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Background: Traditional authorship attribution (AA) research has primarily relied
on statistical analysis and classification based on stylistic features extracted
from textual data. Although pre-trained language models like BERT have gained
prominence in text classification tasks, their effectiveness in small-sample AA
scenarios remains insufficiently explored. A critical unresolved challenge is
developing methodologies that effectively integrate BERT with conventional
feature-based approaches to advance AA research.

Revised objective: This study aims to substantially enhance performance in
small-sample AA tasks through the strategic combination of traditional feature-
based methods and contemporary BERT-based approaches. Furthermore,
we conduct a comprehensive comparative analysis of the accuracy of BERT
models and conventional classifiers while systematically evaluating how
individual model characteristics interact within this combination to influence
overall classification effectiveness.

Methods: We propose a novel integrated ensemble methodology that combines
BERT-based models with feature-based classifiers, benchmarked against
conventional ensemble techniques. Experimental validation is conducted using
two literary corpora, each consisting of works from 10 distinct authors. The
ensemble framework incorporates five BERT variants, three feature types, and
two classifier architectures to systematically evaluate model effectiveness.
Results: BERT demonstrated effectivenessin small-sample authorship attribution
tasks, surpassing traditional feature-based methods. Both BERT-based and
feature-based ensembles outperformed their standalone counterparts, with
the integrated ensemble method achieving even higher scores. Notably, the
integrated ensemble significantly outperformed the best individual model on
Corpus B—which was not included in the pre-training data— improving the F1
score from 0.823 to 0.96. It achieved the highest score among all evaluated
approaches, including standalone models and conventional ensemble
techniques, with a statistically significant margin (p < 0.012, Cohen’s d = 4.939),
underscoring the robustness of the result. The pre-training data used in BERT
had a significant impact on task performance, emphasizing the need for careful
model selection based not only on accuracy but also on model diversity. These
findings highlight the importance of pre-training data and model diversity in
optimizing language models for ensemble learning, offering valuable insights
for authorship attribution research and the broader development of artificial
general intelligence systems.
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1 Introduction

Authorship attribution (AA) entails identifying the author of texts
whose authorship is unknown authorship (Stamatatos, 2009; Zheng
and Jin, 2022; Xie et al., 2024). Various studies on AA have been
conducted, tracing back more than 100 years. Mendenhall (1887)
counted the number of letters in each word used in a sentence,
analyzed the relative frequency curves, and demonstrated that the
curves varied among authors and could be a distinctive characteristic
of each author. Mendenhall (1901) also demonstrated that Shakespeare
predominantly used four-letter words, whereas Bacon favored three-
letter words. This finding challenged the theory that Bacon authored
a series of satirical plays under the pseudonym “Shakespeare” to
protest against the oppressive government.

In this paper, we refer to datasets related to stylistic analysis—such
as word length data—as features. They are distinctive techniques or
devices that an author uses to create a particular effect in a text. These
are woven throughout the work. Before the 1950s, word, sentence, and
paragraph lengths, which were easy to quantify, were mainly used for
statistical analysis. With the development of computational
environments, many scholars have proposed extracting stylistic
features from text based on aspects such as character, word, part-of-
speech structure, grammar, and syntax (Yule, 1939; Lagutina et al.,
2019; Neal et al., 2017; Zheng and Jin, 2022; Cammarota et al., 2024).
Stylistic features that are mechanically aggregated from texts contain
alot of noise.

Stylistic features, subsequently referred to as features in this paper,
are language-dependent. For example, Japanese or Chinese differ from
Western languages in character forms, writing styles, lack of
segmentation, and grammatical structures. One of the most evident
ways in which Japanese or Chinese are unique is the character forms
and the fact that they are not divided into words. Therefore, the
elements that appear as features, such as characters, words, and
phrases, also vary depending on the segmentation method.

AA was first performed in stylistic studies of literary works. Over
time, it has also been applied to detect fake news, address authorship
issues, identify plagiarism, and investigate matters in criminal and
civil law (Zaitsu and Jin, 2023; Cammarota et al., 2024; Zaitsu et al.,
2024). With the rapid development of computer science, powerful
machine learning classifiers and pre-trained language models (PLMs)
are being consecutively developed, and the AA environment is
changing rapidly.

Several classifiers are now commonly used for text classification,
including penalized logistic regression, support vector machine
(SVM), random forest (RF), boosting methods (such as AdaBoost,
XGBoost), neural network approaches, and PLMs such as bidirectional
encoder representations from transformers (BERT) and its derivatives,
RoBERTa and DeBERTa. However, because model performance
depends heavily on task specifics, sample size, and hyperparameters,
identifying the best model and guiding end users on tool adaptation
remains challenging.

Against this backdrop, this study focused on significantly
improving AA scores in small-scale samples and literary works by
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employing an integrated ensemble that combines traditional feature-
and classifier-based methods with BERT-based methods.

This study addresses the following key research objectives in the
context of AA for short literary texts:

(1) To evaluate the effectiveness of BERT-based models in AA
tasks involving limited sample sizes.

(2) To examine whether an integrated ensemble of BERT-based
and feature-based classifiers can enhance AA accuracy.

(3) To investigate the extent to which the pre-training data of
BERT models influences task performance.

2 Related research

Since the 1960s, multivariate data analysis methods—using
features extracted either manually or automatically from texts—have
been applied to AA tasks. These methods include unsupervised
techniques, such as principal component analysis, correspondence
analysis, and clustering, as well as supervised techniques, such as
linear and nonlinear discriminant analysis.

Since the 1990s, neural networks (Kjell, 1994; Hoorn et al., 1999),
SVM, RE boosting classifiers have been employed (Zheng and Jin,
2022; Xie et al., 2024; Jin and Murakami, 2017; Liu and Jin, 2022). Jin
and Murakami (2017) demonstrated that RF is more effective than
SVM for noisy data. They also analyzed the decline in the RF and SVM
scores as sample size decreased.

Liuand Jin (2022) conducted a comparative analysis of genre and
author classifications of mixed-genre texts using 14 feature datasets,
including character, POS tag, token, and token-POS tag n-grams
(n =1-3), as well as phrase patterns and comma positions. Seven
classifiers were employed: SVM, RE, AdaBoost, HDDA, LMT,
XGBoost, and Lasso. The results indicate that features and classifier
scores vary across different cases. In other words, even within the
same corpus, variations arise where combinations such as character
bigrams with RF yield higher scores, while token unigrams with
AdaBoost may perform best.

Regarding the use of features and classifiers in AA, there have
been studies on methods for feature extraction and classifier
arrangements; however, there has been no significant progress in score
improvement. Considering this, Jin (2014) proposed an ensemble
approach that employed multiple feature vectors (character bigram,
token and POS tag uigram, POS tag bigram, phrase pattern) and
classifiers (RE, SVM, LMT, ADD, DWD, HDD). This approach was
tested on three text types: novels, student essays, and personal diaries.
Four types of features and six classifiers were used to classify the texts.
The ensemble of 24 combinations showed strong classification
performance and robustness across text types.

Zaitsu and Jin (2023) investigated whether it is possible to
distinguish between human-written and ChatGPT-generated
(versions 3.5 and 4) Japanese academic paper abstracts using
feature-based stylometric analysis. Their findings revealed that
Japanese texts produced by ChatGPT exhibit distinct stylistic
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characteristics that diverge from those found in human-
authored writing.

Building on this foundation, Zaitsu et al. (2024) extended their
fake
(approximately 600 characters per text) generated by GPT-3.5 and

investigation to examine whether public comments
GPT-4 could be differentiated from genuine human-written
comments using stylometric techniques. In this follow-up study, a
comprehensive set of stylometric features was employed, including
phrase patterns, POS bigrams and trigrams, bigrams of postpositional
particles, the positioning of commas, and the use of function words.
These features were analyzed using a RF classifier. Although
classification performance varied depending on the learning paradigm
(i.e., zero-shot vs. one-shot learning), results from 10-fold cross-
validation demonstrated that the integrated feature set achieved a
mean accuracy of 88.0% (sd = 3.0%) in identifying both the type of
large language model (LLM) used and whether the text was human-
written. These findings suggest that fake public comments generated
by ChatGPT are, to a considerable extent, distinguishable from
authentic ones. However, the achieved level of accuracy remains
insufficient for practical deployment. To effectively curb the rapid
proliferation of Al-generated disinformation and fake news, it is
imperative to develop more robust and high-performance detection
systems that go beyond stylometric classification alone.

Ensembles of multiple classification models generally match or
surpass the best score achieved by any individual model. Moreover,
ensembles tend to be more robust than single models. Robustness is
crucial for drawing reliable conclusions in real-world applications. As
aresult, ensemble methods are increasingly being applied in practical
settings (Bacciu et al., 2019; Lasotte et al., 2022). Bacciu et al. (2019)
performed text classification using a soft-voting ensemble that
combined multiple feature sets with a single classifier (SVM). In
contrast, Lasotte et al. (2022) employed an ensemble of four classifiers
applied to a single feature set to detect fake news, demonstrating the
effectiveness of ensemble learning.

In 2019, Google introduced BERT, a model pre-trained on a
large English corpus (Wikipedia and BookCorpus), which achieved
state-of-the-art (SOTA) performance across several natural
language processing (NLP) tasks (Devlin et al., 2019). BERT is
based on a transformer architecture and deep neural network,
trained on large-scale data to embed words and their contextual
relationships into fixed-length vectors. It embeds words and their
contextual relations by quantifying them into fixed-length vectors.
BERT is available in two configurations: BERT-base with 12
transformer layers and 768 hidden units, and BERT-large with 24
layers and 1,024 hidden units. While BERT-large offers greater
capacity for complex NLP tasks, it requires significantly more
computational resources. BERT-large has more parameters and can
be adapted to more complex NLP tasks. However, it requires more
computational resources and time.

BERT’s performance depends heavily on the corpus and language
used during pre-training. End users typically fine-tune BERT on task-
specific corpora to adapt the model to their needs. Since Devlin et al.
(2019), numerous BERT-based models have been proposed and
validated across diverse tasks, including question answering, news
classification, sentiment analysis, finance, and healthcare. Despite this
progress, identifying the most suitable model for a given task remains
an open challenge, as performance varies depending on task
characteristics and model configurations.
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2.1 Comparison of PLMs and classifiers

Numerous pre-trained BERT models have been developed,
prompting empirical studies aimed at identifying the most suitable
model for specific tasks. Qasim et al. (2022) conducted binary fake
news classification using two datasets (COVID-19 fake news and
extremist-non-extremist datasets) with nine different BERTs. The
sample size was over 10,000. Performance varied between BERT and
RoBERTa depending on the dataset, and no definitive conclusion
could be drawn regarding which model was superior. Similarly, the
performance of base and large models varied depending on the
dataset, with large models not always scoring higher than their
base counterparts.

Karl and Scherp (2023) conducted a comparative analysis of 14
models, including BERT-, BoW-, graph-, and LSTM-based
architectures. The SOTA performance depended on the dataset.
Notably, even the smallest of the four datasets contained more than
8,000 samples.

Sun et al. (2023) evaluated six and eight PLMs across different
benchmark datasets. In the benchmark data used, the SOTA
performance of the BERT models was dataset-dependent. Among the
seven datasets used, the smallest contained more than 7,000 samples.

Prytula (2024) compared and analyzed the binary classification of
positive and negative user comments on a dataset of approximately
11,000 user comments written in Ukrainian, comparing the BERT,
DistilBERT, XLM-RoBERTa, and Ukr-RoBERTa models.
XLM-RoBERTa achieved the highest accuracy. However, when
factoring in training time and overall classification metrics,
Ukr-RoBERTa was deemed the most effective.

Abbasi et al. (2022) compared the performance of DistilBERT,
BERT, and an ensemble of classifiers using features to determine the
authors of news articles. Their results showed that DistilBERT
outperformed both BERT and the feature-based ensemble. The study
involved classifying 10 or 20 authors using a dataset of 50,000
news articles.

2.2 Effect of pre-training data on the BERT
model

Mishev et al. (2020) conducted a comparative analysis of 29
models, including both feature-based methods and BERT-based
models, for sentiment analysis in finance using two datasets: Financial
Phrase-Bank and SemEval-2017 Task 5. The results indicated that
FinBERT, pre-trained on Reuters financial data, underperformed
compared to BERT models pre-trained on Wikipedia and BookCorpus.

Arslan et al. (2021) used the BBC News and 20News datasets to
compare the performance of FinBERT, built from financial datasets,
with five general-purpose PLMs (BERT, DistilBERT, RoBERTa, XLM,
and XLNet) trained on corpora such as Wikipedia. In addition to
generic benchmark datasets, they also used proprietary data obtained
from financial technology partners. The results showed that FinBERT
did not outperform general-purpose BERT models, even after
vocabulary adaptation. More than 2,000 data samples were used, even
for small corpora.

Suzuki et al. (2024) developed FinDeBERTaV2 using financial
data and compared its performance with GenDeBERTaV2. The results
demonstrated that GenDeBERTaV2 excelled in general tasks, while
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FinDeBERTaV2
financial applications.

showed superior performance in

Vanetik et al. (2024) classified the genre of Russian literature using
stylistic features and BERT. The results indicated that the classifier
using stylistic features outperformed BERT, with higher accuracy
scores. Experimental results also showed that ruBERT, pre-trained on
a large Russian corpus, underperformed compared to the multilingual
BERT model. The SONATA dataset used was a random sample of 11
genres, with 100 samples per genre, and the text chunks were
extracted manually.

These findings highlight inconsistencies in how pre-training
corpora affect task performance, underscoring the need for continued
investigation. Kanda and Jin (2024) conducted a comparative analysis
of the effects of pre-training data on tasks using literary works for four
different types of BERT, including one trained on literary texts. Their
study, reported in Japanese, confirmed that pre-training data had a
significant impact on task outcomes. Additional experiments and
analyses are presented in Subsection.

2.3 Ensemble of BERTs

An ensemble of BERT models was also discussed by Devlin et al.
(2019), the original paper that introduced BERT. Ensembling BERTs
involves (1) combining results from different models obtained by
varying fine-tuning datasets or training configurations, and (2)
aggregating outputs from multiple BERT models created with different
pre-training data and parameters.

Tanaka et al. (2020) conducted a study using BERT for Japanese
texts longer than 510 tokens. They extracted 510-token segments by
shifting the window at regular intervals toward the end of the text to
create multiple samples. Subsequently, they ensembled the BERT
results obtained from these samples. The ensemble outperformed the
single BERT model using only one 510-token segment. In their
experiment, they used three datasets, each with 2,000 samples, for
training and testing.

Dang et al. (2020) won the SMM4H Taskl competition with an
ensemble of 20 results obtained from 10 sets of samples across 10
cross-validations and two different BERT models.

Abburi et al. (2023) won first prize in the 2023 competition for
their study on identifying LLM-generated texts using an ensemble of
DeBERTa, XLM-RoBERTa, RoBERTa, and BERT. The ensemble used
a classifier that took as input a vector composed of outputs from the
BERT-based models. The data used came from four datasets
distributed in the competition, with the smallest sample size
exceeding 20,000.

2.4 Ensemble of BERT and features

Tanaka et al. (2020) demonstrated that text classification using a
three-layer neural network on data composed of Bag-of-Words (BoW)
vectors concatenated with BERT embedding vectors improved
classification scores. For 510-token inputs, the score increased by
2.1 points.

Fabien et al. (2020) applied logistic regression to the classification
outputs of a single BERT model, stylistic features, and sentence
structure features. However, the ensemble scores were generally lower
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than those of the single BERT model, possibly due to feature
redundancy or model incompatibility. Their experiment used four
datasets, and even in the case with the fewest samples per author, the
count exceeded 900.

Wu et al. (2021) won the competition by combining the outputs
of BERT and RoBERTa with those from a tree-based model, applied
to a disease-related question-and-answer dataset. The ensemble’s F1
score was 3.38 points higher than that of the best-performing
individual model, RoOBERTa_wwm. The training dataset contained
30,000 samples.

Strom (2021) detected shifts in authorial style by stacking
ensembles built from 478-dimensional stylistic features and
768-dimensional BERT embedding vectors. Their system achieved the
highest score in the classification task of that year’s competition.
However, the score improvements over the LightGBM classifier were
modest: 1.93, 2.86, and 1.01 points across three tasks. The dataset used
contained over 10,000 samples.

Based on the aforementioned related studies, the research and
application of AA reveal the following challenges.

(1) Sample issue

The BERT-related studies cited above show that the datasets used
for evaluating or applying BERT models typically contain thousands
of samples. For example, Devlin et al. (2019) reported that the smallest
dataset in the GLUE benchmark contained 2.5 K samples. While large
datasets are common in large-scale classification systems, real-world
forensic problems—such as those involving criminal or civil law—
often rely on far fewer samples, sometimes fewer than 10. This
highlights the need for further research on small-sample scenarios.
However, no existing studies have directly addressed this challenge.

(2) BERT and challenges related to pre-trained data

Although many pre-trained models have been proposed, no
consensus has been reached regarding which model performs best
across tasks. This is because model performance depends on factors
such as evaluation sample size, task type, and tuning parameters.
Therefore, further research is needed to guide end users in selecting
appropriate models and leveraging existing data effectively when
applying BERT. Several studies have examined how pre-training data
influences downstream task performance; however, no clear
conclusions have been drawn. Moreover, the impact of pre-training
data on tasks involving literary texts remains unexplored.

(3) Ensemble issue

We found no studies that combined outputs from multiple BERT
models trained on different pre-training corpora with results from
multiple feature datasets and classifiers. In most of the above studies,
features were concatenated into a single vector. Unlike topic
classification, several stylistic features have been proposed for AA;
however, identifying the most effective features remains challenging,
as they depend heavily on the writer’s genre and style. Additionally,
although high-dimensional data are easy to collect, merging them into
a single dataset can significantly affect the performance of classifiers.
For example, aggregating character bigrams can result in thousands of

dimensions. Using ultra-high-dimensional data—formed by
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horizontally combining multiple feature sets with thousands of
dimensions—is not advisable when working with small datasets
containing only tens or hundreds of samples. While some studies have
explored how to utilize the many available variations of BERT and
feature-based models, they have yielded only marginal improvements
with limited practical impact.

Building on the aforementioned challenges, this study presents an
empirical analysis to evaluate whether an integrated ensemble of
BERT-based and feature-based models can significantly enhance AA
in literary texts, particularly for small samples of approximately 500
tokens. The analysis also examines the impact of BERT’s pre-training
data and the contribution of individual models within the ensemble.

3 Experiments

We classified two corpora using multiple models composed of
BERTS and features-based classifiers; then, we applied an integrated
ensemble of BERT- and feature-based models to the classification
results. The workflow of this study experiment is shown in Figure 1.

The basic concept underlying these ensembles is collective
intelligence. Since the 1990s, ensemble learning has been used in
the field of machine learning to improve performance by combining
the results of multiple models. Ensembles include voting and
stacking methods; however, voting methods are most often used to
integrate the predictions of base models. There are two types of
voting: hard and soft. Hard voting, also known as majority voting,
involves aggregating the prediction results of each model and
selecting the class with the most votes as the final prediction. Soft
voting involves summing or weighting the probability scores output
by each model and using the highest score as the final prediction.
In this study, we used an ensemble method based on soft voting.

10.3389/frai.2025.1624900

Specifically, the probability vectors, Model*(x), obtained from
different models (classifiers or BERT) are summed or averaged as
shown in Equation 1, and the author with the largest value is
assigned as the author of index j*. In the equation, wy is the weight
of classification model k. We used a vector of 1 when not considering
weights, and the F1 score of each model when weights
were considered.

(1)

j* =argmax

[ész:lwkModelk (X)}
J

In this study, the results of individual classifiers were probability
vectors, and the results of each BERT were converted into probability
vectors using a Softmax function.

3.1 Features and classifiers used

Several features have been proposed for the quantitative analysis
of writing style and author estimation. We used character-bigram,
token-unigram, and phrase pattern (Bunsetsu-pattern) as
representative stylistic features, as demonstrated in previous studies
(Jin and Murakami, 2017; Liu and Jin, 2022; Zaitsu and Jin, 2023).
These features, including character bigrams, token unigrams, and
phrase patterns, are based on fundamental Japanese linguistic units:
characters, words, and phrases (Bunsetsus). We intentionally limited
our feature set to these three types to ensure a balanced comparison
with the number of BERT models, despite the possibility of

incorporating additional features.
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FIGURE 1
The overview of workflow of this study.
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(1) Character-bigram

Character n-gram is a dataset that aggregates the patterns of n
adjacent characters. In this study, to estimate authorship using short
sentences of 510 tokens (approximately 800 characters), we used the
most frequently used characters bigram based on the dimensionality
and sparsity of the data.

(2) Token-unigram

Morphemes were analyzed using the MeCab' and UniDic?
dictionaries. Among the n-grams of token, we used the unigram,
which mainly reflects the characteristics of an author.

(3) Phrase pattern

Many indicators of authorship are also found in the sentence
syntax. The basic unit of Japanese parsing is a phrase (Bunsetsu). Jin
(2013) proposed and validated a method that patterned information
in a phrase. To illustrate for Japanese, consider a sentence, “BERT!Z
DFNCHMTH %, ” (BERT is effective for classification). The
sentence is split into phrases as “BERT (noun){Z (particle)//) %
(noun)!C (particle)/ 47 %)) (adjectivalNoun) C (adjective) 3 % (verb)
» (punctuation) “ (BERT is/ effective for/ classification). In this
context, the symbol “/” indicates the phrase boundaries, and the string
within the parentheses represents the POS tag of the preceding
“BERT (noun)!id
(particle) “consists of a noun “BERT” and a particle “(&” The word

morpheme. The first phrase in the sentence,

“BERT” is content-dependent; therefore, if it is used as a feature in the
AA, it will be a noise in the analysis of the author’s characteristics.
Therefore, the POS tag noun is used in BERT to mask the content
word. The result, “BERT (noun)!d (particle) “ is patterned after “noun
+ (3 (particle)
author. This is because using “/A" “(ga) instead of “/&” (wa) does not

“. The particle “l&” may change depending on the

pose a grammatical problem. Words that are not characteristic of the
writer are masked with their POS tags in phrase patterns. The data
related to phrase patterns is an aggregation of such patterns
categorized by type. In Japanese, the usage data of particles and
punctuation have been demonstrated to be effective features for AA
in numerous studies (Jin and Zheng, 2020). The phrase pattern can
capture individual habits, specifically how distinctive elements of a
writer’s style are combined and used. Although a phrase pattern never
scores high in author estimation, it is robust to text content and genre
because content words are masked by their POS tags. In a study on AA
for texts containing mixed genres (Liu and Jin, 2022), the combination
of phrase pattern features and a Lasso classifier achieved the highest
accuracy (0.895) among 14 feature types and seven classifiers tested in
the comparative analysis. In this experiment, CaboCha® was used for
the phrase segmentation process. Morphemes were masked using POS
tags—excluding particles, punctuation marks, conjunctions, and
adjectives—based on the syntactic parsing results generated by
CaboCha. The following presents the core part of the pseudocode for
processing bunsetsu patterns (Algorithm 1).

1 https://taku910.github.io/mecab/
2 https://clrd.ninjal.ac.jp/unidic/download.html#unidic_bccw;j
3 https://taku910.github.io/cabocha/
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Input: TEXT

Output: FINAL TEXT (Processed sentence with masked POS)
/I User specifies POS to mask (e.g., ["noun", "verb"])
1: POS_TO MASK LIST « get user_input()

: PARSER « Cabocha.Parser()
: PHRASES <« PARSER. parse(TEXT)
: PROCESSED_PHRASES « [

for each PHRASE in PHRASES do
WORDS « []
for each WORD in PHRASE do
POS « get _part_of speech(WORD)
if POS € POS TO MASK LIST then
10: FORM « "[" +POS + "]"
11: else
12: FORM « get word form(WORD)
13: WORDS.append(FORM)
14: PROCESSED PHRASES append(join(WORDS))

15: FINAL TEXT « join(PROCESSED PHRASES)
16: return FINAL TEXT

VRN 2w

ALGORITHM 1
Core pseudocode for parser (Bunsetsu) pattern generation.

(4) Classifiers

We used two types of classifiers, Random Forest (RF) and
AdaBoost (Ada), which have been reported to achieve relatively high
performance. For RE, we used the default settings of the randomForest
(ntree = 500, maxnodes = NULL,
randomForest. This function is based on the algorithm proposed by

..) function in the R package

Breiman (2001). However, although XGBoost is reported to have
excellent performance among boosting algorithms, our study, which
focused on using stylistic features, did not obtain any results that
demonstrated XGBoost’s superior performance over AdaBoost (Liu
and Jin, 2022). For AdaBoost, we used the default settings of the
boosting (boos =TRUE, mfinal = 100, coeflearn = ‘Breiman...,)
function in the R package adabag. This function is based on the
algorithm AdaBoost.M1 (Alfaro et al.,, 2013).

3.2 Selected PLMs

In this study, we used several BERT models as pre-trained
language models (PLMs). BERT is a PLM built on the Transformer
architecture, taking a fundamentally different approach from
traditional classifiers. Traditional classifiers rely on extracting features
from text, representing them as vectors, and applying models such as
logistic regression. These methods focus solely on frequency-based
feature extraction, ignoring sequential and contextual information.

BERT generates contextualized word embeddings using a multi-
layer Transformer pre-trained on large text corpora. Its self-attention
mechanism analyzes token relationships bidirectionally, enabling
strong context modeling and handling long-range dependencies.
Pre-training involves Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP), allowing BERT to learn deep linguistic
patterns from unlabeled data. Fine-tuning adapts BERT for tasks like
text classification, achieving high accuracy even with limited labeled
data through transfer learning.

We used BERT models pre-trained on Japanese corpora, which
are described below. The multilingual XLM-RoBERTa has been
released as an advanced variant of BERT. XLM-RoBERTa uses
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SentencePiece, a tokenizer designed to maintain consistency across
languages, but it does not fully leverage the linguistic characteristics
of Japanese. Additionally, the accuracy of SentencePiece has been
reported to be lower than that of the Japanese-specific tokenizer
MeCab. Therefore, this study employed a BERT model specialized for
the Japanese language.

The following five BERT models were selected based on the
diversity of the pre-training data used for training and their
performance. In addition, we are limited to BERTs trained using
pre-training data processed with tokenizers that are highly rated
against the Japanese language.

(1) Japanese BERT trained on Wikipedia*

There are many BERTS pre-trained on the Japanese Wikipedia.
Based on preliminary analysis, we used the most widely used basic
version published by Tohoku University that base version of a publicly
available model pre-trained on data tokenized using MeCab
and WordPiece.

There are many BERT models pre-trained on the Japanese
Wikipedia. Based on preliminary analysis, we adopted the most widely
used basic version — published by Tohoku University as the
foundation of a publicly available model — which was pre-trained on
data tokenized with both MeCab and WordPiecev.

(2) Japanese BERT trained on Aozora Bunko®

Koichi Yasuoka has released a pre-trained BERT model trained on
the Aozora Bunko corpus — a public-domain repository of Japanese
literary works. From the published variants, we adopted the model
pre-trained using MeCab tokenization with the UniDic dictionary.

(3) Japanese BERT trained on Aozora Bunko and Wikipedia (see
text footnote 5, respectively).

Koichi Yasuoka has released BERT models pre-trained on a
combined corpus of Aozora Bunko and Wikipedia. From these,
we adopted a model pre-trained on data tokenized using MeCab with
the UniDic dictionary.

(4) DeBERTa®

He et al. (2021) proposed DeBERTa, an improved version of the
BERT and RoBERTa models. DeBERTa introduces Disentangled
Attention, a mechanism that separately encodes word content and
positional information into distinct vectors. This separation enhances
contextual representation learning, leading to superior performance
over standard BERT architectures. Furthermore, DeBERTa employs
an Enhanced Mask Decoder during pre-training, which explicitly
incorporates absolute positional data to better align contextual and
positional features. The objective of this design is to improve the

4 https://huggingface.co/tohoku-nlp/bert-base-japanese-v2 (MeCab +
WordPiece).

5 https://github.com/akirakubo/bert-japanese-aozora

6 https://huggingface.co/ku-nlp/deberta-v2-base-japanese
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prediction accuracy of masked tokens compared to other conventional
BERT models.

We used the Japanese DeBERTa V2-base model pre-trained on
Wikipedia, CC-100, and OSCAR corpora with JUMAN++
tokenization.

(5) BERT StockMark’

StockMark Inc. released a BERT model pre-trained on Japanese
news articles. As new words are created annually in business news,
unknown words are processed as [UNK] tokens without subword
settings. We used a model pre-trained on data tokenized using MeCab
with the NEologd dictionary.

For brevity, we used the abbreviations TohokuBERT (T),
AozoraBERT (A), AozoraWikiBERT (AW), DeBERTa (De), and
StockMarkBERT (S) for the BERT.

3.3 Used corpora

Two corpora were used in this study: Corpora A and B. Corpus A
consisted of 10 authors selected from the literary authors available in
the Aozora Bunko, and 20 works for each author. Corpus A data made
up approximately 0.03% of the pre-training data in Aozora Bunko.
Specifically, the corpus contained 20 works by Akutagawa Ryunosuke
(1892-1927), Tzumi Kyoka (1873-1939), Kikuchi Kan (1888-1948),
Mori Ogai (1862-1922), Natsume Soseki (1867-1916), Sasaki Ajitsuzo
(1896-1934), Shimazaki Toson (1872-1943), Dazai Osamu (1909-
1948), Okazaki Kido (1872-1939), and Umino Juzo (1897-1949). The
works were prioritized by those that had already been converted to the
new script and new kana usage and those that were published in the
same year.

Corpus B was an electronic version of 20 works in paper form by
10 writers who are still active in the field and were not used for the
pre-training of BERT. These authors were Suzuki Kouji (1957-), Kishi
Yusuke (1959-), Shuichi Yoshida (1968-), Miyabe Miyuki (1960-),
Morimi Tomihiko (1979-), Ishida Ira (1960-), Murakami Haruki
(1949-), Murakami Ryu (1976-), Higashino Keigo (1958-) and Minato
Kanae (1973-).

We conducted experiments to attribute the works of 10 authors
each using these two corpora of literary works. The total number of
tokens used was 101,167 for Corpus A and 101,165 for Corpus B.

3.4 Experimental setup and metrics for
evaluating results

Following previous research, we used the five-fold cross-
validation. Typically, k-fold cross-validation involves randomly
dividing the data into k subsets. However, owing to the small sample
size of our data, random division may bias the balance of class labels.
Therefore, in this experiment, we used a stratified sampling method
to divide the dataset into five folds in the following proportions:
training data (160), validation data (20), and test data (20) per fold.

7 https://huggingface.co/stockmark/bart-base-japanese-news
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The number of works by each author for learning and testing in all the
folders was designed to ensure balance.

In languages where texts are not inherently segmented into
tokens, such as Japanese and Chinese, processing with BERT
necessitates tokenization at either the character or morpheme level.
Although character-level BERT models for Japanese demonstrate
suboptimal performance, current implementations preprocess texts
via morphological analysis, treating each morpheme as a discrete
token. In this study, we morphologically analyzed 200 works each
from Corpus A and Corpus B using MeCab for morphological
segmentation. Each morpheme was treated as a single token, with the
first 510 tokens extracted and formatted as input text for BERT. To
meet BERT’s maximum input length of 512 tokens, [CLS] and [SEP]
tokens were prepended and appended, respectively, during the
conversion of tokenized sequences into input IDs. BERT then
converted the input into vector embeddings through deep learning
and output classification results based on those vectors. In this study,
for fairness, only the first 510 tokens were used for all processes,
including feature-based methods.

Based on a preliminary analysis of the hyperparameters for fine-
tuning BERT, we set the mini-batch size to 16 and learning rate to
2e-05 for any BERT and used AdamW as the optimization algorithm.
The relatively small size of our training dataset necessitated a greater
number of epochs compared to previous studies that used large-scale

10.3389/frai.2025.1624900

corpora. Although the number of epochs required for loss convergence
varied slightly among BERT-based models, the overall trend was
consistent. As shown in Figure 2, which presents the learning curves
for TohokuBERT and DeBERTa on both the training and validation
sets of CorpusB, the validation F, score began to stabilize around
epoch 35. Although extended training would have been preferable
based on the trend of the validation loss, the number of epochs was
uniformly set to 40 for all models due to operational constraints.
While extensive hyperparameter tuning was beyond the scope of this
study, preliminary experiments confirmed that the chosen
configuration (batch size = 16, learning rate = 2 x 107>, epochs = 40)
yielded consistent results across all models. Although the number of
epochs required for loss convergence varied slightly among BERT-
based models, the overall trend was consistent. Early stopping was
not applied.

The most widely used performance measure of a model is the
macro average of the F1 measure, which balances the recall and
precision measures. The equations for each evaluation index are as
follows. The estimation results for author i (i = 1, 2, 3..., M) and other
authors are shown in the confusion table in Table 1.
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Learning curves of F1 score and loss across epochs for TohokuBERT and DeBERTa on CorpusB. (A) Loss vs. epochs for TohokuBERT, (B) F1 score vs.
epochs for TohokuBERT, (C) Loss vs. epochs for DeBERTa, (D) F1 score vs. epochs for DeBERTa.
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TABLE 1 Confusion table of classification results.

For author i

Model output

P N

‘ Real data P TP; FN, ‘
‘ N FP, TN, ‘
1 <M TP,
Precision; =—Y» . | ———
' MZ‘=1[TP,- +FPJ 3

2 (Precision,- x Recall; )

Precision; + Recall;

Fli = )

1 M
Macro F1=Mzi=1Fl,- (5)

The Recall;, Precision;, and F1; mentioned above were the metrics
used to evaluate the performance of the classification model results for
each individual class (author) i. M is the number of classes (authors).
Recall; (True Positive Rate) is the proportion of actual positives for
class i correctly identified by the model. Precision; is the proportion of
predicted positives for class i that are true positives. F1; is the
harmonic mean of Precision; and Recall;, providing a balanced
measure of the model’s performance for class i. Hereafter, Macro F1 is
abbreviated as F1.

4 Results and analysis

4.1 BERT results

We evaluated the performance of the BERT models on the test
data at the point when performance plateaued on the validation data.
Table 2 presents the experimental results of BERT on the corpora. The
highest F1 scores for both corpora are shown in bold. For Corpus A,
Model AW, pre-trained on Wikipedia and Aozora Bunko, achieved the
highest score and the smallest standard deviation, followed by Model
A, which was pre-trained on Aozora Bunko. The F1 scores of both
models were more than 30 points higher than that of Model T, which
was trained using only Wikipedia. This result likely reflects the fact
that Corpus A was included in the pre-training data.?

In Corpus B, Model De achieved the highest F1 score, followed by
AW and A. The model with the lowest score in both corpora was S,
which had been pre-trained on business news articles. The fact that
Model De achieved the highest score for Corpus B suggests that
Corpus B was not included in its pre-training data, and that Model De
is more generic. The scores of Models AW and A were higher than
those of the models pre-trained on Wikipedia and news articles, likely
because Corpus B is also a literary work. We believe that this
performance difference is due to the influence of text style.

8 The dataset and computational source code for this study are available in

the following GitHub repository https://github.com/mining-jin/Ensemble.
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The scores of Model S, pre-trained on Wikipedia and Japanese
business news articles, were higher for Corpus B than for Corpus
A. This variation may be attributed to differences in vocabulary and
grammar characteristic of the period, as most of the works in Corpus
B were published in the 1990s. These results suggest that pre-training
data influence performance on individual tasks. Generally, BERT
performs better when the training data are large and drawn from
diverse domains; a similar trend was observed in this study.

4.2 Features and classifier results

Experiments on feature extraction from literary works and author
identification using classifiers were conducted under the same
conditions as those in the BERT experiment, including the length of
the works used. The dimensions of the extracted feature datasets were
4,444 for char-bigram, 3,300 for token-unigram, and 804 for phrase
pattern. The classification results of the AdaBoost and Random Forest
classifiers for these feature datasets are listed in Table 3. Feature
extraction and processing in R were performed using MTMineR (Jin
and Zheng, 2020).° The average scores for both corpora did not differ
significantly. The highest F1 score was achieved by Random Forest
using token-unigram features, while the lowest was obtained by
Random Forest using phrase pattern features.

4.3 Ensemble of BERTs

There were 26 possible combinations of two or more of the five
BERT models. For the weighted ensemble, we used the F1 scores of
each BERT model. To save space, summary statistics of the F1 scores
for ensembles from both methods are presented in the second and
third rows of Table 4. For Corpus A, the maximum ensemble score
and the mean increased by 2.0 and 13.7 points, respectively. For
Corpus B, the maximum score and the mean increased by 7.9 and 9.2
points, respectively. The weighted ensembles did not show any
improvement in score compared to the unweighted ensembles in
either corpus. Direct comparison with existing AA methods is
challenging due to their reliance on large, publicly available datasets,
primarily in English. To enable a meaningful comparison, we adapted
established, reproducible methods to our corpus. The results are
shown in Table 4.

To account for the combinatorial possibilities in ensemble
construction, the F1 scores of the top 10 ensemble sets are listed on
the left side of Table 5. For Corpus A, the ensembles {A, S}, {T, A}, {A,
AW}, {A, De}, {A, AW, De}, and {AW, S} exceeded the maximum F1
score of any single BERT model. In Corpus B, 22 ensembles surpassed
the maximum value of 0.820 achieved by a single BERT. The highest
scores were obtained by {T, A, AW, De}, followed by {A, AW, De, S},
{T, A, De, S}, and {T, A, AW, De, S}.

Interestingly, the ensemble with the highest F1 score in both
corpora included Model S, despite it having the lowest individual
score among all models. Model S was pre-trained on news articles,
which differ significantly from the literary style of the target texts. This

9 https://a3hsn.org/nlptools/
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TABLE 2 Results of discrimination of 10 authors by BERT.

10.3389/frai.2025.1624900

Corpus BERT Recall Precision F1
Corpus A TohokuBERT(T) 0.653 +0.209 0.640 +0.201 0.642 +0.201
AozoraBERT(A) 0.973 £ 0.044 0.970 £ 0.067 0.969 + 0.037
AozoraWikiBERT(AW) 0.973 +0.044 0.970 £ 0.048 0.970 + 0.026
DeBERTa(De) 0.752 £ 0.215 0.680 + 0.162 0.691 £0.153
StockMarkBERT(S) 0.619 +0.210 0.600 +0.211 0.600 + 0.187
Corpus B TohokuBERT(T) 0.762 £ 0.151 0.740 £ 0.117 0.744 +0.120
AozoraBERT(A) 0.813 +£0.210 0.770 £ 0.195 0.773 £ 0.167
AozoraWikiBERT(AW) 0.838 +0.116 0.820 £ 0.114 0.820 + 0.074
DeBERTa(De) 0.834 +0.118 0.820 + 0.063 0.823 +0.070
StockMarkBERT(S) 0.706 + 0.126 0.690 +0.110 0.692 + 0.099
Bold values indicate the maximum for each corpus.
TABLE 3 Results of discrimination of 10 authors by features and classifiers.
Corpus Classifiers Features Recall Precision F1
Char-bigram 0.786 + 0.188 0.760 + 0.143 0.766 + 0.152
AdaBoost Token-unigram 0.767 + 0.149 0.750 + 0.097 0.754 + 0.109
Phrase pattern 0.762 £ 0.116 0.750 £ 0.165 0.747 £ 0.125
Corpus A
Char-bigram 0.792 +0.130 0.790 + 0.179 0.784 +0.134
RandomForest Token-unigram 0.823+0.124 0.810 + 0.120 0.810 + 0.094
Phrase pattern 0.714 £ 0.120 0.710 £ 0.185 0.704 £ 0.135
Char-bigram 0.779 £0.125 0.760 + 0.117 0.761 +0.083
AdaBoost Token-unigram 0.772 £0.122 0.760 + 0.079 0.762 £ 0.091
Phrase pattern 0.654 +0.131 0.650 + 0.158 0.647 +0.131
Corpus B
Char-bigram 0.780 + 0.106 0.780 £ 0.215 0.767 £ 0.155
RandomForest Token-unigram 0.810 £ 0.109 0.800 £ 0.105 0.800 + 0.090
Phrase pattern 0.668 + 0.150 0.650 +0.178 0.643 +0.142

The values in the table represent the mean =+ standard deviation from five-fold cross-validation.

suggests that while ranking models by individual performance is
useful for ensemble selection, incorporating heterogeneous models
can also be beneficial.

For both corpora, the ensemble scores of {T, A} were 0.980 and
0.856, respectively, which are higher than those of Model AW (0.970
and 0.820, respectively). Wikipedia and Aozora Bunko were used for
pre-training Models T and A, respectively, while both sources were
used for Model AW. Nevertheless, the ensemble scores of Models T
and A were higher than those of Model AW. This again suggests that
model performance is influenced by the pre-training data and other
model-specific properties.

4.4 Ensemble results for features and
classifiers

The ensemble of the six results (1: Ada + Char, 2: Ada + Token, 3:
Ada + Phrase, 4: RF + Char, 5: RF + Token, and 6: RF + Phrase) of the
two classifiers (Ada and RF) with three features (char-bigram, token-
unigram, and phrase pattern) yielded 57 results.

Frontiers in Artificial Intelligence 10

The summary statistics of the ensemble results for both corpora
are presented in Table 4. For both corpora, the maximum F1 scores
of the ensembles were significantly higher than those of the stand-
alone features and classifiers. For Corpus A, the maximum F1 score
was 10.1 points higher than those of the single features and classifiers,
and the average score was 9.1 points higher. For Corpus B, the
maximum F1 score was 8.9 points higher than those of the single
features and classifiers, and the average score was 8.7 points higher.
Table 5 shows the top 10 scoring ensembles. Some combinations of
features and classifiers in the ensemble included Labels
3(Ada + Phrase r) and 6(RF + Phrase), which had the lowest scores.
The reasons for this will be analyzed considering the results of the
integrated ensemble.

4.5 Integrated ensembles
In the integrated ensemble, we combine results from both BERT-

and feature-based models. For the five BERT models, the number of
combinations involving two or more models is 26. For the
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TABLE 4 Statistics of F1 values for BERT-based and feature-based ensembles and integrated ensembles.

Method Corpus A Corpus B
mean + sd mean + sd

A: BERTs 0.775 + 0.181 0.970 0.770 £ 0.055 0.823
B: Ensemble BERTs (Kanda and Jin, 2024) 0.911 £ 0.091 0.990 0.861 +0.030 0.902
C: Weighted Ensemble BERTs 0.910 + 0.096 0.980 0.861 + 0.029 0.899
D: Features and Classifiers 0.761 £ 0.036 0.810 0.730 £ 0.067 0.800
E: Ensemble Features and Classifiers (Jin, 2014) 0.852 +0.033 0.912 0.817 +0.039 0.889
F: Weighted Ensemble of Features and Classifiers 0.851 +0.034 0.912 0.828 +0.033 0.889
G: Ensemble One Feature and Classifiers and

0.934 £ 0.040 0.970 0.887 £ 0.044 0.920
BERTS (Strom, 2021)
H: Ensemble One BETR and Features and

0.834 £ 0.127 0.990 0.814 + 0.052 0.901
Classifiers (Wu et al., 2021; Abbasi et al., 2022)
I: Integrated Ensemble (proposed method) 0.991 + 0.003 1.000 0.957 + 0.005 0.960
J: Integrated Weighted Ensemble (proposed method) 1.000 + 0.000 1.000 0.953 +0.005 0.960

The mean and standard deviation (sd) of the top 50 are used for methods with F1 values greater than 50. The values represent the mean, sd, max obtained using the method indicated at the

beginning of each row, applied to both corpora.

feature-based models, there are six results, and the number of
combinations involving two or more of them is 57. Since the integrated
ensemble considers combinations of two or more from a total of 11
results, the number of such combinations is 1953, which is the total
number of combinations minus those from the BERT- and feature-
based ensembles.

“Integrated ensemble” refers to the aggregation of all results
obtained from various aspects. The F1 score statistics for the
integrated ensembles are presented in Table 4, where the top 50
results correspond to the integrated ensemble. For Corpus A, the
highest F1 score was 1.00; for Corpus B, it was 0.96. In Corpus A,
this score was 19 points higher than that of the single model with
features; in Corpus B, it was 13.7 points higher than the maximum
score of the single model, confirming the effectiveness of the
integrated ensemble. Additionally, the integrated ensemble F1
scores in both corpora improved by one and two points, respectively,
compared to (i) the ensemble of BERT results combined with a
single feature and classifier, and (ii) the ensemble of a single BERT
result combined with feature and classifier outputs. The results for
the weighted ensemble were nearly identical. For comparison, the
results of both ensemble methods—Ensemble One Feature &
Classifiers with BERTs and Ensemble One BERT and Features &
Classifiers—were also computed and summarized in Table 4. The
proposed method achieved a significantly higher score than these
ensemble approaches.

To evaluate the improvement of the proposed method based on
the mean values presented in Table 4, we conducted Welch’s
two-sample t-tests and compared the proposed method (I) with four
baseline approaches: Ensemble BERTs (B), Ensemble Features and
Classifiers (E), Ensemble One Feature & Classifiers with BERTSs (G),
and Ensemble One BERT and Features & Classifiers (H). The results
of Welch’s two-sample t-tests for Corpus A are as follows: I vs. B
(p=0.0001, Cohens d=0.88), I vs. E (p<2.2x107', Cohen’s
d=4.168), I vs. G (p=0.017, Cohens d =4.546), and I vs. H
(p=3.2%x 1077, Cohen’s d = 1.202). For Corpus B are as follows: I vs.
B(p=4.2x107", Cohen’sd = 3.232),1vs. E (p < 2.2 x 107", Cohen’s
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d=3.631), I vs. G (p=0.012, Cohen’s d=4.939), and I vs. H
(p=3.3x%x10"", Cohen’s d =2.718).

All pairwise comparisons, except I vs. G in both corpora, showed
statistically significant differences (p <0.001). For the I vs. G
comparison, the p-values were < 0.02 in both corpora, which are
below the standard 0.05 significance level.

Figure 3 presents box plots of F1 scores for both corpora. The
top 50 results are shown for methods with F1 scores greater than 0.50.
The integrated ensemble (I) demonstrates significantly higher F1
scores and substantially lower score variance compared to the baseline
methods, as evidenced by the box plot distributions.

To facilitate the discussion of ensemble combinations, the
top 10 integrative ensembles are listed in Table 5. These top 10
BERT model combinations exhibited different trends for Corpus
A and Corpus B, as discussed in Subsection 4.2. The feature and
classifier combinations included either Label 3 (Ada + Phrase) or
Label 6 (RF + Phrase). Char-bigram and token-unigram features
share some overlapping information—for example, a two-letter
token is included in the char-bigram. However, the phrase pattern
differs from these two features in that it can suppress textual
topics more effectively, since the content words in a phrase are
masked by their POS tags. We believe this property enhances
ensemble performance. The last row of Table 5 summarizes the
results of the ensemble across all models. These results indicate
that the ensemble scores were consistently higher than those of
individual models, although they were just one point below the
highest score.

5 Discussion

5.1 Performance and effectiveness of the
integrated ensemble

For Corpus A, Models A and AW were included in the
pre-training data. Therefore, we considered excluding these two
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TABLE 5 Top 10 F1 scores for ensemble and integrative ensemble results.

BERTSs Features and Classifiers Integrated Ensemble
(Proposed Method)
Ensemble Labels Ensemble Labels F1 Ensemble Labels F1
Corpus A {A, S} 0.990 {1,3,5} 0912 {A,S]3,5) 1.000
(T, A} 0.980 {1,3,4,5} 0.912 {A,S]3,6) 1.000
{A, AW} 0.980 {1,3,4,5,6} 0912 {A,S 4,6} 1.000
{A, De} 0.980 {1,3,5,6} 0.901 {A,S]5,6} 1.000
{AW, S} 0.980 {1,3,4} 0.893 {A,S]3,5,6} 1.000
{A, AW, De} 0.980 {1,2,3,6} 0.883 {A,S]4,5,6} 1.000
(T, A, AW} 0.970 {1,2,3,4,6} 0.883 (T, A|3,6} 0.990
{A, AW, S} 0.970 {1,2,3,5,6} 0.883 {T,A|1,3,6} 0.990
{T, A, AW, De} 0.970 {1,2,3,4,5,6} 0.883 {T,A|3,4,6} 0.990
(T, A, AW, S} 0.970 {1,3,6} 0.882 {T,A|3,5,6} 0.990
All Models 0.940 All Models 0.883 All Models 0.990
Corpus B {T, A, AW, De} 0.902 {1,2,6} 0.889 {T, De | 1,2} 0.960
{A, AW, De, S} 0.901 {1,2,4,6} 0.889 {T, AW | 1,2} 0.960
{T, A, De, S} 0.894 {1,2,5,6} 0.889 (T, AW | 1,2, 4} 0.960
(T, A, AW, De, S} 0.891 {1,2,4,5,6} 0.889 (T, AW, De | 1,2, 4, 6} 0.960
{T, AW, De, S} 0.89 {1,2,4} 0.869 {T, AW, De | 1,2, 4, 5, 6} 0.960
(T, A, AW} 0.882 {4,5,6} 0.866 {AW, De, S| 1,2} 0.960
{T, AW, De} 0.882 {1,4,5,6} 0.859 {AW, D¢, S | 1, 6} 0.960
(T, A, AW, S} 0.881 {1,2,5} 0.858 {AW, De, S| 1,2, 4} 0.960
{A, AW, De} 0.88 {1,2,4,5} 0.858 {AW, De, S| 1,2, 5} 0.960
{AW, De} 0.88 {1,2,3,4} 0.855 {AW, De, S| 1,2, 6} 0.960
All Models 0.891 All Models 0.855 All Models 0.950

1: Ada + Char, 2: Ada + Token, 3: Ada + Phrase, 4: RF + Char, 5: RF + Token, and 6: RF + Phrase, A: AozoraB, AW: AozoraWikiB, De: DeBERTa, S: StockMarkB, T: TohokuB.
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FIGURE 3
Box plot of F1 scores for both corpora.
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models from the integrated ensemble for Corpus A. The highest
F1 score achieved by the ensemble excluding these models was
0.92, observed in the combinations {T, De 1, 3, 5, 6}, {T, S 1, 3, 5,
6}, and {De, S 1, 3, 5}. This score is 22.9 points and 11 points higher
than the best scores of the standalone BERT models (0.691) and
the feature-classifier combinations (0.810), respectively.
Furthermore, it is 14.7 points higher than the best score (0.773) of
the BERT ensemble {De, S} excluding Models A and AW, and 0.8
points higher than the best score (0.912) of the feature-
classifier ensemble.

For Corpus B, the integrated ensemble results were 13.7 and 16
points higher than the highest scores of the standalone BERT model
(0.823) and the feature-classifier combinations (0.800), respectively.
Additionally, the score was 5.8 and 7.1 points higher than the best
results of the BERT model ensemble (0.902) and the feature-classifier
ensemble (0.889), respectively. Thus, the integrated ensemble
significantly outperformed the individual models on both corpora.
This result also surpasses that of an ensemble of multiple BERT
models with a single feature set, or a single BERT model with
multiple classifiers.

To further validate the robustness of our integrated ensemble
method (I), we conducted Welch’s two-sample t-tests comparing it
with four baseline ensembles (B, E, G, H). The results showed that
method I significantly outperformed B, E, and H (p <0.001). In
contrast, the comparison between I and G yielded a relatively higher,
yet still statistically significant, p-value (p < 0.02, which is still below
the 0.05 threshold), likely due to G’s limited sample size (n = 6). These
findings, supported by both F1 scores and statistical testing, confirm
that the observed performance differences are unlikely to be due to
random variation.

However, incorporating all models into an ensemble does not
always lead to improved performance. As shown in Table 5, the F1
score for the ensemble of all BERT models is 0.91, which is 8 points
lower than the 0.99 result obtained by ensembling the best models, A
and S. A similar trend was also observed with both the feature-based
and integrated ensembles. In some cases, the individual characteristics

10.3389/frai.2025.1624900

of certain models may negatively impact the overall score.
Nonetheless, incorporating more diverse and high-performing
models has the potential to further enhance the effectiveness of the
integrated ensemble.

5.2 Factors behind ensemble effectiveness:
model diversity and author-level analysis

The ensemble effect arises from the fact that individual models
learn different aspects of the data, enabling them to complement one
another when combined. For example, the ensemble score of BERT
models T and A—each trained on distinct pre-training datasets—was
higher than that of BERT model AW, which was pre-trained on a
combination of those datasets. This indicates that differences in
pre-training corpora, tokenizer design (e.g., MeCab vs. SentencePiece),
and architectural modifications (e.g., DeBERTas disentangled
attention) introduce diverse inductive biases that are beneficial for
ensemble diversity.

As analyzed in Sections 4.3, 4.4, and 4.5, Model S yielded the
lowest score among the BERT models, while Ada + Phrase and
RF + Phrase produced the lowest scores among the feature-based
models. Nevertheless, these models contributed significantly to
achieving the highest scores in both their respective ensembles and
the integrated ensemble. These findings suggest that both individual
performance and the intrinsic characteristics of a model are critical
when constructing effective ensembles.

To further investigate this phenomenon, we performed an author-
level error analysis based on F1 scores. Given that the number of
models used—including ensemble combinations—exceeds 2,000 per
corpus, we focused on the two highest-scoring ensemble cases for
each corpus. As shown in Table 5, the top-performing ensemble for
Corpus A was {A, S| 3, 5}, and for Corpus B, it was {T, De | 1, 2}.
We analyzed the behavior of these ensembles and their constituent
models across individual authors.

TABLE 6 F1 scores by author of the integrated ensemble model {A, S|3, 5} on Corpus A.

Author’s A: S: 3: 5: Mean (A, S, 3, 5) Ensemble
last name AozoraB StockMarkB Ada_Pharse RF_Token + SD {A, S| 3, 5}
Akutagawa 0.952 0.421 0.737 0.696 0.691 +0.218 1.000
Izumi 0.947 0.800 0.737 0.900 0.887 + 0.095 1.000
Kikuchi 0.889 0.737 0.900 0.737 0.775 +0.091 1.000
Mori 1.000 0.348 0.842 0.824 0.749 + 0.282 1.000
Natsume 1.000 0.588 0.700 0.800 0.797 +0.175 1.000
Sasaki 1.000 0.870 0.909 0.909 0.922 +0.055 1.000
Shimazaki 1.000 0.455 0.615 0.857 0.792 + 0.243 1.000
Dazai 0.952 0.762 0.857 0.889 0.873 +0.079 1.000
Okamoto 0.952 0.400 0.588 0.632 0.654 + 0.229 1.000
Umino 1.000 0.625 0.588 0.857 0.835 +0.195 1.000
mean 0.969 0.601 0.747 0.810 1.000

SD 0.037 0.187 0.125 0.094

Bold values represent both the highest and lowest scores.
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Table 6 presents the author-wise F1 scores for the ensemble
{A, S| 3, 5} and its constituent models using Corpus A. Although
Model A was pre-trained on data that included Corpus A, none of
its individual author scores reached 1.0. However, the ensemble
achieved perfect scores across all authors. Sasaki had the highest
average score across the four models, consistently receiving top
scores. In contrast, Okamoto had the lowest average score of 0.65,
though the ensemble improved this to 1.0. The score variance
among models for Okamoto was relatively large, possibly due to
the inclusion of Corpus A in the pre-training data. The difference
in average F1 scores between Sasaki and Okamoto was 27.7
points, indicating substantial variability in author-level
classification performance.

Table 7 presents the author-wise scores for the ensemble {T, De | 1,
2} and its constituent models using Corpus B. Miyabe had the lowest
average score of 0.690, which improved to 0.9 through ensembling. In
contrast, Ishida had the highest average score of 0.858, which reached
a perfect 1.0 with the ensemble. The difference in the average scores of
the two authors across individual models was 16.8 points. While this
was smaller than the difference observed in Corpus A, it was still
notable. This may be attributed to the fact that Corpus B was not used
in BERT pre-training and that most texts were written in the 1990s,
aligning more closely with the temporal characteristics of the

pre-training data for these models.

5.3 Impact of pre-training data and corpus
characteristics

As shown in the last row of Table 5, the score for the integrated
ensemble of all models was slightly lower than the highest score
achieved by any individual ensemble. Nevertheless, it still represented
a substantial improvement over the best-performing single model.
Specifically, compared to the highest scores achieved by individual
BERT and feature-based classifiers—both unaffected by ensemble
effects—the score for Corpus B improved by 12.7 points. Our

10.3389/frai.2025.1624900

proposed method also outperformed the BERT model ensemble by 3
points and the feature-based ensemble by 6.1 points.

The choice of pre-training data in BERT models has a notable
impact on downstream performance. For instance, in Corpus A,
Models A and AW achieved scores that were 27.8 points higher than
those of other models, primarily because Corpus A was included in
their pre-training data. In contrast, for Corpus B, Models T, De, and S
exhibited score increases of 10.2, 13.2, and 9.2 points, respectively,
compared to their performance on Corpus A. This improvement can
be attributed to the temporal alignment between Corpus B—which
consists of works published after 1990—and the pre-training data used
for these models. Corpus A, by comparison, contains texts written
before 1950, making it less representative of the linguistic patterns
captured during pre-training.

In this study, the F1 score for author attribution across 10 Japanese
literary authors, using texts of approximately 510 tokens, exceeded
0.96. This result is comparable to those reported in previous studies
using Corpus A (Jin and Murakami, 2017) and full-length novels for
feature-based classification (Liu and Jin, 2022), demonstrating the
effectiveness of our approach even with shorter text segments.

5.4 Limitations and future directions

This study was conducted under certain constraints: we used two
corpora, five BERT models, three feature sets, and two classifiers. Our
primary focus was to evaluate the effectiveness of the integrated ensemble,
and we did not examine whether the specific BERT models, features, or
classifiers employed were optimal choices. Although ensemble scores
varied depending on the combination of constituent models, the overall
effectiveness of the integrated ensemble remains evident.

Our analysis was limited to the first 510 tokens of each literary
work, serving as a foundational step toward forensic applications
that attribute authorship from short texts (Zaitsu and Jin, 2023;
Zaitsu et al., 2024). This context presents further challenges, such
as attribution from even shorter texts and understanding how text

TABLE 7 F1 scores by author of the integrated ensemble model {T, De|1, 2} on Corpus B.

Author’s T: De: 1: 2: mean(T, De, 1, 2) Ensemble
last name TohokuB DeBERa Ada_Pharse RF_Token + sd {T,De| 1, 2}
Suzuki 0.737 0.800 0.870 0.727 0.783 £ 0.066 1.000
Kishi 0.522 0.800 0.900 0.737 0.740 £ 0.160 1.000
Yoshida 0.762 0.857 0.800 0.800 0.805 £ 0.039 1.000
Miyabe 0.625 0.667 0.706 0.762 0.690 = 0.058 0.939
Morimi 0.636 0.889 0.737 0.947 0.802 £ 0.142 0.967
Ishida 0.900 0.889 0.824 0.818 0.858 + 0.043 1.000
Murakami_H 0.842 0.900 0.700 0.778 0.805 £+ 0.086 0.899
Murakami_R 0.842 0.842 0.737 0.636 0.764 £ 0.099 0.947
Higashino 0.727 0.783 0.667 0.778 0.739 £ 0.054 0.967
Minato 0.842 0.800 0.667 0.632 0.735 £ 0.102 0.890
Mean 0.744 0.823 0.761 0.762 0.960
SD 0.120 0.070 0.083 0.091

Bold values represent both the highest and lowest scores.
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length affects classification accuracy. Meanwhile, authorial stylistic
indicators are distributed throughout an entire text, and Tanaka
et al. (2020) showed that BERT may not sufficiently capture these
signals within a 510-token window. To address this, we plan to
explore chunk-wise ensembling, which aims to improve
performance on longer texts while balancing computational
efficiency. This method involves dividing each text into
non-overlapping 510-token blocks, extracting BERT outputs for
each chunk, and aggregating predictions via majority voting.
We also found that weighted ensembling—using model scores as
weights—did not outperform the unweighted approach. These
findings suggest that future research is needed to refine ensemble
strategies and optimize model selection.

6 Conclusion

As the number of classification models increases, so does the
need to apply them effectively to a AA. To address this, we examined
the effectiveness of an integrative ensemble method that combines
BERT-based and feature-based approaches in a small-sample AA
task. Additionally, we analyzed the impact of BERT pre-training
data on task performance, as well as the influence of individual
models on ensemble outcomes. The corpora consist of two sets of
self-generated literary works. For the integrated ensemble, we used
five BERT models, three types of features, and two classifiers. A
summary of the results is presented below:

o BERT proved more effective than traditional feature-based
classifiers for AA in short literary works, demonstrating its utility
even in small-sample scenarios.

o Both BERT-based and feature-based
outperformed their standalone counterparts, with the proposed

classifier ensembles

integrated ensemble method achieving even higher scores.
Notably, when applied to a corpus excluded from the pre-training
data, the integrated ensemble elevated the F1 score from 0.823 to
0.96—an improvement of approximately 14 points—surpassing
the performance of the best individual model. It achieved the
highest score among all evaluated approaches, including
standalone models and conventional ensemble techniques, with
a statistically significant margin (p < 0.012), underscoring the
robustness of the result.

o We confirmed that the pre-training data used for BERT
significantly impacts task performance. Furthermore, in
ensemble learning, individual models influence final results not
only through their performance but also through the diversity
of their inherent characteristics, highlighting the importance of
considering both factors in model selection.

These findings highlight the critical role of model diversity and
pre-training data in ensemble learning, and propose effective
strategies for harnessing the growing heterogeneity of classification
models. The insights and empirical results presented herein extend
beyond authorship attribution in short literary texts, offering
practical relevance to forensic analyses of brief communications and
the detection of machine-generated content produced by large
language models. Moreover, as agent-based Al systems—comprising
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multi-expert frameworks, multi-agent architectures, and LLM-driven
agents—gain increasing prominence in addressing complex tasks
(Chen et al., 2024; Tran et al., 2025), the conceptual contributions
and methodological advances of this study provide valuable
perspectives that may inform and enhance future research in
this domain.
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