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Accurate identification of breast cancer subtypes is essential for guiding treatment 
decisions and improving patient outcomes. In current clinical practice, determining 
histological subtypes often requires additional invasive procedures, delaying 
treatment initiation. This study proposes a deep learning-based model built on 
a DenseNet121 backbone with a multi-scale feature fusion strategy, designed to 
classify breast cancer from histopathological biopsy images. Trained and evaluated 
on the publicly available BreaKHis dataset using 5-fold cross-validation, the model 
achieved a binary classification accuracy of 97.1%, and subtype classification 
accuracies of 93.8% for benign tumors and 92.0% for malignant tumors. These 
results demonstrate the model’s ability to capture morphological cues at multiple 
levels of abstraction and highlight its potential as a diagnostic support tool in 
digital pathology workflows.
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1 Introduction

Breast cancer remains one of the most prevalent cancers globally, representing a significant 
health challenge for women across all age groups. According to the World Health Organization 
(WHO), over 2.3 million women were diagnosed with breast cancer in 2020, making it the 
most diagnosed cancer worldwide and the leading cause of cancer-related deaths among 
women (WHO, 2021). The incidence of breast cancer is rising by approximately 3% per year, 
with higher mortality rates observed in lower-income countries due to limited access to early 
screening and treatment. In wealthier nations, one in 12 women is diagnosed with breast 
cancer, whereas in lower-income countries, the rate is one in 27. More concerning is the 
disparity in mortality: one in 48 women dies from breast cancer in low-income countries 
compared to one in 71 in high-income countries [World Health Organization (WHO), 2022]. 
In sub-Saharan Africa, breast cancer now has the highest mortality rate among all cancers 
affecting women, surpassing cervical cancer. It accounts for 20% of cancer-related deaths in 
women, with incidence rates varying by region: 30.4 per 100,000 women in Eastern Africa, 
26.8 in Central Africa, 38.6 in Western Africa, and 38.9 in Southern Africa. Despite lower 
incidence rates than in developed countries, the mortality-to-incidence ratio remains 
alarmingly high at 0.55  in Central Africa, compared to just 0.16  in the United  States 
(GLOBOCAN, 2020).

Early detection has been identified as a critical factor in improving survival rates, with 
studies showing that early-stage breast cancer has a 90% 5-year survival rate compared to late-
stage diagnoses, which can drop to 27% (Siegel et al., 2022). This significant effort is to enhance 
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diagnostic techniques to detect breast cancer earlier and more 
accurately. Over the past decade, there have been remarkable advances 
in breast cancer detection, particularly with the integration of 
advanced imaging techniques and machine learning. Traditional 
imaging modalities, such as mammography and ultrasound, have 
been instrumental in identifying breast lesions; however, their 
sensitivity can decrease in women with dense breast tissue (Kolb et al., 
2002). Magnetic resonance imaging (MRI) has emerged as a superior 
modality for detecting early-stage breast cancer due to its high spatial 
resolution and ability to differentiate between benign and malignant 
lesions (Kuhl et al., 2005). Despite its advantages, retention remains 
complex and prone to variability among radiologists, emphasizing the 
need for more standardized and accurate approaches. Artificial 
intelligence (AI) models present a transformative solution to these 
challenges, especially in resource-limited settings. By leveraging AI to 
analyze biopsy images, diagnostic accuracy can be improved while 
reducing the workload of overburdened pathologists. AI-powered 
systems have demonstrated sensitivities of up to 94.5% in detecting 
malignant tumors in histopathological images, reducing false-negative 
rates significantly (Esteva et  al., 2021). Additionally, AI-assisted 
diagnostics have the potential to cut down diagnosis time from weeks 
to just hours, allowing for earlier treatment initiation and improved 
patient outcomes. This is particularly beneficial in low-resource 
settings where a shortage of trained pathologists delays cancer 
detection (McKinney et al., 2020). By integrating AI into breast cancer 
diagnostics, healthcare systems in developing countries can bridge the 
gap in early detection, reduce misdiagnosis rates, and ultimately lower 
breast cancer mortality. Scalable AI solutions, combined with 
improved screening programs and public awareness efforts, have the 
potential to significantly enhance cancer care worldwide.

Despite significant progress in imaging modalities and AI-driven 
diagnostic tools, most existing models focus primarily on binary 
classification—differentiating benign from malignant tumors—
without addressing the more nuanced and clinically challenging task 
of histological subtype classification. This limitation hinders their real-
world applicability, particularly in cases where treatment decisions 
depend on precise subtype identification. These gaps underscore the 
need for a more robust, subtype-aware AI framework trained on 
whole-slide biopsy images to improve diagnostic granularity and 
clinical utility.

1.1 Brief review of artificial intelligence in 
breast cancer

This section provides a brief literature review of what technology 
has been used for the detection of breast cancer over the past few years 
for breast cancer detection. And this is going to justify our innovative 
model and method in the further sections.

AI has revolutionized the healthcare landscape, offering 
transformative capabilities in automating and enhancing diagnostic 
processes. In the context of breast cancer detection, AI models have 
demonstrated superior performance in analyzing complex MRI 
datasets, identifying patterns that may elude human experts (Lehman 
et  al., 2019). For instance, deep learning convolutional neural 
networks (CNNs) and attention mechanisms have been applied to 
segment breast tissues, classify lesions, and predict malignancy with 
high accuracy (Litjens et al., 2017). These advancements not only 

reduce errors but also minimize the workload of radiologists, making 
AI a valuable tool in clinical settings. The integration of AI into breast 
cancer detection workflows has also been shown to address the 
challenges of class imbalance and variability in imaging quality. Many 
studies have employed transfer learning and ensemble techniques to 
overcome these challenges, achieving higher sensitivity and specificity 
than traditional methods (McKinney et  al., 2020). Moreover, 
AI-driven algorithms can process datasets quickly and consistently, 
offering significant advantages in population-based breast cancer 
screening programs (Rodrigues et al., 2021).

Kaymak et  al. (2017) applied neural networks to classify 176 
histopathology images, using discrete Haar wavelets for preprocessing. 
Radial Basis Function Networks outperformed Back Propagation 
Networks, achieving 70.49% accuracy. Fu et  al. (2022) predicted 
Peripherally Inserted Central Catheter (PICC)-related thrombosis in 
breast cancer patients using Artificial Neural Network (ANN) and 
Synthetic Minority Over-sampling Technique (SMOTE) to address 
class imbalance, outperforming logistic regression (AUC: 0.742 vs. 
0.675). Punitha et al. (2021) combined Artificial Immune Systems and 
Bee Colony optimization for feature selection, improving multilayer 
perceptron (MLP) performance on the Wisconsin Breast Cancer 
Dataset (WBCD) dataset for automated diagnosis.

Sharma et al. (2024) used the WBCD to build a stacked ensemble 
framework integrating Decision Tree, AdaBoost, Gaussian Naive Bayes, 
and MLP classifiers, achieving 97.66% accuracy. Ensemble learning and 
feature engineering contributed to its robust performance. Liu et al. 
(2024a) enhanced a Visual Geometry Group 16-layer network (VGG16)-
based model with transfer learning and focal loss to handle class 
imbalance in 7,841 mammograms, yielding a 96.95% accuracy. Li et al. 
(2024b) proposed a multimodal fusion model that combined ResNet34-
extracted MRI features with RNA-seq gene expression data, using 
transformers and attention mechanisms to predict treatment response in 
breast cancer patients more accurately than single-modality approaches.

Munshi et al. (2024) introduced a novel breast cancer detection 
method by combining an optimized ensemble learning framework 
with explainable AI (XAI). Using the Wisconsin Breast Cancer 
Dataset, which contains 32 numerical features, they employed an 
ensemble model integrating CNNs with traditional machine learning 
algorithms like random forest (RF) and support vector machine 
(SVM). U-NET was used for image-based tasks, and a voting 
mechanism combined RF and SVM predictions. The model achieved 
an impressive accuracy of 99.99%, surpassing state-of-the-art methods 
in precision, recall, and F1-score. The integration of XAI enhanced the 
interpretability and transparency of model decisions, further 
improving breast cancer diagnostics.

Atrey et al. (2024) developed a multimodal classification system 
for breast cancer by integrating mammogram (MG) and ultrasound 
(US) images using deep learning and traditional machine learning 
techniques. The dataset, sourced from AIIMS, Raipur, India, consisted 
of 31 patients and 43 MG and 43 US images, which were augmented 
to 1,032 images. Data preprocessing involved manual region-of-
interest (ROI) annotation by radiologists and noise filtering techniques 
for both image types. The deep learning model, ResNet-18, was used 
for feature extraction, while SVM classified the fused features. The 
hybrid ResNet-SVM approach achieved a classification accuracy of 
99.22%, significantly outperforming unimodal methods. This study 
demonstrates the effectiveness of combining deep learning with 
traditional machine learning for improved breast cancer diagnosis.
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Robinson and Preethi (2024) developed the SDM-WHO-RNN 
model, combining fully convolutional networks with RNNs for 
classifying 9,109 histopathological images from the Breast Cancer 
Histopathological Image (BreaKHis) and BH datasets. Preprocessing 
steps included resizing, noise reduction, and stain normalization, 
while Least Squares Convolutional Encoder-Decoder (LS-CED) was 
used for tumor segmentation. The system achieved 97.9% accuracy in 
detecting complex tumor cells. Zhang et  al. (2024) proposed the 
Convergent Difference Neural Network (V-CDNN), an ensemble of 
Convergent Difference Neural Networks optimized with a Neural 
Dynamic Algorithm and softsign activations. Trained on public 
datasets, the model reached a perfect 100% classification accuracy, 
demonstrating both speed and robustness.

In their 2021 study, Meha Desai and Manan Shah compared the 
effectiveness of MLP and CNN for breast cancer detection. The study 
used datasets such as BreakHis, WBCD, and WDBC, with images and 
biomarkers preprocessed through normalization and feature 
extraction (e.g., Discrete Cosine Transform). While both MLP and 
CNN were trained to classify breast abnormalities, CNN consistently 
outperformed MLP in terms of accuracy. CNN achieved ~99.86% 
accuracy on the BreakHis dataset, while MLP’s performance was 
generally lower. CNN was found to be more reliable for image-based 
diagnosis, whereas MLP showed limitations for larger datasets.

Further to this, Ezzat et al. (2023) proposed an optimized Bayesian 
convolutional neural network (OBCNN) for detecting invasive ductal 
carcinoma (IDC) from histopathology images. This approach integrated 
ResNet101V2 with Mucinous Carcinoma (MC) for uncertainty 
estimation. Using the slime mould algorithm to optimize dropout rates, 
the study fine-tuned the architecture, outperforming other pre-trained 
networks such as VGG16 and DenseNet121. The model demonstrated 
significant robustness in diagnosis and generalization. Joseph et  al. 
(2022) proposed a multi-classification approach for breast cancer using 
handcrafted features, including Hu moments, Haralick textures, and 
color histograms. These features were combined with deep neural 
networks trained on the BreakHis dataset. Data augmentation was 
applied to address overfitting, and a four-layer dense network with 
softmax activation was employed to enhance classification accuracy.

Paul et al. (2023) proposed a novel breast cancer detection system 
using an SDM-WHO-RNN classifier combined with LS-CED 
segmentation. Their approach incorporated preprocessing steps, such 
as noise elimination and image normalization. The LS-CED 
segmentation localized nuclei, which were then classified based on 
size and shape. The system demonstrated high accuracy in detecting 
cancerous cells. Taheri and Omranpour (2023) introduced an 
ensemble meta-feature generator (EMFSG-Net) for classifying 
ultrasound images. Leveraging transfer learning with the VGG-16 
architecture, the model employed support vector regression (SVR) to 
create efficient feature spaces. To address issues like overfitting and 
dead neurons, the leaky-ReLU activation function was incorporated, 
leading to improved feature representation and classification 
performance. Muduli et  al. (2021) proposed a deep CNN for 
automated breast cancer classification using mammograms and 
ultrasound images. The model, consisting of five learnable layers, 
employed manual cropping for feature extraction and data 
augmentation to improve generalization. The approach achieved 
superior results compared to state-of-the-art methods.

Dr. Suvidha Tripathi’s research contributes significantly to the 
field of breast cancer histopathology image classification, particularly 

through innovative approaches that integrate spatial context and 
hybrid feature representations. In one study, Tripathi et al. proposed 
a BiLSTM-based patch modeling framework, which treats 
histopathology image patches as sequential data to capture spatial 
continuity—an aspect often overlooked in conventional CNNs. This 
model demonstrated strong performance on the Breast Cancer 
Histology (Grand Challenge 2018 dataset), highlighting the value of 
contextual learning in improving classification accuracy. In subsequent 
work, she introduced a hybrid architecture combining CNNs with 
Bag-of-Visual-Words (BoVW), effectively integrating handcrafted and 
deep features to enhance discrimination in limited data settings. This 
approach outperformed standard deep networks like ResNet and 
DenseNet on the same dataset, underscoring the benefits of feature 
selection and hybrid modeling in medical imaging tasks. Together, 
these studies emphasize alternative paths for improving classification 
performance—either by modeling inter-patch relationships or by 
enriching feature spaces—both of which are highly relevant for 
advancing automated diagnosis in breast cancer histopathology.

This research is toward an innovative approach for breast cancer 
detection, including the multiple subclasses of breast cancer, which 
still confuses medical doctors, and it hence makes patients undergo 
more advanced invasive tests for a better understanding of the disease. 
The technique is based on an AI model trained on a sizable batch of 
data. Section 2 discusses the model in detail, Section 3 shows the 
Results and Discussion, and the Conclusion is given in Section 4.

2 Methodology

This methodology section combines an explanation of the 
different types of breast cancer and their subclasses, along with an 
advanced AI technique which has been developed to analyse breast 
cancer results of biopsy. The aim is, instead of making women go again 
and again through trial and error with treatments or misdiagnosing 
the cancer, using AI can make all the difference. As mentioned in the 
literature review section above, AI tech has changed the way the world 
views medicine now. Therefore, in this study, we have designed a 
powerful tool for diagnosing the multiple subclasses. This goes toward 
a humanitarian cause as women are the target here.

Benign and malignant breast cancers differ in their behavior, 
prognosis, and treatment approach. Benign tumors, such as 
fibroadenomas or cysts, are non-cancerous growths that do not invade 
surrounding tissues or spread to other parts of the body. They tend to 
have well-defined borders, grow slowly, and usually pose little to no 
health risk. In contrast, malignant tumors are cancerous and have the 
potential to invade nearby tissues and metastasize to distant organs 
through the lymphatic system or bloodstream (Robbins et al., 2010). 
Malignant breast cancers, such as IDCs, invasive lobular carcinoma 
(LCs), etc., show uncontrolled cell growth and can require serious 
medical intervention in the form of surgery and/or radiation therapy. 
Early identification of a tumour as benign or malignant is critical to 
deliver appropriate treatment and improve patient health (National 
Cancer Institute, 2021). In histopathological images, benign and 
malignant tissues exhibit discernibly unique optical features. Benign 
tumours present as well-organized structures consisting of cells with 
uniform shapes, minimal mitotic activity, and intact basement 
membranes. The stromal and glandular components of benign lesions 
are usually preserved, showing regular nuclei and minimal 
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pleomorphism. On the other hand, malignant lesions show irregular 
cellular arrangements, pleomorphic nuclei and frequent mitotic 
figures (Robbins et al., 2010). They often display disrupted basement 
membranes and an increased frequency of necrotic regions, further 
highlighting their aggressive nature. AI image analysis of biopsy 
images will be able to use these intrinsic differences to ensure earlier 
and more reliable classification into benign and malignant cases 
(Rakhlin et al., 2018).

The visual features in the biopsy images provide key characteristics 
for distinguishing malignant and benign breast tissues. Figure  1a 
(malignant sample) exhibits irregular, disorganized cell structures 
with pleomorphic nuclei and a dense, fibrous stroma, indicating 
uncontrolled cancerous growth. The nuclei appear darker and more 
varied in shape, with increased mitotic activity and loss of structural 
integrity (Robbins et al., 2010). In contrast, Figure 1b (benign sample) 
shows well-organized, rounded glandular structures surrounded by 
normal fibrous tissue, with uniform cell shapes and minimal 
pleomorphism (National Cancer Institute, 2021). Both these images 
have a magnification of 100x.

2.1 Dataset

In this study, we utilize the BreaKHis dataset compiled by Spanhol 
et al. (2016), which contains 9,109 microscopic images of breast tissue 
captured at four magnification levels: 40×, 100×, 200×, and 400×. 
These images are categorized into two overarching classes—benign 
and malignant tumors. Within each class, the dataset further identifies 
four subtypes: for benign tumors, these include adenosis (A), 
fibroadenoma (F), phyllodes tumor (PT), and tubular adenoma (TA); 
and for malignant tumors, ductal carcinoma (DC), LC, mucinous 
carcinoma (MC), and papillary carcinoma (PC). The image filenames 
in the BreaKHis dataset encode multiple details about each sample, 
including the biopsy method used, the tumor’s classification (benign 
or malignant), its histological subtype, the patient ID, and the 
magnification level. For instance, the file named SOB_B_TA-14-4659-
40-001.png refers to the first image of a benign tumor classified as TA, 
obtained from patient 14-4659 at a magnification of 40× using the 
Segmental Orthogonal Biopsy (SOB) technique (Spanhol et al., 2016).

It comprises samples from 82 patients collected at a single 
institution in Brazil, with no publicly available metadata on age, 
ethnicity, or receptor status—24 with benign tumors and 58 with 
malignant tumors. Of the 7,909 images used in the final analysis, 
5,429 are malignant and 2,480 are benign, distributed across the 
aforementioned magnification levels. Following preprocessing and 
class balancing, the revised class distribution is outlined in 
Table 1.

Benign tumors, by histological standards, lack features 
associated with malignancy, such as cellular atypia, mitotic activity, 
invasive growth, or metastatic potential. They typically exhibit 
localized, slow growth and are considered non-lethal (Robbins and 
Cotran, 2010). In contrast, malignant tumors are characterized by 
their capacity to invade neighboring tissues and metastasize to 
distant sites, often posing life-threatening risks (Robbins and 
Cotran, 2010). All tissue samples in this dataset were acquired 
through SOB—a surgical procedure also referred to as partial 
mastectomy or excisional biopsy. Unlike needle-based techniques, 
SOB yields larger tissue specimens and is generally performed 
under general anesthesia in a clinical setting (American Cancer 
Society, 2019). The classification of tumors into distinct subtypes 
is based on their cellular morphology under microscopic 
examination, which holds significance for both prognosis and 
treatment planning (National Cancer Institute, 2021).

FIGURE 1

Biopsy image of malignant and benign sample (BreakHis dataset). (a) Malignant sample. (b) Benign sample.

TABLE 1  Dataset image count for each cancer type.

Cancer type Final image 
count

Subtype

Adenosis 444 Benign

Fibroadenoma 730 Benign

Phyllodes tumor 453 Benign

Tubular adenoma 569 Benign

Ductal carcinoma 797 Malignant

Lobular carcinoma 626 Malignant

Mucinous carcinoma 792 Malignant

Papillary carcinoma 560 Malignant
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The BreakHis dataset was used for both binary (benign vs. 
malignant) and multiclass subclass classification. All histopathological 
images were resized to 128 × 128 pixels and normalized to a standard 
RGB range. A stratified 80:20 train-test split was employed to preserve 
class balance across sets. For cross-validation, a 5-fold split was used 
with data shuffling to ensure unbiased performance evaluation, and 
no image was shared across folds.

Prior to splitting, real-time augmentation was applied separately 
to the benign and malignant image sets, increasing the number of 
benign samples to 7,440 and malignant samples to 9,385. The 
augmented dataset, totaling 16,825 images, was then split into 
training, validation, and test sets using a stratified class-wise approach. 
For both benign and malignant classes, 20% of the data was reserved 
for testing, and the remaining 80% was further divided in a 75:25 ratio 
to form the training and validation sets. This resulted in 10,095 images 
in the training set and 3,365 images each in the validation and test sets.

To improve generalization and address the risk of overfitting due 
to limited data, we implemented an extensive on-the-fly augmentation 
pipeline using TensorFlow’s data generators. This included spatial and 
color transformations to simulate natural histological variation while 
preserving key tissue features. Table 2 summarizes the augmentation 
parameters used during training.

These augmentations were applied to each batch during 
training to expose the model to diverse variations without 
expanding the dataset size. In addition, we  used early stopping 

(patience = 5) and ReduceLROnPlateau scheduling to prevent 
overfitting, along with dropout (0.45), L2 kernel regularization, and 
batch normalization in each dense layer. Learning curves were 
generated during each fold to monitor training behavior. The 
curves showed a minimal gap between training and validation 
accuracy, indicating stable convergence and effective generalization 
across classes.

To address class imbalance—particularly for underrepresented 
subtypes, such as PT and LC—we applied targeted data augmentation 
during preprocessing. For most classes, each image was augmented 
using 90° and 180° rotations along with horizontal flipping, effectively 
tripling their sample size. However, for class label 4 (DC), which was 
already sufficiently represented, only minimal augmentation was 
applied to prevent overrepresentation. This strategy helped balance 
the dataset and reduce bias during training, without altering the loss 
function or applying weighted sampling.

2.2 Artificial intelligence model

A CNN is a deep learning architecture tailored for grid-like data 
such as images, leveraging spatial hierarchies to extract local and 
global features (LeCun et  al., 1998). Input images are processed 
through convolutional layers that apply learnable filters to detect 
features like edges and textures, generating spatially preserved feature 
maps (Krizhevsky et  al., 2012). Non-linear activation functions, 
typically ReLU (Glorot et  al., 2011), introduce complexity, while 
pooling layers reduce spatial dimensions and enhance translational 
invariance (Scherer et al., 2010). Deeper layers capture higher-level 
abstractions, which are then passed to fully connected layers for 
classification (Simonyan and Zisserman, 2014). Enhancements such 
as batch normalization, residual connections (He et al., 2016), and 
attention mechanisms have further advanced CNN performance, 
particularly in medical image analysis (see Figure 2).

2.2.1 Classifying images as benign or malignant
In the first approach, a conventional CNN architecture was 

developed to perform a binary classification of histopathological 
breast cancer images into benign and malignant categories. Rather 

TABLE 2  Augmentation parameters.

Augmentation type Range/value

Rotation 90°, 180°, 270°

Horizontal flip Random

Vertical flip Random

Zoom Up to ±10%

Shear ±10°

Brightness adjustment ±20% range

Contrast adjustment ±20% range

Saturation/hue jitter Applied with random factor

FIGURE 2

CNN architecture (Alzubaidi et al., 2021).
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TABLE 3  Hyperparameters for initial binary classification CNN.

Hyperparameter Value Explanation

Convolutional filters 16, 32, 16
The number of filters in each convolutional layer. More filters allow for learning more complex features but increase 

computational cost.

Kernel size 4×4
Defines the size of the filter that scans the image. A smaller kernel captures fine details, while a larger one captures 

broader patterns.

Activation function ReLU
Introduces non-linearity to the network, allowing it to learn complex patterns. ReLU prevents the vanishing gradient 

problem.

Pooling type MaxPooling
Reduces spatial dimensions, retaining the most important features while lowering computational cost and reducing 

overfitting.

Fully connected layer 256 neurons
Processes extracted features and maps them to the final classification decision. A higher number of neurons allows for 

better learning capacity.

Output activation Sigmoid Outputs a probability score between 0 and 1, making it suitable for binary classification tasks.

Loss function Binary cross-entropy Measures how well the predicted probabilities match the true labels, ensuring optimal training for binary classification.

Optimizer Adam Adjusts learning rates dynamically for each parameter, leading to faster convergence and better training stability.

Epochs 20
The number of times the model passes through the entire dataset during training. More epochs improve learning but 

may cause overfitting.

than selecting parameters arbitrarily, several architectural 
configurations were tested iteratively to arrive at a structure that 
balanced computational efficiency and classification performance. The 
final model comprised three convolutional layers with 16, 32, and 16 
filters, respectively, employing 4 × 4 kernels to effectively capture both 
low- and mid-level spatial features. This configuration aligns with 
literature that emphasizes the benefit of using multiple convolutional 
layers of varying depth for feature extraction in histological images 
(Spanhol et al., 2016; Bayramoglu et al., 2017). ReLU activation was 
applied after each convolutional layer to introduce non-linearity, 
mitigate vanishing gradients, and support efficient learning. 
MaxPooling layers followed each convolutional block to reduce spatial 
dimensions and retain salient features (Rakhlin et al., 2018).

The output of the convolutional stack was flattened and passed 
into a fully connected layer with 256 neurons, enabling high-capacity 
representation before final classification. A sigmoid-activated output 
layer was used for binary probability prediction, and binary cross-
entropy served as the loss function, both standard choices in binary 

medical image classification tasks (Gandomkar et al., 2018; Liu et al., 
2019). The model was trained using the Adam optimizer (initial 
learning rate = 0.0001) over 20 epochs, leveraging its adaptive learning 
rate to ensure stable convergence in a data-limited environment 
(Bandi et  al., 2018). Despite sound architecture and training 
configuration, this initial model was limited by two key issues: a 
substantial class imbalance skewed toward malignant samples, and the 
failure to account for magnification-level heterogeneity across the 
dataset (40×, 100×, 200×, and 400×). This led to model overfitting, 
poor generalization, and relatively low accuracy and F1-scores on the 
validation set. The architectural layout is depicted in Figure 3 (see 
Table 3).

To overcome the limitations of the initial CNN model, a refined 
approach was adopted, incorporating particle swarm optimization 
(PSO) for hyperparameter tuning. PSO has demonstrated effectiveness 
in medical imaging by dynamically optimizing parameters for 
improved convergence (Houssein et al., 2021). Rather than training a 
model from scratch, MobileNetV2—a lightweight, pre-trained CNN 

FIGURE 3

Initial CNN.
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trained on ImageNet—was employed as a base feature extractor 
(illustrated by the teal blocks in Figure 4). Transfer learning with 
pre-trained models has been shown to enhance performance in 
histopathological classification tasks, especially when annotated 
datasets are limited (Srinivasu et al., 2021).

The BreaKHis dataset was stratified by magnification level (40×, 
100×, 200×, and 400×), and separate models were trained for each 
resolution, aligning with evidence that such granularity improves 
classification performance in multi-resolution tasks (Bayramoglu 
et  al., 2017). Within each subset, class balance was ensured by 
maintaining 250–350 images per class. Data augmentation was applied 
using ImageDataGenerator, with transformations including rescaling 
(1./255), width and height shifts (0.2), shear (0.2), zoom (0.2), and 
horizontal flips. These augmentations were crucial for improving 
generalization in data-scarce conditions (Bandi et al., 2018).

PSO was used to fine-tune key hyperparameters—specifically, 
learning rate (searched in the range 1e-5 to 1e-2) and dropout rate 
(0.3–0.7)—to enhance convergence and prevent overfitting. 
Optimization was first performed on the 40 × magnification model; 
the resulting best parameters were then transferred to models for the 
other magnifications. To further stabilize training, a 
ReduceLROnPlateau scheduler (factor = 0.5, patience = 3, min_
lr = 1e-6) dynamically adjusted the learning rate based on validation 
loss trends, while EarlyStopping (patience = 5, restore_best_
weights = true) halted training when no improvement was observed, 
thereby avoiding overfitting and saving compute resources (Srinivasu 
et  al., 2021). The final architecture is illustrated in Figure  4. 
Hyperparameters for this architecture are in Table 4.

However, this approach too yielded an accuracy far below 
acceptable levels. F1-scores, recall and precision also hovered around 
the 50% mark, forcing another change in approach.

The classification of breast cancer histopathology images involved 
separating the dataset based on different magnification levels (40×, 
100×, 200×, and 400×). While this method aimed to leverage 
magnification-specific features, it resulted in severe dataset 
fragmentation. Each individual model was trained on a significantly 
smaller subset of images, which limited the ability to generalize across 
different test samples. Even with extensive data augmentation, the 
number of available images remained insufficient, leading to high 

variance and suboptimal performance during evaluation. Additionally, 
the previous models relied on relatively shallow CNNs for feature 
extraction. These networks struggled to effectively capture both 
low-level and high-level representations within the histopathology 
images, leading to limited discriminatory power when distinguishing 
between benign and malignant samples. Given these challenges, a 
more robust and generalized model was required to improve 
classification performance across all magnification levels. To overcome 
the limitations of dataset fragmentation and poor feature extraction, 
a new model was developed using DenseNet121 as the backbone for 
feature extraction. DenseNet121, a deep CNN pre-trained on the 
ImageNet dataset, was chosen due to its efficient parameter utilization 
and ability to capture intricate hierarchical features. Unlike the 
previous approach, this model does not separate images based on 
magnification, allowing for a larger and more diverse training dataset, 
thereby improving generalization. The proposed model extracts 
features from three different depths of DenseNet121: conv3_block12_
concat, conv4_block24_concat, and conv5_block16_concat. These 
layers correspond to different levels of abstraction within the network, 
ensuring that both fine-grained and high-level morphological 
characteristics are captured. The selection of these layers allows for 
multi-scale feature extraction, improving the model’s ability to 
differentiate between benign and malignant samples. The extracted 
features are processed through a structured pipeline to refine and 
enhance their representation before classification.

Feature extraction in this model occurred at three levels. The 
lowest-level feature map, obtained from conv3_block12_concat, 
captures fundamental visual characteristics such as edges, textures, 
and color distributions. These features are crucial for identifying 
initial structural differences in histopathology images, such as 
variations in cellular arrangements. The mid-level feature map, 
extracted from conv4_block24_concat, represents more complex 
patterns, including structural organization within the tissue and 
variations in gland formation. These features help differentiate 
between normal and abnormal cellular arrangements. The highest-
level feature map, obtained from conv5_block16_concat, provides 
a more abstract representation, focusing on morphological changes 
indicative of malignancy, such as nuclear pleomorphism, mitotic 
activity, and stromal alterations. By incorporating multiple feature 

FIGURE 4

Updated CNN.
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extraction levels, the model ensures a comprehensive 
understanding of tissue characteristics rather than relying on a 
single-layer representation. To ensure a balance between 
computational efficiency and adequate feature resolution, an input 
image size of 128 × 128 was chosen over 256 × 256. While higher 
resolutions like 256 × 256 could preserve more fine-grained tissue 
structures, they also significantly increase memory usage and 
computational load. Given that histopathology images already 
exhibit high variability and detailed cellular patterns, 128 × 128 
provides a sufficient level of detail for feature extraction while 
allowing for larger batch sizes, faster training, and reduced GPU 
memory constraints. This choice is particularly important when 
training multiple models, as excessive computational demands 
could slow down hyperparameter tuning and optimization.

Each extracted feature map undergoes global average pooling 
(GAP) to reduce dimensionality while retaining essential spatial 
information. Unlike max pooling, which selects only the most 
prominent activations, GAP ensures that all features contribute 
proportionally to the final representation, enhancing robustness and 
stability. After pooling, L2 normalization is applied to ensure 
numerical stability and prevent dominance of certain feature values 
due to large magnitudes. The normalized feature vectors are then 
transformed through fully connected layers, where a 64-neuron dense 

layer introduces non-linearity, allowing for more complex feature 
interactions. Batch normalization is used to stabilize learning by 
standardizing feature distributions and improving gradient flow, 
leading to faster convergence and better generalization. This entire 
process for one feature is shown by the four blocks in each row in 
Figure 5. Instead of treating each extracted feature set independently, 
the model employs a fusion mechanism where feature representations 
from all three levels are concatenated into a unified feature descriptor 
(the white block in Figure 5). This approach integrates information 
across different abstraction levels, allowing the model to make more 
informed classification decisions. The fused feature vector undergoes 
further transformation through a dense layer with 16 neurons, 
refining the representation before classification. To prevent overfitting, 
a dropout layer with a probability of 0.45 is applied at this stage, 
randomly deactivating neurons during training and ensuring that the 
model does not rely on specific patterns that may not generalize well.

The final classification layer consists of a softmax activation 
function with two neurons, representing the benign and malignant 
classes. This output layer assigns a probability score to each class, 
allowing for precise decision-making in binary classification tasks. By 
leveraging deep feature extraction, multi-scale fusion, and 
regularization techniques, the proposed model significantly improves 
the accuracy and robustness of breast cancer classification in 

TABLE 4  Hyperparameters for the first attempt of per-magnification training.

Hyperparameter Value(s) used Explanation

Optimizer Particle swarm optimization (PSO) Instead of using Adam, PSO dynamically selects the best learning rate and dropout rate by 

minimizing validation loss. This helps in fine-tuning model performance more efficiently.

Learning rate Optimized by PSO (range: 1e-5 to 1e-2) Controls the step size of weight updates. A smaller learning rate ensures stable learning, 

while a larger one speeds up convergence but risks overshooting the optimal point.

Dropout rate Optimized by PSO (range: 0.3–0.7) Dropout prevents overfitting by randomly deactivating neurons during training. The PSO 

algorithm selects the best dropout rate for optimal generalization.

Batch size 16 The number of images processed at once during training. A smaller batch size helps 

conserve memory but may result in higher training variance.

Input image size (128, 128, 3) The input images are resized to 128 × 128 pixels with three color channels to ensure 

uniformity and reduce computational complexity.

Base model MobileNetV2 (pre-trained on ImageNet) A lightweight deep learning model optimized for mobile and embedded vision 

applications. The feature extraction layers are frozen to retain learned representations.

Magnification-based 

training

40×, 100×, 200×, and 400 × (trained separately) Instead of training all images together, the dataset is split based on magnification levels to 

improve feature learning at each resolution.

Data augmentation Rescaling (1./255), width and height shifts (0.2), 

shear (0.2), zoom (0.2), and horizontal flips

Artificially increases dataset size by applying transformations, helping the model generalize 

better to unseen samples.

Validation split 20% A portion of the dataset is reserved for validation to evaluate model performance and 

prevent overfitting.

Loss function Binary cross-entropy Since the classification is binary (benign vs. malignant), binary cross-entropy is used to 

compute the error between predicted and actual labels.

Activation function ReLU (hidden layers), sigmoid (output layer) ReLU helps prevent vanishing gradients in hidden layers, while Sigmoid is used in the 

output layer for binary classification (probabilities between 0 and 1).

ReduceLROnPlateau Factor = 0.5, patience = 3, min_lr = 1e-6 Reduces the learning rate if validation loss stops improving for three consecutive epochs, 

preventing unnecessary weight updates.

EarlyStopping Monitor = val_loss, patience = 5, restore_best_

weights = true

Stops training if validation loss does not improve for five consecutive epochs, preventing 

overfitting and saving computation time.

Epochs 30 The number of times the model sees the entire dataset during training. Early stopping 

ensures the model does not train longer than necessary.
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histopathology images compared to the previous two models, as well 
as objectively. Figure 5 diagrammatically describes the flow of the 
updated CNN architecture (see Table 5).

2.2.2 Classifying images as subtypes of benign 
and malignant

There are four histologically distinct types of benign breast 
tumors: adenosis (A), fibroadenoma (F), PT, and TA; and four 
malignant tumors (breast cancer): carcinoma (DC), LC, mucinous 
carcinoma (MC) and PC.

Adenosis (A) is characterized by the proliferation of glandular 
structures, which may appear as distorted acini or ducts in biopsy 
images. These lesions typically show increased glandular tissue 
without significant atypia, making them relatively easy to 
differentiate from malignancies under a microscope (Jiang et al., 
2017). Fibroadenomas (F) are solid tumors composed of both 
glandular and stromal components, presenting as well-
circumscribed masses with minimal cellular atypia. Their typical 
pattern in biopsy images shows a lobular architecture with a fibrous 
stroma, which contrasts with the irregular structures seen in 
malignant lesions (Schulz-Wendtland et al., 2016). PTs, though 
benign in some cases, can show features suggestive of malignancy, 
such as rapid growth and hypercellularity. Their biopsy images 
typically display leaf-like structures, hence the name, with 
prominent stromal overgrowth and areas of necrosis that can 
challenge differentiation from malignant tumors (Barker et  al., 
2018). TAs are another benign subtype characterized by well-
formed tubules lined by a single layer of epithelial cells. These 
lesions often have minimal cellular atypia, and their biopsy images 
demonstrate small, uniformly sized tubules with little stroma (Pike 
et al., 2020).

In contrast, malignant breast cancers are often more challenging 
to classify due to the diversity of their histopathological features. DC 
is the most common type of breast cancer and typically appears as 

irregularly shaped masses with infiltrating ductal structures. The 
biopsy images show marked cellular pleomorphism, nuclear atypia, 
and often necrotic areas, which are indicative of aggressive behavior 
(Tung et al., 2016). LC presents with a distinctive pattern in biopsy 
images, with tumor cells growing in a single-file pattern and a lack 
of cohesive cell groups. This “Indian file” arrangement of cells and 
the absence of desmoplastic stroma are key features that differentiate 
it from DC (Vargas et  al., 2017). Mucinous carcinoma (MC) is 
characterized by the production of extracellular mucin, which can 
be  observed in the biopsy images as abundant mucin pools, 
separating the tumor cells. The cells in mucinous carcinoma are 
typically round with mild pleomorphism and are surrounded by 
mucin-rich stroma (Manning et  al., 2018). Finally, PC shows 
prominent papillary structures with fibrovascular cores, surrounded 
by atypical epithelial cells. The tumor cells are often arranged in 
well-defined papillae, and the biopsy images reveal a complex 
architecture with cystic spaces and dense fibrous stroma (Thompson 
et al., 2019).

A CNN was initially trained to distinguish breast cancer subtypes 
by learning hierarchical spatial features from biopsy images. It 
captured architectural differences such as the regular tubules in TAs 
and the disorganized ductal structures in carcinomas, as well as key 
histological features like pleomorphism, stromal composition, and 
mucin presence (Rajendran et al., 2018; Srinivasu et al., 2020). The 
architecture included three Conv2D layers (32, 64, 128 filters), ReLU 
activations, and (3 × 3) kernels for efficient feature extraction, with 
max pooling and dropout (0.25/0.5) to reduce overfitting. A dense 
layer with 512 neurons and a softmax output layer enabled multi-class 
classification, optimized using categorical cross-entropy and various 
learning rates (Adam 0.0001, SGD 0.01, RMSprop 0.0001). Training 
was conducted over 30 epochs with a batch size of 32. Despite these 
efforts, the model struggled with generalization and subtype 
discrimination, yielding poor validation performance. Following the 
success of the DenseNet-based binary model, the architecture was 

FIGURE 5

Final binary class CNN.
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extended and adapted to a multiclass setting, as detailed in Section 2.3 
(see Table 6).

To enhance diagnostic granularity, we developed two separate 
CNN classifiers—one for benign subtypes and another for malignant 
subtypes—rather than training a single multi-class model across all 
categories to extend the binary class classifier to multiple classes. This 
decision is rooted in both clinical and computational rationale. 
Clinically, benign and malignant lesions differ not just in severity but 
in their underlying histomorphological characteristics, tissue 
organization, and staining patterns (Barker et al., 2018; Pike et al., 
2020). Combining both under one classifier risks underrepresenting 
these distinct patterns during training, especially when using class-
imbalanced datasets like BreakHis, which contain fewer samples for 
certain subtypes. Computationally, separate models allow more 
focused feature learning within each class family, minimizing intra-
class confusion. Prior studies have shown that domain-specific 
subnetworks often outperform unified multi-class models in 
pathology, especially when classes exhibit heterogeneity in structure 
and frequency (Gandomkar et  al., 2018; Patel et  al., 2024). For 
example, Umer et al. (2022) observed that a specialized multi-branch 
CNN improved the classification of individual breast cancer subtypes, 

while Arevalo et  al. (2016) showed that focused lesion-specific 
training led to better mass detection in mammography. Furthermore, 
multi-class CNNs trained across all subtypes often suffer from 
performance trade-offs—gaining sensitivity in one category while 
losing specificity in others (McKinney et al., 2020). By using separate 
networks, we achieved higher per-class precision and recall, especially 
for visually similar classes like fibroadenoma and PT. This modular 
architecture also supports more targeted clinical applications, such as 
malignancy-specific triaging or subtype-based treatment suggestion 
systems, which align with current trends in personalized digital 
pathology (Lee et al., 2024).

The multi-class CNN architectures for subtype classification were 
directly adapted from the binary classification model described 
previously. DenseNet121, used as the backbone in both approaches, 
provides efficient deep feature extraction through its dense 
connectivity and hierarchical learning capabilities. As in the binary 
model, features were extracted from three depths—conv3_block12_
concat, conv4_block24_concat, and conv5_block16_concat—
capturing progressively abstract morphological features necessary for 
histopathological differentiation. These include low-level structures 
such as cellular edges and textures, mid-level patterns like glandular 

TABLE 5  Hyperparameters for the final binary classification model.

Hyperparameter Value Explanation

Base model DenseNet121 (pre-trained on ImageNet) Acts as the backbone for feature extraction, leveraging pre-trained hierarchical 

features.

Input image size (128, 128, 3) Defines the input shape of images with three color channels (RGB), ensuring 

consistency across the dataset.

Feature extraction layers conv3_block12_concat, conv4_block24_concat, 

conv5_block16_concat

Extracts multi-scale features from different levels of abstraction within the 

DenseNet121 model.

Pooling method Global average pooling (GAP) Reduces dimensionality while retaining essential spatial information from feature 

maps.

Feature normalization L2 normalization Ensures all extracted features contribute proportionally, preventing large-

magnitude features from dominating learning.

Hidden dense layer (feature 

processing)

64 neurons, ReLU activation, L2 regularization 

(0.001)

Introduces non-linearity to enhance feature interactions and prevents overfitting 

via L2 regularization.

Batch normalization Applied after dense layers Standardizes feature distributions, improving gradient flow and training stability.

Feature fusion Concatenation of three feature levels Integrates low-level, mid-level, and high-level features into a unified 

representation for better classification.

Final dense layer 16 neurons, ReLU activation, L2 regularization (0.001) Further refines the fused feature representation before classification.

Dropout rate 0.45 Randomly deactivated neurons to prevent overfitting, ensuring better 

generalization.

Output layer 2 neurons, softmax activation Generates class probabilities for binary classification (Benign vs. Malignant).

Loss function Categorical cross-entropy Suitable for multi-class classification tasks, even though the output is binary 

(ensures numerical stability).

Optimizer Adam (learning rate: 0.0001) Adaptive optimization algorithm that adjusts learning rates dynamically for 

efficient training.

Learning rate scheduler ReduceLROnPlateau (factor = 0.5, patience = 3, 

min_lr = 1e-6)

Reduces the learning rate when validation loss stagnates, helping fine-tune the 

model.

EarlyStopping Patience = 5, restore_best_weights = true Stops training when validation loss stops improving, preventing unnecessary 

computation and overfitting.

Epochs 50 Maximum number of iterations through the dataset, ensuring the model learns 

enough before early stopping.
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and stromal organization, and high-level attributes such as nuclear 
pleomorphism and mitotic activity.

Each extracted feature map underwent GAP, L2 normalization, 
and transformation via a dense layer with L2 regularization, batch 
normalization, and dropout, following the same processing pipeline 
outlined in the binary classifier. The processed features were then 
concatenated into a unified multi-scale descriptor and passed through 
a final dense layer before classification.

Instead of a binary output, the final softmax layer consisted of four 
neurons to predict between the benign or malignant subtypes, 

depending on the network. Two separate CNNs were trained—one for 
benign subtypes and another for malignant—to reduce feature 
entanglement and focus each model on intra-class variation. This 
design choice improved the model’s capacity to learn subtle 
distinctions specific to each class group, such as distinguishing 
fibroadenoma from PT, or DC from PC.

Optimization and training procedures mirrored those of the 
binary classification model, utilizing the Adam optimizer (learning 
rate 0.0001), EarlyStopping, and ReduceLROnPlateau for improved 
convergence and generalization (see Figures 6, 7 and Table 7).

TABLE 6  Hyperparameters for the initial subclass classification model.

Hyperparameter Value Explanation

Input image size (256, 256) The spatial dimensions of each input image are fed to the model.

Batch size 32 Number of images processed at once during training.

Learning rate (Adam) 0.0001 Speed at which the model updates weights during training using Adam optimizer.

Learning rate (SGD) 0.01 Speed of weight updates for the SGD optimizer.

SGD momentum 0.9 Momentum helps accelerate SGD by dampening oscillations during updates.

Learning rate (RMSprop) 0.0001 Step size for weight updates using RMSprop optimizer.

Conv2D filters (1st layer) 32 Number of filters in the first convolutional layer.

Conv2D filters (2nd layer) 64 Number of filters in the second convolutional layer.

Conv2D filters (3rd layer) 128 Number of filters in the third convolutional layer.

Kernel Size (3, 3) Size of the sliding window applied in convolution operations.

Activation function ReLU Non-linear function applied to neuron outputs to introduce non-linearity.

Dropout rate (conv layers) 0.25 The fraction of neurons dropped to prevent overfitting during training.

Dropout rate (dense layer) 0.5 Fraction of dense layer neurons dropped for regularization.

pooling size (2, 2) Size of the window for max pooling operation to reduce feature map dimensions.

Dense layer size 512 Number of neurons in the fully connected layer before the output.

Output layer activation Softmax Ensures output values represent probabilities for multi-class classification.

Loss function Categorical cross-entropy Measures model error for multi-class classification tasks.

Number of epochs 30 Total number of complete passes through the training dataset.

FIGURE 6

CNN used for multi-class classification.
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2.3 Novel characteristics of the model

The proposed classification algorithm is distinguished by its 
multi-scale feature fusion architecture built on DenseNet121. Instead 
of relying only on the final layer features (as done in most standard 
CNN classifiers), it extracts and fuses features from three different 
depths of the DenseNet (the end of conv3, conv4, and conv5 blocks). 
Each feature map is subjected to GAP and L2 normalization, then 
passed through a small fully connected layer with batch normalization 
(and dropout) before concatenation. This design enables the model to 
capture discriminative patterns at multiple spatial scales—from fine-
grained cellular details to higher-level tissue organization—within a 
single network. In essence, the model behaves like an integrated multi-
scale ensemble, where lower-level texture features and higher-level 
semantic features jointly inform the final prediction. This multi-scale 
fusion is particularly well-suited to histopathology images, where 
diagnostically relevant cues appear at different magnifications. Prior 
work has recognized the value of multi-scale information: Araújo et al. 
(2017) designed a custom CNN to explicitly capture both nuclei-level 
details and global tissue architecture (Araújo et al., 2017), and Gupta 
and Bhavsar (2018) similarly argued that “different layers… contain 
useful discriminative information” for classifying breast histology 
images (Gupta and Bhavsar, 2018). The proposed model builds on this 
principle by simultaneously leveraging DenseNet’s intermediate 
feature maps, rather than using only the deepest features or requiring 
multiple separate networks.

By fusing intermediate feature vectors, our approach yields a 
richer representation that combines context from multiple receptive 

field sizes. This strategy is analogous to the “hypercolumn” or feature 
pyramid concept—effectively consolidating features at various levels 
of abstraction. In histopathology, such multi-level fusion has clear 
advantages: for example, benign vs. malignant differentiation may 
depend on both cellular morphology and the broader tissue 
architecture. Traditional transfer-learning classifiers often discard 
these multi-level cues by only using the final global feature map of a 
pre-trained CNN. In contrast, our DenseNet121-based model 
preserves multi-scale feature information by tapping conv3, conv4, 
and conv5 outputs. Zhu et al. (2019) demonstrated a similar idea with 
a two-branch “global vs. local” CNN ensemble, where merging a 
whole-image branch with a high-zoom patch branch improved 
representation power (Zhu et  al., 2019). Our method achieves a 
comparable multi-scale effect within a single backbone: the conv3_
block output (earlier layer) can focus on local textural patterns 
(analogous to a high-magnification view), while the conv5_block 
output provides global context (analogous to a low-magnification 
overview). The DenseNet architecture’s dense connectivity may 
further facilitate this feature reuse across scales (Huang et al., 2017). 
Notably, DenseNet121 has been a popular choice in medical image 
analysis due to its efficient feature propagation; several breast 
histopathology studies report strong results with DenseNet-based 
transfer learning—for example, Liew et al. (2021) achieved ~97% 
accuracy by using DenseNet201 features with an XGBoost classifier 
(Liew et al., 2021). Our model differentiates itself by not only fine-
tuning DenseNet121 on the task, but by modifying its topology to 
combine multi-scale features—a design rarely explored in prior 
breast cancer studies.

Another novel aspect of our approach is the use of L2 
normalization and balanced regularization in the feature fusion 
process. Each branch’s pooled feature vector is L2-normalized before 
fusion, ensuring that no single scale’s features dominate the others 
due to scale differences. This is an uncommon yet effective practice 
in classification networks—more frequently seen in metric learning 
or multi-instance aggregation contexts—and it promotes stability 
when training the fused classifier. For instance, Xie et  al. (2020) 
applied L2 normalization to patch feature vectors in a histopathology 
model to stabilize feature magnitudes (Xie et al., 2020). In our design, 
the L2 norm acts similarly to a scale calibration across the three 
feature streams, so that the subsequent dense layers operate on 
features of comparable norm. We  then apply dropout and batch 
normalization in each branch’s dense layer (as well as the final 
classification layer) to combat overfitting. High-resolution histology 
images are prone to overfitting given their limited datasets, and 
regularization is critical. Previous works have indeed found that 
naive CNN models can overfit histopathology data even with 
dropout—for example, a shallow CNN still overfit BreakHis patches 
even with 20% dropout, as reported by Kode and Barkana (2023) 
(Kode and Barkana, 2023). By combining dropout with batch 
normalization and the inherent regularization of feature fusion, our 
model aims to generalize better. The inclusion of batch normalization 
after the small dense layers also helps each scale-specific feature 
vector to be well-conditioned before merging, which eases the joint 
learning. These design choices—L2 normalization of features and 
dropout-regularized dense layers for each scale—are unique 
refinements that distinguish our architecture from standard fine-
tuned CNN classifiers that often use only a global pooling and a 
linear classifier on top.

FIGURE 7

Diagram for feature workflows.
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Compared to existing deep learning methods in breast cancer 
histopathology, the proposed model offers a new balance of simplicity 
and multi-scale sophistication. Many prior studies have focused either 
on transfer learning with single CNNs or on ensembles of multiple 
models. On the one hand, simple transfer-learning approaches, fine-
tuning a single network (e.g., ResNet or DenseNet), have shown strong 
baseline performance (Spanhol et al., 2016; Wahab et al., 2017), but they 
might miss multi-scale cues. Some recent works augment such models 
with attention mechanisms—for example, an EfficientNetV2 with a 
channel-spatial attention module (CBAM) by Aldakhil et al. (2024) 
outperformed standard CNNs, reaching ~92–94% accuracy on 
BreakHis magnifications (Aldakhil et al., 2024). Others integrate vision 
transformers to capture global context—for example, Mehta et al. (2022) 
introduced a ViT-based HATNet that achieved state-of-the-art accuracy 
(Mehta et al., 2022). However, these sophisticated models often remain 
single-scale in the sense that they ultimately rely on one level of feature 
map (global features) enhanced via attention. On the other hand, 
ensemble and multi-branch strategies explicitly leverage multi-scale 
inputs. For example, Umer et al. (2022) proposed 6B-Net, a six-branch 
CNN with different receptive field sizes in each branch, and fused their 
outputs for classifying the eight BreakHis classes (Umer et al., 2022). 
Similarly, an earlier study by Zhu et  al. (2019) assembled multiple 
compact CNNs (and even pruned channels) to combine local and global 
predictions for histology images (Zhu et  al., 2019). These methods 

confirmed that combining features from multiple scales or multiple 
models can boost accuracy. Our approach achieves this multi-scale 
fusion within a single pre-trained DenseNet, rather than requiring 
separate networks for different magnifications or an external ensemble 
of classifiers. This provides a more unified and computationally efficient 
framework: for instance, Wakili et al. (2022) reported a DenseNet-based 
transfer model (“DenTnet”) that attained ~99% accuracy on BreakHis 
(Wakili et al., 2022), but that model treats DenseNet as a black-box 
feature extractor for an SVM or softmax classifier. In contrast, our 
model integrates the multi-level feature extraction into the training 
process, which could offer better synergy between feature learning and 
classification. It also simplifies the pipeline—there is no need for 
post-CNN classifiers like SVM (as used by Araújo et  al., 2017 and 
others) or gradient boosting ensembles (as in Liew et al., 2021) because 
the fused deep features are learned end-to-end to directly 
optimize classification.

In summary, the novelty of our algorithm lies in combining multi-
scale feature fusion, transfer learning with DenseNet121, and strategic 
normalization/regularization into one coherent model for breast 
histopathology classification. This design captures the multi-scale 
nature of tissue patterns more explicitly than standard CNN classifiers. 
It leverages DenseNet’s strength in feature reuse while addressing 
multiple scales akin to multi-branch networks, but with fewer 
parameters and a single-pass inference. By comparing with the 

TABLE 7  Hyperparameters for the final subclass classification model.

Hyperparameter Value Explanation

Base model DenseNet121 (pre-trained on ImageNet) Acts as a deep feature extractor, leveraging hierarchical feature learning for efficient 

classification.

Input image size (128, 128, 3) Ensures computational efficiency while preserving essential histopathological details. A higher 

resolution, like 256 × 256, would increase memory usage without significantly improving 

feature representation.

Feature extraction layers conv3_block12_concat, conv4_block24_

concat, conv5_block16_concat

Extracts features at multiple abstraction levels, capturing both fine-grained and high-level 

morphological details.

Pooling method Global average pooling (GAP) Reduces dimensionality while preserving spatial characteristics of the extracted feature maps.

Feature normalization L2 normalization Prevents feature values with high magnitudes from dominating the learning process, ensuring 

numerical stability.

Hidden dense layer (feature 

processing)

64 neurons, ReLU activation, L2 

regularization (0.001)

Introduces non-linearity for complex feature interactions and applies L2 regularization to 

prevent overfitting.

Batch normalization Applied after dense layer s Standardizes feature distributions, accelerating convergence and improving training stability.

Feature fusion Concatenation of three feature levels Integrates information across different levels of abstraction, enhancing classification 

performance.

Final dense layer 16 neurons, ReLU activation, L2 

regularization (0.001)

Refines the multi-scale feature representation before classification.

Dropout rate 0.45 Prevents overfitting by randomly deactivating neurons, ensuring better generalization.

Output layer 4 neurons, softmax activation Outputs probability scores for the four benign subtypes.

Loss function Categorical cross-entropy Suitable for multi-class classification tasks, optimizing probability-based learning.

Optimizer Adam (learning rate: 0.0001) Adaptive optimization that adjusts learning rates dynamically for efficient and stable training.

Learning rate scheduler ReduceLROnPlateau (factor = 0.5, 

patience = 3, min_lr = 1e-6)

Reduces learning rate when validation loss stagnates, improving fine-tuning of weights.

EarlyStopping Patience = 5, restore_best_weights = true Stops training when validation loss stops improving, preventing unnecessary computation and 

overfitting.

Epochs 50 Maximum number of training iterations through the dataset, ensuring sufficient learning.
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literature, we  see that our approach is unique in how it fuses 
intermediate CNN features: Gupta and Bhavsar (2018) sequentially 
processed DenseNet layers’ outputs rather than fusing them, and most 
other DenseNet-based methods (Wakili et al., 2022; Liew et al., 2021) 
used only the final layer or combined whole-network outputs in 
ensembles. Moreover, the inclusion of L2-normalized feature vectors 
and dropout-regularized dense layers for each scale is a novel 
architectural choice that, to our knowledge, has not been explicitly 
reported in prior breast cancer histopathology studies. These 
innovations position our model as a multi-scale, multi-level classifier 
that is well-aligned with the visual hierarchy a pathologist employs 
(from cells to tissue architecture), setting it apart from conventional 
single-scale CNN models and even from recent attention-based or 
ensemble-based state-of-the-art methods in this domain.

2.4 Metrics evaluations

In AI, especially in domains like classification and regression, 
evaluation metrics play a vital role in measuring model performance. 
Within medical diagnostics, metrics such as precision and recall are 
particularly significant. Precision reflects the proportion of correct 
positive predictions, meaning that when a model identifies cancer, it 
is likely to be correct—thereby reducing unnecessary alarm (Sokolova 
and Lapalme, 2009). Recall, on the other hand, focuses on identifying 
as many actual positive cases as possible, which is crucial in healthcare 
settings to avoid overlooking genuine cases of disease (Sokolova and 
Lapalme, 2009). Although accuracy is a common metric indicating 
the percentage of correctly predicted instances overall, it can 
be deceptive in scenarios with class imbalance, as it does not account 
for the nature of errors made (Tharwat, 2020).

To address such limitations, the F1-score is often employed. This 
metric, calculated as the harmonic mean of precision and recall, offers 
a more balanced view by considering both false positives and false 

negatives—an essential factor in medical imaging, where failing to 
detect malignant tumors can have serious consequences (Chicco and 
Jurman, 2020). Additionally, the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve is another key metric. 
It evaluates the model’s capacity to distinguish between positive 
(cancerous) and negative (non-cancerous) cases, with scores 
approaching 1 indicating high discriminative ability (Yang and Ying, 
2022). Given the frequent imbalance in medical datasets, relying on a 
combination of these metrics provides a more reliable and holistic 
evaluation of model effectiveness (see Table 8).

3 Results and discussion

The following sections present a comprehensive evaluation of the 
developed AI models across various experimental phases, including 
binary classification and multi-class subtype detection for breast 
cancer biopsy images. Detailed performance metrics such as accuracy, 
precision, recall, F1-score, and ROC-AUC are reported to assess the 
effectiveness and generalizability of each model. The study began by 
analyzing the outcomes of the initial CNN architecture, followed by 
performance improvements observed with the final DenseNet121-
based model. It then extends this evaluation to multi-class 
classification tasks, detailing the results for both benign and malignant 
subtypes. These results collectively demonstrate the diagnostic power 
and clinical viability of the proposed framework.

3.1 The binary categorical classification as 
benign or malignant

The initial CNN architecture, developed for binary classification 
of histopathology images into benign and malignant categories, was 
evaluated using different filter and kernel size configurations. Table 9 

TABLE 8  Metrics for evaluation of the algorithm.

Metric Formula Explanation References

Precision TP/(TP + FP) Measures the proportion of correctly predicted positive cases out of all 

predicted positives.

Sokolova and Lapalme (2009)

Recall (sensitivity) TP/(TP + FN) Measures the proportion of actual positive cases correctly identified by the 

model.

Sokolova and Lapalme (2009)

F1-score 2(Precision*Recall)/

(Precision+Recall)

Harmonic mean of precision and recall, providing a balanced measure for 

imbalanced datasets.

Chicco and Jurman (2020)

Accuracy (TP + TN)/(TP + TN + FP + FN) Measures overall correctness of the model across all classes. Tharwat (2020)

Area under the curve 

(AUC)

Computed from ROC curve Represents the probability that the model ranks a randomly chosen 

positive instance higher than a randomly chosen negative one.

Yang and Ying (2022)

TP (True Positives): Correctly predicted positive cases; TN (True Negatives): Correctly predicted negative cases; FP (False Positives): Incorrectly predicted positive cases; FN (False Negatives): 
Incorrectly predicted negative cases.

TABLE 9  Initial results of binary classification.

Filters Mesh size Precision Recall Binary accuracy AUC

32, 32, 32 3×3 0.8603 0.9283 0.8424 0.8768

16, 32, 16 4×4 0.8893 0.8994 0.8542 0.8872

16, 32, 16 5×5 0.8253 0.8465 0.7799 0.8290
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presented in this section summarizes the performance metrics for 
each configuration. While the model achieved a maximum accuracy 
of 84%, this result was below the expected benchmark for binary 
classification tasks, where an accuracy of 95% or higher is generally 
required to maintain robust performance during the transition to 
multi-class classification.

Upon using the proposed DenseNet121-based binary 
classification, the model demonstrated outstanding performance in 
distinguishing between benign and malignant breast cancer 
histopathology images. The model was trained on out-of-sample 
biopsy images. As shown in Table  10, the model achieved a test 
accuracy of 98.63%, indicating a high level of reliability in 
classification. Precision, recall, and F1-score values were also notably 
high at 0.9888, 0.9867, and 0.9877, respectively, reflecting the model’s 
ability to correctly identify malignant cases while minimizing false 
positives and false negatives. The ROC-AUC score of 0.9863 further 
confirms the model’s strong discriminative capability, showing its 
robustness in distinguishing between the two classes across different 

classification thresholds. Figure 8 shows the confusion matrix for the 
classification, while Figure 9 is a graph showing the change in accuracy 
and loss with respect to epochs. Compared to previous models that 
relied on shallow convolutional architectures and dataset 
fragmentation based on magnification levels, the proposed model 
benefits from multi-scale feature extraction at different network 
depths, improving its ability to generalize across varying 
histopathological patterns. By utilizing a 128 × 128 input image 
resolution, the model strikes a balance between computational 
efficiency and feature preservation, allowing for optimal learning 
without excessive memory consumption. The use of feature fusion 
across different abstraction levels enhances the classification 
robustness, ensuring that both low-level structural features and high-
level morphological variations contribute to the final decision-
making process.

3.2 Multi-category classification of benign 
and malignant cancers

The performance of the multi-class classification models for 
benign and malignant breast cancer subtypes is summarized in 
Table 11. The model was trained on out-of-sample biopsy images. The 
model trained for benign classification achieved a test accuracy of 
0.9382, whereas the malignant classification model obtained a test 
accuracy of 0.9158. Additionally, the malignant model demonstrated 
strong predictive capabilities, with a precision of 0.9151, recall of 
0.9240, and an F1-score of 0.9182, while the benign model had a 

TABLE 10  Final results of binary classification algorithm.

Metric Value

Test accuracy 0.9863

Precision 0.9888

Recall 0.9867

F1-score 0.9877

ROC–AUC 0.9863

FIGURE 8

Confusion matrix for final binary classification.

https://doi.org/10.3389/frai.2025.1627876
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Chaudhary and Dhunny� 10.3389/frai.2025.1627876

Frontiers in Artificial Intelligence 16 frontiersin.org

precision of 0.9541, recall of 0.9324 and an F1-score of 0.9415. These 
results highlight the effectiveness of using separate CNNs for each 
subtype, allowing for improved feature extraction and discrimination 
between fine-grained morphological variations. Figure 10 shows the 
confusion matrix for the benign model, while Figure 11 shows the 
same for the malignant model. Figure  12 shows the graph of the 
change in accuracy/loss with respect to the epochs for benign, and 
Figure 13 shows the same for malignant.

The results indicate that the model for benign subtypes 
outperformed the malignant classification model in terms of overall 
accuracy. However, the malignant classification model maintained 
strong recall and F1-score values, demonstrating its ability to 
correctly identify malignant subtypes while balancing precision. 
These findings support the hypothesis that training separate models 
for benign and malignant subtypes allows for more specialized 
learning, leading to improved classification performance. The 
integration of DenseNet121 as a feature extractor has further 
contributed to the model’s ability to capture multi-scale 
morphological patterns in histopathology images.

3.2.1 Per-class metrics for benign subtype 
classification

To provide deeper insight into the model’s subclass-level 
performance, we evaluated per-class precision, recall, and F1-score 
for the benign tumor categories (Table 12). The model achieved 
excellent performance for adenosis (F1-score: 0.98) and TA (0.96), 

both of which exhibited high precision and recall. Fibroadenoma 
showed a near-perfect recall of 0.99 but a slightly lower precision 
of 0.89, indicating occasional misclassification of other benign 
types as fibroadenoma. The most challenging class was PT, with a 
recall of 0.74 and an F1-score of 0.83, suggesting frequent 
confusion with other fibroepithelial lesions—particularly  
fibroadenoma.

This result aligns with known clinical challenges, as PTs and 
cellular fibroadenomas often exhibit overlapping histological 
features, especially under low magnification. Even experienced 
pathologists can find it difficult to differentiate between these 
entities, given their shared stromal overgrowth and similar 
architectural patterns (Barker et al., 2018). As such, this subtype 
boundary represents a meaningful opportunity for AI to provide 
diagnostic support. Our findings underscore the importance of 
refining AI models to handle these borderline cases 
more effectively.

To improve classification in this region of diagnostic uncertainty, 
future iterations of the model could incorporate additional histological 
cues beyond morphology alone—such as mitotic count, stromal 
cellularity, or margin assessment, which are often critical in 
distinguishing PTs from fibroadenomas. Enhanced annotation 
protocols that focus on these differentiating features, particularly at 
multiple magnifications, could help reduce misclassification. Overall, 
while the model demonstrates strong performance in benign subtype 
differentiation, the results also highlight the necessity of targeted 

FIGURE 9

Accuracy/loss vs. epoch graph.

TABLE 11  Final results for multi-category classification.

Classification task Accuracy Precision Recall F1-score

Benign 0.9483 0.9541 0.9324 0.9415

Malignant 0.9254 0.9318 0.9193 0.9251
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FIGURE 10

Confusion matrix for benign sub-category classification.

FIGURE 11

Confusion matrix for malignant sub-category classification.
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refinement in clinically ambiguous classes like PTs. Figures 14–17 
show the confusion matrices for Ductal Carcinoma, Lobular 
Carcinoma, Mucinous Carcinoma, and Papillary Carcinoma, 
respectively.

3.2.2 Per-class metrics for malignant subtype 
classification

For malignant tumor classification, per-class evaluation 
similarly revealed strong and balanced performance (see Table 13). 

FIGURE 12

Accuracy/loss vs. epoch graph for benign subclass model.

FIGURE 13

Accuracy/loss vs. epoch graph for malignant subclass model.
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TABLE 12  Per-class metrics for benign classes.

Classification task Precision Recall F1-score

Adenosis 0.99 0.96 0.98

Fibroadenoma 0.89 0.99 0.94

Phyllodes tumor 0.94 0.74 0.83

Tubular adenoma 0.98 0.94 0.96

FIGURE 14

Adenosis confusion matrix.

FIGURE 15

Fibroadenoma confusion matrix.
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The model classified mucinous carcinoma and PC with the 
highest F1-scores (both 0.95), supported by near-perfect precision 
and recall. DC, the most common subtype, achieved an F1-score 
of 0.91 with strong precision (0.93) and recall (0.89). The relatively 

lower performance was observed for LC, with an F1-score of 0.86, 
primarily due to reduced precision (0.83), indicating overlap in 
predicted labels with other malignant types. These distinctions are 
clearly reflected in the one-vs-all confusion matrices, which reveal 

FIGURE 16

Phyllodes tumour confusion matrix.

FIGURE 17

Tubular adenoma confusion matrix.

TABLE 13  Per-class metrics for malignant classes.

Classification task Precision Recall F1-score

Ductal carcinoma 0.93 0.89 0.91

Lobular carcinoma 0.83 0.90 0.86

Mucinous carcinoma 0.93 0.97 0.95

Papillary carcinoma 0.99 0.92 0.95
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class-specific prediction errors and highlight the model’s ability 
to distinguish even closely related malignancies. This subclass-
level analysis enhances transparency and helps identify where 
architectural or dataset-level adjustments may be necessary for 
further improvement. Figures 18–21 show the confusion matrices 
for Ductal Carcinoma, Lobular Carcinoma, Mucinous Carcinoma, 
and Papillary Carcinoma, respectively.

Although this study primarily focuses on classification 
performance, model interpretability is essential for clinical adoption. 
Techniques such as gradient-weighted class activation mapping (grad-
CAM) or SHapley additive exPlanations (SHAP) can be  used to 
generate heatmaps that visualize which regions of a biopsy image most 

influenced the model’s predictions. These visual explanations could 
help verify whether the model is focusing on diagnostically relevant 
features—Such as nuclear pleomorphism, stromal arrangement, or 
mitotic activity—Thereby increasing clinician trust and facilitating 
integration into diagnostic workflows.

3.3 K-fold cross-validation and 
performance stability

To evaluate the generalizability of the proposed classifiers, 
we  performed 5-fold cross-validation on each of the three tasks: 

FIGURE 18

Ductal carcinoma confusion matrix.

FIGURE 19

Lobular carcinoma confusion matrix.
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binary classification, benign subtype classification, and malignant 
subtype classification. The mean values, standard deviations, and 95% 
confidence intervals are presented in Table 14.

As shown in Table 14, the proposed classifiers maintained strong 
and stable performance across 5-fold cross-validation, with F1-scores 
of 0.9738 for binary classification, 0.9369 for benign subtype 
classification, and 0.8907 for malignant subtypes. The relatively tight 
confidence intervals and low standard deviations across all tasks 
suggest minimal sensitivity to training split variability, indicating 
good model generalization. Notably, the benign subtype classifier 
showed slightly higher performance consistency than the malignant 
subtype model, which exhibited greater variance in recall (±0.0265) 
and a broader 95% CI (0.8440–0.9176). This is likely due to the 
greater morphological diversity and class imbalance among 

malignant categories—particularly LC—where lower sample size and 
higher inter-class overlap may amplify prediction uncertainty.

The observed decline in recall and F1-scores compared to the single 
train-test split is expected, and it reflects the increased rigor of cross-
validation, which exposes the model to harder-to-classify samples in 
more diverse folds. From a diagnostic perspective, the relatively stable 
precision across tasks implies that the model is conservative in positive 
predictions, minimizing false positives—an important trait in 
histopathological screening scenarios. However, the slightly larger 
variation in recall for rare or borderline subtypes warrants attention, as 
it may affect sensitivity to clinically ambiguous cases.

These findings reinforce the utility of k-fold cross-validation 
as a stress-testing tool, revealing not just average performance but 
also subtype-specific reliability under different sampling 

FIGURE 20

Mucinous carcinoma confusion matrix.

FIGURE 21

Papillary carcinoma confusion matrix.
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conditions. Future iterations of the model could incorporate 
stratified sampling by subtype or uncertainty-aware training 
strategies to further reduce variability in underrepresented classes.

3.4 Final notes

The final model, built on DenseNet121 with multi-scale feature 
extraction, demonstrated the strongest performance among all 
evaluated architectures, achieving high accuracy, recall, and 
F1-scores in the binary classification of breast cancer biopsy images. 
By extracting and fusing features from three intermediate 
convolutional blocks, the model was able to learn both fine-grained 
cellular structures and broader tissue-level patterns relevant to 
histopathological classification. The incorporation of L2 
normalization, dropout regularization, and batch normalization 
within each branch further contributed to its stability and 
generalization. This design effectively addressed limitations 
observed in earlier models, such as feature loss due to single-layer 
reliance or overfitting from insufficient regularization.

Compared to existing models evaluated on the same BreaKHis 
dataset, the proposed approach offers a substantial improvement. 
Araújo et al. (2017) employed a standard CNN and achieved an 
average accuracy of 83.3% across all magnification levels. Similarly, 
Vo et al. (2019) reported 86.3% accuracy using a handcrafted feature 
pipeline with SVMs, while Bayramoglu et al. (2016) applied a multi-
scale CNN and reached approximately 88.0% accuracy. More 
recently, Munshi et al. (2024) proposed an ensemble CNN-SVM 
framework with XAI components, achieving 94.2% accuracy and 
an F1-score of 0.93. In contrast, our DenseNet121-based model 
consistently achieved >97% accuracy and an F1-score of 0.9738 in 
binary classification, while maintaining robust generalization across 
folds and magnifications. These improvements can be attributed to 
the deeper architectural depth, feature reuse enabled by dense 
connectivity, and the incorporation of multi-scale fusion, which 
allowed the model to capture both cellular and architectural 
histological patterns more effectively.

The model’s strong and consistent performance across both 
binary and subtype classification tasks positions it as a scalable and 

technically rigorous approach for digital histopathology. With 
additional validation on multi-institutional and heterogeneous 
datasets, this framework has the potential to contribute 
meaningfully to diagnostic support systems for breast cancer, 
especially in settings with limited expert pathologist availability.

4 Conclusion

This study presents a deep learning framework for breast cancer 
diagnosis that performs subtype-level classification directly from 
H&E-stained biopsy images using a DenseNet121-based multi-scale 
feature fusion architecture. In conventional diagnostic workflows, the 
determination of histological subtypes often requires additional 
procedures—such as immunohistochemistry (IHC), molecular assays, 
or serial imaging—that increase diagnostic latency, invasiveness, and 
healthcare costs (Robbins et al., 2010; National Cancer Institute, 2021; 
Manning et  al., 2018). In contrast, our proposed model offers a 
streamlined, image-only approach capable of distinguishing both 
benign and malignant lesions and further subclassifying them into 
clinically relevant subtypes (Spanhol et al., 2016; Rakhlin et al., 2018).

Our novel methodological contributions allow the model to 
capture both fine-grained cellular features and broader tissue-level 
patterns in a unified, end-to-end framework. Notably, this design 
improves over standard transfer learning approaches that rely solely 
on final-layer representations or require external fusion mechanisms 
(Gupta and Bhavsar, 2018; Zhu et al., 2019; Wakili et al., 2022).

While the model achieved strong binary classification accuracy 
(98.63%) and high F1-scores in multi-class subtype tasks (benign: 
0.9415, malignant: 0.9251), its clinical utility is best positioned in 
supporting difficult diagnostic cases—such as distinguishing PTs from 
fibroadenomas or mucinous from PCs—where visual overlap 
challenges even experienced pathologists (Barker et  al., 2018; 
Thompson et al., 2019). The model’s robustness across 5-fold cross-
validation further reinforces its potential reliability in diverse settings 
(Kohavi, 1995; Berrar, 2019).

We emphasize that this tool is not a replacement for 
pathologists but a potential assistive technology to aid in triaging, 
second-opinion support, and prioritizing ambiguous cases. In 

TABLE 14  Cross-validation scores for each model.

Task Metric Score (±SD) 95% CI

Binary class Accuracy 0.9712 ± 0.0069 0.9616–0.9808

Precision 0.9874 ± 0.0064 0.9785–0.9964

Recall 0.9608 ± 0.0160 0.9386–0.9830

F1-score 0.9738 ± 0.0062 0.9652–0.9825

Benign subtype Accuracy 0.9375 ± 0.0208 0.9087–0.9663

Precision 0.9468 ± 0.0132 0.9284–0.9651

Recall 0.9300 ± 0.0274 0.8919–0.9680

F1-score 0.9369 ± 0.0203 0.9087–0.9650

Malignant subtype Accuracy 0.9202 ± 0.0080 0.9091–0.9314

Precision 0.9048 ± 0.0122 0.8878–0.9217

Recall 0.8808 ± 0.0265 0.8440–0.9176

F1-score 0.8907 ± 0.0157 0.8689–0.9125
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resource-limited settings where access to expert pathology or 
advanced molecular testing is constrained, such a tool could help 
reduce diagnostic bottlenecks and improve equity in care delivery 
(McKinney et al., 2020; WHO, 2021).

However, further validation on larger and more heterogeneous 
datasets is necessary before clinical deployment (Liew et al., 2021). 
Moreover, the integration of model interpretability mechanisms—such 
as Grad-CAM visualizations—remains an essential next step to enhance 
transparency and foster clinical trust (Xie et al., 2020; Lee et al., 2024).

5 Limitations and future work

While the proposed model demonstrates strong performance in 
both binary and subtype-level breast cancer classification, several 
limitations must be acknowledged. First, the model was trained and 
validated solely on the BreaKHis dataset, which—despite its popularity 
in computational pathology research—is limited in scale and diversity. 
Its 7,909 images come from only 82 patients, restricting the model’s 
generalizability across varied populations, staining protocols, and 
imaging equipment. Future studies should aim to validate the model 
on larger, multi-institutional datasets that capture real-world clinical 
variability to increase the generalizability of the study.

Second, the model’s predictions are based exclusively on 
morphological features extracted from H&E-stained slides and do not 
incorporate molecular information, such as Human Epidermal 
Growth Factor Receptor 2 (HER2), Estrogen Receptor / Progesterone 
Receptor (ER/PR), or triple-negative status. These receptor-level 
biomarkers are critical for treatment planning, and their exclusion 
limits the clinical applicability of the system. Expanding the model to 
include IHC images or genomic profiles would enable a more 
comprehensive diagnostic tool aligned with current 
oncology workflows.

Another limitation lies in the model’s use of single-magnification 
images during training, despite the fact that pathologists typically 
examine biopsies at multiple magnification levels to evaluate both 
cellular and tissue-level structures. Although our multi-scale feature 
extraction within DenseNet121 captures some hierarchical 
information, it does not replicate the diagnostic reasoning derived 
from viewing across magnifications. Future work could explore 
multi-resolution input strategies or hierarchical CNNs to better 
reflect clinical interpretation.

Moreover, the current model lacks interpretability features, which 
are increasingly essential for clinical integration. Tools such as 
Grad-CAM or SHAP could be used to highlight regions of interest in 
biopsy images, helping pathologists understand model decisions and 
assess reliability. Including these visual explanations would 
significantly enhance trust and transparency in real-world applications.

Additionally, while this study emphasizes a novel architecture, it 
does not provide comparative results against widely used CNN 
baselines such as VGG16, ResNet50, or EfficientNet, nor does it 
present ablation experiments isolating the impact of architectural 
components like L2 normalization or feature fusion. Including these 
comparisons would strengthen claims of architectural innovation and 
clarify which design elements drive performance gains.

Finally, deployment considerations remain speculative. The model 
has not yet been tested in live clinical settings or integrated into 
diagnostic workflows, where computational constraints, system 

latency, and compatibility with laboratory information systems pose 
practical challenges. Future work should also consider automating the 
augmentation pipeline—currently hand-tuned—using approaches 
such as AutoAugment or Generative Adversarial Network (GAN)-
based synthesis to improve performance in rare subtypes and 
low-data scenarios.

By addressing these limitations through external validation, 
multimodal expansion, improved interpretability, and clinical 
simulation, this work can move closer to real-world deployment as a 
reliable assistive tool in digital breast pathology.
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