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Introduction

Oncology is undergoing a transformation due to the advent of digital twin technology,

which enables precision therapy by creating synchronized virtual copies of physical

systems. Unlike static models, dynamic digital twins continually integrate multimodal

patient data such as clinical, imaging, and molecular data, to simulate therapy scenarios

and direct real-time therapeutic decisions (Tortora et al., 2025). The success of smart

city digital twins, which control complicated systems like traffic and energy in real time,

provides a model for oncology (Peldon et al., 2024). Like cities, tumors are dynamic,

multiscale systems shaped by therapy, immunological responses, and genetic alterations.

There must be less trial-and-error in cancer care if we can use dynamic, learning-based

twins to practice therapy instead of static ones that rely on pre-treatment snapshots, which

miss this progression.

The limits of static oncology twins

Static oncology twins are often created from a single pre-treatment dataset, which

includes imaging and genetic profiles, and used to predict first medication responses.

However, when tumors adapt into their environment and therapy, these one-time models

lose accuracy, failing to predict emergent resistance mutations and microenvironmental

modifications (Wang et al., 2024). Static twins are unable to detect early signals of relapse

or toxicity because they exclude longitudinal indicators such as ctDNA kinetics, biomarker

signatures, and routine labs, as well as real-time physiological data from wearables

(Aghamiri and Amin, 2025). Moreover, while assays like Oncotype DX and spatial cell-type

mapping inform initial risk stratification, they remain disconnected from iterative clinical

decision loops (Chiru and Vetter, 2023). Integrative-cluster trials categorize patients based

on a combination of molecular and histopathologic characteristics; however, they still do

not incorporate closed-loop adaptation. On the other hand, a dynamic twin would actively

adapt therapy by recalibrating its AI and mechanical models with each new data stream.

Nonetheless, prospective validation via observational cohorts and randomized studies is

necessary to establish the clinical utility of these adaptive systems.
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Smart cities as operational templates

Digital twins in smart cities serve as central command centers

for urban ecosystems, consistently integrating data from traffic

cameras, smart streetlights, water distribution monitors, public

transit GPS, and air quality sensors (Alvi et al., 2025). They

function as a comprehensive citywide system, executing real-

time simulations to evaluate the impacts of diverse scenarios,

including the closure of a highway during peak hours, the

reconfiguration of traffic signals to mitigate congestion, or the

redirection of emergency response vehicles in unusual weather

conditions. The results are then utilized to provide optimized

control signals to the physical infrastructure (Huang et al., 2025).

For example, Virtual Singapore uses real-time environmental and

transportation data from over 30 agencies to simulate urban

planning, emergency response, and energy efficiency, making it a

global benchmark for centralized scenario rehearsal (Ferro-Escobar

et al., 2022). The open digital twin of Helsinki facilitates public

participation and climate planning via accessible 3D simulations,

aiding in the visualization of solar potential and guiding zoning

choices (Hämäläinen, 2021). Simultaneously, Shanghai’s urban

management twin enhances everyday operations and emergency

response by combining IoT, AI, and real-time monitoring across

districts, resulting in up to 30% gains in municipal efficiency

(Wang et al., 2024a). Upon the activation of a flood alert, the

twin can promptly simulate reservoir releases, road closures, and

diversion routes, analogous to how an ICU dashboard predicts

patient stability across various ventilator settings (Figure 1).

An oncology twin reflects this dynamic, feedback-oriented

urban model. The system assimilates ongoing clinical notes and

imaging data, analogous to how a city twin processes CCTV feeds

(Wolf et al., 2022; Shen et al., 2025). It incorporates pathology

reports, genomic sequencing, and biomarker trends, similar to the

way environmental sensors monitor particulate levels. Heart rate,

blood pressure, sleep patterns, stress levels, changes in glucose

levels, and even gait analysis are all wearable streams that can

be used like mobile noise or air quality tools to let the twin

know about changes in the body (Nadeem et al., 2025). In order

to allow predictive algorithms to make real-time adjustments to

dosing regimens or therapy switches, the city’s infrastructure is

routinely audited using serial liquid biopsies and tissue samples.

By considering the tumor and its host as an interdependent and

dynamic system, similar to simulating rush-hour traffic and power-

grid load, the twin may predict spikes in tumor growth, mutations

that confer resistance, and areas of toxicity that are particularly

harmful. This provides doctors with a real-time practice ground for

therapy and individualized treatment plans.

Case studies: dynamic twins in action

Recent efforts demonstrate the feasibility of dynamic oncology

twins, with new use cases expanding their scope, summarized in

Table 1.

These case studies highlight dynamic twins’ core functionalities:

real-time data assimilation, multiscale modeling, and therapy

rehearsal, extending to education and trial design.

Digital twins in oncology must integrate patient data from

diverse sources alongside the expertise of oncologists, clinical

guidelines, and pertinent decision-making criteria. This ensures

that the twin can demonstrate decision-making processes in

a more intricate manner, particularly when it must evaluate

individual critical criteria rather than solely relying on raw

data streams. Incorporating domain-specific knowledge, such

as the relative importance of prognostic signs or patient

comorbidities, into digital twin recommendations ensures that

they are consistent with established therapeutic rationale. Instead

of adopting a one-size-fits-all approach, oncology digital twins

should be created for each type of cancer since tumors evolve

and treatments vary. For example, a glioblastoma twin must

consider the tumor’s dissemination and its responsiveness to

radiation therapy, whereas a breast cancer twin would emphasize

the functionality of hormone receptors and the malignancy’s

sensitivity to chemotherapy (Chaudhuri et al., 2023). Conversely,

lung cancer twins consider mutational profiles such as EGFR or

ALK status when determining targeted therapy options (Stahlberg

et al., 2022). Numerous patient data exist within EHR/EMR

systems; nevertheless, the generation of real-time digital twins

is challenging due to data silos, inconsistent formatting, absent

longitudinal records, and delays in data acquisition. Confronting

these difficulties requires the synchronization of data streams,

the establishment of interoperability standards, and the assurance

of real-time data that is readily available. Contemporary clinical

monitoring systems also have challenges in accurately modeling

tumor development, medication resistance, and treatment-related

toxicity at the individual level. Challenges involve the limited

resolution of conventional imaging techniques, insufficient liquid

biopsy collection, and inadequate real-time biomarker surveillance,

including circulating tumor DNA or PD-L1 fluctuations (Susilo

et al., 2023). More precise and dynamic depictions of disease

progression and treatment effect are made possible by new

technology that are rapidly improving, such as high-frequency

wearable biosensors, serial liquid biopsy platforms, and advanced

imaging methods.

Dynamic digital twins in cancer care, which evolve in response

to evolving patient data, are distinct from static ones that only

run once. FarrSight
R©
-Twin perpetually integrates novel genetic

variants, does repeated whole-slide scans, and incorporates time-

stamped clinical events, thereby recalibrating its predictive model

with each update to predict the responses of breast cancer patients

to treatment and immunotherapy (Griffiths et al., 2024). The

Stanford–NCI-DOE lung cancer twin integrates follow-up CT

images, interval pathology samples, and novel genetic and clinical

data through a systematic process. Each update recalibrates the

tumor growth and treatment response trajectories, transforming

the model from a static representation into a dynamic virtual

patient (Stahlberg et al., 2022). During each MRI session—T1-

contrast, T2-FLAIR, and diffusion—the Bayesian engine assimilates

the new voxel-level contours and ADC measurements, updates

the coefficients for each patient’s proliferation, invasion, and

radio sensitivity, and subsequently recalculates iso-dose maps and

fractionation. This loop transforms the UT Austin glioblastoma

twin into a dynamic therapeutic guide, capable of adjusting

treatment intensity in response to emerging infiltrative areas
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FIGURE 1

The goal of an urban digital twin is to simulate optimal city operations by ingesting real-time sensor data; a cancer digital twin, on the other hand,

would combine genetic, imaging, and biomarker streams to practice treatments and provide risk-minimizing, individualized cancer care. Figure

created with BioRender.

TABLE 1 Representative dynamic twin case studies in oncology and smart city examples highlighting continuous data ingestion, scenario simulation,

and adaptive feedback.

Digital-twin application Domain/
setting

Lead
institution(s)

Core data and
model

Reported
outcome/insight

References

Glioblastoma radiotherapy twin Neuro-oncology Oden Institute, UT

Austin

Bayesian tumor-growth

model updated with

serial MRI during

radiotherapy

Adaptive dosing delayed

median progression by

≈6 days with lower total

dose

Chaudhuri et al.,

2023

LUNG-CANCER 3-D TWIN Thoracic oncology Stanford+ NCI–DOE Deep CNNs on CT,

digital pathology,

genomics; ctDNA

updates

Reconstructs 3-D tumor,

infers EGFR status,

forecasts resistance,

suggests therapy switches

Stahlberg et al.,

2022

FarrSight virtual-trial twins Multicancer trial

optimization

Concr (VISION trial) Patient-specific

simulation of alternative

regimens

Higher response when

real therapy matched

twin recommendation

Griffiths et al., 2024

Melanoma immunotherapy twin Immuno-oncology Indiana University Multiscale agent-based

immune–tumor model

Predicts immune escape;

tests checkpoint

sequencing

Shmulevich and

Aguilar, 2022

Pain-management twin Supportive

care/PK-PD

Multi-center Population PK/PD

model of fentanyl

Optimizes dosing,

reduces adverse events

Cukic et al., 2024

Personalized AML chemo scheduler Hematology Academic consortium Longitudinal counts+

mechanistic kinetics

Avoided leukopenia in

10/13 AML cases

Jost et al., 2020

Breath-gas early-detection twin Non-invasive

screening

Industry–academic

group

Volatile metabolite ML

signatures

Detects pre-clinical

tumor shifts via breath

Chung et al., 2022

Clinical-trial design twin Trial optimization Multi-center Virtual cohorts

predicting toxicity vs

efficacy

Reduced adverse events

in trial simulations

Susilo et al., 2023

Smart-city traffic twin Urban operations City of

Singapore—“Virtual

Singapore”

Live traffic, IoT, weather

feeds+ agent-based

model

Real-time rerouting cut

congestion by∼15 %

Ferro-Escobar et al.,

2022

Shanghai municipal digital twin Urban operations Shanghai Municipal

Government; Smart City

Program

City-wide IoT sensor

network, AI analytics,

real-time cross-district

monitoring

Up to 30 % gain in

municipal efficiency and

faster emergency

response

Wang et al., 2024a
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or reducing dosage upon confirmation of tumor shrinkage

(Chaudhuri et al., 2023). This enables physicians to formulate

therapy protocols that are more efficacious in decelerating the

disease and mitigating its damage.

Technical foundations of dynamic
oncology twins

The foundation of every interactive digital twin is a solid

data flow. For oncology, this entails combining several patient

data sets into a single repository, such as EHRs, lab findings,

radiographs (CT, MRI, PET), histopathology reports, liquid

biopsies (circulating tumor DNA), and multi-omics datasets

(genomics, transcriptomics, proteomics). Complying with

established standards is essential for achieving interoperability.

These standards include the OMOP Common Data Model for

observational health data and the HL7 Fast Healthcare Interchange

(FHIR) for clinical and imaging metadata (Vorisek et al., 2021).

Additionally, automated extraction workflows and streaming APIs

guarantee that new patient measurements are transferred into the

counterpart with minimal latency, thereby maintaining real-time

fidelity to the changing disease state (Ianculescu et al., 2025).

Upon establishment of these streams, Apache Kafka facilitates

the real-time transfer of clinical notes, imaging files, and multi-

omics results, encapsulated in FHIR, OMOP, DICOMweb, or

Phenopackets formats (Iancu et al., 2024). The incoming messages

are stored in an RDF database that associates each data point with

terms from SNOMED CT, LOINC, OncoKB, and NCIt, followed

by the application of a variational auto-encoder to address any gaps

(Touré et al., 2023). Subsequently, modality-specific AI models

operate with high efficiency: 3D UNet++ and DenseNet-121

for CT/MRI, a Swin-Transformer for whole-slide images, LoRA-

tuned DNABERT-2 for genomic variants, a Temporal Fusion

Transformer for irregular lab series, Hetero-GraphSAGE for

knowledge graphs, physics-informed networks for tumor growth

equations, and a PPO agent that weighs projected survival benefits

against toxicity (Yang et al., 2025). Hybrid models that integrate

physics-informed and data-driven approaches utilize multimodal

embeddings, including cross-attention early fusion, Bayesian late

fusion, and tensor-gated hybrid fusion. They disseminate calibrated

uncertainty, enabling ∼1,000 therapy-rehearsal simulations to

conclude in under 1 s, accompanied by median projections and

95% prediction intervals (Kemkar et al., 2024).

A flexible modeling system that integrates data-driven

AI with mechanistic simulations is equally essential.

Convolutional neural networks and transformer models can

derive predictive characteristics from imaging and genomic

sequences, respectively, whereas systems of ordinary and

partial differential equations represent tumor development

dynamics and drug–tumor interactions (Wang et al., 2024b).

Agent-based models mimic microenvironment dynamics and

immune-cell infiltration; physics-informed neural networks

apply biological limits on acquired representations (Raissi et al.,

2019). Generative methods, like variational autoencoders and

generative adversarial networks, let you do “what-if ” studies

by putting together virtual groups of people who would be

treated differently.

The scenario simulation engines that are built on top of

these models serve as platforms for the rehearsal of virtual

therapy. The twin predicts important results including tumor

shrinkage, resistance emergence, and toxicity profiles by listing

potential treatment plans, which may include different medication

combinations, dosage regimes, or sequence orders (Griffiths et al.,

2024). Utilizing reinforcement-learning algorithms allows for

the optimization of therapeutic methods in pursuit of multi-

objective goals, such as maximizing progression-free survival

while minimizing side effects. New patient data is constantly

being used by these algorithms to update policy judgments.

Lastly, simulation at the point of care must be scalable and

have minimal latency, and this can only be achieved with a

solid computing foundation. Cloud-native architectures facilitate

flexible resource allocation, whereas high-performance computing

clusters or GPU-accelerated environments enhance the training

of large-scale mechanistic and AI models. Edge-AI deployments,

when integrated within imaging devices or wearable monitors,

have the capability to preprocess data locally, enabling rapid

interpretation and subsequently transmitting distilled features

back to the central twin (Xu et al., 2025). The integration of these

technical foundations establishes a robust and adaptable platform

for the dynamic rehearsal of therapy digital twins within the field

of precision oncology.

Clinical validation and implementation

These projects possess significant potential; yet, they also

present specific challenges that hinder their application in clinical

environments. For instance, there is a lack of comprehensive real-

time data integration, insufficient validation in prospective clinical

trials, and a lack of clarity regarding the functionality of the

models. To achieve FDA-approved digital twins, it is essential

to ensure that clinical decision-making is safe, effective, and

reliable through comprehensive multi-center validations, precise

uncertainty quantification, transparent reporting, and integration

into regulatory frameworks. Successful clinical use of digital twins

requires their seamless integration of continuous multimodal

data, quick and transparent prediction, assurance of privacy

compliance, thorough validation, and support of clinical decision-

making.

To put dynamic oncology twins into practice, a phased

validation strategy is needed. This strategy entails retrospective

in silico trials, which involve replaying historical treatment

data to measure predictability, and prospective observational

studies, which compare real-time twin predictions with

actual patient outcomes, such as progression-free survival

and response rate. Eventually, randomized trials will be required

to determine whether twin-guided therapy enhances results

compared to standard care, with early glioblastoma and

immunotherapy pilots showing both potential and physician

acceptance (Chaudhuri et al., 2023). The integration of

visual outcome forecasts and explicit uncertainty estimates

into EHR interfaces or tumor boards improves transparency

and trust without increasing the workload. Scalable,

multi-institutional implementation will necessitate secure,
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privacy-preserving designs like federated learning, common APIs,

and ethical supervision.

Governance, ethics, and future
challenges

Protecting patients’ private health information and other

sensitive data from unauthorized parties is of the utmost

importance. Federated learning techniques enable model training

across universities without the exchange of raw data. This preserves

confidentiality while facilitating collaborative learning. End-to-end

encryption, comprehensive audit trails, and differential privacy

protocols are further precautions that mitigate the risk of re-

identification and ensure the model’s accuracy (Khaled et al.,

2025). Comprehending the process of prediction and allowing

physicians to evaluate its reliability remains a significant challenge.

To clarify this, it is necessary to incorporate explainability

tools such as Shapley values or attention visualizations in

complex hybrid models. A shift away from static decision-

support aids and toward adaptive, continuously learning systems

would necessitate new regulatory frameworks. These frameworks

must delineate the distinction between recommendations and

definitive clinical determinations. Formal regulations must ensure

that developers, physicians, and institutions collectively assume

responsibility for collaboratively developed guidelines in an

equitable manner. Training datasets should include diverse patient

demographics and bias auditing at each phase with clear reporting

to improve fairness. Operational challenges, including increased

processing demands and the integration of twin-generated

insights into clinical workflows, can be minimized by employing

surrogate modeling techniques, optimizing coding practices, and

providing specialized training for diverse teams to understand

and apply these insights (Zhang et al., 2025; Hasanzadeh et al.,

2025).

Future directions

By moving beyond individual therapy rehearsal, dynamic

oncology twins have the potential to revolutionize precision

medicine, speed up biomarker discovery, and provide insights

at the population level. Collecting anonymized digital twin

trajectories from a large number of patients may help

researchers find new predictive biomarkers and treatment-

response patterns that are not evident in single-cohort studies.

Continuously adding wearable sensor streams that record

physiological signals, exercise measures assure to improve

twin fidelity, making it possible to watch and intervene in

outpatient settings in real time. Where conventional healthcare

infrastructure is lacking, lightweight twin platforms accessible

through mobile devices and driven by reduced-order models

have the potential to revolutionize cancer treatment in

underserved areas. The foundation for large-scale clinical

use of dynamic twins will be established by large-scale

partnerships like the NCI-DOE Cancer Patient Digital Twins

for Predictive Oncology program, which intends to specify

shared validation standards, interoperable infrastructures, and

regulatory procedures.

Conclusion

Tumor twins, like smart cities, has to move away from

static, one-time models and toward continually learning twins

in order to improve urban infrastructure. These adaptive twins

may leverage cloud-native and edge-AI computing platforms

to integrate multiscale tumor models with streaming clinical,

imaging, and genetic data. This facilitates physicians to dynamically

tailor treatment by simulating therapy regimens in silico. The

revolutionary potential of oncological twins is demonstrated by

early case studies in areas such as adaptive immunotherapy

dose, minimal residual disease monitoring, and chemotherapy

scheduling. In the meantime, as high-performance infrastructures

and data standards become widely available, validated therapy-

rehearsal twins will be able to act as clinical copilots, keeping

up with the changes in tumors and combining the engineering

accuracy of smart cities with AI and precision medicine

improvements. A new age of adaptive, patient-centric cancer

treatment is emerging, and the intersection of these fields is the

clear way forward.
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