gao et al., 2023), model performance typically decreases, although still 
showing potential to surpass traditional methods.

5.2 Potential advantages of AI in ADHD 
assessment

AI offers several significant potential advantages in ADHD 
assessment. Despite this, AI application in ADHD assessment still 

offers significant potential advantages. First, AI analysis is primarily 
based on quantifiable objective data, thereby enhancing assessment 
objectivity, reducing reliance on subjective reports and clinical 
observations, and potentially improving the stability and 
reproducibility of assessment results. Second, AI can rapidly process 
and analyze large amounts of complex data, automating parts of the 
assessment process (such as signal analysis, image processing), 
potentially improving assessment efficiency, reducing clinician 
workload, and shortening assessment cycles. Third, AI’s powerful 
pattern recognition capabilities, particularly DL, help mine potential 
objective biomarkers or feature combinations from high-dimensional, 
multimodal data that are difficult to identify using traditional 
statistical methods. This not only may improve diagnostic accuracy 
but also helps deepen understanding of ADHD’s underlying 
pathophysiological mechanisms. Additionally, by identifying different 
biological or clinical subtypes and quantifying individual specific 
impairment patterns across multiple dimensions, AI provides 
possibilities for achieving more precise personalized assessment and 
ultimately stratified intervention strategies (precision medicine). 
Finally, AI screening or monitoring tools based on mobile computing 
platforms such as smartphones and wearable devices have advantages 
of low cost, convenient deployment, and the ability to collect data in 
natural environments (ecological validity), potentially improving 
assessment service accessibility, extending to resource-limited areas, 
or more conveniently integrating into patients’ daily lives.

5.3 Limitations and challenges in current 
research

However, the path to applying AI in objective ADHD assessment 
is not smooth, and it is still in the development stage, facing 
numerous severe limitations and challenges that hinder the full 
realization of its potential and transformation into reliable clinical 
tools. One of the most prominent issues is data limitations and lack 
of standardization. Most published studies rely on small-scale, single-
center datasets, with significant heterogeneity in data collection 
standards (such as equipment parameters, task paradigms) and 
preprocessing procedures across different studies, severely limiting 
model generalization ability and the reproducibility and 
comparability of research results (Zhang-James et  al., 2023; Tian 
et al., 2024). The lack of large-scale, standardized, publicly available, 
and representative multicenter multimodal databases is a key 
bottleneck constraining the development of this field. Notably, most 
current AI model training datasets primarily focus on diagnosed 
ADHD patients and typically developing control groups, but lack 
systematic data collection on healthy variations (neurodiversity) that 
only exhibit inattentive/hyperactive traits without meeting ADHD 
diagnostic criteria (i.e., without significant functional impairment). 
This data deficiency constitutes an important confounding factor, 
which may lead to AI models struggling to distinguish between 
normal traits and the disorder, thus posing a risk of pathologizing 
neurodiversity. Future research urgently needs to construct 
representative datasets containing such ‘intermediate groups’ to 
improve the specificity and differentiation capabilities of AI models.

Closely related to this is the generally insufficient generalization 
ability and reliability of existing models. Models that perform 
excellently on specific internal datasets often show significant 
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performance degradation when applied to new, independent external 
datasets from different populations, devices, or collection 
environments. This overfitting problem and domain shift effect 
severely limit the direct application potential and reliability of models 
in real-world clinical settings (Dwyer and Koutsouleris, 2022).

Another major obstacle is the poor interpretability of many high-
performance AI models (particularly DL models), which are like “black 
boxes” with opaque internal decision logic (Cao et al., 2023). This not 
only hinders clinicians’ understanding and trust in model output results 
but also makes it difficult to gain new insights into disease mechanisms. 
This is one of the main barriers to clinical acceptance and adoption of 
models, although research on explainable AI (XAI) methods is 
emerging to address this challenge (Amado-Caballero et al., 2023).

Meanwhile, potential bias risks and fairness issues cannot 
be ignored. If training data fails to adequately represent the diversity 
of the target population (such as biases in age, gender, race, 
socioeconomic status, etc.), models may learn and even amplify these 
biases, leading to systematic unfairness or inaccuracy in assessment 
results for certain subgroups (Lee et al., 2021; Elendu et al., 2023), 
potentially exacerbating health inequalities.

Most critically, there is currently a severe lack of clinical validation. 
The vast majority of related research remains at the stage of technical 
exploration, retrospective analysis, or small-scale proof-of-concept, 
with an extreme lack of well-designed, rigorously executed 
prospective, multicenter studies with representative samples (such as 
diagnostic accuracy trials, randomized controlled trials) to evaluate 
the actual performance, safety, clinical utility, and cost-effectiveness 
of AI tools in real clinical scenarios (Rashid and Calhoun, 2020; 
Dwyer and Koutsouleris, 2022). The lack of high-quality clinical 
evidence is a core obstacle hindering the transformation of AI 
technology into clinical practice.

Finally, seamless implementation and integration of AI tools into 
existing clinical workflows also face multiple barriers in terms of 
technology (such as data interfaces, system compatibility), resources 
(such as equipment costs, personnel training), and processes (such as 
assessment time, report interpretation), and some methods relying on 
expensive equipment or complex processes have limited accessibility 
and scalability in resource-limited environments, which may lead to 
application inequality (Rashid and Calhoun, 2020; Dwyer and 
Koutsouleris, 2022).

A significant challenge lies in how AI evaluates and quantifies the 
crucial subjective criterion of “significant impairment and suffering” 
in ADHD diagnosis. Although AI cannot directly understand or feel 
an individual’s internal experiences, it can indirectly infer or quantify 
the degree of functional impairment by analyzing digital phenotyping 
data (e.g., daily activity levels, sleep patterns, screen usage habits) 
(Lindhiem et al., 2022; Kim et al., 2023) and behavioral data (e.g., 
academic performance records, social interaction frequency, objective 
indicators of functional impairment in multi-source behavioral 
reports) (Chiu et al., 2024; Ouyang et al., 2024; Czerniak et al., 2023). 
However, these data serve only as auxiliary evidence for clinical 
assessment, and their interpretation must be comprehensively judged 
by experienced clinicians, integrating non-structured information such 
as the individual’s socio-cultural background, family environment, and 
narrative reports. AI’s value lies in identifying objective patterns that 
may indicate or accompany significant impairment, rather than 
replacing the understanding of subjective suffering or the final clinical 
judgment (Lee et al., 2021; Elendu et al., 2023; Cao et al., 2023).

6 Core challenges and future research 
directions

Future research urgently needs to establish large-scale, 
standardized multimodal databases through international 
collaboration, develop robust, interpretable, and fair AI models, and 
conduct rigorous, transparent clinical translation validation, with the 
ultimate goal of achieving responsible AI application in precise, 
objective, and personalized ADHD assessment and management.

6.1 Data level: building a solid foundation 
and promoting secure sharing

In order to facilitate the development of robust AI models, the 
creation of large-scale, standardized, multimodal databases and 
ensuring safe, ethical data sharing are necessary measures. First, through 
international collaboration and multidisciplinary cooperation, we need 
to jointly build high-quality, large-scale, standardized multimodal 
databases, which are the cornerstone of the entire field’s development. 
The ideal database should include thousands or even tens of thousands 
of participants, have longitudinal tracking, multicenter sources, and 
good population representation, and integrate multidimensional 
information including behavior, cognition, neurophysiology (EEG, eye 
movements, etc.), neuroimaging (sMRI, fMRI, DTI, etc.), genetics, 
environmental exposure, and digital phenotyping. The key is to reach 
consensus and strictly implement data collection protocols, quality 
control standards, and annotation specifications to ensure data quality, 
promote research reproducibility and model comparability, and provide 
the necessary foundation for developing more powerful and 
generalizable AI models (Tian et  al., 2024). Leveraging emerging 
technologies such as high-precision motion capture to quantify 
behavioral phenotypes is also worth exploring (Wu et  al., 2025). 
Meanwhile, under strict compliance with ethical and privacy 
regulations, it is necessary to actively explore secure and compliant data 
sharing mechanisms and privacy protection technologies. Privacy-
preserving computing technologies such as Federated Learning (Loftus 
et al., 2022; Brauneck et al., 2023) allow collaborative model training 
without directly transmitting original sensitive data, potentially breaking 
down data silos and improving model reliability and generalization 
ability by utilizing broader and more diverse data. Establishing clear data 
governance frameworks and access control protocols is also 
indispensable. Hybrid frameworks integrating blockchain, IoT, and 
cloud computing also offer secure and scalable solutions for healthcare 
data management (Kumaran et al., 2024).

6.2 Algorithm level: improving 
performance, reliability, and 
trustworthiness

At the algorithmic level, the core challenge lies in continuously 
improving AI model performance, reliability, and trustworthiness 
through advanced algorithms, multimodal data fusion, and 
considerations for interpretability and fairness. This means 
continuously developing AI algorithms that can better handle data 
heterogeneity, have strong anti-interference capabilities, and perform 
stably and reliably on unseen data and different populations, to 
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enhance model reliability and generalization ability. Transfer learning, 
domain adaptation/generalization, adversarial training, and ML 
combined with causal inference are important research directions. 
Meanwhile, Algorithmic Fairness (Lee et  al., 2021) must 
be incorporated as a core consideration in model design, training, and 
evaluation, adopting bias detection and mitigation techniques to 
ensure fair performance across different subgroups (classified by 
gender, race, etc.) and avoid exacerbating health inequalities.

Second, we should deepen multimodal fusion and information 
integration strategies. Given the complexity of ADHD, single-modal 
information is limited, requiring the development of more advanced 
and effective multimodal data fusion strategies to fully utilize the 
complementarity and synergistic effects of information from different 
sources, building more comprehensive and precise assessment models.

Third, we  need to focus on breakthroughs in interpretability 
(XAI) and causal inference. Vigorously developing and applying XAI 
technology is a core link in winning clinical trust, promoting adoption, 
and potentially discovering new knowledge. Future XAI should 
provide explanations that conform to clinical logic, are intuitive and 
easy to understand, and have practical guidance for decision-making. 
Exploring the combination of ML with causal inference, attempting to 
move from association to causal exploration, may help deepen 
understanding of pathological mechanisms.

Finally, to adapt to mobile health applications or resource-limited 
scenarios, we need to develop lightweight models and explore edge 
computing applications, reducing model complexity through 
techniques such as model compression and knowledge distillation, 
and exploring computation on terminal devices to improve real-time 
performance, accessibility, and privacy.

6.3 Validation and translation level: 
rigorous evaluation and promoting clinical 
implementation

For AI tools to be  clinically viable, rigorous and transparent 
clinical validation studies are essential, alongside the establishment of 
clear regulatory frameworks to ensure their safe and effective 
translation into practice. This necessitates going beyond simple 
internal validation and conducting rigorous, transparent, independent 
clinical validation studies. Large-scale, prospective, multicenter, 
independent external validation studies and clinical trials following 
recognized reporting standards [such as TRIPOD (Alewine et al., 
2015), STARD-AI (Muehlematter et al., 2023)] should be designed 
and implemented. Meanwhile, special attention needs to be paid to 
bridging the gap between laboratory performance and real-world 
practice performance (performance gap) (Jurva et  al., 2025), and 
conducting calibration evaluation of prediction model probability 
outputs to ensure their confidence accurately reflects actual risk 
(Benster et al., 2025).

It is also necessary to develop user-centered clinical decision 
support systems (CDSS), integrating validated models into user-
friendly platforms or EHR systems that conform to clinical workflows, 
providing clear, interpretable, actionable auxiliary information, and 
emphasizing human-machine collaboration, with final decision-
making authority resting with doctors.

Additionally, establishing clear regulatory science frameworks and 
approval pathways is crucial. With the development of AI/ML-driven 

medical devices (including SaMD), regulatory agencies (such as FDA, 
EMA) are improving corresponding frameworks (Pennello et  al., 
2021; Muehlematter et  al., 2023), clarifying requirements for 
performance, safety, effectiveness, data quality, algorithm 
transparency, risk management, and post-market surveillance, 
providing clear paths for innovative product market access while 
ensuring patient safety.

6.4 Ethical and social level: advocating 
responsible innovation and ensuring 
universal accessibility

Addressing ethical and social considerations, such as responsible 
innovation, universal accessibility, and mitigating potential biases and 
privacy risks, is paramount for the equitable application of AI in 
healthcare. The primary principle is to follow strict ethical standards 
and data governance principles, ensuring full dynamic informed 
consent throughout the process involving ADHD patient data, 
respecting privacy rights and data autonomy, and establishing sound 
data security and governance frameworks to prevent risks.

Proactive identification, assessment, and management of 
algorithm biases and promotion of fairness (Lee et  al., 2021) are 
necessary. At all stages of the model lifecycle, fairness metrics and bias 
mitigation techniques must be adopted to ensure AI tools have equal 
effectiveness and safety across different subgroups, avoiding 
technology exacerbating inequalities.

Clarification of human-machine collaboration models and 
responsibility attribution frameworks is needed, clearly defining AI’s 
role as an auxiliary tool, emphasizing that final decisions are made 
comprehensively by clinicians, and establishing clear 
accountability mechanisms.

Finally, focus on technology accessibility and bridging the digital 
divide is necessary. When promoting AI tools, measures should 
be  taken to ensure the universality of technology, avoiding 
exacerbating health service inequalities due to equipment, technical 
barriers, or digital skill differences (Elendu et al., 2023).

7 Conclusion

AI provides unprecedented opportunities to address the many 
challenges in current ADHD diagnosis and assessment, particularly 
in improving assessment objectivity, efficiency, and achieving more 
precise differential diagnosis and personalized assessment. This 
paper systematically reviewed the current applications and research 
progress of AI in objective ADHD assessment, emphasizing how AI 
leverages multimodal data, including behavioral data, 
neurophysiological signals, neuroimaging features, genetic 
information, and emerging digital phenotyping, across various 
assessment stages. The significant potential of AI in tasks such as 
early screening and risk prediction, diagnostic assistance and 
classification, precise differential diagnosis, symptom severity 
quantification, and the identification of heterogeneous ADHD 
subtypes was highlighted. By integrating these diverse data sources, 
AI models offer a pathway to overcome the limitations of traditional 
subjective assessment methods, paving the way for more objective 
and consistent diagnostic outcomes.
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However, transforming these promising AI research results into 
reliable clinical practice tools that can truly benefit the vast number of 
ADHD patients and their families in a safe, effective, and fair manner 
still faces severe challenges. These challenges span multiple 
dimensions, including obtaining, standardizing, and securely sharing 
high-quality data; improving algorithm reliability, generalization 
ability, and interpretability; conducting rigorous and sufficient clinical 
validation; developing effective translation strategies; and addressing 
comprehensive ethical, legal, and social impact considerations. These 
intertwined complexities necessitate a collaborative effort from the 
entire research, development, application, and regulatory ecosystem 
to effectively overcome.

Looking ahead, the future direction for AI in objective ADHD 
assessment is clear and promising. Substantial and synergistic progress 
must be  made through close interdisciplinary collaboration. This 
includes continued efforts in building a solid, standardized data 
foundation, promoting responsible algorithm innovation that 
prioritizes interpretability and fairness, implementing rigorous and 
transparent clinical validation studies, and improving sound ethical 
and governance frameworks. Only through such concerted efforts can 
AI truly become a powerful, reliable, and trustworthy partner for 
clinicians in assessing and managing the complexity of ADHD, 
ultimately promoting a deeper understanding of the disorder and 
significantly improving the long-term well-being and quality of life for 
affected individuals and their families.
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