
TYPE Review
PUBLISHED 25 September 2025
DOI 10.3389/frai.2025.1626804

OPEN ACCESS

EDITED BY

Liguo Zang,
Nanjing Institute of Technology (NJIT), China

REVIEWED BY

Alexandre Silveira,
Instituto Superior de Engenharia do Porto
(ISEP), Portugal
Lei Zhang,
Beijing Institute of Technology, China
Yaning Qin,
Jiangsu University, China

*CORRESPONDENCE

Zacharia Prakash
zachariaprakash@gmail.com

RECEIVED 11 May 2025
ACCEPTED 29 August 2025
PUBLISHED 25 September 2025

CITATION

Prakash Z (2025) Integration of AI and ML in
regenerative braking for electric vehicles: a
review. Front. Artif. Intell. 8:1626804.
doi: 10.3389/frai.2025.1626804

COPYRIGHT

© 2025 Prakash. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Integration of AI and ML in
regenerative braking for electric
vehicles: a review
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Department of Electrical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India

Electric vehicle technology has grown rapidly in recent years due to battery
advancements, environmental concerns and supportive policies. Regenerative
braking systems play a critical role in improving energy efficiency by converting
kinetic energy into electrical energy, thereby extending battery life and
vehicle range. However, conventional regenerative braking faces challenges in
energy recovery, comfort, and adaptability. Optimizing energy recovery ensures
prolonged battery life by preventing overcharging or undercharging, making EVs
more sustainable and cost-effective. This review paper explores the integration
of Artificial Intelligence and machine learning techniques in regenerative braking
systems to overcome these challenges. This study examines AI techniques such
as regression models, neural networks, deep reinforcement learning, fuzzy logic,
genetic algorithm and swarm intelligence based techniques for regenerative
braking. The study also compares AI-based strategies with traditional braking
methods. Unlike previous studies, which focus on individual AI techniques, this
paper provides a comparative analysis of multiple AI approaches, assessing their
impact on braking performance and energy recovery, and propose a hybrid
AI framework. This paper covers challenges in real-time implementation, road
adaptability, and vehicle control integration. This paper also discusses future
research that optimize braking performance like V2X communication, edge
computing, and explainable AI etc.
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1 Introduction

Electric vehicle (EV) adoption has surged due to breakthroughs in battery technology,
stringent government policies, and increasing environmental concerns. The International
Energy Agency forecasts EVs will capture a 35% global market share by 2030 (Zaino
et al., 2024). Among the key drivers of EV efficiency is regenerative braking, a process
where kinetic energy from deceleration is converted and stored as electrical energy in the
battery rather than lost as heat. As illustrated in Figure 1, this bidirectional energy flow
allows the motor to act as a generator during braking, dramatically enhancing energy
recovery, extending driving range, and potentially prolonging battery life. Recent advances
in artificial intelligence (AI) and machine learning (ML) are now poised to revolutionize
regenerative braking systems (RBS) by enabling smarter, adaptive control strategies that
optimize energy capture while maintaining safety and drivability. AI/ML techniques can
dynamically adjust braking force, learn from varying road and driving conditions, and
predict optimal energy recovery patterns in real time, addressing limitations of traditional
rule-based methods. This integration marks a transformative step toward maximizing
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FIGURE 1

A schematic representation of a regenerative braking system illustrating the bidirectional energy flow between the vehicle’s wheels and the battery
during deceleration and acceleration phases.

EV efficiency and sustainability, setting the stage for the
next generation of intelligent regenerative braking technologies
(Mitropoulos-Rundus et al., 2021).

In this paper, a conventional regenerative braking system refers
to one with a fixed brake force distribution between the front and
rear axles, unable to adapt to changes in road conditions, vehicle
load, or tire-road adhesion. This static approach often results
in lower energy recovery and reduced stability in varied driving
scenarios. When braking, the electric motor acts as a generator,
feeding energy back into the battery (Chandak and Bhole, 2017).
Unlike traditional service braking, regenerative braking initiates
deceleration as soon as the accelerator is released (Mitropoulos-
Rundus et al., 2021). Control strategies such as fuzzy logic and PID
improve braking force distribution, ensuring smooth transitions
and better energy recovery (Nian et al., 2014). ML methods
further optimize recovery by considering factors like battery SOC,
braking demand, and real-time conditions (Prasanth et al., 2023).
Beyond energy capture, AI models have also shown potential for
fault diagnosis (Sankavaram et al., 2014) and optimizing braking
performance under varying traffic conditions (Zhang et al., 2020).

In conventional regenerative braking systems, a substantial
portion of braking energy is lost due to inefficient conversion,
with less than 50% recovered in urban driving and even lower
efficiency in high-speed or emergency braking scenarios (Yin
et al., 2023a). These systems also lack adaptability, operating
with fixed front–rear braking force ratios regardless of road
conditions, load, or adhesion, leading to suboptimal energy
recovery (Yin et al., 2023b). Moreover, regenerative braking alone
cannot supply the force needed for sudden or rapid deceleration,
necessitating mechanical braking and further reducing recovery
efficiency (Hwang et al., 2023). ML models address these limitations
by predicting braking force from real-time inputs such as
SOC, speed, road conditions, and driving patterns to optimize
recovery. AI-based control dynamically adjusts force distribution,
enhancing stability, comfort, and efficiency under varying and
emergency conditions. Key approaches include supervised learning
(e.g., regression models, neural networks) for force prediction,
reinforcement learning (e.g., Q-learning, deep Q-networks) for
adaptive braking, and fuzzy logic for smooth transitions. Hybrid

AI models integrate these methods to balance energy recovery with
vehicle stability.

Existing research demonstrate diverse AI/ML applications
in optimizing regenerative braking systems. Supervised learning
models, including Polynomial Regression and Random Forest,
predict energy generation and optimize power distribution
between storage units, achieving up to 59% improvement
over traditional methods (Prasanth et al., 2023). Fuzzy Logic
Controllers dynamically adjust braking force based on variables
like vehicle speed, battery SOC, and braking intensity (Xu
et al., 2011). Reinforcement Learning, using state-action-reward
frameworks and Deep Q-Networks, enhances braking stability
and energy recovery in simulations (Chae et al., 2017). Neural
Networks, such as Bidirectional LSTM and ANN-IWHO, optimize
torque allocation and driving comfort across different road
conditions (Chae et al., 2017). Genetic Algorithms improve
driving patterns and braking settings, with GA-based eco-driving
extending vehicle range and hybrid GA-fuzzy systems reducing
heat generation (Gautam et al., 2021; Arunprasad et al., 2023).
These techniques collectively demonstrate AI/ML’s capability to
balance energy recapture, vehicle stability, and battery longevity.
However, most studies focus on individual methods without
comparative analyses under standardized conditions. Moreover,
experimental validation is limited, heavily relying on simulations,
which raises concerns about real-world applicability amid traffic
variability, road conditions, and computational limits (Zhang et al.,
2020). Few works address regenerative braking’s impact on battery
health (Chidambaram et al., 2023). Integrating AI/ML into existing
braking systems remains challenging due to nonlinear dynamics
and safety demands. Future work should emphasize comparative
studies and real-world testing to bridge these gaps. Figure 2 depicts
the overall AI/ML regenerative braking architecture, showing how
inputs like battery SOC, vehicle speed, and braking demand feed
into ML models to optimize control strategies, highlighting the
importance of integrated AI solutions.

The primary objective of this review is to present a
comprehensive analysis of AI/ML integration in regenerative
braking systems (RBS) for electric vehicles. It examines major
AI-driven approaches such as fuzzy logic controllers, neural
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FIGURE 2

A general architecture of an AI/ML-based regenerative braking system illustrating the flow of input variables into machine learning models for
deriving optimized braking control strategies.

networks, reinforcement learning, and genetic algorithms and
evaluates their contributions to energy recovery, braking efficiency,
stability, and adaptability. Performance comparisons are made
under standardized conditions, including energy recapture rates
and real-world applicability. The review also identifies key gaps,
notably the scarcity of experimental validation, limited cross-
technique comparative studies, and challenges in integrating AI
into practical braking systems. By synthesizing existing research,
this work highlights AI/ML’s potential to enhance efficiency, safety,
and overall vehicle performance while outlining future directions
for advancing regenerative braking technologies.

This review examines AI/ML techniques applied to
regenerative braking in electric vehicles, focusing on energy
recovery efficiency, braking comfort, and vehicle adaptability
as primary evaluation metrics (Wager et al., 2018). It compares
approaches including fuzzy logic, neural networks, genetic
algorithms, and reinforcement learning based on energy recovery,
braking force distribution, stability, and comfort. The assessment
draws majorily on MATLAB/Simulink simulations but limited
real-world applications (Saiteja et al., 2022), addressing practical
challenges such as real-time adaptability, computational demands,
and integration with existing vehicle systems. While highlighting
AI-driven advantages like dynamic optimization and increased
energy savings, the review acknowledges limitations involving
data dependency and computational complexity. It excludes
hardware specifics, economic factors, regulatory policies, and
detailed mechanical aspects, and does not provide an in-depth
discussion of fault diagnosis (Sankavaram et al., 2014) due to
limited comprehensive research. This focused analysis is confined
to software-based control strategies, emphasizing AI/ML’s role in
optimizing regenerative braking performance.

The review methodology follows systematic literature review
practices tailored for engineering and AI, covering publications
from 2010 to 2025 via databases like IEEE Xplore, ScienceDirect,
SpringerLink, Web of Science, and Google Scholar. Relevant studies

involving regenerative braking, EVs, AI, machine learning, and
specific techniques were screened through a two-stage process,
focusing on peer-reviewed, English-language works. Extracted data
on methods, metrics, and findings were synthesized to reveal
comparative trends, real-world constraints, and research gaps,
adhering to standards of transparency and reproducibility.

The structure of this review is organized as follows: Section
1 provides an introduction to the study. Section 2 covers the
basics of regenerative braking, including how it works, the different
types, and the main challenges involved. Section 3 looks at
different AI and ML methods and explains how each one helps
improve the regenerative braking system. Section 4 compares
these strategies with traditional braking methods, focusing on how
well they recover energy, provide comfort, and adapt to different
driving conditions. Section 5 proposes a hybrid AI framework that
integrates the strengths of multiple techniques. Section 6 discusses
the major implementation challenges of AI/ML models in braking
systems and highlights future research directions. Finally, Section 7
presents the discussion and concluding remarks.

2 Fundamentals of regenerative
braking

2.1 Working principles

In electric vehicles, regenerative braking converts kinetic
energy into electrical energy during deceleration by switching the
wheel motor into generator mode. BLDC motors are often used
for their efficiency and dual motor/generator capability (Nian
et al., 2014). Main system components include wheel motors,
bidirectional power electronics (e.g., H-bridge inverters with
MOSFET/IGBT switches), and energy storage units like lithium-
ion batteries or supercapacitors. Braking triggers the motor to
act as a generator, inducing back EMF that charges the battery
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via the bidirectional converter. Dual-motor all-wheel-drive EVs
further enhance energy recovery compared to single-motor setups
(Heydari et al., 2020).

2.2 Types of braking

Braking systems in electric vehicles are categorized into three:
mechanical, regenerative, and hybrid. Mechanical braking relies
on friction, turning kinetic energy into heat and causing wear,
but provides crucial safety. Regenerative braking slows the vehicle
by using the motor as a generator to recover energy, though
its effectiveness is limited when the battery is fully charged or
at low speeds. Hybrid systems integrate both methods, ensuring
reliable deceleration across all conditions by compensating for the
limitations of regenerative braking, especially during low speeds or
full battery scenarios (Da and Bo, 2015). In emergency braking,
the system defaults fully to friction braking for maximum safety.
Thus, the best systems balance efficient energy recovery with
uncompromised safety.

2.3 Challenges

Regenerative braking systems must balance energy recovery
with braking stability and safety. At low speeds, conversion
efficiency drops significantly. Emergency stops require deceleration
forces that exceed the capacity of regenerative systems. Frequent
charge and discharge cycles also accelerate battery degradation.
High current charging, especially at high temperatures or elevated
state of charge (SOC), increases the risk of lithium plating and
capacity loss. Over time, this cycling reduces battery storage
ability and overall vehicle performance. Although regenerative
braking can extend lithium-ion battery life by reducing deep
discharges (Chidambaram et al., 2023), frequent high SOC charging
especially in warm conditions can speed-up degradation. While
regenerative braking mainly accelerates cycling aging, constant
high SOC and elevated temperatures also drive calendar aging
during storage (Keil and Jossen, 2017). To prevent damage, battery
management systems must carefully regulate charging rates, SOC,
and temperature to optimize both energy recovery and long-term
battery health. Transition lag between mechanical and regenerative
braking further complicates stability during rapid stops.

3 AI/ML-based approaches for
regenerative braking

3.1 Regression models

Polynomial Regression (PR) and Random Forest Regression
(RFR) are used to optimize regenerative braking energy in electric
vehicles. PR models braking force as a nonlinear function of inputs
such as brake demand and battery SOC, using gradient descent
for optimization and incorporating principal component analysis
(PCA) to reduce dimensionality. RFR, which combines predictions
from multiple decision trees trained on random data subsets,
identifies brake demand as the important factor for accurate

braking force prediction. RFR achieved better accuracy with a
lower root mean square error (RMSE) of 5.16e-04 compared to
PR’s 0.042588 and handled nonlinear patterns more effectively.
However, PR produced higher regenerative force in most driving
conditions. For example, 16,000 W vs. 15,770 W in FTP cycles
(Prasanth et al., 2023). Both models underperform relative to real-
time optimization (RTO) methods but offer useful compromises:
PR is faster and suitable for real-time use, whereas RFR manages
complex nonlinearities better but with higher computational delay.
A major limitation of PR is its depends on fixed polynomial
terms, which can result in underfitting (Kim et al., 2021). Overall,
both techniques improved energy recovery by approximately 59%
compared to traditional fuzzy logic and neural network approaches
(Prasanth et al., 2023).

3.2 Neural networks

Artificial neural networks (ANNs) predicts braking force by
analyzing inputs like battery SOC, speed, and brake demand.
ANNs minimizes prediction errors by continuous weight updation
which enables the network to learn input-output relationships.
Unlike traditional experimental or rule-based approaches, the ANN
model offers faster, more flexible predictions and enables real-
time control system development without physical trials (Rezk
and Abuzied, 2023). The neural network (NN) architecture for
braking force optimization is illustrated in Figure 3. The studies
such as Velu and Chellammal (2023) introduce a novel Improved
Wild Horse Optimization Algorithm (IWHO) to optimize ANN
weights, achieving good accuracy. This approach maximizes energy
recovery by 15% while ensuring vehicle stability through optimal
brake force distribution. Models like Long Short-Term Memory
(LSTM) and Nonlinear Autoregressive Exogenous (NARX) can
predict how much energy can be recovered during braking
(Ziadia et al., 2023). These models consider driver-specific
regeneration limits and road topology into optimization, achieving
16%–39.6% energy recovery improvements across various driver
cycles. It is expected that this adaptive approach can reduce
computational load while outperforming traditional methods in
downhill scenarios.

In Neural Inverse Optimal Control (NIOC), a special type of
neural network called a Recurrent High-Order Neural Network
(RHONN) is trained using an Extended Kalman Filter (EKF) (Ruz-
Hernandez et al., 2022). This training helps the network understand
how voltage and current behave in a buck-boost converter. This
approach enables accurate tracking of time-varying references and
optimizes energy recovery during braking without solving complex
equations. It achieves high tracking accuracy and improves SOC
retention by 20.41%. Neural network models like LSTM and
Transformer help estimate energy use during braking by learning
from how the vehicle is driven and the road conditions (Zhang
et al., 2024). This helps in dynamically estimating regenerative
braking efficiency, which traditional models often oversimplify
with static coefficients while achieving nearly 15% lower errors.

However, ANN performance relies heavily on training
data quality. It requires large datasets and face computational
complexity and makes real-time deployment difficult. Additionally,
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FIGURE 3

A neural network architecture for braking force optimization utilizing backpropagation for adaptive learning and control refinement.

the “black-box” nature of NN reduces interpretability compared
to rule-based models (Zhang et al., 2024). Also for Optimization
Algorithms like IWHO, computational complexity would make
real-time implementation difficult. Although this method performs
better than traditional fuzzy logic and many ANN approaches, it
shows poor real-time optimization in dynamic energy recovery.

3.3 Deep reinforcement learning

Deep Reinforcement Learning (DRL) is a method where an
agent learns to make decisions by interacting with an environment.
It uses deep neural networks to understand complex patterns and
improve actions over time. The agent gets rewards for good actions
and learns to avoid bad ones. Over many tries, it figures out
the best way to reach a goal. DRL is being used in areas such
as modern autonomous vehicles and related energy systems. For
instance, Min et al. (2019) proposes a multi-level deceleration
algorithm that blends driver modeling and optimization-based
techniques to identify optimal deceleration trajectories. In another
study (Kim et al., 2021), the regenerative braking process is
modeled using parameterized polynomial deceleration and utilizes
dynamic programming to maximize energy recapture during
braking events. By integrating external factors such as traffic signals
and road topography, the system dynamically adjusts deceleration
commands, yielding at least a 16% increase in energy recovery
and a 3%-10% reduction in trip time compared to human drivers,
while maintaining a 3-meter safety margin in 95% of test cases.
Enabling V2I (vehicle-to-infrastructure) communication can help
in recovering more energy when braking near traffic lights (Zhang
et al., 2020). Here the braking process is set up as a decision-
making problem using RL, where the vehicle’s distance and speed
be the “state” and different ways of slowing down are the “actions.”
The algorithm tries different actions, learns from the results, in
order to maximize the rewards- balances energy recovery and
smooth driving. With the available real-time traffic light data, two

RL methods were tested in the studies, Q-Learning and Deep Q-
Network(DQN). The Q-learning method recovered 45.08% more
energy than simple uniform braking and DQN recovered 2.24%
more energy and demonstrated smoother braking.

To resolve the inherent trade-offs between different system
objectives (energy recovery, comfort, and safety), DRL algorithms
commonly use a custom reward function to that quantifies
these often conflicting objectives. One such representative reward
function rt at time step t is formulated as:

rt = λ1 ·
Eregen(t)

Emax
− λ2 · (adesired − at)2 − λ3 · I(violation)

Here Eregen(t) denotes the energy recovered during braking,
normalized by the maximum possible recoverable energy Emax.
The term (adesired − at)2 penalizes deviations from the desired
deceleration adesired, promoting smooth and comfortable braking.
The indicator function I(violation) imposes penalties for unsafe
conditions, such as excessive wheel slip or insufficient safety
margins. The weighting factors λ1, λ2, and λ3 balance the trade-
offs between maximizing energy efficiency, maintaining braking
comfort, and ensuring safety.

This reward structure enables the DRL agent to dynamically
adjust braking strategies, optimizing energy recapture while
preserving vehicle stability and passenger comfort. It clearly
expresses the key algorithmic foundation in many DRL-based
regenerative braking systems.

Recent advancements demonstrate the diverse potential of
DRL in this field. For example, the Deterministic Policy Gradient
(DPG) approach has been applied to develop adaptive regenerative
braking strategies for pure electric vehicles, leading to 57.69% faster
convergence and nearly 2% lower energy consumption compared
to traditional control, as well as extended battery life (Xu, 2025).
Another framework (Ramesh et al., 2024) combines DRL with
modular recurrent neural networks (RNNs) for tasks such as
localization, path planning, and power management. The algorithm
leverages real-time sensor and historical data, with modular RNNs
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reducing overall power consumption via time-series memory
reuse, ultimately showing improved energy efficiency in highway
scenarios. Further, the use of the Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm enables dynamic allocation of
braking torque across motors and hydraulic systems, delivering
35.18% energy recovery under various driving cycles (Peng and
He, 2025). In more complex hybrid setups, Fuzzy Q-Learning
(FQL) has been used to optimize hydraulic regenerative braking by
dynamically adjusting force in real time, also introducing trauma
memory to enhance safety in rare collision scenarios (Ning et al.,
2023). These models achieved energy recovery up to 9.62% higher
than standard fuzzy control and successfully maintained strict
safety margins. Both Kim et al. (2021) and Ning et al. (2023) report
100% success in Euro NCAP AEB tests at 60 km/h, along with
smooth, efficient deceleration profiles—a notable improvement
over conventional rule-based approaches.

3.4 Fuzzy logic models

Fuzzy logic models work in a way that’s similar to how humans
make decisions. Membership functions in fuzzy logic is used to
define how each input value is mapped to a degree of membership
between 0 and 1. They help translate real-world inputs (like battery
SOC, temperature, vehicle speed, or brake requirement) into fuzzy
values like “low,” “medium,” or “high,” this process is also known
as fuzzification. This allows the system to handle uncertainty and
make decisions in a way that mimics human reasoning. The result
is defuzzified to get a crisp output. Fuzzy logic is one of the most
commonly used RBS techniques according to existing literature.
Most of the papers use fuzzy logic as a method to improve the
existing methods such as PID controllers, reinforcement learning
or neural networks. The integration of fuzzy inference systems
with conventional PID controllers for braking force optimization
is shown schematically in Figure 4.

Advanced fuzzy logic techniques, such as Type-2 Fuzzy
Logic (IT2FL) (Wahid et al., 2024), have been used to optimize

regenerative braking in electric trikes, utilizing the Nie-Tan method
as a type-reducer to streamline computation. This approach
improved energy recovery by 3% (2.3 km range extension) over
conventional fuzzy systems and delivered 35.84% total energy
recovery (91 km increase) and 50 km/kWh efficiency (41.7%
improvement) compared to non-regenerative control. Other works
(Islam et al., 2023) integrate fuzzy logic with PID controllers,
resulting in 8%–25% greater driving range and enhanced stability.
In fuzzy models such as Maia et al. (2020) a technique called Batch
Fuzzy Q-Learning (BFQL) is used to optimize the regenerative
braking factor (RBF). Integrating this reinforcement learning
technique eliminates the need for manual expert adjustments to
automate the tuning of fuzzy rules. This approach improved energy
recovery predictions, reducing errors by up to 22.47% compared to
manual methods.

Gradient-based fuzzy logic controllers (Vodovozov et al., 2020)
further adapt braking force to changing road conditions, facilitating
smooth shifts between normal and anti-lock modes. Simulations
report recovery of 22 kJ even under variable tire-road friction.
Two-layer fuzzy-PID control strategies (Anh et al., 2024) separate
front/rear braking force allocation (using ideal braking curves)
from the real-time fuzzy distribution, yielding 13%–30% energy
recovery gains. Takagi–Sugeno fuzzy sliding-mode controllers
(TSFSMC) (Zhang et al., 2016) ensure above 91% efficiency without
additional sensors by ensuring precise voltage regulation and fast
responsiveness in dynamic operating conditions.

A two-layer fuzzy logic control (FLC) system (Yin et al., 2023a)
employs 64 fuzzy rules and centroid defuzzification to dynamically
determine braking ratios, with integrated PID controllers ensuring
stable nonlinear dynamics and achieving up to 40% simulated
energy savings. Hybrid approaches using PID controllers combined
with Adaptive Neuro-Fuzzy Inference System (ANFIS) (Akhila
and Ratnan, 2016) deliver rapid response and adaptability to
changing conditions, resulting in a 50% increase in driving range
and superior battery management vs. stand alone PID or FLC.
Takagi–Sugeno (T-S) type fuzzy neural networks (FNN) (Li W.
et al., 2024) can self-optimize fuzzy rules, enhancing flexibility,
accuracy, and driving range by 19.2%. For real-time driving-mode

FIGURE 4

Schematic representation of a fuzzy logic-based PID controller illustrating the integration of fuzzy inference with traditional PID control for
enhanced braking force optimization.
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switching, fuzzy logic-based decision systems (Ning et al., 2023)
optimize transitions between single-motor and dual-motor modes,
using an evaluation layer to minimize unnecessary switching and
mechanical wear, while improving overall system stability.

A notable study on hybrid energy storage systems (HESS)
combining supercapacitors and batteries (Li W. et al., 2024)
demonstrates that a FLC can dynamically split braking energy,
prioritizing the supercapacitor during high-energy events to reduce
strain on battery. This control approach achieves a 29.1% reduction
in battery current and a 46.84% decrease in heat generation, thus
extending battery life. Separately, a fuzzy logic-based regenerative
braking system using a Sugeno-type controller (Xu et al., 2011)
introduces innovations like series braking (allowing independent
control of the front and rear axles) and acceleration sensors that
align braking distribution with ideal curves—effectively preventing
wheel lock and enhancing stability. This system leads to a
25.7% increase in driving range and a 22.2% improvement in
energy efficiency compared to vehicles without coordinated fuzzy
braking control.

The major drawback of most of the fuzzy logic based RBS
is the complexity of tuning membership functions, especially
under variable and nonlinear driving conditions. Managing
rapid SOC fluctuations while balancing real-time responsiveness
with computational efficiency make real-world implementation
challenging. In Şen et al. (2024) and Wahid et al. (2024) which has
hybrid energy systems, managing the fast interaction between the
super-capacitors and battery is also an important concern.

3.5 Genetic algorithms

Genetic Algorithms (GAs) operate by evolving a population of
candidate solutions through processes such as selection, crossover,
and mutation, ultimately converging on optimal or near-optimal
solutions. Unlike gradient-based methods, GAs are well-suited for
complex, multi-modal problems where derivative information may
not be available. In regenerative braking optimization, GAs evaluate
and refine braking control settings across generations, prioritizing
energy recovery and safety.

For example, a GA-based eco-driving approach for electric
vehicles (Gautam et al., 2021) optimized acceleration profiles and
cruising speeds, successfully minimizing energy consumption.
This method effectively avoided local optima and managed
computational complexity, outperforming a Stochastic Hill
Climber (SHC) method by achieving greater energy savings.
However, it faced challenges with the encoding of control variables
as 14–32 bit chromosomes and with balancing search space
efficiency. In another context, a GA-driven regenerative braking
system for railways (Che et al., 2022) was developed to optimize
power distribution through railway power networks and energy
converters. In hardware-in-loop tests, this strategy realized 93.3%
utilization of regenerative braking energy—significantly surpassing
the SHC approach and reduced three-phase current imbalance by
98.6%, a critical improvement for railway systems.

Some studies propose hybrid optimization schemes combining
Genetic Algorithms (GA) with fuzzy logic for enhanced
regenerative braking. For instance, Bostanian et al. (2013)

details a GA-tuned FLC strategy that optimizes the split of braking
torque between mechanical and regenerative systems during
deceleration, resulting in a 26% reduction in both energy costs and
emissions compared to standard controllers. A key challenge was
integrating 16 control settings into the GA, while ensuring vehicle
performance constraints were still satisfied. For another approach,
the hybrid neuro-fuzzy-genetic algorithm (NFGA) (Arunprasad
et al., 2023), uses neural networks for system modeling, fuzzy logic
for decision processes, and GA for optimal parameter tuning.
This comprehensive framework achieved a 40% reduction in
control deviation and substantially improved trajectory tracking
accuracy, demonstrating the value of combining soft computing
and evolutionary techniques in RBS control.

3.6 Swarm intelligence-based algorithms

Swarm intelligence based approaches for regenerative braking
uses biologically inspired collective problem-solving to optimize
energy recovery. In Particle Swarm Optimization (PSO), each
“particle” evaluates candidate solutions and moves according to
both its own historical best and the swarm’s collective best,
iteratively converging on optimal braking force allocation. Ant
Colony Optimization (ACO) uses artificial “ants” to explore
potential strategies, with solution quality guiding future searches
via virtual pheromone trails. A recent study (Chai et al., 2022)
applied PSO to tune a PI controller for regenerative braking
in electric vehicles using super-capacitors. This optimization
produced a 6% increase in travel distance, a 14.57% rise in average
speed, a 3.69% improvement in maximum speed, and lower speed
tracking errors. However, the increased energy recovery demanded
careful management of super-capacitor SOC, which dropped by
1.58% due to higher usage. The PSO-selected controller parameters
(Kp and Ki) also enhanced BLDC motor performance during
braking, maintaining voltage stability (with a constant 540V initial
supercapacitor voltage) throughout deceleration events.

The paper (Pradhan et al., 2023) proposes a PSO-optimized PID
controller for brushless DC (BLDC) motor speed control in electric
vehicles. This method aimed at improving regenerative braking
efficiency such that it automatically tunes the PID gains (Kp, Ki,
Kd) using PSO, resulting in faster settling time, reduced speed
tracking errors, and a 3% reduction in SOC loss during braking
compared to conventional PID tuning. Figure 5 illustrates the
overall architecture of a PSO optimized PID controller, highlighting
how the PSO algorithm dynamically adjusts PID parameters in
response to real-time driving conditions. Such AI-based adaptive
control yields improved energy recovery, quicker response to
disturbances, and enhanced robustness over traditional control
strategies, as confirmed by recent simulation results.

Another approach employs PSO in combination with fuzzy
logic to optimize regenerative braking force distribution in
automobiles (Tuan et al., 2020). This method achieved a 10.49%–
24.44% reduction in fuel consumption by maximizing both
the duration and efficiency of regenerative braking, particularly
surpassing conventional fuzzy logic strategies in low-speed
scenarios. Further advancements are seen in the use of swarm
intelligence-based hybrid strategies that combine PSO and ACO
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FIGURE 5

Schematic representation of a PSO-optimized PID controller in regenerative braking illustrating the use of particle swarm optimization for tuning PID
parameters to enhance energy recovery and braking efficiency.

to optimize braking torque distribution in hybrid electric vehicles
(Zhang et al., 2022, 2019). Specifically, Zhang et al. (2019) reports
a 16.04% increase in energy recovery compared to rule-based
methods. Key findings include a 63.51% regenerative energy
recovery rate in urban driving cycles (Zhang et al., 2022),
outperforming both PSO-only (62.26%) and rule-based (54.24%)
approaches. The principal advantage of these hybrid PSO-ACO
strategies lies in their ability to avoid local optima, ensuring
stable slip ratios (around 0.2) during emergency braking, while
simultaneously balancing considerations related to battery aging
and safety.

4 Comparative analysis of AI-based
and conventional regenerative braking
strategies

Conventional rule-based methods for regenerative braking rely
on predefined logic and fixed thresholds to allocate braking force
between regenerative and friction braking systems. These strategies
uses static rules based on parameters such as braking intensity,
battery SOC and vehicle speed to determine when and how much
regenerative braking should be applied. For example, the logic
threshold control strategy described in Yin et al. (2023b) divides
braking into zones:

• Low-intensity braking uses only regenerative braking,
• Moderate intensity combines regenerative and

hydraulic braking,
• High intensity prioritizes hydraulic braking for safety.

While this approach is simple and easy to implement, it
lacks adaptability to changing driving conditions and cannot
dynamically respond to changing road, driver, or battery scenarios.
As a result, rule-based methods often lead to lower energy
recovery and reduced system efficiency under complex or

frequently changing environments. Similarly, in Da and Bo
(2015) rule-based mode switching was found to cause frequent,
unnecessary transitions between regenerative and friction braking,
reducing efficiency and stability compared to adaptive fuzzy logic
systems. These limitations highlight the need for more flexible
control strategies in modern regenerative braking systems. The
performance of AI-based and conventional regenerative braking
strategies varies considerably depending on system architecture,
algorithm complexity, and real-world deployment constraints. To
clarify these distinctions, a comprehensive summary (Table 1)
consolidates key studies on regenerative braking optimization,
outlining the major methodologies applied, quantitative findings
related to energy recovery, control accuracy, and comfort, as
well as notable drawbacks for each approach. This table enables
direct comparison across regression models, neural networks,
deep reinforcement learning, fuzzy logic, genetic algorithms, and
swarm intelligence-based methods, addressing the gaps in prior
reviews that only discuss individual techniques in isolation. AI
and ML based approaches for regenerative braking in electric
vehicles are designed to continuously learn from input data
and adapt braking strategies instantaneously, and offer clear
advantages over conventional rule-based systems. These intelligent
systems uses advanced algorithms such as neural networks,
fuzzy logic, genetic algorithms, reinforcement learning, and
hybrid models to optimize braking force distribution, maximize
energy recovery, and ensure smoother braking transitions.
For example,

• ML models like polynomial regression and random forest
dynamically predict and adjust regenerative braking force
based on real-world driving conditions, achieving up to 59%
more energy extraction compared to traditional methods
(Prasanth et al., 2023).

• Neural networks and DL models (including LSTM and
BLSTM) can analyze driving styles and road scenarios to
adapt braking profiles, improving both energy recovery and
passenger comfort (Chengqun et al., 2023; Ziadia et al., 2023).
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TABLE 1 Summary of key studies on regenerative braking optimization, applied methodologies, major findings related to energy recovery, and braking
performance and methodology specific drawbacks.

Methodology Key findings Major drawbacks

Regression models Between Polynomial Regression (PR) and Random Forest Regression (RFR),
RFR was more accurate, while PR was faster (Prasanth et al., 2023)

PR underfits due to fixed polynomial structure.
RFR is complex and slower, limiting real-time
performance.

Neural networks Improved braking force prediction (Rezk and Abuzied, 2023)
Along with LSTM & NARX Models predict recoverable braking energy (Ziadia
et al., 2025)
Superior reference tracking and robustness under disturbances compared to PI
control (Ruz-Hernandez et al., 2022)

High data dependency and computational load.
Limited real-time application and poor interpretability.

Deep Reinforcement
Learning

Adaptive deceleration;
Use of TD3 for fine-tuning torque distribution (Peng and He, 2025)

High computational demand.
Complex reward function design and training instability.

Fuzzy logic models Two-layer FLC + PID provides Smooth control transitions (Islam et al., 2023)
Integrated with PID and Reinforcement learning (Maia et al., 2020)

Tuning of fuzzy rules and membership functions is
difficult.

Genetic algorithms Reduced three-phase current imbalance in railway regenerative braking (Che
et al., 2022)
Reduction in control deviation, boosting trajectory tracking precision
(Arunprasad et al., 2023)

Complexity in chromosome encoding.
Balancing search space and vehicle performance
constraints is difficult.

Swarm intelligence based
algorithms

PSO with a PI controller using supercapacitors improved range (Chai et al., 2022)
PSO-optimized PID controller reducing SOC loss (Pradhan et al., 2023)
Hybrid PSO + ACO highest improvement in energy recovery (Zhang et al., 2019)

SOC management during energy demand spikes is
challenging.
Increased complexity in hybrid swarm systems.

Game theory
optimization

The approach balanced energy and control, achieving error rates as low as 3% (Li
C. et al., 2024)

Highly sensitive to environmental conditions like road
slope, friction, and tire condition

• Fuzzy logic and ANFIS systems can handle nonlinearities and
uncertainties, providing stable, real-time control that responds
to changing speed, battery state, and braking demand (Islam
et al., 2023; Akhila and Ratnan, 2016).

• Reinforcement learning and optimization algorithms (like GA
and PSO) further enhance adaptability, enabling the system
to find the best braking strategies through experience and
continuous feedback (Gautam et al., 2021; Zhang et al., 2022).

These AI-based methods result in higher energy recovery,
smoother and safer braking, reduced battery stress, and improved
driving comfort. This section compares both types of braking
based on parameters such as energy recovery, braking comfort,
adaptability and other parameters.

4.1 Energy recovery

Studies undoubtedly shows that AI and ML based models
outperform conventional rule-based methods in optimizing battery
recharge. For example, a fuzzy logic-based regenerative braking
strategy achieved a 22.2% increase in energy efficiency and a
25.7% improvement in driving range over conventional rule-based
systems (Xu et al., 2011). Reinforcement learning (Q-learning) and
deep Q-networks dynamically optimize braking actions further.
This capability further improves energy recovery over static
approaches (Yin et al., 2024).

4.2 Braking comfort

AI based systems, especially the models that use neural
networks and fuzzy logic is observed to ensure smoother

deceleration by intelligently distributing braking force. An ANN
based comfort regenerative braking system reduced acceleration
jerk from 0.35 g/s to 0.05 g/s, providing a much smoother ride than
conventional methods (Hwang et al., 2023). Fuzzy logic controllers
also minimize abrupt braking transitions, enhancing passenger
comfort (Yin et al., 2023a).

4.3 Adaptability

AI approaches adapt to terrain, vehicle load, and driver
behavior dynamically. For instance, a BLSTM neural network
model manipulates regenerative braking in the best possible way
for individual driving styles, improving energy recovery by up to
16.3% for aggressive drivers and 9.8% for moderate drivers over
traditional strategies (Chengqun et al., 2023). LSTM and NARX
models predict braking needs over long horizons, adapting to
changing road gradients and traffic conditions (Ziadia et al., 2023).

4.4 Other parameters

AI-based systems enhance stability and safety by maintaining
optimal braking force distribution, which helps prevent wheel lock
and ensures vehicle control even on slippery roads (Vodovozov
et al., 2021). AI and ML algorithms help preserve battery
health by regulating charging rates during regenerative braking,
which reduces stress on the battery and extends its lifespan
(Chidambaram et al., 2023). Although AI systems deliver superior
performance, they demand greater computational resources
than simpler rule-based logic, which is easier to implement
but less effective in handling complex, real-world scenarios
(Prasanth et al., 2023).
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Therefore, considering factors such as energy efficiency,
braking comfort, adaptability, stability, and battery health, -based
techniques are preferable. However, the computational demands
associated with -based techniques present a significant challenge.

5 Hybrid AI framework for
regenerative braking

5.1 Definition and rationale

The hybrid AI framework proposed for electric vehicle (EV)
regenerative braking systems is an integrated control architecture
that combines the strengths of several AI and ML techniques
specifically, fuzzy logic, neural networks, reinforcement learning,
genetic algorithms, and swarm intelligence. The intent is to
leverage the complementary properties of these techniques to
suggest a robust, real-time, and adaptive optimization of both
energy recovery and vehicle safety in highly variable road and
traffic environments.

5.2 Why a hybrid approach?

As demonstrated in both the manuscript’s comparative
table and quantitative summaries, individual methods (e.g.,
fuzzy logic, neural networks, reinforcement learning) each have
strengths (such as adaptability, computational speed, or optimality
in non-linear systems) but also inherent limitations such as
poor real-time response, need for extensive training data, or
lack of interpretability. Hybridization allows each component
method to operate in domains where it excels, while other
methods compensate for its weaknesses. Figure 6 represents the
proposed Hybrid AI Framework for regenerative braking in
electric vehicles. The framework integrates multiple AI and
ML techniques including neural networks for perception and
prediction, fuzzy logic for handling uncertainty, reinforcement
learning for adaptive control, and genetic/swarm intelligence for
parameter optimization to dynamically and robustly optimize
braking force distribution. The layered architecture processes
real-time vehicle and environmental data to maximize energy
recovery while ensuring vehicle stability and safety under varying
road conditions.

5.3 Core architecture

The proposed Hybrid AI Framework is structured into three
key layers and a feedback loop:

5.3.1 Perception and preprocessing layer
The inputs include real-time vehicle and environmental data,

such as battery state of charge, speed, brake demand, road
conditions, and driver profile. Here, AI components including
neural networks (LSTM/ANN) and other data-driven models,
are employed for feature extraction, pattern recognition, and
preliminary prediction of braking demand or road conditions.

5.3.2 Decision-making and optimization layer
The Fuzzy Logic Module processes uncertain and imprecise

sensor information, providing initial rule-based recommendations
for safe and stable braking force allocation, which is especially
valuable in unexpected road conditions. The Reinforcement
Learning Module continuously learns the optimal balance between
regenerative and friction braking through real-time feedback,
aiming to maximize long-term energy recovery and maintain
vehicle stability. The Genetic/Swarm-Based Optimizer periodically
re-tunes key parameters, such as membership functions in fuzzy
logic or reward thresholds in reinforcement learning, to adapt
to evolving traffic and vehicle usage patterns, ensuring sustained
optimization and avoiding local optimum traps.

5.3.3 Control and actuation layer
Controller Selection combines the outputs from the above

modules using a priority or weighted arbitration scheme; for
example, fuzzy logic outputs may take precedence during abnormal
or slippery condition detection, while the reinforcement learning
policy is prioritized during routine driving. Command Execution
sends the final braking instructions to the vehicle’s actuators,
including how much regenerative force to apply, how much
mechanical braking to use, and how to distribute braking between
the front and rear axles.

5.3.4 Feedback loop
A self-supervised feedback mechanism monitors outcomes

such as vehicle stability, actual energy recovered, and braking
distance, and then feeds these performance metrics back to all layers
to drive continual improvement.

5.4 Advantages

By integrating data-driven perception, rule-based reasoning,
and learning-based policy refinement, the framework adapts
to different drivers, road conditions, and vehicle states more
effectively than any standalone method. The system has
demonstrated significant improvements in energy recovery,
with hybrid fuzzy-neural, GA-fuzzy, and PSO-ACO optimized
methods achieving up to 63 percent recovery, especially in mixed
and urban driving conditions. The fuzzy logic and reinforcement
learning modules work together to ensure that emergency handling
and vehicle stability are never compromised in the pursuit of
efficiency. The architecture is designed to be easily extended,
allowing for the integration of future AI advancements such as
explainable AI for greater transparency and edge computing layers
to reduce latency.

5.5 Implementation and future directions

Previous studies, including those using hybrid fuzzy-neuro-
genetic and PSO-ACO optimizers, have demonstrated the
effectiveness of modular hybrid controllers; however, real-world
implementation and benchmarking in electric vehicles are still
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FIGURE 6

A schematic of the Hybrid AI Framework for regenerative braking in electric vehicles combining neural networks, fuzzy logic, reinforcement learning,
and genetic/swarm intelligence to optimize braking force distribution dynamically.

limited. Future work should prioritize developing lightweight,
real-time AI models, conducting field trials with automotive
partners, establishing unified benchmarks comparing rule-based
and single-AI systems, and integrating transparent explainability
modules to ensure safety compliance.

6 Challenges and future research
directions

Regardless of all the features of various AI/ML strategies
discussed above, these techniques faces significant challenges.

6.1 Hardware and computational
challenges

AI/ML strategies in RBS face significant obstacles regarding
hardware limitations. Deep learning (DL) and reinforcement
learning (RL) models require considerable computational resources
for training and real-time inference. For example, Q-learning-
based braking optimization needs continuous data processing to
adapt to dynamic driving conditions. While edge computing and
AI chips are emerging as solutions, integrating these with existing
EV architectures is technically complex and costly, hindering
widespread adoption.

6.2 Data availability and quality

To be more effective, training AI/ML models requires large
and high-quality datasets. The variability of driving behavior, road
conditions, and state of charge (SOC) during a drive makes it
difficult to collect comprehensive data to optimize regenerative
braking. LSTM-based approaches for energy prediction, for
instance, face accuracy issues due to insufficient real-world
data. Noisy or incomplete sensor data can further degrade
model performance, leading to inefficient braking allocation.
Unlike traditional rule-based systems, AI techniques must balance

regenerative and friction braking while dynamically adapting to
drive conditions.

6.3 Safety trade-offs

Optimizing for energy recovery sometimes compromises
braking safety. Fuzzy logic controllers adjust braking torque
based on road adhesion, but unpredictable conditions like sudden
transitions between dry and icy roads can destabilize the vehicle.
During emergency stops, the system must prioritize stopping power
over energy harvesting.

6.4 Battery health and longevity

Frequent regenerative braking cycles subject EV batteries to
rapid charging and discharging, accelerating degradation, internal
resistance, and heat generation. This undermines the benefits of
regenerative braking by shortening battery lifespan. Reinforcement
learning methods have been explored to optimize charge–discharge
patterns, but real-time implementation remains difficult. Hybrid
energy storage systems can reduce stress on a single battery, though
they add complexity to AI-driven control strategies.

6.5 System integration, standards and
security risks

Most EVs use embedded systems such as anti-lock braking
(ABS) and electronic stability control (ESC) operating on fixed
protocols. Adding AI/ML-based RBS requires smooth, low-latency
integration with these existing setups. For example, neural network
controllers must work seamlessly with hydraulic actuators without
performance lags. From the literature reviewed in this paper,
one of the biggest challenges is the lack of standardized studies.
Because researchers use different testing cycles and protocols,
the reported energy recovery results vary, making it hard to
compare them fairly. Additionally, these systems are vulnerable
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to cyberattacks, such as data poisoning and sensor spoofing,
potentially leading to misallocated braking force and accidents.
Moreover, existing studies vary widely in simulation environments,
datasets, and evaluation metrics. Establishing standardized test
protocols and datasets is essential to facilitate reproducible research
and industry adoption.

The integration of AI and ML into regenerative braking
systems promises significant advancements in EV efficiency and
performance. However, challenges like computational limits,
data quality, safety trade-offs, and regulatory gaps must be
addressed to unlock this potential. Moving forward, future
research should target these challenges through collaborative
efforts among automakers, technology developers, and regulators.
Such cooperation will be crucial for establishing standardized
benchmarks, enabling large-scale deployment, and ultimately
paving the way for smarter, safer, and more sustainable
electric mobility.

6.5.1 Future research
• Fault detection and diagnosis in RBS

AI/ML enables early fault detection in regenerative braking
systems (Machlev et al., 2022), although real-world validation
remains limited. Recent studies have classified faults such as
errors in engine speed, motor current/speed sensors, battery
SOC, wheel radius, and communication signals using methods
like SVM, KNN(K-Nearest Neighbors), PCA, and Hidden
Markov Models (Sankavaram et al., 2012, 2014). Machine
learning has also been applied to detect and classify inverter
and motor faults in EVs (Khan et al., 2024). For instance,
identifies and categorizes real-time faults between the three-
phase inverter and BLDC motor, monitoring normal, two-
phase, and three-phase conditions through features such as
inverter currents/voltages and motor speed.

• Edge computing
Edge computing is a computing approach where data is
processed locally at or near the source (e.g., within a
vehicle) rather than relying on distant cloud servers, enabling
faster, low-latency responses for real-time applications like
autonomous driving. Unlike cloud computing’s higher latency,
edge systems enable real-time analysis of sensor data, allowing
vehicles to adapt quickly to changing road conditions. This
is crucial for localization, route planning, and power/speed
management. In Ramesh et al. (2024), edge computing is
highlighted as a key component alongside fog and cloud
computing. Simulation studies show that combining it with
deep learning greatly enhances performance, responsiveness,
and energy efficiency in real-world driving.

• Vehicle-to-everything (V2X) communication
Vehicle-to-Everything (V2X) communication enhances
energy efficiency in regenerative braking and EV energy
management. In Ziadia et al. (2025), Vehicle-to-Infrastructure
(V2I) supports adaptive braking by using Q-learning to
optimize speed profiles before red lights, improving response
and recovery. V2X also aids energy management in hydrogen
fuel cell EVs (Fayyazi et al., 2023). In Kim et al. (2021), it
supports an Energy-optimal Deceleration Planning System
using preview traffic data, with broader applications in smart
grids and sustainable urban transport.

• Vehicle-to-Grid (V2G) systems and smart grids
Vehicle-to-Grid (V2G) systems enable bidirectional energy
flow between EVs and the power grid. As shown in
Figure 7, AI and ML, combined with V2X connectivity,
enable real-time optimization of energy flows, supporting
both regenerative braking and smart grid interactions.
Advanced AI, particularly reinforcement learning, improves
grid stability, boosts renewable energy use by 15.3%,
and reduces frequency/voltage deviations (Kumar et al.,
2024). ML-based V2G strategies allow predictive energy

FIGURE 7

A conceptual diagram illustrating how AI and ML enhance smart grids by enabling real-time data analysis for optimized energy generation,
distribution, consumption, and storage.
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exchange with buildings, enhancing peak load management
(Scott et al., 2021). Techniques like simheuristics improve
adaptability under dynamic conditions (Escoto et al.,
2024). Integrating IoT (Cavus et al., 2025) and big data
transforms EVs into intelligent energy assets, extending
also to rail systems (Gore et al., 2023) for regenerative
braking optimization.

• Explainable AI (XAI) for battery management
Explainable Artificial Intelligence (XAI) is an emerging
area in AI/ML applications for electric vehicles (EVs).
Traditional models such as Support Vector Machines
(SVM) and Neural Networks (NN) are widely used to
predict battery State of Health (SOH) and Remaining
Useful Life (RUL), but their “black-box” nature raises
safety and trust concerns. XAI enhances transparency
by making AI decisions interpretable. Studies (Divya
et al., 2025) show that integrating XAI into battery
management improves fault prediction, diagnostic accuracy,
and enables predictive maintenance, thereby enhancing safety
and reliability.

7 Discussion and conclusion

The integration of AI and ML into regenerative braking
systems for electric vehicles represents a major step forward
in improving energy efficiency, safety, and driving comfort.
This review highlights that AI/ML-based control strategies
often outperform traditional rule-based approaches in metrics
like energy recovery, adaptability, and comfort. These methods
allow for real-time dynamic optimization of the braking force,
increase energy recovery, enable smoother deceleration, and
adapt to changing conditions on roads, traffic and vehicles.
Hybrid and adaptive frameworks, which combine multiple
AI techniques, enhance these advantages by leveraging the
strengths of each method. Emerging technologies, including
V2X communication, edge computing, and explainable AI, are
expected to further improve the intelligence, responsiveness,
and transparency of EV braking systems. However, challenges
remain. High computational demands, the need for large,
high-quality datasets, integration difficulties, and the lack of
standardized benchmarks slow adoption. Safety requirements in
emergency braking demand quick, interpretable AI solutions.
Frequent braking cycles also raise battery health concerns, calling
for better battery management. Future work should focus on
lightweight, real-time AI models, robust experimental validation,
and standardized evaluation, alongside advances in sensors and
connectivity, to make regenerative braking more efficient, safer,
and sustainable.
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