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Background: Traditional authorship attribution (AA) research has primarily relied 
on statistical analysis and classification based on stylistic features extracted 
from textual data. Although pre-trained language models like BERT have gained 
prominence in text classification tasks, their effectiveness in small-sample AA 
scenarios remains insufficiently explored. A critical unresolved challenge is 
developing methodologies that effectively integrate BERT with conventional 
feature-based approaches to advance AA research.
Revised objective: This study aims to substantially enhance performance in 
small-sample AA tasks through the strategic combination of traditional feature-
based methods and contemporary BERT-based approaches. Furthermore, 
we  conduct a comprehensive comparative analysis of the accuracy of BERT 
models and conventional classifiers while systematically evaluating how 
individual model characteristics interact within this combination to influence 
overall classification effectiveness.
Methods: We propose a novel integrated ensemble methodology that combines 
BERT-based models with feature-based classifiers, benchmarked against 
conventional ensemble techniques. Experimental validation is conducted using 
two literary corpora, each consisting of works from 10 distinct authors. The 
ensemble framework incorporates five BERT variants, three feature types, and 
two classifier architectures to systematically evaluate model effectiveness.
Results: BERT demonstrated effectiveness in small-sample authorship attribution 
tasks, surpassing traditional feature-based methods. Both BERT-based and 
feature-based ensembles outperformed their standalone counterparts, with 
the integrated ensemble method achieving even higher scores. Notably, the 
integrated ensemble significantly outperformed the best individual model on 
Corpus B—which was not included in the pre-training data— improving the F1 
score from 0.823 to 0.96. It achieved the highest score among all evaluated 
approaches, including standalone models and conventional ensemble 
techniques, with a statistically significant margin (p < 0.012, Cohen’s d = 4.939), 
underscoring the robustness of the result. The pre-training data used in BERT 
had a significant impact on task performance, emphasizing the need for careful 
model selection based not only on accuracy but also on model diversity. These 
findings highlight the importance of pre-training data and model diversity in 
optimizing language models for ensemble learning, offering valuable insights 
for authorship attribution research and the broader development of artificial 
general intelligence systems.

OPEN ACCESS

EDITED BY

Ajey Kumar,  
Symbiosis International (Deemed University), 
India

REVIEWED BY

Simisani Ndaba,  
University of Botswana, Botswana
Endrit Fetahi,  
Universiteti i Prizrenit, Serbia

*CORRESPONDENCE

Mingzhe Jin  
 singane@gmail.com

RECEIVED 09 May 2025
ACCEPTED 08 September 2025
PUBLISHED 22 September 2025

CITATION

Kanda T, Jin M and Zaitsu W (2025) Integrated 
ensemble of BERT- and feature-based 
models for authorship attribution in Japanese 
literary works.
Front. Artif. Intell. 8:1624900.
doi: 10.3389/frai.2025.1624900

COPYRIGHT

© 2025 Kanda, Jin and Zaitsu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  22 September 2025
DOI  10.3389/frai.2025.1624900

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1624900&domain=pdf&date_stamp=2025-09-22
https://www.frontiersin.org/articles/10.3389/frai.2025.1624900/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1624900/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1624900/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1624900/full
mailto:singane@gmail.com
https://doi.org/10.3389/frai.2025.1624900
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1624900


Kanda et al.� 10.3389/frai.2025.1624900

Frontiers in Artificial Intelligence 02 frontiersin.org

KEYWORDS

bidirectional encoder representations from transformers, stylometric features, 
authorship attribution, text classification, integrated ensemble

1 Introduction

Authorship attribution (AA) entails identifying the author of texts 
whose authorship is unknown authorship (Stamatatos, 2009; Zheng 
and Jin, 2022; Xie et  al., 2024). Various studies on AA have been 
conducted, tracing back more than 100 years. Mendenhall (1887) 
counted the number of letters in each word used in a sentence, 
analyzed the relative frequency curves, and demonstrated that the 
curves varied among authors and could be a distinctive characteristic 
of each author. Mendenhall (1901) also demonstrated that Shakespeare 
predominantly used four-letter words, whereas Bacon favored three-
letter words. This finding challenged the theory that Bacon authored 
a series of satirical plays under the pseudonym “Shakespeare” to 
protest against the oppressive government.

In this paper, we refer to datasets related to stylistic analysis—such 
as word length data—as features. They are distinctive techniques or 
devices that an author uses to create a particular effect in a text. These 
are woven throughout the work. Before the 1950s, word, sentence, and 
paragraph lengths, which were easy to quantify, were mainly used for 
statistical analysis. With the development of computational 
environments, many scholars have proposed extracting stylistic 
features from text based on aspects such as character, word, part-of-
speech structure, grammar, and syntax (Yule, 1939; Lagutina et al., 
2019; Neal et al., 2017; Zheng and Jin, 2022; Cammarota et al., 2024). 
Stylistic features that are mechanically aggregated from texts contain 
a lot of noise.

Stylistic features, subsequently referred to as features in this paper, 
are language-dependent. For example, Japanese or Chinese differ from 
Western languages in character forms, writing styles, lack of 
segmentation, and grammatical structures. One of the most evident 
ways in which Japanese or Chinese are unique is the character forms 
and the fact that they are not divided into words. Therefore, the 
elements that appear as features, such as characters, words, and 
phrases, also vary depending on the segmentation method.

AA was first performed in stylistic studies of literary works. Over 
time, it has also been applied to detect fake news, address authorship 
issues, identify plagiarism, and investigate matters in criminal and 
civil law (Zaitsu and Jin, 2023; Cammarota et al., 2024; Zaitsu et al., 
2024). With the rapid development of computer science, powerful 
machine learning classifiers and pre-trained language models (PLMs) 
are being consecutively developed, and the AA environment is 
changing rapidly.

Several classifiers are now commonly used for text classification, 
including penalized logistic regression, support vector machine 
(SVM), random forest (RF), boosting methods (such as AdaBoost, 
XGBoost), neural network approaches, and PLMs such as bidirectional 
encoder representations from transformers (BERT) and its derivatives, 
RoBERTa and DeBERTa. However, because model performance 
depends heavily on task specifics, sample size, and hyperparameters, 
identifying the best model and guiding end users on tool adaptation 
remains challenging.

Against this backdrop, this study focused on significantly 
improving AA scores in small-scale samples and literary works by 

employing an integrated ensemble that combines traditional feature- 
and classifier-based methods with BERT-based methods.

This study addresses the following key research objectives in the 
context of AA for short literary texts:

	(1)	 To evaluate the effectiveness of BERT-based models in AA 
tasks involving limited sample sizes.

	(2)	 To examine whether an integrated ensemble of BERT-based 
and feature-based classifiers can enhance AA accuracy.

	(3)	 To investigate the extent to which the pre-training data of 
BERT models influences task performance.

2 Related research

Since the 1960s, multivariate data analysis methods—using 
features extracted either manually or automatically from texts—have 
been applied to AA tasks. These methods include unsupervised 
techniques, such as principal component analysis, correspondence 
analysis, and clustering, as well as supervised techniques, such as 
linear and nonlinear discriminant analysis.

Since the 1990s, neural networks (Kjell, 1994; Hoorn et al., 1999), 
SVM, RF, boosting classifiers have been employed (Zheng and Jin, 
2022; Xie et al., 2024; Jin and Murakami, 2017; Liu and Jin, 2022). Jin 
and Murakami (2017) demonstrated that RF is more effective than 
SVM for noisy data. They also analyzed the decline in the RF and SVM 
scores as sample size decreased.

Liu and Jin (2022) conducted a comparative analysis of genre and 
author classifications of mixed-genre texts using 14 feature datasets, 
including character, POS tag, token, and token–POS tag n-grams 
(n = 1–3), as well as phrase patterns and comma positions. Seven 
classifiers were employed: SVM, RF, AdaBoost, HDDA, LMT, 
XGBoost, and Lasso. The results indicate that features and classifier 
scores vary across different cases. In other words, even within the 
same corpus, variations arise where combinations such as character 
bigrams with RF yield higher scores, while token unigrams with 
AdaBoost may perform best.

Regarding the use of features and classifiers in AA, there have 
been studies on methods for feature extraction and classifier 
arrangements; however, there has been no significant progress in score 
improvement. Considering this, Jin (2014) proposed an ensemble 
approach that employed multiple feature vectors (character bigram, 
token and POS tag uigram, POS tag bigram, phrase pattern) and 
classifiers (RF, SVM, LMT, ADD, DWD, HDD). This approach was 
tested on three text types: novels, student essays, and personal diaries. 
Four types of features and six classifiers were used to classify the texts. 
The ensemble of 24 combinations showed strong classification 
performance and robustness across text types.

Zaitsu and Jin (2023) investigated whether it is possible to 
distinguish between human-written and ChatGPT-generated 
(versions 3.5 and 4) Japanese academic paper abstracts using 
feature-based stylometric analysis. Their findings revealed that 
Japanese texts produced by ChatGPT exhibit distinct stylistic 
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characteristics that diverge from those found in human-
authored writing.

Building on this foundation, Zaitsu et al. (2024) extended their 
investigation to examine whether fake public comments 
(approximately 600 characters per text) generated by GPT-3.5 and 
GPT-4 could be  differentiated from genuine human-written 
comments using stylometric techniques. In this follow-up study, a 
comprehensive set of stylometric features was employed, including 
phrase patterns, POS bigrams and trigrams, bigrams of postpositional 
particles, the positioning of commas, and the use of function words. 
These features were analyzed using a RF classifier. Although 
classification performance varied depending on the learning paradigm 
(i.e., zero-shot vs. one-shot learning), results from 10-fold cross-
validation demonstrated that the integrated feature set achieved a 
mean accuracy of 88.0% (sd = 3.0%) in identifying both the type of 
large language model (LLM) used and whether the text was human-
written. These findings suggest that fake public comments generated 
by ChatGPT are, to a considerable extent, distinguishable from 
authentic ones. However, the achieved level of accuracy remains 
insufficient for practical deployment. To effectively curb the rapid 
proliferation of AI-generated disinformation and fake news, it is 
imperative to develop more robust and high-performance detection 
systems that go beyond stylometric classification alone.

Ensembles of multiple classification models generally match or 
surpass the best score achieved by any individual model. Moreover, 
ensembles tend to be more robust than single models. Robustness is 
crucial for drawing reliable conclusions in real-world applications. As 
a result, ensemble methods are increasingly being applied in practical 
settings (Bacciu et al., 2019; Lasotte et al., 2022). Bacciu et al. (2019) 
performed text classification using a soft-voting ensemble that 
combined multiple feature sets with a single classifier (SVM). In 
contrast, Lasotte et al. (2022) employed an ensemble of four classifiers 
applied to a single feature set to detect fake news, demonstrating the 
effectiveness of ensemble learning.

In 2019, Google introduced BERT, a model pre-trained on a 
large English corpus (Wikipedia and BookCorpus), which achieved 
state-of-the-art (SOTA) performance across several natural 
language processing (NLP) tasks (Devlin et  al., 2019). BERT is 
based on a transformer architecture and deep neural network, 
trained on large-scale data to embed words and their contextual 
relationships into fixed-length vectors. It embeds words and their 
contextual relations by quantifying them into fixed-length vectors. 
BERT is available in two configurations: BERT-base with 12 
transformer layers and 768 hidden units, and BERT-large with 24 
layers and 1,024 hidden units. While BERT-large offers greater 
capacity for complex NLP tasks, it requires significantly more 
computational resources. BERT-large has more parameters and can 
be adapted to more complex NLP tasks. However, it requires more 
computational resources and time.

BERT’s performance depends heavily on the corpus and language 
used during pre-training. End users typically fine-tune BERT on task-
specific corpora to adapt the model to their needs. Since Devlin et al. 
(2019), numerous BERT-based models have been proposed and 
validated across diverse tasks, including question answering, news 
classification, sentiment analysis, finance, and healthcare. Despite this 
progress, identifying the most suitable model for a given task remains 
an open challenge, as performance varies depending on task 
characteristics and model configurations.

2.1 Comparison of PLMs and classifiers

Numerous pre-trained BERT models have been developed, 
prompting empirical studies aimed at identifying the most suitable 
model for specific tasks. Qasim et al. (2022) conducted binary fake 
news classification using two datasets (COVID-19 fake news and 
extremist–non-extremist datasets) with nine different BERTs. The 
sample size was over 10,000. Performance varied between BERT and 
RoBERTa depending on the dataset, and no definitive conclusion 
could be drawn regarding which model was superior. Similarly, the 
performance of base and large models varied depending on the 
dataset, with large models not always scoring higher than their 
base counterparts.

Karl and Scherp (2023) conducted a comparative analysis of 14 
models, including BERT-, BoW-, graph-, and LSTM-based 
architectures. The SOTA performance depended on the dataset. 
Notably, even the smallest of the four datasets contained more than 
8,000 samples.

Sun et al. (2023) evaluated six and eight PLMs across different 
benchmark datasets. In the benchmark data used, the SOTA 
performance of the BERT models was dataset-dependent. Among the 
seven datasets used, the smallest contained more than 7,000 samples.

Prytula (2024) compared and analyzed the binary classification of 
positive and negative user comments on a dataset of approximately 
11,000 user comments written in Ukrainian, comparing the BERT, 
DistilBERT, XLM-RoBERTa, and Ukr-RoBERTa models. 
XLM-RoBERTa achieved the highest accuracy. However, when 
factoring in training time and overall classification metrics, 
Ukr-RoBERTa was deemed the most effective.

Abbasi et al. (2022) compared the performance of DistilBERT, 
BERT, and an ensemble of classifiers using features to determine the 
authors of news articles. Their results showed that DistilBERT 
outperformed both BERT and the feature-based ensemble. The study 
involved classifying 10 or 20 authors using a dataset of 50,000 
news articles.

2.2 Effect of pre-training data on the BERT 
model

Mishev et  al. (2020) conducted a comparative analysis of 29 
models, including both feature-based methods and BERT-based 
models, for sentiment analysis in finance using two datasets: Financial 
Phrase-Bank and SemEval-2017 Task 5. The results indicated that 
FinBERT, pre-trained on Reuters financial data, underperformed 
compared to BERT models pre-trained on Wikipedia and BookCorpus.

Arslan et al. (2021) used the BBC News and 20News datasets to 
compare the performance of FinBERT, built from financial datasets, 
with five general-purpose PLMs (BERT, DistilBERT, RoBERTa, XLM, 
and XLNet) trained on corpora such as Wikipedia. In addition to 
generic benchmark datasets, they also used proprietary data obtained 
from financial technology partners. The results showed that FinBERT 
did not outperform general-purpose BERT models, even after 
vocabulary adaptation. More than 2,000 data samples were used, even 
for small corpora.

Suzuki et al. (2024) developed FinDeBERTaV2 using financial 
data and compared its performance with GenDeBERTaV2. The results 
demonstrated that GenDeBERTaV2 excelled in general tasks, while 
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FinDeBERTaV2 showed superior performance in 
financial applications.

Vanetik et al. (2024) classified the genre of Russian literature using 
stylistic features and BERT. The results indicated that the classifier 
using stylistic features outperformed BERT, with higher accuracy 
scores. Experimental results also showed that ruBERT, pre-trained on 
a large Russian corpus, underperformed compared to the multilingual 
BERT model. The SONATA dataset used was a random sample of 11 
genres, with 100 samples per genre, and the text chunks were 
extracted manually.

These findings highlight inconsistencies in how pre-training 
corpora affect task performance, underscoring the need for continued 
investigation. Kanda and Jin (2024) conducted a comparative analysis 
of the effects of pre-training data on tasks using literary works for four 
different types of BERT, including one trained on literary texts. Their 
study, reported in Japanese, confirmed that pre-training data had a 
significant impact on task outcomes. Additional experiments and 
analyses are presented in Subsection.

2.3 Ensemble of BERTs

An ensemble of BERT models was also discussed by Devlin et al. 
(2019), the original paper that introduced BERT. Ensembling BERTs 
involves (1) combining results from different models obtained by 
varying fine-tuning datasets or training configurations, and (2) 
aggregating outputs from multiple BERT models created with different 
pre-training data and parameters.

Tanaka et al. (2020) conducted a study using BERT for Japanese 
texts longer than 510 tokens. They extracted 510-token segments by 
shifting the window at regular intervals toward the end of the text to 
create multiple samples. Subsequently, they ensembled the BERT 
results obtained from these samples. The ensemble outperformed the 
single BERT model using only one 510-token segment. In their 
experiment, they used three datasets, each with 2,000 samples, for 
training and testing.

Dang et al. (2020) won the SMM4H Task1 competition with an 
ensemble of 20 results obtained from 10 sets of samples across 10 
cross-validations and two different BERT models.

Abburi et al. (2023) won first prize in the 2023 competition for 
their study on identifying LLM-generated texts using an ensemble of 
DeBERTa, XLM-RoBERTa, RoBERTa, and BERT. The ensemble used 
a classifier that took as input a vector composed of outputs from the 
BERT-based models. The data used came from four datasets 
distributed in the competition, with the smallest sample size 
exceeding 20,000.

2.4 Ensemble of BERT and features

Tanaka et al. (2020) demonstrated that text classification using a 
three-layer neural network on data composed of Bag-of-Words (BoW) 
vectors concatenated with BERT embedding vectors improved 
classification scores. For 510-token inputs, the score increased by 
2.1 points.

Fabien et al. (2020) applied logistic regression to the classification 
outputs of a single BERT model, stylistic features, and sentence 
structure features. However, the ensemble scores were generally lower 

than those of the single BERT model, possibly due to feature 
redundancy or model incompatibility. Their experiment used four 
datasets, and even in the case with the fewest samples per author, the 
count exceeded 900.

Wu et al. (2021) won the competition by combining the outputs 
of BERT and RoBERTa with those from a tree-based model, applied 
to a disease-related question-and-answer dataset. The ensemble’s F1 
score was 3.38 points higher than that of the best-performing 
individual model, RoBERTa_wwm. The training dataset contained 
30,000 samples.

Strøm (2021) detected shifts in authorial style by stacking 
ensembles built from 478-dimensional stylistic features and 
768-dimensional BERT embedding vectors. Their system achieved the 
highest score in the classification task of that year’s competition. 
However, the score improvements over the LightGBM classifier were 
modest: 1.93, 2.86, and 1.01 points across three tasks. The dataset used 
contained over 10,000 samples.

Based on the aforementioned related studies, the research and 
application of AA reveal the following challenges.

	(1)	 Sample issue

The BERT-related studies cited above show that the datasets used 
for evaluating or applying BERT models typically contain thousands 
of samples. For example, Devlin et al. (2019) reported that the smallest 
dataset in the GLUE benchmark contained 2.5 K samples. While large 
datasets are common in large-scale classification systems, real-world 
forensic problems—such as those involving criminal or civil law—
often rely on far fewer samples, sometimes fewer than 10. This 
highlights the need for further research on small-sample scenarios. 
However, no existing studies have directly addressed this challenge.

	(2)	 BERT and challenges related to pre-trained data

Although many pre-trained models have been proposed, no 
consensus has been reached regarding which model performs best 
across tasks. This is because model performance depends on factors 
such as evaluation sample size, task type, and tuning parameters. 
Therefore, further research is needed to guide end users in selecting 
appropriate models and leveraging existing data effectively when 
applying BERT. Several studies have examined how pre-training data 
influences downstream task performance; however, no clear 
conclusions have been drawn. Moreover, the impact of pre-training 
data on tasks involving literary texts remains unexplored.

	(3)	 Ensemble issue

We found no studies that combined outputs from multiple BERT 
models trained on different pre-training corpora with results from 
multiple feature datasets and classifiers. In most of the above studies, 
features were concatenated into a single vector. Unlike topic 
classification, several stylistic features have been proposed for AA; 
however, identifying the most effective features remains challenging, 
as they depend heavily on the writer’s genre and style. Additionally, 
although high-dimensional data are easy to collect, merging them into 
a single dataset can significantly affect the performance of classifiers. 
For example, aggregating character bigrams can result in thousands of 
dimensions. Using ultra-high-dimensional data—formed by 
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horizontally combining multiple feature sets with thousands of 
dimensions—is not advisable when working with small datasets 
containing only tens or hundreds of samples. While some studies have 
explored how to utilize the many available variations of BERT and 
feature-based models, they have yielded only marginal improvements 
with limited practical impact.

Building on the aforementioned challenges, this study presents an 
empirical analysis to evaluate whether an integrated ensemble of 
BERT-based and feature-based models can significantly enhance AA 
in literary texts, particularly for small samples of approximately 500 
tokens. The analysis also examines the impact of BERT’s pre-training 
data and the contribution of individual models within the ensemble.

3 Experiments

We classified two corpora using multiple models composed of 
BERTs and features-based classifiers; then, we applied an integrated 
ensemble of BERT- and feature-based models to the classification 
results. The workflow of this study experiment is shown in Figure 1.

The basic concept underlying these ensembles is collective 
intelligence. Since the 1990s, ensemble learning has been used in 
the field of machine learning to improve performance by combining 
the results of multiple models. Ensembles include voting and 
stacking methods; however, voting methods are most often used to 
integrate the predictions of base models. There are two types of 
voting: hard and soft. Hard voting, also known as majority voting, 
involves aggregating the prediction results of each model and 
selecting the class with the most votes as the final prediction. Soft 
voting involves summing or weighting the probability scores output 
by each model and using the highest score as the final prediction. 
In this study, we used an ensemble method based on soft voting. 

Specifically, the probability vectors, ModelK(x), obtained from 
different models (classifiers or BERT) are summed or averaged as 
shown in Equation 1, and the author with the largest value is 
assigned as the author of index j∗. In the equation, wk is the weight 
of classification model k. We used a vector of 1 when not considering 
weights, and the F1 score of each model when weights 
were considered.

	
( )∗

=
 =   
∑ 1

1argmax K k
kk

j
j w Model X

K 	
(1)

In this study, the results of individual classifiers were probability 
vectors, and the results of each BERT were converted into probability 
vectors using a Softmax function.

3.1 Features and classifiers used

Several features have been proposed for the quantitative analysis 
of writing style and author estimation. We used character-bigram, 
token-unigram, and phrase pattern (Bunsetsu-pattern) as 
representative stylistic features, as demonstrated in previous studies 
(Jin and Murakami, 2017; Liu and Jin, 2022; Zaitsu and Jin, 2023). 
These features, including character bigrams, token unigrams, and 
phrase patterns, are based on fundamental Japanese linguistic units: 
characters, words, and phrases (Bunsetsus). We intentionally limited 
our feature set to these three types to ensure a balanced comparison 
with the number of BERT models, despite the possibility of 
incorporating additional features.

FIGURE 1

The overview of workflow of this study.

https://doi.org/10.3389/frai.2025.1624900
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kanda et al.� 10.3389/frai.2025.1624900

Frontiers in Artificial Intelligence 06 frontiersin.org

	(1)	 Character-bigram

Character n-gram is a dataset that aggregates the patterns of n 
adjacent characters. In this study, to estimate authorship using short 
sentences of 510 tokens (approximately 800 characters), we used the 
most frequently used characters bigram based on the dimensionality 
and sparsity of the data.

	(2)	 Token-unigram

Morphemes were analyzed using the MeCab1 and UniDic2 
dictionaries. Among the n-grams of token, we used the unigram, 
which mainly reflects the characteristics of an author.

	(3)	 Phrase pattern

Many indicators of authorship are also found in the sentence 
syntax. The basic unit of Japanese parsing is a phrase (Bunsetsu). Jin 
(2013) proposed and validated a method that patterned information 
in a phrase. To illustrate for Japanese, consider a sentence, “BERTは
分類に有効である。” (BERT is effective for classification). The 
sentence is split into phrases as “BERT (noun)は (particle)/分類 
(noun)に (particle)/有効 (adjectivalNoun)で (adjective) ある (verb)
。 (punctuation) “. (BERT is/ effective for/ classification). In this 
context, the symbol “/” indicates the phrase boundaries, and the string 
within the parentheses represents the POS tag of the preceding 
morpheme. The first phrase in the sentence, “BERT (noun)は 
(particle) “consists of a noun “BERT” and a particle “は.” The word 
“BERT” is content-dependent; therefore, if it is used as a feature in the 
AA, it will be a noise in the analysis of the author’s characteristics. 
Therefore, the POS tag noun is used in BERT to mask the content 
word. The result, “BERT (noun)は (particle) “, is patterned after “noun 
+ は(particle) “. The particle “は” may change depending on the 
author. This is because using “が “(ga) instead of “は” (wa) does not 
pose a grammatical problem. Words that are not characteristic of the 
writer are masked with their POS tags in phrase patterns. The data 
related to phrase patterns is an aggregation of such patterns 
categorized by type. In Japanese, the usage data of particles and 
punctuation have been demonstrated to be effective features for AA 
in numerous studies (Jin and Zheng, 2020). The phrase pattern can 
capture individual habits, specifically how distinctive elements of a 
writer’s style are combined and used. Although a phrase pattern never 
scores high in author estimation, it is robust to text content and genre 
because content words are masked by their POS tags. In a study on AA 
for texts containing mixed genres (Liu and Jin, 2022), the combination 
of phrase pattern features and a Lasso classifier achieved the highest 
accuracy (0.895) among 14 feature types and seven classifiers tested in 
the comparative analysis. In this experiment, CaboCha3 was used for 
the phrase segmentation process. Morphemes were masked using POS 
tags—excluding particles, punctuation marks, conjunctions, and 
adjectives—based on the syntactic parsing results generated by 
CaboCha. The following presents the core part of the pseudocode for 
processing bunsetsu patterns (Algorithm 1).

1  https://taku910.github.io/mecab/

2  https://clrd.ninjal.ac.jp/unidic/download.html#unidic_bccwj

3  https://taku910.github.io/cabocha/

	(4)	 Classifiers

We used two types of classifiers, Random Forest (RF) and 
AdaBoost (Ada), which have been reported to achieve relatively high 
performance. For RF, we used the default settings of the randomForest 
(ntree = 500, maxnodes = NULL, …) function in the R package 
randomForest. This function is based on the algorithm proposed by 
Breiman (2001). However, although XGBoost is reported to have 
excellent performance among boosting algorithms, our study, which 
focused on using stylistic features, did not obtain any results that 
demonstrated XGBoost’s superior performance over AdaBoost (Liu 
and Jin, 2022). For AdaBoost, we  used the default settings of the 
boosting (boos = TRUE, mfinal = 100, coeflearn = ‘Breiman’…,) 
function in the R package adabag. This function is based on the 
algorithm AdaBoost.M1 (Alfaro et al., 2013).

3.2 Selected PLMs

In this study, we  used several BERT models as pre-trained 
language models (PLMs). BERT is a PLM built on the Transformer 
architecture, taking a fundamentally different approach from 
traditional classifiers. Traditional classifiers rely on extracting features 
from text, representing them as vectors, and applying models such as 
logistic regression. These methods focus solely on frequency-based 
feature extraction, ignoring sequential and contextual information.

BERT generates contextualized word embeddings using a multi-
layer Transformer pre-trained on large text corpora. Its self-attention 
mechanism analyzes token relationships bidirectionally, enabling 
strong context modeling and handling long-range dependencies. 
Pre-training involves Masked Language Modeling (MLM) and Next 
Sentence Prediction (NSP), allowing BERT to learn deep linguistic 
patterns from unlabeled data. Fine-tuning adapts BERT for tasks like 
text classification, achieving high accuracy even with limited labeled 
data through transfer learning.

We used BERT models pre-trained on Japanese corpora, which 
are described below. The multilingual XLM-RoBERTa has been 
released as an advanced variant of BERT. XLM-RoBERTa uses 

ALGORITHM 1

Core pseudocode for parser (Bunsetsu) pattern generation.
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SentencePiece, a tokenizer designed to maintain consistency across 
languages, but it does not fully leverage the linguistic characteristics 
of Japanese. Additionally, the accuracy of SentencePiece has been 
reported to be  lower than that of the Japanese-specific tokenizer 
MeCab. Therefore, this study employed a BERT model specialized for 
the Japanese language.

The following five BERT models were selected based on the 
diversity of the pre-training data used for training and their 
performance. In addition, we  are limited to BERTs trained using 
pre-training data processed with tokenizers that are highly rated 
against the Japanese language.

	(1)	 Japanese BERT trained on Wikipedia4

There are many BERTs pre-trained on the Japanese Wikipedia. 
Based on preliminary analysis, we used the most widely used basic 
version published by Tohoku University that base version of a publicly 
available model pre-trained on data tokenized using MeCab 
and WordPiece.

There are many BERT models pre-trained on the Japanese 
Wikipedia. Based on preliminary analysis, we adopted the most widely 
used basic version — published by Tohoku University as the 
foundation of a publicly available model — which was pre-trained on 
data tokenized with both MeCab and WordPiecev.

	(2)	 Japanese BERT trained on Aozora Bunko5

Koichi Yasuoka has released a pre-trained BERT model trained on 
the Aozora Bunko corpus — a public-domain repository of Japanese 
literary works. From the published variants, we adopted the model 
pre-trained using MeCab tokenization with the UniDic dictionary.

	(3)	 Japanese BERT trained on Aozora Bunko and Wikipedia (see 
text footnote 5, respectively).

Koichi Yasuoka has released BERT models pre-trained on a 
combined corpus of Aozora Bunko and Wikipedia. From these, 
we adopted a model pre-trained on data tokenized using MeCab with 
the UniDic dictionary.

	(4)	 DeBERTa6

He et al. (2021) proposed DeBERTa, an improved version of the 
BERT and RoBERTa models. DeBERTa introduces Disentangled 
Attention, a mechanism that separately encodes word content and 
positional information into distinct vectors. This separation enhances 
contextual representation learning, leading to superior performance 
over standard BERT architectures. Furthermore, DeBERTa employs 
an Enhanced Mask Decoder during pre-training, which explicitly 
incorporates absolute positional data to better align contextual and 
positional features. The objective of this design is to improve the 

4  https://huggingface.co/tohoku-nlp/bert-base-japanese-v2 (MeCab + 

WordPiece).

5  https://github.com/akirakubo/bert-japanese-aozora

6  https://huggingface.co/ku-nlp/deberta-v2-base-japanese

prediction accuracy of masked tokens compared to other conventional 
BERT models.

We used the Japanese DeBERTa V2-base model pre-trained on 
Wikipedia, CC-100, and OSCAR corpora with JUMAN++ 
tokenization.

	(5)	 BERT StockMark7

StockMark Inc. released a BERT model pre-trained on Japanese 
news articles. As new words are created annually in business news, 
unknown words are processed as [UNK] tokens without subword 
settings. We used a model pre-trained on data tokenized using MeCab 
with the NEologd dictionary.

For brevity, we  used the abbreviations TohokuBERT (T), 
AozoraBERT (A), AozoraWikiBERT (AW), DeBERTa (De), and 
StockMarkBERT (S) for the BERTs.

3.3 Used corpora

Two corpora were used in this study: Corpora A and B. Corpus A 
consisted of 10 authors selected from the literary authors available in 
the Aozora Bunko, and 20 works for each author. Corpus A data made 
up approximately 0.03% of the pre-training data in Aozora Bunko. 
Specifically, the corpus contained 20 works by Akutagawa Ryunosuke 
(1892–1927), Izumi Kyoka (1873–1939), Kikuchi Kan (1888–1948), 
Mori Ogai (1862–1922), Natsume Soseki (1867–1916), Sasaki Ajitsuzo 
(1896–1934), Shimazaki Toson (1872–1943), Dazai Osamu (1909–
1948), Okazaki Kido (1872–1939), and Umino Juzo (1897–1949). The 
works were prioritized by those that had already been converted to the 
new script and new kana usage and those that were published in the 
same year.

Corpus B was an electronic version of 20 works in paper form by 
10 writers who are still active in the field and were not used for the 
pre-training of BERT. These authors were Suzuki Kouji (1957-), Kishi 
Yusuke (1959-), Shuichi Yoshida (1968-), Miyabe Miyuki (1960-), 
Morimi Tomihiko (1979-), Ishida Ira (1960-), Murakami Haruki 
(1949-), Murakami Ryu (1976-), Higashino Keigo (1958-) and Minato 
Kanae (1973-).

We conducted experiments to attribute the works of 10 authors 
each using these two corpora of literary works. The total number of 
tokens used was 101,167 for Corpus A and 101,165 for Corpus B.

3.4 Experimental setup and metrics for 
evaluating results

Following previous research, we  used the five-fold cross-
validation. Typically, k-fold cross-validation involves randomly 
dividing the data into k subsets. However, owing to the small sample 
size of our data, random division may bias the balance of class labels. 
Therefore, in this experiment, we used a stratified sampling method 
to divide the dataset into five folds in the following proportions: 
training data (160), validation data (20), and test data (20) per fold. 

7  https://huggingface.co/stockmark/bart-base-japanese-news

https://doi.org/10.3389/frai.2025.1624900
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://huggingface.co/tohoku-nlp/bert-base-japanese-v2
https://github.com/akirakubo/bert-japanese-aozora
https://huggingface.co/ku-nlp/deberta-v2-base-japanese
https://huggingface.co/stockmark/bart-base-japanese-news


Kanda et al.� 10.3389/frai.2025.1624900

Frontiers in Artificial Intelligence 08 frontiersin.org

The number of works by each author for learning and testing in all the 
folders was designed to ensure balance.

In languages where texts are not inherently segmented into 
tokens, such as Japanese and Chinese, processing with BERT 
necessitates tokenization at either the character or morpheme level. 
Although character-level BERT models for Japanese demonstrate 
suboptimal performance, current implementations preprocess texts 
via morphological analysis, treating each morpheme as a discrete 
token. In this study, we morphologically analyzed 200 works each 
from Corpus A and Corpus B using MeCab for morphological 
segmentation. Each morpheme was treated as a single token, with the 
first 510 tokens extracted and formatted as input text for BERT. To 
meet BERT’s maximum input length of 512 tokens, [CLS] and [SEP] 
tokens were prepended and appended, respectively, during the 
conversion of tokenized sequences into input IDs. BERT then 
converted the input into vector embeddings through deep learning 
and output classification results based on those vectors. In this study, 
for fairness, only the first 510 tokens were used for all processes, 
including feature-based methods.

Based on a preliminary analysis of the hyperparameters for fine-
tuning BERT, we set the mini-batch size to 16 and learning rate to 
2e-05 for any BERT and used AdamW as the optimization algorithm. 
The relatively small size of our training dataset necessitated a greater 
number of epochs compared to previous studies that used large-scale 

corpora. Although the number of epochs required for loss convergence 
varied slightly among BERT-based models, the overall trend was 
consistent. As shown in Figure 2, which presents the learning curves 
for TohokuBERT and DeBERTa on both the training and validation 
sets of CorpusB, the validation F₁ score began to stabilize around 
epoch 35. Although extended training would have been preferable 
based on the trend of the validation loss, the number of epochs was 
uniformly set to 40 for all models due to operational constraints. 
While extensive hyperparameter tuning was beyond the scope of this 
study, preliminary experiments confirmed that the chosen 
configuration (batch size = 16, learning rate = 2 × 10−5, epochs = 40) 
yielded consistent results across all models. Although the number of 
epochs required for loss convergence varied slightly among BERT-
based models, the overall trend was consistent. Early stopping was 
not applied.

The most widely used performance measure of a model is the 
macro average of the F1 measure, which balances the recall and 
precision measures. The equations for each evaluation index are as 
follows. The estimation results for author i (i = 1, 2, 3…, M) and other 
authors are shown in the confusion table in Table 1.

	
1

1 M i
i i i i

TPRecall
M TP FN=

 
=  + 

∑
	

(2)

FIGURE 2

Learning curves of F1 score and loss across epochs for TohokuBERT and DeBERTa on CorpusB. (A) Loss vs. epochs for TohokuBERT, (B) F1 score vs. 
epochs for TohokuBERT, (C) Loss vs. epochs for DeBERTa, (D) F1 score vs. epochs for DeBERTa.

https://doi.org/10.3389/frai.2025.1624900
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kanda et al.� 10.3389/frai.2025.1624900

Frontiers in Artificial Intelligence 09 frontiersin.org

	
1

1 M i
i i i i

TPPrecision
M TP FP=

 
=  + 

∑
	

(3)

	

( )2
1 i i

i
i i

Precision Recall
F

Precision Recall
×

=
+ 	

(4)

	 1
11 1M

iiMacro F F
M =

= ∑
	

(5)

The iRecall , iPrecision , and 1iF  mentioned above were the metrics 
used to evaluate the performance of the classification model results for 
each individual class (author) i. M is the number of classes (authors). 

iRecall  (True Positive Rate) is the proportion of actual positives for 
class i correctly identified by the model. iPrecision  is the proportion of 
predicted positives for class i that are true positives. 1iF  is the 
harmonic mean of iPrecision  and iRecall , providing a balanced 
measure of the model’s performance for class i. Hereafter, Macro F1 is 
abbreviated as F1.

4 Results and analysis

4.1 BERT results

We evaluated the performance of the BERT models on the test 
data at the point when performance plateaued on the validation data. 
Table 2 presents the experimental results of BERT on the corpora. The 
highest F1 scores for both corpora are shown in bold. For Corpus A, 
Model AW, pre-trained on Wikipedia and Aozora Bunko, achieved the 
highest score and the smallest standard deviation, followed by Model 
A, which was pre-trained on Aozora Bunko. The F1 scores of both 
models were more than 30 points higher than that of Model T, which 
was trained using only Wikipedia. This result likely reflects the fact 
that Corpus A was included in the pre-training data.8

In Corpus B, Model De achieved the highest F1 score, followed by 
AW and A. The model with the lowest score in both corpora was S, 
which had been pre-trained on business news articles. The fact that 
Model De achieved the highest score for Corpus B suggests that 
Corpus B was not included in its pre-training data, and that Model De 
is more generic. The scores of Models AW and A were higher than 
those of the models pre-trained on Wikipedia and news articles, likely 
because Corpus B is also a literary work. We  believe that this 
performance difference is due to the influence of text style.

8  The dataset and computational source code for this study are available in 

the following GitHub repository https://github.com/mining-jin/Ensemble.

The scores of Model S, pre-trained on Wikipedia and Japanese 
business news articles, were higher for Corpus B than for Corpus 
A. This variation may be attributed to differences in vocabulary and 
grammar characteristic of the period, as most of the works in Corpus 
B were published in the 1990s. These results suggest that pre-training 
data influence performance on individual tasks. Generally, BERT 
performs better when the training data are large and drawn from 
diverse domains; a similar trend was observed in this study.

4.2 Features and classifier results

Experiments on feature extraction from literary works and author 
identification using classifiers were conducted under the same 
conditions as those in the BERT experiment, including the length of 
the works used. The dimensions of the extracted feature datasets were 
4,444 for char-bigram, 3,300 for token-unigram, and 804 for phrase 
pattern. The classification results of the AdaBoost and Random Forest 
classifiers for these feature datasets are listed in Table  3. Feature 
extraction and processing in R were performed using MTMineR (Jin 
and Zheng, 2020).9 The average scores for both corpora did not differ 
significantly. The highest F1 score was achieved by Random Forest 
using token-unigram features, while the lowest was obtained by 
Random Forest using phrase pattern features.

4.3 Ensemble of BERTs

There were 26 possible combinations of two or more of the five 
BERT models. For the weighted ensemble, we used the F1 scores of 
each BERT model. To save space, summary statistics of the F1 scores 
for ensembles from both methods are presented in the second and 
third rows of Table 4. For Corpus A, the maximum ensemble score 
and the mean increased by 2.0 and 13.7 points, respectively. For 
Corpus B, the maximum score and the mean increased by 7.9 and 9.2 
points, respectively. The weighted ensembles did not show any 
improvement in score compared to the unweighted ensembles in 
either corpus. Direct comparison with existing AA methods is 
challenging due to their reliance on large, publicly available datasets, 
primarily in English. To enable a meaningful comparison, we adapted 
established, reproducible methods to our corpus. The results are 
shown in Table 4.

To account for the combinatorial possibilities in ensemble 
construction, the F1 scores of the top 10 ensemble sets are listed on 
the left side of Table 5. For Corpus A, the ensembles {A, S}, {T, A}, {A, 
AW}, {A, De}, {A, AW, De}, and {AW, S} exceeded the maximum F1 
score of any single BERT model. In Corpus B, 22 ensembles surpassed 
the maximum value of 0.820 achieved by a single BERT. The highest 
scores were obtained by {T, A, AW, De}, followed by {A, AW, De, S}, 
{T, A, De, S}, and {T, A, AW, De, S}.

Interestingly, the ensemble with the highest F1 score in both 
corpora included Model S, despite it having the lowest individual 
score among all models. Model S was pre-trained on news articles, 
which differ significantly from the literary style of the target texts. This 

9  https://a3hsn.org/nlptools/

TABLE 1  Confusion table of classification results.

For author i Model output

P N

Real data P TPi FNi

N FPi TNi
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suggests that while ranking models by individual performance is 
useful for ensemble selection, incorporating heterogeneous models 
can also be beneficial.

For both corpora, the ensemble scores of {T, A} were 0.980 and 
0.856, respectively, which are higher than those of Model AW (0.970 
and 0.820, respectively). Wikipedia and Aozora Bunko were used for 
pre-training Models T and A, respectively, while both sources were 
used for Model AW. Nevertheless, the ensemble scores of Models T 
and A were higher than those of Model AW. This again suggests that 
model performance is influenced by the pre-training data and other 
model-specific properties.

4.4 Ensemble results for features and 
classifiers

The ensemble of the six results (1: Ada + Char, 2: Ada + Token, 3: 
Ada + Phrase, 4: RF + Char, 5: RF + Token, and 6: RF + Phrase) of the 
two classifiers (Ada and RF) with three features (char-bigram, token-
unigram, and phrase pattern) yielded 57 results.

The summary statistics of the ensemble results for both corpora 
are presented in Table 4. For both corpora, the maximum F1 scores 
of the ensembles were significantly higher than those of the stand-
alone features and classifiers. For Corpus A, the maximum F1 score 
was 10.1 points higher than those of the single features and classifiers, 
and the average score was 9.1 points higher. For Corpus B, the 
maximum F1 score was 8.9 points higher than those of the single 
features and classifiers, and the average score was 8.7 points higher. 
Table 5 shows the top 10 scoring ensembles. Some combinations of 
features and classifiers in the ensemble included Labels 
3(Ada + Phrase r) and 6(RF + Phrase), which had the lowest scores. 
The reasons for this will be analyzed considering the results of the 
integrated ensemble.

4.5 Integrated ensembles

In the integrated ensemble, we combine results from both BERT- 
and feature-based models. For the five BERT models, the number of 
combinations involving two or more models is 26. For the 

TABLE 2  Results of discrimination of 10 authors by BERT.

Corpus BERT Recall Precision F1

Corpus A TohokuBERT(T) 0.653 ± 0.209 0.640 ± 0.201 0.642 ± 0.201

AozoraBERT(A) 0.973 ± 0.044 0.970 ± 0.067 0.969 ± 0.037

AozoraWikiBERT(AW) 0.973 ± 0.044 0.970 ± 0.048 0.970 ± 0.026

DeBERTa(De) 0.752 ± 0.215 0.680 ± 0.162 0.691 ± 0.153

StockMarkBERT(S) 0.619 ± 0.210 0.600 ± 0.211 0.600 ± 0.187

Corpus B TohokuBERT(T) 0.762 ± 0.151 0.740 ± 0.117 0.744 ± 0.120

AozoraBERT(A) 0.813 ± 0.210 0.770 ± 0.195 0.773 ± 0.167

AozoraWikiBERT(AW) 0.838 ± 0.116 0.820 ± 0.114 0.820 ± 0.074

DeBERTa(De) 0.834 ± 0.118 0.820 ± 0.063 0.823 ± 0.070

StockMarkBERT(S) 0.706 ± 0.126 0.690 ± 0.110 0.692 ± 0.099

Bold values indicate the maximum for each corpus.

TABLE 3  Results of discrimination of 10 authors by features and classifiers.

Corpus Classifiers Features Recall Precision F1

Corpus A

AdaBoost

Char-bigram 0.786 ± 0.188 0.760 ± 0.143 0.766 ± 0.152

Token-unigram 0.767 ± 0.149 0.750 ± 0.097 0.754 ± 0.109

Phrase pattern 0.762 ± 0.116 0.750 ± 0.165 0.747 ± 0.125

RandomForest

Char-bigram 0.792 ± 0.130 0.790 ± 0.179 0.784 ± 0.134

Token-unigram 0.823 ± 0.124 0.810 ± 0.120 0.810 ± 0.094

Phrase pattern 0.714 ± 0.120 0.710 ± 0.185 0.704 ± 0.135

Corpus B

AdaBoost

Char-bigram 0.779 ± 0.125 0.760 ± 0.117 0.761 ± 0.083

Token-unigram 0.772 ± 0.122 0.760 ± 0.079 0.762 ± 0.091

Phrase pattern 0.654 ± 0.131 0.650 ± 0.158 0.647 ± 0.131

RandomForest

Char-bigram 0.780 ± 0.106 0.780 ± 0.215 0.767 ± 0.155

Token-unigram 0.810 ± 0.109 0.800 ± 0.105 0.800 ± 0.090

Phrase pattern 0.668 ± 0.150 0.650 ± 0.178 0.643 ± 0.142

The values in the table represent the mean ± standard deviation from five-fold cross-validation.
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feature-based models, there are six results, and the number of 
combinations involving two or more of them is 57. Since the integrated 
ensemble considers combinations of two or more from a total of 11 
results, the number of such combinations is 1953, which is the total 
number of combinations minus those from the BERT- and feature-
based ensembles.

“Integrated ensemble” refers to the aggregation of all results 
obtained from various aspects. The F1 score statistics for the 
integrated ensembles are presented in Table 4, where the top 50 
results correspond to the integrated ensemble. For Corpus A, the 
highest F1 score was 1.00; for Corpus B, it was 0.96. In Corpus A, 
this score was 19 points higher than that of the single model with 
features; in Corpus B, it was 13.7 points higher than the maximum 
score of the single model, confirming the effectiveness of the 
integrated ensemble. Additionally, the integrated ensemble F1 
scores in both corpora improved by one and two points, respectively, 
compared to (i) the ensemble of BERT results combined with a 
single feature and classifier, and (ii) the ensemble of a single BERT 
result combined with feature and classifier outputs. The results for 
the weighted ensemble were nearly identical. For comparison, the 
results of both ensemble methods—Ensemble One Feature & 
Classifiers with BERTs and Ensemble One BERT and Features & 
Classifiers—were also computed and summarized in Table 4. The 
proposed method achieved a significantly higher score than these 
ensemble approaches.

To evaluate the improvement of the proposed method based on 
the mean values presented in Table  4, we  conducted Welch’s 
two-sample t-tests and compared the proposed method (I) with four 
baseline approaches: Ensemble BERTs (B), Ensemble Features and 
Classifiers (E), Ensemble One Feature & Classifiers with BERTs (G), 
and Ensemble One BERT and Features & Classifiers (H). The results 
of Welch’s two-sample t-tests for Corpus A are as follows: I vs. B 
(p = 0.0001, Cohen’s d = 0.88), I  vs. E (p < 2.2 × 10−16, Cohen’s 
d = 4.168), I  vs. G (p = 0.017, Cohen’s d = 4.546), and I  vs. H 
(p = 3.2 × 10−7, Cohen’s d = 1.202). For Corpus B are as follows: I vs. 
B (p = 4.2 × 10−15, Cohen’s d = 3. 232), I vs. E (p < 2.2 × 10−16, Cohen’s 

d = 3. 631), I  vs. G (p = 0.012, Cohen’s d = 4.939), and I  vs. H 
(p = 3.3 × 10−15, Cohen’s d = 2.718).

All pairwise comparisons, except I vs. G in both corpora, showed 
statistically significant differences (p < 0.001). For the I  vs. G 
comparison, the p-values were < 0.02  in both corpora, which are 
below the standard 0.05 significance level.

Figure 3 presents box plots of F1 scores for both corpora. The 
top 50 results are shown for methods with F1 scores greater than 0.50. 
The integrated ensemble (I) demonstrates significantly higher F1 
scores and substantially lower score variance compared to the baseline 
methods, as evidenced by the box plot distributions.

To facilitate the discussion of ensemble combinations, the 
top 10 integrative ensembles are listed in Table 5. These top 10 
BERT model combinations exhibited different trends for Corpus 
A and Corpus B, as discussed in Subsection 4.2. The feature and 
classifier combinations included either Label 3 (Ada + Phrase) or 
Label 6 (RF + Phrase). Char-bigram and token-unigram features 
share some overlapping information—for example, a two-letter 
token is included in the char-bigram. However, the phrase pattern 
differs from these two features in that it can suppress textual 
topics more effectively, since the content words in a phrase are 
masked by their POS tags. We  believe this property enhances 
ensemble performance. The last row of Table 5 summarizes the 
results of the ensemble across all models. These results indicate 
that the ensemble scores were consistently higher than those of 
individual models, although they were just one point below the 
highest score.

5 Discussion

5.1 Performance and effectiveness of the 
integrated ensemble

For Corpus A, Models A and AW were included in the 
pre-training data. Therefore, we considered excluding these two 

TABLE 4  Statistics of F1 values for BERT-based and feature-based ensembles and integrated ensembles.

Method Corpus A Corpus B

mean ± sd max mean ± sd max

A: BERTs 0.775 ± 0.181 0.970 0.770 ± 0.055 0.823

B: Ensemble BERTs (Kanda and Jin, 2024) 0.911 ± 0.091 0.990 0.861 ± 0.030 0.902

C: Weighted Ensemble BERTs 0.910 ± 0.096 0.980 0.861 ± 0.029 0.899

D: Features and Classifiers 0.761 ± 0.036 0.810 0.730 ± 0.067 0.800

E: Ensemble Features and Classifiers (Jin, 2014) 0.852 ± 0.033 0.912 0.817 ± 0.039 0.889

F: Weighted Ensemble of Features and Classifiers 0.851 ± 0.034 0.912 0.828 ± 0.033 0.889

G: Ensemble One Feature and Classifiers and

BERTs (Strøm, 2021)
0.934 ± 0.040 0.970 0.887 ± 0.044 0.920

H: Ensemble One BETR and Features and

Classifiers (Wu et al., 2021; Abbasi et al., 2022)
0.834 ± 0.127 0.990 0.814 ± 0.052 0.901

I: Integrated Ensemble (proposed method) 0.991 ± 0.003 1.000 0.957 ± 0.005 0.960

J: Integrated Weighted Ensemble (proposed method) 1.000 ± 0.000 1.000 0.953 ± 0.005 0.960

The mean and standard deviation (sd) of the top 50 are used for methods with F1 values greater than 50. The values represent the mean, sd, max obtained using the method indicated at the 
beginning of each row, applied to both corpora.
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TABLE 5  Top 10 F1 scores for ensemble and integrative ensemble results.

Corpus

BERTs Features and Classifiers Integrated Ensemble
(Proposed Method)

Ensemble Labels F1 Ensemble Labels F1 Ensemble Labels F1

Corpus A {A, S} 0.990 {1, 3, 5} 0.912 {A, S | 3,5} 1.000

{T, A} 0.980 {1, 3, 4, 5} 0.912 {A, S | 3,6} 1.000

{A, AW} 0.980 {1, 3, 4, 5, 6} 0.912 {A, S | 4, 6} 1.000

{A, De} 0.980 {1, 3, 5, 6} 0.901 {A, S | 5, 6} 1.000

{AW, S} 0.980 {1, 3, 4} 0.893 {A, S | 3, 5, 6} 1.000

{A, AW, De} 0.980 {1, 2, 3, 6} 0.883 {A, S | 4, 5, 6} 1.000

{T, A, AW} 0.970 {1, 2, 3, 4, 6} 0.883 {T, A | 3, 6} 0.990

{A, AW, S} 0.970 {1, 2, 3, 5, 6} 0.883 {T, A | 1, 3, 6} 0.990

{T, A, AW, De} 0.970 {1, 2, 3, 4, 5, 6} 0.883 {T, A | 3, 4, 6} 0.990

{T, A, AW, S} 0.970 {1, 3, 6} 0.882 {T, A | 3, 5, 6} 0.990

All Models 0.940 All Models 0.883 All Models 0.990

Corpus B {T, A, AW, De} 0.902 {1, 2, 6} 0.889 {T, De | 1, 2} 0.960

{A, AW, De, S} 0.901 {1, 2, 4, 6} 0.889 {T, AW | 1, 2} 0.960

{T, A, De, S} 0.894 {1, 2, 5, 6} 0.889 {T, AW | 1, 2, 4} 0.960

{T, A, AW, De, S} 0.891 {1, 2, 4, 5, 6} 0.889 {T, AW, De | 1, 2, 4, 6} 0.960

{T, AW, De, S} 0.89 {1, 2, 4} 0.869 {T, AW, De | 1, 2, 4, 5, 6} 0.960

{T, A, AW} 0.882 {4, 5, 6} 0.866 {AW, De, S | 1, 2} 0.960

{T, AW, De} 0.882 {1, 4, 5, 6} 0.859 {AW, De, S | 1, 6} 0.960

{T, A, AW, S} 0.881 {1, 2, 5} 0.858 {AW, De, S | 1, 2, 4} 0.960

{A, AW, De} 0.88 {1, 2, 4, 5} 0.858 {AW, De, S | 1, 2, 5} 0.960

{AW, De} 0.88 {1, 2, 3, 4} 0.855 {AW, De, S | 1, 2, 6} 0.960

All Models 0.891 All Models 0.855 All Models 0.950

1: Ada + Char, 2: Ada + Token, 3: Ada + Phrase, 4: RF + Char, 5: RF + Token, and 6: RF + Phrase, A: AozoraB, AW: AozoraWikiB, De: DeBERTa, S: StockMarkB, T: TohokuB.

FIGURE 3

Box plot of F1 scores for both corpora.
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models from the integrated ensemble for Corpus A. The highest 
F1 score achieved by the ensemble excluding these models was 
0.92, observed in the combinations {T, De 1, 3, 5, 6}, {T, S 1, 3, 5, 
6}, and {De, S 1, 3, 5}. This score is 22.9 points and 11 points higher 
than the best scores of the standalone BERT models (0.691) and 
the feature-classifier combinations (0.810), respectively. 
Furthermore, it is 14.7 points higher than the best score (0.773) of 
the BERT ensemble {De, S} excluding Models A and AW, and 0.8 
points higher than the best score (0.912) of the feature-
classifier ensemble.

For Corpus B, the integrated ensemble results were 13.7 and 16 
points higher than the highest scores of the standalone BERT model 
(0.823) and the feature-classifier combinations (0.800), respectively. 
Additionally, the score was 5.8 and 7.1 points higher than the best 
results of the BERT model ensemble (0.902) and the feature-classifier 
ensemble (0.889), respectively. Thus, the integrated ensemble 
significantly outperformed the individual models on both corpora. 
This result also surpasses that of an ensemble of multiple BERT 
models with a single feature set, or a single BERT model with 
multiple classifiers.

To further validate the robustness of our integrated ensemble 
method (I), we conducted Welch’s two-sample t-tests comparing it 
with four baseline ensembles (B, E, G, H). The results showed that 
method I  significantly outperformed B, E, and H (p < 0.001). In 
contrast, the comparison between I and G yielded a relatively higher, 
yet still statistically significant, p-value (p < 0.02, which is still below 
the 0.05 threshold), likely due to G’s limited sample size (n = 6). These 
findings, supported by both F1 scores and statistical testing, confirm 
that the observed performance differences are unlikely to be due to 
random variation.

However, incorporating all models into an ensemble does not 
always lead to improved performance. As shown in Table 5, the F1 
score for the ensemble of all BERT models is 0.91, which is 8 points 
lower than the 0.99 result obtained by ensembling the best models, A 
and S. A similar trend was also observed with both the feature-based 
and integrated ensembles. In some cases, the individual characteristics 

of certain models may negatively impact the overall score. 
Nonetheless, incorporating more diverse and high-performing 
models has the potential to further enhance the effectiveness of the 
integrated ensemble.

5.2 Factors behind ensemble effectiveness: 
model diversity and author-level analysis

The ensemble effect arises from the fact that individual models 
learn different aspects of the data, enabling them to complement one 
another when combined. For example, the ensemble score of BERT 
models T and A—each trained on distinct pre-training datasets—was 
higher than that of BERT model AW, which was pre-trained on a 
combination of those datasets. This indicates that differences in 
pre-training corpora, tokenizer design (e.g., MeCab vs. SentencePiece), 
and architectural modifications (e.g., DeBERTa’s disentangled 
attention) introduce diverse inductive biases that are beneficial for 
ensemble diversity.

As analyzed in Sections 4.3, 4.4, and 4.5, Model S yielded the 
lowest score among the BERT models, while Ada + Phrase and 
RF + Phrase produced the lowest scores among the feature-based 
models. Nevertheless, these models contributed significantly to 
achieving the highest scores in both their respective ensembles and 
the integrated ensemble. These findings suggest that both individual 
performance and the intrinsic characteristics of a model are critical 
when constructing effective ensembles.

To further investigate this phenomenon, we performed an author-
level error analysis based on F1 scores. Given that the number of 
models used—including ensemble combinations—exceeds 2,000 per 
corpus, we focused on the two highest-scoring ensemble cases for 
each corpus. As shown in Table 5, the top-performing ensemble for 
Corpus A was {A, S | 3, 5}, and for Corpus B, it was {T, De | 1, 2}. 
We analyzed the behavior of these ensembles and their constituent 
models across individual authors.

TABLE 6  F1 scores by author of the integrated ensemble model {A, S|3, 5} on Corpus A.

Author’s  
last name

A:
AozoraB

S:
StockMarkB

3:
Ada_Pharse

5:
RF_Token

Mean (A, S, 3, 5)
± SD

Ensemble
{A, S | 3, 5}

Akutagawa 0.952 0.421 0.737 0.696 0.691 ± 0.218 1.000

Izumi 0.947 0.800 0.737 0.900 0.887 ± 0.095 1.000

Kikuchi 0.889 0.737 0.900 0.737 0.775 ± 0.091 1.000

Mori 1.000 0.348 0.842 0.824 0.749 ± 0.282 1.000

Natsume 1.000 0.588 0.700 0.800 0.797 ± 0.175 1.000

Sasaki 1.000 0.870 0.909 0.909 0.922 ± 0.055 1.000

Shimazaki 1.000 0.455 0.615 0.857 0.792 ± 0.243 1.000

Dazai 0.952 0.762 0.857 0.889 0.873 ± 0.079 1.000

Okamoto 0.952 0.400 0.588 0.632 0.654 ± 0.229 1.000

Umino 1.000 0.625 0.588 0.857 0.835 ± 0.195 1.000

mean 0.969 0.601 0.747 0.810 1.000

SD 0.037 0.187 0.125 0.094

Bold values represent both the highest and lowest scores.
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Table 6 presents the author-wise F1 scores for the ensemble 
{A, S | 3, 5} and its constituent models using Corpus A. Although 
Model A was pre-trained on data that included Corpus A, none of 
its individual author scores reached 1.0. However, the ensemble 
achieved perfect scores across all authors. Sasaki had the highest 
average score across the four models, consistently receiving top 
scores. In contrast, Okamoto had the lowest average score of 0.65, 
though the ensemble improved this to 1.0. The score variance 
among models for Okamoto was relatively large, possibly due to 
the inclusion of Corpus A in the pre-training data. The difference 
in average F1 scores between Sasaki and Okamoto was 27.7  
points, indicating substantial variability in author-level 
classification performance.

Table 7 presents the author-wise scores for the ensemble {T, De | 1, 
2} and its constituent models using Corpus B. Miyabe had the lowest 
average score of 0.690, which improved to 0.9 through ensembling. In 
contrast, Ishida had the highest average score of 0.858, which reached 
a perfect 1.0 with the ensemble. The difference in the average scores of 
the two authors across individual models was 16.8 points. While this 
was smaller than the difference observed in Corpus A, it was still 
notable. This may be attributed to the fact that Corpus B was not used 
in BERT pre-training and that most texts were written in the 1990s, 
aligning more closely with the temporal characteristics of the 
pre-training data for these models.

5.3 Impact of pre-training data and corpus 
characteristics

As shown in the last row of Table 5, the score for the integrated 
ensemble of all models was slightly lower than the highest score 
achieved by any individual ensemble. Nevertheless, it still represented 
a substantial improvement over the best-performing single model. 
Specifically, compared to the highest scores achieved by individual 
BERT and feature-based classifiers—both unaffected by ensemble 
effects—the score for Corpus B improved by 12.7 points. Our 

proposed method also outperformed the BERT model ensemble by 3 
points and the feature-based ensemble by 6.1 points.

The choice of pre-training data in BERT models has a notable 
impact on downstream performance. For instance, in Corpus A, 
Models A and AW achieved scores that were 27.8 points higher than 
those of other models, primarily because Corpus A was included in 
their pre-training data. In contrast, for Corpus B, Models T, De, and S 
exhibited score increases of 10.2, 13.2, and 9.2 points, respectively, 
compared to their performance on Corpus A. This improvement can 
be attributed to the temporal alignment between Corpus B—which 
consists of works published after 1990—and the pre-training data used 
for these models. Corpus A, by comparison, contains texts written 
before 1950, making it less representative of the linguistic patterns 
captured during pre-training.

In this study, the F1 score for author attribution across 10 Japanese 
literary authors, using texts of approximately 510 tokens, exceeded 
0.96. This result is comparable to those reported in previous studies 
using Corpus A (Jin and Murakami, 2017) and full-length novels for 
feature-based classification (Liu and Jin, 2022), demonstrating the 
effectiveness of our approach even with shorter text segments.

5.4 Limitations and future directions

This study was conducted under certain constraints: we used two 
corpora, five BERT models, three feature sets, and two classifiers. Our 
primary focus was to evaluate the effectiveness of the integrated ensemble, 
and we did not examine whether the specific BERT models, features, or 
classifiers employed were optimal choices. Although ensemble scores 
varied depending on the combination of constituent models, the overall 
effectiveness of the integrated ensemble remains evident.

Our analysis was limited to the first 510 tokens of each literary 
work, serving as a foundational step toward forensic applications 
that attribute authorship from short texts (Zaitsu and Jin, 2023; 
Zaitsu et al., 2024). This context presents further challenges, such 
as attribution from even shorter texts and understanding how text 

TABLE 7  F1 scores by author of the integrated ensemble model {T, De|1, 2} on Corpus B.

Author’s  
last name

T:
TohokuB

De:
DeBERa

1:
Ada_Pharse

2:
RF_Token

mean(T, De, 1, 2)
± sd

Ensemble
{T, De | 1, 2}

Suzuki 0.737 0.800 0.870 0.727 0.783 ± 0.066 1.000

Kishi 0.522 0.800 0.900 0.737 0.740 ± 0.160 1.000

Yoshida 0.762 0.857 0.800 0.800 0.805 ± 0.039 1.000

Miyabe 0.625 0.667 0.706 0.762 0.690 ± 0.058 0.939

Morimi 0.636 0.889 0.737 0.947 0.802 ± 0.142 0.967

Ishida 0.900 0.889 0.824 0.818 0.858 ± 0.043 1.000

Murakami_H 0.842 0.900 0.700 0.778 0.805 ± 0.086 0.899

Murakami_R 0.842 0.842 0.737 0.636 0.764 ± 0.099 0.947

Higashino 0.727 0.783 0.667 0.778 0.739 ± 0.054 0.967

Minato 0.842 0.800 0.667 0.632 0.735 ± 0.102 0.890

Mean 0.744 0.823 0.761 0.762 0.960

SD 0.120 0.070 0.083 0.091

Bold values represent both the highest and lowest scores.
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length affects classification accuracy. Meanwhile, authorial stylistic 
indicators are distributed throughout an entire text, and Tanaka 
et al. (2020) showed that BERT may not sufficiently capture these 
signals within a 510-token window. To address this, we  plan to 
explore chunk-wise ensembling, which aims to improve 
performance on longer texts while balancing computational 
efficiency. This method involves dividing each text into 
non-overlapping 510-token blocks, extracting BERT outputs for 
each chunk, and aggregating predictions via majority voting. 
We also found that weighted ensembling—using model scores as 
weights—did not outperform the unweighted approach. These 
findings suggest that future research is needed to refine ensemble 
strategies and optimize model selection.

6 Conclusion

As the number of classification models increases, so does the 
need to apply them effectively to a AA. To address this, we examined 
the effectiveness of an integrative ensemble method that combines 
BERT-based and feature-based approaches in a small-sample AA 
task. Additionally, we analyzed the impact of BERT pre-training 
data on task performance, as well as the influence of individual 
models on ensemble outcomes. The corpora consist of two sets of 
self-generated literary works. For the integrated ensemble, we used 
five BERT models, three types of features, and two classifiers. A 
summary of the results is presented below:

	•	 BERT proved more effective than traditional feature-based 
classifiers for AA in short literary works, demonstrating its utility 
even in small-sample scenarios.

	•	 Both BERT-based and feature-based classifier ensembles 
outperformed their standalone counterparts, with the proposed 
integrated ensemble method achieving even higher scores. 
Notably, when applied to a corpus excluded from the pre-training 
data, the integrated ensemble elevated the F1 score from 0.823 to 
0.96—an improvement of approximately 14 points—surpassing 
the performance of the best individual model. It achieved the 
highest score among all evaluated approaches, including 
standalone models and conventional ensemble techniques, with 
a statistically significant margin (p < 0.012), underscoring the 
robustness of the result.

	•	 We confirmed that the pre-training data used for BERT 
significantly impacts task performance. Furthermore, in 
ensemble learning, individual models influence final results not 
only through their performance but also through the diversity 
of their inherent characteristics, highlighting the importance of 
considering both factors in model selection.

These findings highlight the critical role of model diversity and 
pre-training data in ensemble learning, and propose effective 
strategies for harnessing the growing heterogeneity of classification 
models. The insights and empirical results presented herein extend 
beyond authorship attribution in short literary texts, offering 
practical relevance to forensic analyses of brief communications and 
the detection of machine-generated content produced by large 
language models. Moreover, as agent-based AI systems—comprising 

multi-expert frameworks, multi-agent architectures, and LLM-driven 
agents—gain increasing prominence in addressing complex tasks 
(Chen et al., 2024; Tran et al., 2025), the conceptual contributions 
and methodological advances of this study provide valuable 
perspectives that may inform and enhance future research in 
this domain.
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