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BlendNet: a blending-based
convolutional neural network for
e�ective deep learning of
electrocardiogram signals

S. Premanand and Sathiya Narayanan*

School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai, India

Introduction: In recent years, Deep Learning (DL) architectures such as

Convolutional Neural Network (CNN) and its variants have been shown to be

e�ective in the diagnosis of cardiovascular disease from ElectroCardioGram

(ECG) signals. In the case of ECG as a one-dimensional signal, 1-D CNNs

are deployed, whereas in the case of a 2D-represented ECG signal, i.e., two-

dimensional signal, 2-DCNNs or other relevant architectures are deployed. Since

2D-represented ECG signals facilitate better feature extraction, it is a common

practice to convert an ECG signal into a scalogram image using a continuous

wavelet transform (CWT) approach and then subject it to a DL architecture such

as 2-D CNN. However, this traditional approach captures only a limited set of

features of ECG and thereby limits the e�ectiveness of DL architectures in disease

detection.

Methods: This work proposes “BlendNet,” a DL architecture that e�ectively

extracts the features of an ECG signal using a blending approach termed “alpha

blending.” First, the 1-D ECG signal is converted into a scalogram image using

CWT, and a binary version of the scalogram image is also obtained. Then, both

the scalogram and binary images are subjected to a sequence of convolution

and pooling layers, and the resulting feature images are blended. This blended

feature image is subjected to a dense layer that classifies the image. The blending

is flexible, and it is controlled by a parameter α, hence the process is termed as

alpha blending. The utilization of alpha blending facilitates the generation of a

composite feature set that incorporates di�erent characteristics from both the

scalogram and binary versions.

Results: For experiments, a total of 162 ECG recordings from the PhysioNet

database were used. Experimental results and analysis show that, in the case of

α = 0.7, BlendNet’s performance surpasses the performance of (i) traditional

approaches (that do not involve blending) and (ii) state-of-the-art approaches

for ECG classification.

Discussion: Experimental outcomes show that the proposed BlendNet is

flexible regarding dense layer settings and can accommodate faster alternatives

[i.e., machine learning (ML) algorithms] for faster convergence. The superior

performance at α = 0.7 indicates that alpha blending allows for richer composite

feature sets, leading to improved classification accuracy over conventional

feature extraction and classification methods.
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electrocardiogram, convolution neural network, scalogram, image blending, binary

image

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1625637
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1625637&domain=pdf&date_stamp=2025-08-22
mailto:sathiyanarayanan.s@vit.ac.in
https://doi.org/10.3389/frai.2025.1625637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1625637/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Premanand and Narayanan 10.3389/frai.2025.1625637

1 Introduction

Deep Learning-based diagnosis of cardiovascular disease from

ECG signals involves two major steps: pre-processing (Safdar

et al., 2024) and classification (Wu and Guo, 2025). The pre-

processing step generally involves resizing and filtering of signals.

The classification step involves feature extraction and signal

categorization. Popular DL architectures like CNN and its variants

have shown significant results in the medical domain, especially

with ECG. In the case of ECG as a one-dimensional signal, 1D-

CNNs are deployed. These models are enhanced and contributed

in many ways: like combining with Leaky-ReLU (Lakhdari

and Saeed, 2022) activation function, an enhanced model for

extracting signals from paper-based ECG data (Nguyen et al.,

2022), with real and noise-attenuated ECG signals (Ahmed et al.,

2023), for robust classification 1-D Convolutional deep residual

neural networks (Khan et al., 2023) utilized, and even explored

in authentication (Yuniarti et al., 2024). Apart from different

scenarios, ECG signals can be combined with different advanced

CNN variants such as Deep-CNN (Li et al., 2021), SE-ResNet152

(Xu et al., 2021), MobileNetV2 (Cordos et al., 2021), ResNet152V2,

DenseNet169, COV-ECGNET (Rahman et al., 2022), MobileNetV2

combination with BiLSTM (Shin et al., 2022), and InceptionV3

(Bhosale and Patnaik, 2023) and showed promising results. In

these architectures, ECG signals are subjected to a sequence of

convolution and pooling layers for feature extraction and then to a

dense neural network layer for decision-making (i.e., classification).

In most of the ECG classifications, scalogram images are utilized

from the signal by CWT approach, for extracting non-linear and

non-stationary features (Gupta et al., 2021), image classification

by representing image over the time-frequency domain (Kim,

2021), extracting R peak and RR interval features (Wang et al.,

2021), statistical parameters (Alharbey et al., 2022), classification

with various CNN variants for better results (Dessai and Virani,

2023), with RGB image classification from scalogram (Kumar and

Ramachandran, 2023), for collecting multi-spectral information

(Mewada, 2023), and for classification with transformers (Qiu et al.,

2024). In one of the cases, the binarized version of the scalogram

image is used for classification (Naz et al., 2021).

Owing to the fact that each version of the image contains

some unique features, in this work, we propose an approach

termed “alpha blending’ which blends the features extracted from

the scalogram and its binarized version through a sequence of

convolution and pooling layers. The blended feature map is

subjected to a dense neural network layer (as in traditional CNN)

that classifies the image. This proposed architecture is termed as

BlendNet. The blending step is flexible as it involves a parameter

α. For experiments, a total of 162 ECG recordings from the

PhysioNet database were used. There were three categories of

patients: Congestive Heart Failure (CHF), Cardiac Arrhythmias

(ARR), and Normal Sinus Rhythms (NSR). There are 36 recordings

from people with NSR, 30 with people with CHF, and 96 with

ARR. The objective of the proposed approach is to classify ARR,

CHF, and NSR. The experimental results shows that the BlendNet

architecture achieves the best performance α = 0.7, and it

outperforms non-blending approaches. The proposed BlendNet is

flexible in terms of dense layer settings, as it can accommodate

any complicated dense layers, for example, the dense layers in

InceptionV3, ResNet152V2, DenseNet169, or MobileNetV2. In

applications where execution speed is of utmost concern, the dense

layer can be replaced with faster alternatives (i.e., ML algorithms)

for faster convergence.

Notable works in literature relevant to this problem statement

are the DL framework in Prusty et al. (2024) which utilizes Scale

Invariant Feature Transform (SIFT) based features for detecting

heart failures and the framework in Saeed and Yousif (2021)

which utilizes the slantlet based statistical features. Both these

approaches extract features from the PhysioNet ECG data and

apply a DL architecture. Although they have exhibited good

classification performance, they depend on a single paradigm for

feature extraction. On the other hand, the BlendNet framework

proposed in this manuscript deploys a blending framework to form

a composite feature map, which is then subjected to a classification

architecture/algorithm.

The contributions of this manuscript are as follows:

• A novel DL architecture termed as BlendNet which involves

flexible blending of image features using alpha blending.

• An ablation study to emphasize the importance of alpha

blending in the proposed BlendNet.

• A flexibility study to explore the choices of dense layer settings

for the classification task in the proposed BlendNet.

• A faster alternative for BlendNet, which incorporates the

computationally efficient ML algorithms in place of the dense

layer.

The remaining sections are structured as follows. Section 2

presents a survey of several ML and DL architectures associated

with diverse ECG data. Section 3 provides a detailed explanation

of the proposed BlendNet and presents an analysis of its

computational complexity. Section 4 presents the experimental

validation of the proposed architecture and establishes a

comparison with the state-of-the-art. Section 5 concludes the

paper with recommendations for future research.

2 Literature survey

Recent research has shown substantial progress in identifying

irregular heart rhythms using CNNs. Ahmed et al. (2023) employed

a 1-D CNN to classify four distinct categories in the MIT-BIH

dataset and achieved a remarkable accuracy of 99%. In another

work (Lakhdari and Saeed, 2022), including the LeakyReLU

activation function in 1-D CNN architectures on the same dataset

results in accuracies ranging from 97% to 99%. A modified version

of the 1-D CNN called SEResNet18 was used in a dataset of

ECG images containing data from cardiac and COVID-19 patients.

The model achieved accuracies of 98.42% to distinguish COVID-

19 cases from normal cases and 98.50% to distinguish COVID-

19 cases from other classes. In particular, the model successfully

extracted signals from the scanned ECG records (Khan et al.,

2021; Nguyen et al., 2022). There is another progress where

a 2-D CNN achieved an accuracy of 99.52% on the MIT-BIH

dataset by combining wavelet-based spectral features with CNN’s
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temporal features. This demonstrates the effective combination of

advanced signal processing techniques and DL. These advances

highlight the strong flexibility and growing accuracy of CNN

models in diagnosing heart conditions using different datasets and

architectural improvements.

Many studies associated with ECG have recently been

conducted in 2-D format, mainly because of extracting

morphological features (Wang et al., 2021), non-linear and

non-stationary features (Gupta et al., 2021), comparing images

with signals (Kim, 2021), for statistical features (Alharbey et al.,

2022), good performance across different CNN variants (Dessai and

Virani, 2023), performing well in other imaging like RGB (Kumar

and Ramachandran, 2023) and with transformers (Qiu et al., 2024),

it worked well. Compared to 1-D signal ECG, 2-D ECG images

provide more insight into abnormalities and the interpretation

of complex cardiac conditions due to their visual representation

that combines frequency and temporal characteristics in a single

image. Furthermore, when DL architectures are employed, spatial

relationships can be exploited to extract important features and

improve the classification process:

Recent studies (Yoon and Kang, 2023) have highlighted the

importance of scalogram-based approaches for the interpretation

of ECG through bimodal CNNs, combined with ensemble and

Inception-v3 techniques, achieving an accuracy of 95.08% and

95.74% in classifying ARR, CHF, and NSR, while (Ozaltin and

Yeniay, 2023) expanded this work to accurately diagnose COVID-

19 with accuracies of 96.53% using CNN and 99.21% with CNN-

SVM% respectively.

An extensive investigation has been conducted using

ARR, CHF, and NSR datasets to study automatic ECG signal

classification, with (Mohamed et al., 2023) reported accuracies

of 96%, 92.66%, and 95.33% by using architectures GoogleNet,

AlexNet, and ResNet; additionally, Sabeenian and Sree Janani

(2023) achieved an accuracy of 98.81% with ResNet18, while

combining CNN with Naïve Bayes (Ajjey et al., 2022) and AlexNet

(Olanrewaju et al., 2021), reported accuracies of 98.76% and

98.7%, showing the dominance of DL architectures in accurately

classifying ECG signals.

Studies using the UCDDB dataset (Mashrur et al., 2021) have

applied a scalogram-based CNN to identify obstructive sleep apnea,

with an accuracy of 94.30%. Research using the PTB and MIT-

BIH arrhythmia datasets (Byeon et al., 2019) has demonstrated the

adaptability of DL architectures, including GoogleNet, EECCGNet,

and ResNet, attaining high classification accuracies of 92.29% to

99%. Normalizing binary images for extracting the QRS complex

(Wang et al., 2020) and with AlexNet, VGG-16, and Inception-

V3 (Naz et al., 2021), reflecting ECG properties, such as QRS

complexes and T waves, might be advantageous when integrated

with other forms of ECG data. Normalization is implemented to

achieve consistency in image scaling, which in turn enables the

integration of analysis for improved interpretation and detection

of cardiac problems.

Recent advancements in ECG analysis have been driven by

the exploration of complex DL architectures for enhanced feature

extraction and classification. Researchers have leveraged these

architectures to improve diagnostic accuracy and enable automated

interpretation of ECG signals. Another recent study used 1,932

paper-based ECG images, which were divided into five classes (MI,

HMI, NHB, AHB, and COVID-19), to evaluate the performance of

different DL architectures in classification tasks. The DenseNet201

(Rahman et al., 2022) model was employed for binary classification,

attaining an accuracy of 99.1%. For the classification of three

classes, DenseNet201 (Rahman et al., 2022) achieved an accuracy

of 97.36%, while InceptionV3 (Rahman et al., 2022) achieved an

accuracy of 97.83% for the classification of five classes. A different

research study utilized the identical dataset and implemented the

In-Res106, InceptionV3, ResNet50, DenseNet201, VGG19, and

MobileNetV2 architectures (Fatema et al., 2022) to develop an

automated system for predicting heart disease. Impressive levels

of accuracy were attained, with In-Res106 emerging as the top

performer with a score of 98.34%. In addition, a distinct study that

specifically examined the categorization of cardiac disorders (ARR,

CHR, NSR) found that the SIFT-CNN (Prusty et al., 2024) attained

a remarkable accuracy rate of 99.78%. Nevertheless, alternative

techniques such as SVM, K-Nearest Neighbors (KNN), Long Short-

Term Memory (LSTM), and AlexNet-SVM (Cnar and Tuncer,

2021) produced diverse outcomes, with accuracy rates ranging from

65.63% to 96.77%, when applied to classification and prediction

tasks. A slantlet based feature extraction followed by an SVM

classifier has resulted in an Area Under Curve (AUC) of 99.25%

(Saeed and Yousif, 2021).

In a different scenario, instead of opting for complex DL

architectures, a particular study investigated the use of convolution-

based heterogeneous activation facility (CHAF) (Narayanan, 2023).

This approach involves employing multiple activation functions

(AFs) in the convolution layer blocks, with each block having its

own AF. The aim is to extract features more effectively and enhance

accuracy. The study achieved an accuracy of 99.55% with an

execution time of 0.008 seconds using the CHAF-KNN method on

the PTB dataset. Similarly, with the MIT-BIH dataset, the CHAF-

KNNmethod achieved an accuracy of 99.08% and executed in 0.07

seconds.

In similar to our proposed work, there is research work that

combines phase and magnitude (Scarpiniti, 2024) of CWT and

got 98.5% accuracy; in another work, a time-frequency-based DL

framework (Karimulla and Patra, 2025) achieved 94.60% accuracy;

and lastly, in another research (Ahmad et al., 2021) usesmultimodal

image fusion and multimodal feature fusion techniques were used

to achieve 99.2%.

Table 1 presents a summary of DL architectures for ECG

classification. During our investigation into different DL

architectures and ML algorithms for a range of datasets, with

the goal of improving feature extraction and model performance

in healthcare applications, we have discovered a potential area for

innovation: combining the features of two images created from

ECG signals.

3 Proposed methodology

This section presents a detailed description of the proposed

BlendNet architecture, an analysis of BlendNet’s computational

complexity and an overview of its advantages and limitations.
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TABLE 1 Summary of deep learning architectures for ECG classification.

S. No. Architecture Dataset Accuracy (%) Highlights / Salient
Features

1 1D CNN (Ahmed et al., 2023) MIT-BIH Arrhythmia Dataset 99.00 Classification into 4 classes

2 1D CNN (Lakhdari and Saeed, 2022) MIT-BIH Arrhythmia Dataset 97.00–99.00 LeakyReLU activation used

3 SEResNet18 (1D CNN) Nguyen et al.

(2022)

ECG image dataset (Cardiac +

COVID-19)

98.42 (COVID-19 vs Normal),

98.50 (vs. Other)

Extracted ECG signals from paper

records

4 2D CNN (Mewada, 2023) MIT-BIH Arrhythmia Dataset 99.52 Combines wavelet spectral and

temporal CNN features

5 Bimodal CNN (Inception-v3) (Yoon

and Kang, 2023)

12-lead ECG (Chapman + Shaoxing) 95.08 (Bimodal), 95.74

(Ensemble)

1D ECG transformed to scalogram

and grayscale image

6 CNN–SVM (Ozaltin and Yeniay, 2023) PhysioNet (ARR, CHF, NSR) 96.53 (CNN), 99.21

(CNN–SVM)

Continuous Wavelet Transform

(CWT) used

7 GoogLeNet, AlexNet, ResNet

(Mohamed et al., 2023)

PhysioNet (ARR, CHF, NSR) 96.00, 92.66, 95.33 Based on 2D images transformed via

CWT

8 ResNet18 (Sabeenian and Sree Janani,

2023)

PhysioNet (ARR, CHF, NSR) 98.81 (raw), 97.05 (wavelet) 1D signal converted to 2D scalogram

images

9 CNN + Naïve Bayes (Ajjey et al., 2022) PhysioNet (ARR, CHF, NSR) 98.76 GoogLeNet used to extract

discriminative features

10 AlexNet (Olanrewaju et al., 2021) PhysioNet (ARR, CHF, NSR) 98.70 1D ECG transformed to 2D scalogram

image

11 SCNN (Scalogram-based CNN)

(Mashrur et al., 2021)

UCDDB 94.30 Combines Empirical Mode

Decomposition (EMD) and CWT

12 GoogLeNet, EECCGNet, ResNet (Byeon

et al., 2019)

PTB (CU ECG) 92.29–99.00 CNN-based architecture for ECG

images

13 Fusion (AlexNet, VGG19, InceptionV3

+ SVM) (Naz et al., 2021)

MIT-BIH Arrhythmia Dataset 97.60 Binary image input with cubic SVM

classifier

14 DenseNet201, InceptionV3 (Rahman

et al., 2022)

COVID-19 ECG image dataset 99.10 (2-class), 97.36 (3-class),

97.83 (5-class)

Detects COVID-19 from ECG images

and signals

15 InRes-106 Hybrid Model (Fatema et al.,

2022)

Paper-based ECG images (n=1932) 98.34 Outperforms InceptionV3, ResNet50,

etc.

16 SIFT–CNN (Prusty et al., 2024) PhysioNet (ARR, CHF, NSR) 99.78 Superior to HOG and SURF methods

17 Hybrid AlexNet–SVM (Cnar and

Tuncer, 2021)

PhysioNet (ARR, CHF, NSR) 96.77 Utilizes spectrogram representations

18 CNN with heterogeneous activation +

KNN (Narayanan, 2023)

PTB, MIT-BIH 99.55 (PTB), 99.08 (MIT-BIH) Uses six activation functions: tanh,

linear, softsign, elu, crelu, relu6

19 CNN-based fusion framework

(Scarpiniti, 2024)

MIT-BIH 98.5 Fuses the magnitude and phase of the

CWT,

20 Fusion-based time-frequency DL

framework (Karimulla and Patra, 2025)

MIT-BIH 94.60 Utilizing spectrograms and

scalograms

21 CNN with SVM (Ahmad et al., 2021) PTB, MIT-BIH 99.2 (PTB), 99.7 (MIT-BIH) Uses multimodal image fusion and

multimodal feature fusion

3.1 Proposed BlendNet architecture

Based on the inferences drawn from literature survey, we

hypothesize that the composite feature set from different images

of the same signal captures fundamental properties of ECG signals

more efficiently than the traditional signal representations. In order

to achieve this goal, we are incorporating the notion of alpha

blending, utilizing its capacity to improve patient care by enhancing

diagnostic accuracy and treatment effectiveness. Figure 1 shows

the proposed BlendNet architecture. It has three major parts: (i)

image formation and binarization, (ii) alpha blending, and (iii)

classification.

3.1.1 Image formation and binarization
The continuous wavelet transforms (CWT) play an important

role in feature extraction when compared to the 1-D signal, like

analyzing nonlinear behavior of ECG signals (Gupta et al., 2021),

arrhythmia classification (Kim, 2021), morphological features

(Wang et al., 2021), statistical features (Alharbey et al., 2022),

performs well with different variants of CNN (Dessai and

Virani, 2023), good performance in RGB images (Kumar and

Ramachandran, 2023), and classification with transformers (Qiu

et al., 2024). It performs a process of signal decomposition,

separating the signal into distinct frequency components across

a certain time period. Within the context of ECG data, the
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FIGURE 1

Proposed BlendNet architecture.

CWT enables us to examine the signal’s time-frequency properties,

encompassing both transient and periodic attributes. By utilizing

the CWT on the one-dimensional ECG data, we get a two-

dimensional representation called a scalogram. The scalogram

depicts the temporal changes in the frequency composition of the

ECG signal. Every point in the scalogram corresponds to a precise

time and frequency, and the intensity of each point represents

the magnitude of the wavelet coefficient at that exact time and

frequency.

The CWT of the signal f(t) is obtained by integrating f(t) with

the shifted and/or scaled forms derived from amother wavelet9(t):

CWT(a, b) =
1
√
a

∫ +∞

−∞
f (t) ∗ 9∗

(

t − b

a

)

dt (1)

a ∈ R
+, b ∈ R

where, a is the scaling parameter controlling the width of the

wavelet transform,

b is the translation parameter controlling the position of the

wavelet transform along the time axis,

9

(

t−b
a

)

is the scaled and translated version of themotherwavelet

9(t), and

9∗(·) denotes the complex conjugate of 9(·).

CWT(scale, position) =
∫ +∞

−∞
f (t) · ϕ(scale, position, t) dt. (2)

The process of converting the scalogram to grayscale is

important in the preprocessing process. This transformation

involves various processes like classification of digitized ECG

images (Mishra et al., 2021), image-based ECG classification (Li

et al., 2021), arrhythmic heartbeat classification (Degirmenci et al.,

2022), and bimodal CNN classification (Yoon and Kang, 2023),

which entail assigning shades of gray to the intensity levels of

the scalogram. This transformation maintains the comparative

variations in intensity within the scalogram while streamlining the

depiction for subsequent analysis.

Binarisation (i.e., binary conversion) involves simplifying the

grayscale representation by applying a threshold to the grayscale

image. This binarized image has been employed in various

processes, like analysis of QRS complex patterns (Wang et al.,

2020), ventricular tachyarrhythmia classification (Naz et al., 2021),

and morphological feature extraction for IoT devices (Xiaolin

et al., 2022). This procedure entails establishing a threshold value,

whereby pixels exceeding this value are designated as white to

indicate the existence of a signal, while pixels falling below this

value are designated as black to indicate the absence of a signal.

The threshold can be chosen based on apriori image information or
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TABLE 2 Comparison of scalogram and binary image representations for

ECG images.

Aspect Scalogram ECG Binary ECG

Representation Time-Frequency domain Segmentation into

foreground/background

Information Captures time and

frequency information

Highlights

presence/absence of

features

Features Detailed spectral

information

Structural features

Visualization Spectrogram-like Black and white

Feature Extraction Frequency-based Presence and

absence-based

through techniques such as Otsu’s thresholding. The binary image

enhances the visibility of the regions of interest in the ECG signal,

facilitating the identification of specific features such as peaks,

valleys, and anomalies. Table 2 shows the comparison between the

two image representations to be considered for the next step in

BlendNet.

To produce a visualization that combines a scalogram and

binary images, the scalogram from the ECG signal will show a

depiction of the frequency components of the signal as they change

over time. Binary images that depict segmented zones of interest

within the ECG signal. This process of segmentation may entail the

identification of particular events or irregularities in the signal, such

as QRS complexes, P-waves, or T-waves.

3.1.2 Alpha blending
Upon obtaining the scalogram and binary versions of the

image, these images are subjected to feature extraction procedure

in parallel. As shown in Figure 1, each of these image versions is

subjected to a sequence of convolution and pooling layers involving

ReLU. The outcomes of these convolution blocks are considered

for the alpha blending process. In literature, nighttime single-image

dehazing via pixel-wise alpha blending (Yu et al., 2019), content-

adaptive feature aggregationmechanism (Fukiage and Oishi, 2021),

data hiding in thermal imaging (Rathika and Gayathri, 2021), and

no division operation (Van Aken, 2022) are carried out by alpha

blending for various purposes. It is a widely employed technique

in computer graphics and image processing that combines two

images by considering the transparency value (alpha value denoted

by α) supplied to each pixel. Alpha blending is a technique used in

medical imaging, specifically with ECG, to achieve varied objectives

such as overlaying images or annotations, emphasizing specific

characteristics, or improving visual representations. It involves

assigning an alpha value to each pixel in the input images or layers,

indicating its level of transparency or opacity. α values typically

span the range of 0 to 1, with 0 representing complete transparency

and 1 representing complete opacity. α values ranging from 0 to 1

at an intermediate level produce different degrees of transparency.

In BlendNet architecture, the alpha blended feature set is expressed

as follows

F = αFs + (1− α)FB (3)

where, α is the blending proportion, FS is the feature set obtained

from the scalogram version through CNN-type convolution and

pooling operations, and FB is the feature set obtained from the

binarized version through convolution and pooling operations, as

shown in Figure 1.

3.1.3 Classification using dense layer
The objective of the classification is to differentiate between

different classes of input images (i.e., ARR, CHR, and NSR

in the cases of PhysioNet datset images). In BlendNet, a

dense neural network layer as in conventional CNN is used.

Softmax activation function is deployed. This CNN-type dense

layer can also be replaced with a more efficient dense layer

setting as in InceptionV3, ResNet152V2, DenseNet169, and

MobileNetV2. Since computationally more demanding portion

of BlendNet is the dense layer, in applications demanding

faster convergence, the dense layer can be replaced with

ML algorithms such as SVM, Random Forest (RF), KNN,

and XGBoost.

3.2 Computational complexity of the
proposed BlendNet

Let the input image size be n × m and the convolution kernel

size be k × d. The computational complexity of a convolution

operation isO(mnkdf ), where f denotes the number of filters. If the

scalogram and binary images are subjected to L layers (convolution

+ pooling), and the extracted feature map is of dimension N, then

the total computational complexity of feature extraction followed

by alpha blending isO(mnkdfL+N), because the blending requires

only O(N) computations. The dense neural network layer (i.e.,

feedforward neural network) has a computational complexity of

O(N4). Therefore, the computational complexity of the proposed

BlendNet is O(mnkdfL + N + N4). Since k ≪ N, d ≪ N, f ≪ N,

and L≪ N, the computational complexity can be approximated to

O(N4), which is the same as that of a standard feedforward neural

network.

3.3 Advantages and limitation of the
proposed BlendNet

Salient features of the proposed BlendNet are

• Effective feature extraction: Owing to the fact that each form

of the image (i.e., binary and scalogram) contains some unique

features of the image, the alpha blending step in the proposed

BlendNet facilitates improved feature extraction.

• Flexible blending: The blending is flexible as it is controlled by

a parameter α.

• Choice of algorithms for classification: Although the proposed

BlendNet architecture contains a dense neural network for

classification (as in CNN), it can also be replaced with a more

efficient dense-layer or with a faster alternative.
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The proposed BlendNet poses a challenge/limitation: The

blending proportion α is crucial and it needs to be chosen

appropriately.

4 Experimental results and discussions

This section contains dataset description, implementation

details, definitions of metrics used for evaluation and the

experimental results with related discussions.

4.1 Dataset description and
implementation details

Experiments reported in this section utilize ECG data collected

from three distinct cohorts: ARR, CHF, and NSR. A total of 162

ECG recordings were utilized, sourced from 3 PhysioNet databases:

the MIT-BIH Arrhythmia Database (Moody and Mark, 2001),

the MIT-BIH Normal Sinus Rhythm Database (Goldberger et al.,

2000), and the BIDMC Congestive Heart Failure Database (Baim

et al., 1986). To be more precise, there were 96 recordings from

individuals with ARR, 30 recordings from those with CHF, and 36

recordings from individuals with NSR. In Figure 2, which shows

FIGURE 2

Comparison of ECG representations across cardiac conditions.
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the clear visualization of how our ECG looks in all conditions,

like ARR, CHF, and NSR, for all image conversions like scalogram,

binary, and grayscale images. The objective is to develop a classifier

that can accurately differentiate between ARR, CHF, and NSR.

All the ECG signals were processed at a 128 Hz sampling rate.

We extracted the first 1,000 samples, and the class distribution is

96 recordings for ARR, 30 for CHF, and 36 for NSR. So 162 ECG

signals are used across 3 classes (class-imbalanced dataset) as a pilot

study aimed to explore the feasibility of the proposed BlendNet

architecture and its ability to extract features. The primary objective

was not to achieve state-of-the-art accuracy but to evaluate the

effectiveness of our feature extraction pipeline and to analyse

the performance trends in a controlled, preliminary setting. The

information gained from this work will serve as a foundation for

future work involving larger database to validate and generate the

findings.

All the data are normalized to zero mean and unit variance.

CWT is applied to 1-D ECG into 2-D scalogram images, using the

cwtfilterbank MATLAB function. The images have a resolution of

227*227 pixels and are categorized into ARR, CHF, and NSR. The

threshold for binarization was fixed 128 because of its simplicity

and convention. Technically, pixel values range from 0 to 255; 128

(127.5) is themidpoint. Using a value of 128 effectively separates the

morphological features from the background for our dataset and

exhibits pixel intensities. We didn’t process any data augmentation

techniques. During the training step for the model, we applied

class_weight to tackle the imbalance condition in the dataset.

As a preliminary experiment, which turned out to be a

motivation for proposing BlendNet, we evaluate the performance of

CNN models for scalogram and binary images separately, without

TABLE 3 Classification performance of traditional approaches for ECG

classification.

Architecture with
imaging type

Accuracy (%) Execution time
(seconds)

CNN on scalogram images 96.29 272.17

CNN on binary images 91.11 263.24

blending. In our first experiment, we processed scalogram images

and binary images separately to the CNN architectures, then by

using alpha blending, we blended the images to the dense layer

for classification. The BlendNet architecture was implemented

for various blending proportions (α ranging from 0.1 to 0.9)

and different train-test splits (60:40, 70:30, 80:20, and 90:10). In

order to avoid overfitting issues, we have used dropouts in the

architectures to mitigate it. Upon identifying the best parameter

settings, in the next set of experiments, a slightlymodified BlendNet

architecture with the CNN-type dense layer replaced with the

dense layer settings available in advanced architectures such as

InceptionV3, ResNet152V2, DenseNet169, and MobileNetV2 is

implemented for a comparative study. Training hyperparameters

for the experiments are as follows: we used the “adam” optimiser

and “sparse_categorical_crossentropy” loss function, 20 epochs,

and a batch size of 64 was processed through the experiments. In

the last set of experiments, the BlendNet architecture with the dense

layer replaced with faster alternatives (i.e., ML algorithms), such as

SVM, RF, KNN, and XGBoost, is implemented.

4.2 Evaluation metrics

The experimental study reported in this manuscript uses two

key criteria, namely accuracy and execution time, to assess the

effectiveness of architectures for ECG classification. Accuracy is a

crucial measure for evaluating the efficiency of our architecture in

accurately categorizing ECG signals into their appropriate groups.

Accuracy is expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is True Positives, TN is True Negatives, FP is False

Positives, and FN is False Negatives.

A greater accuracy level signifies good performance in precisely

recognizing and diagnosing cardiac problems, hence improving the

dependability and practicality of our method. Execution time is a

measure of the computing efficiency of our algorithm. It indicates

the elapsed time from the start to the end of the architecture’s

TABLE 4 Proposed BlendNet’s classification performance for di�erent blending proportions.

A 60:40 70:30 80:20 90:10

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

0.1 96.11 173.51 95.18 203.12 92.22 212.73 96.66 240.01

0.2 94.07 119.99 95.18 130.97 94.44 144.56 93.33 159.47

0.3 92.59 114.36 94.07 131.35 93.88 146.29 95.55 156.48

0.4 95.92 192.70 97.40 195.70 95.00 214.65 94.44 251.64

0.5 93.33 178.49 94.81 190.41 91.66 211.68 96.66 234.81

0.6 94.07 183.30 95.55 206.17 93.33 214.13 96.66 239.09

0.7 100.00 177.43 100.00 197.02 100.00 219.98 100.00 231.67

0.8 95.55 170.02 90.70 192.78 89.44 218.84 96.66 277.94

0.9 93.33 174.75 92.22 214.62 92.77 225.36 93.33 254.37
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FIGURE 3

Accuracy of BlendNet vs. blending proportion α.

TABLE 5 Proposed BlendNet’s classification performance for various dense layer settings.

α BlendNet-InceptionV3 BlendNet-ResNet152V2 BlendNet-DenseNet169 BlendNet-MobileNetV2

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

0.1 90.37 332.90 89.25 1,676.70 94.07 1,287.10 93.70 287.48

0.2 83.33 317.10 90.74 1,704.80 91.85 1,068.00 90.74 286.21

0.3 85.92 637.90 91.11 2,225.60 89.62 1,159.50 91.85 327.62

0.4 85.18 326.60 88.51 1,075.90 91.48 1,298.80 91.48 341.19

0.5 87.03 361.00 91.85 1,705.80 89.99 1,109.40 86.29 294.97

0.6 89.99 315.40 93.70 5,260.90 90.74 1,149.10 89.25 293.13

0.7 97.47 312.60 97.77 1,908.20 99.62 1,112.30 99.25 304.03

0.8 88.88 560.90 92.22 1,785.10 88.51 1,145.40 91.48 332.05

0.9 88.51 374.25 91.85 2,992.90 92.22 1,174.30 92.22 345.90

execution (i.e., the computation time in Python 3.9.10 running on a

64-bit AMDRyzen 7 4800Hwith Radeon Graphics 2.90 GHz, RAM

16 GB). This measure assesses the amount of computer resources

needed to process ECG signals and produce categorization results.

Assessing the time spent is vital for evaluating the practical viability

and scalability of our approach, especially in real-world situations

where prompt diagnosis and decision-making are vital.

4.3 Ablation study

In Artificial Intelligence (AI) terminology, an ablation

study is done by removing a component/part from an AI

model/architecture to understand the importance of the

component. Therefore, we start with the ablation study for

the proposed BlendNet by analyzing the performance of the

CNN architectures on scalogram and binary images separately

without blending. The empirical findings, displayed in Table 3,

illustrate the classification efficacy of the CNN models for

scalogram and binary images. The test train split was fixed as

70:30. The classification based on scalogram images achieved an

accuracy of 96.29%, whereas the classification based on binary

images achieved an accuracy of 91.11%. The results demonstrate

the effectiveness of both image formats in automating ECG

classification. The scalogram representation marginally surpasses

the binary representation in terms of classification accuracy. The

execution time is almost similar.

As there is no blending involved in this experiment, this set of

results will serve as a basis for comparison of traditional approaches

with the proposed BlendNet architecture which involves blending.
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FIGURE 4

Accuracy of BlendNet-InceptionV3 vs. blending proportion α.

FIGURE 5

Accuracy of BlendNet-ResNet152V2 vs. blending proportion α.

4.4 Performance analysis of proposed
BlendNet for di�erent blending proportions
and for di�erent train-test splits

This experiment focus on examining the efficacy of the

proposed BlendNet and the impact of the blending proportion on

it. The proportion α is varied from 0.1 to 0.9 (in steps of 0.1). A

proportion of 0.1 indicates that 10% of the features are derived

from the scalogram and 90% are from the binary counterpart,

while a proportion of 0.9 indicates the vice-versa. Table 4 shows the

classification performance of BlendNet for different α values and

different train-test splits.
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FIGURE 6

Accuracy of BlendNet-DenseNet169 vs. blending proportion α.

FIGURE 7

Accuracy of BlendNet-MobileNetV2 vs. blending proportion α.

It can be inferred from Table 4 that the BlendNet’s best

classification accuracy is achieved for 0.7 regardless of the

train-test ratio. Convergence-wise, the architecture is faster for

0.2 or 0.3 compared to other values of α. Figure 3 establishes

a comparison of BlendNet’s performance with the results

obtained from the ablation study. When the proportion

deviates from 0.7, the accuracy reduces. The outcome of

this experiment indicates that a well-balanced blend of

characteristics from both image types resulted in the best

categorization performance.
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TABLE 6 Proposed BlendNet’s classification performance for di�erent ML algorithms.

α BlendNet-SVM BlendNet-RF BlendNet-KNN BlendNet-XGBoost

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

Accuracy
(%)

Exec. Time
(s)

0.1 97.03 197.31 96.66 200.83 96.29 187.16 96.29 192.24

0.2 98.88 133.22 100 130.22 98.88 135.51 99.44 134.71

0.3 97.22 134.76 97.22 161.29 97.22 134.64 97.22 136.10

0.4 95.18 193.09 95.18 201.13 95.18 220.44 94.81 198.64

0.5 96.66 193.34 96.66 202.10 96.66 228.21 97.03 209.98

0.6 94.81 193.03 94.81 194.66 94.81 214.45 94.44 204.43

0.7 92.22 199.23 92.59 201.26 91.85 198.79 92.22 200.42

0.8 93.33 194.79 93.33 204.68 93.33 227.76 93.33 204.98

0.9 93.33 194.28 92.96 200.41 93.33 225.55 93.33 205.87

4.5 Validation of the robustness of the
proposed BlendNet for various dense layer
settings

For our study on the robustness of BlendNet in terms of dense

layer settings, we replaced the CNN-type dense neural network

layer in BlendNet with the dense layer settings available in popular

deep learning architectures such as InceptionV3, ResNet152V2,

DenseNEt169, and MobileNetV2. Table 5 shows the classification

performance of BlendNet with dense layer settings from 4 different

architectures, for different α values. The train-test split is fixed as

70:30. It can be inferred from Table 5 that the proposed BlendNet

results in a classification accuracy of more than 97% for all 4

dense layer settings considered, with the best accuracy of 99.62%

for DenseNet169-type setting. It is worth noting that the highest

classification accuracy is achieved for 0.7, regardless of the change

in the dense layer setting.

Convergence-wise, BlendNet with InceptionV3 and

MobileNetV2 are comparable to that of the BlendNet with CNN.

Figures 4–7 present a comparison of BlendNet’s performance

against models using only scalogram images and only binary

images, without blending. α parameter plays an important role

in the blending process; surprisingly, for α = 0.7 proportion, the

model (BlendNet, BlendNet-based CNN architecture) gives the

best result. When the proportion deviates from 0.7, the accuracy

falls below the accuracy. The outcome of this experiment indicates

that a well-balanced blend of characteristics from both image types

adds flexibility to the proposed BlendNet.

4.6 Validation of the robustness of the
proposed BlendNet for di�erent ML
algorithms

With a motive of providing a faster alternative to the

computationally more demanding dense layer in the BlendNet, the

dense layer is replaced with ML algorithms. In this experiment,

TABLE 7 Comparison of BlendNet’s classification performance with that

of the state-of-the-art approaches.

References Architecture Metrics

Li et al. (2022) Slantlet transform + SVM

classifier

AUC: 99.25%

Yoon and Kang (2023) SIFT + CNN (5-fold cross

validation)

Accuracy: 99.78%

Proposed BlendNet with CNN-type dense

layer and α = 0.7

Accuracy: 100%

BlendNet with RF and α = 0.2 Accuracy: 100%

four different ML algorithms—SVM, RF, KNN, and XGBoost

are considered. Table 6 shows the classification performance of

BlendNet with ML algorithms, for different α values. The train-

test split is fixed as 70:30. It can be inferred from Table 6 that the

BlendNet’s best classification accuracy is achieved for 0.2 regardless

of the ML algorithm used. This shows that a binary-dominant

blending is more suitable for BlendNet with ML algorithms.

Convergence-wise, the architecture is much faster compared to that

of the BlendNet architectures involving dense layer.

4.7 Performance comparison with the
state-of-the-art approaches

Table 7 shows the comparison of the proposed BlendNet

with the state-of-the-art approaches. The architecture in Prusty

et al. (2024) involves SIFT followed by CNN whereas the one in

Saeed and Yousif (2021) involves a slantlet transform followed

by SVM. It can be inferred from Table 7 that the proposed

BlendNet architecture with CNN-type dense layer and α = 0.7

outperforms the state-of-the-art-approaches. To ensure robustness

and mitigate overestimation of model performance, we conducted

5-fold stratified cross-validation and got 99.21% ± 1.05%. The

reported metrics are averaged over all folds, with standard

deviations included. As mentioned in earlier sections, the main
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FIGURE 8

Mean activation heatmap of di�erent α values.

reason behind BlendNet’s performance is the composite feature

set obtained through alpha blending. In contrast to existing

multimodal ECG (Scarpiniti, 2024; Karimulla and Patra, 2025)

complex architecture for the fusion process (decision-level fusion

with additional classifiers), our proposed BlendNet shows a

lightweight and effective linear blending process strategy, enabling

transparent and flexible fusion of features from scalogram and

binary images. This architecture not only reduces computational

cost but also facilitates reproducibility and interpretability.

4.8 E�ect of alpha blending on feature
representation

The α parameter in alpha blending influences both the

scalogram and binary image feature representation. Mean

activation heatmap, which explains where our model sees the

feature for different α values, and t-SNE explains how our α values

differences affect feature representation. In Figure 8 for α = 0.1

the blended image, binary CNN features dominate over scalogram

features, which means the features are observed less uniformly

distributed, like low-level features, whereas for α = 0.9 the blended

image, scalogram CNN features dominate over binary features,

and the observation is stronger and more spread. For α = 0.5 and

α = 0.7, both binary and scalogram features contribute almost

equal and moderately strong activation in the central part. From

the t-SNE (Figure 9) plot, we calculated the Within-Cluster Sum

of Squares (WCSS) for α values like for 0.1, it’s 6,134.92; for 0.5,

it’s 4,338.18; for 0.7, it’s 4,117.38, and for 0.9, it’s 5,324.92. From

this, we can clearly understand that for α = 0.7 tightly clustered

meaning, feature representation is good across all the images when

compared to all other alpha blending proportions.
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FIGURE 9

t-SNE of Blended Feature maps across α values.

5 Conclusion

This work proposed “BlendNet,” a novel DL architecture that

effectively extracted the features of an ECG signal using a blending

approach termed “alpha blending.” The blended feature map is

subjected to a dense neural network layer (as in traditional CNN)

that classifies the image. The utilization of alpha blending facilitated

the generation of a composite feature set that incorporated different

characteristics of a 2D-represented ECG signal from its scalogram

and binary versions. Experimental results on the PhysioNet dataset

showed that the BlendNet has its best performance for α = 0.7.

The result of the ablation study showed that, in the case of α =
0.7, BlendNet’s performance was better than the performance of

its traditional counterparts (i.e., CNN on only scalogram images

and CNN only on binarized images). Proposed BlendNet is shown

to be flexible in terms of dense layer settings. For applications

demanding complicated neural network architectures, BlendNet

can be deployed with dense layer settings as in InceptionV3,

ResNet152V2, DenseNet169, or MobileNetV2. For applications

demanding faster execution times, the dense layer can be replaced

with ML algorithms such as XGBoost for faster convergence.

Limitation of the proposed BlendNet: As the blending

proportion α deviates from 0.7, the performance starts to degrade.

It is also dataset dependent. An approach needs to be devised for

estimating an optimal value of α.

Recommendations for future work: (i) As an extension of this

work, the effectiveness of blending can be improved by considering

other imaging modalities; (ii) The composite feature set resulting

from blending can be used in generalized adversarial networks

popularly known as GANs.
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