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The magnetometers onboard the Geostationary Operational Environmental
Satellites (GOES) provide crucial measurements for space weather monitoring
and scientific research. However, periodic arcjet thruster firings introduce
contamination in the measured magnetic field, affecting data accuracy. The
currently used correction matrix approach mitigates these effects but struggles
with transient variations and residual errors. In this study, we present an
alternative correction method using XGBoost, a machine learning algorithm, to
correct arcjet-induced contamination in the GOES-17 magnetometer data using
GOES-18 as ground truth. Using cross-satellite comparisons and supervised
learning techniques, our model is effective in reducing artificial disturbances,
especially non-linear variations. We found that the XGBoost method works
better than the existing correction matrix approach for E and P components,
while the correction matrix performs better for the N component. Although
some limitations remain due to training data constraints, our results highlight
the importance of machine learning to improve magnetometer data quality by
recognizing and correcting complex satellite-driven artifacts. The collocation
of GOES-17 and GOES-18 provided a unique opportunity for cross-satellite
calibration and validation, and with a longer collocation period, the XGBoost
method shows significant promise for better correction of operational data,
emphasizing the need for such configurations in future satellite missions.
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1 Introduction

Geostationary Operational Environmental Satellites (GOES) have continuously
measured Earth’s magnetic field from geostationary orbit for more than 40 years, providing
critical data for space weather monitoring and scientific research. The magnetometer
(MAG) instruments onboard these satellites are operationally used by NOAA’s Space
Weather Prediction Center (SWPC) for real-time space weather forecasting and event
detection, including geomagnetic storms, radiation belt dynamics, and magnetospheric
processes (Loto’aniu et al., 2023). Beyond operational use, GOES magnetometer data serve
as a fundamental resource for space physics research, playing a key role in empirical
magnetospheric modeling and the study of ultralow-frequency (ULF) waves (Loto’aniu and
Inceoglu, 2024).
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The GOES-R series magnetometer measurements are
periodically contaminated by arcjet thruster firings, which are
performed to maintain spacecraft position–specifically for North-
South station keeping–in geostationary orbit. Arcjet thrusters
generate thrust by electrically heating hydrazine propellant,
producing a partially ionized plasma plume whose elevated density
and plasma pressure cause local magnetic field disturbances near
the spacecraft. These firings introduce magnetic field perturbations,
primarily due to the diamagnetic effect of the thruster plume and
pressure gradients in the surrounding plasma environment (Califf
et al., 2020a,b). Previous studies have highlighted the need for
correction methods, as arcjet disturbances can introduce biases in
the measured magnetic field data (Loto’aniu et al., 2023). Califf
et al. (2020b) developed the currently used correction matrix
approach that applies linear adjustments to mitigate the effects of
arcjet contamination, but this method has limitations in handling
transient variations and residual errors in corrected data.

Machine learning methods have recently been explored to
improve the quality of magnetometer data. Inceoglu and Loto’aniu
(2021) applied both supervised and unsupervised learning to
correct offset anomalies stemming from thermal and seasonal
effects in the GOES-16 magnetometer data, demonstrating that
machine learning models can adapt to complex and non-linear
variations in spacecraft magnetic field measurements. Building
on this broader interest in ML-based correction methods, we
explore the use of XGBoost (Chen and Guestrin, 2016), a tree-
based gradient-boosting machine learning model, to correct arcjet-
induced contamination in GOES-17 data using collocated GOES-
18 magnetometer data as ground truth. Using supervised learning
techniques and cross-satellite comparisons, we aim to develop a
robust correction model that adapts to the dynamic characteristics
of arcjet disturbances. GOES-18, which benefits from improved
thermal stability and instrument design compared to GOES-16 and
GOES-17 (Loto’aniu et al., 2023), provides an ideal dataset to be
used as the ground truth for training and validating the correction
algorithm.

2 Data and methods

2.1 Overview of the GOES-R series and
magnetometer design

The GOES-R series (GOES-16 to GOES-19) represents the
most recent generation of NOAA’s geostationary satellites, designed
for continuous weather and space weather monitoring. GOES-
16 (launched in November 2016, earlier GOES-East) is located at
75.2◦W. GOES-17 (launched in March 2018) served as GOES-West
at 137.2◦ W from February 2019 until January 2023 (Loto’aniu et al.,
2023), after which it was relocated to on-orbit storage at 105◦

W.1 GOES-18 (launched in March 2022) transitioned to 137.0◦ W
in mid-2022 and fully assumed operational GOES-West status by
early January 2023 (Loto’aniu et al., 2023). Each spacecraft carries
a pair of fluxgate magnetometers mounted on a boom, with the
inboard (IB) sensor positioned 6.3 m and the outboard (OB) sensor

1 As noted in the NOAA Transition to Operations notice: https://www.

goes-r.gov/users/transitionToOperations17.html.

8.5 m from the spacecraft. The IB sensor is more susceptible to
thermal influences from the spacecraft bus, whereas the OB sensor
generally provides greater long-term stability (Loto’aniu et al.,
2023).

Following its launch in March 2022, GOES-18 was positioned
close to GOES-17 for 2.5 months, with a longitudinal separation
of only 0.4 degree (136.8◦W vs. 137.2◦W). This first of its
kind collocation provided a unique opportunity for direct cross-
satellite calibration, as both spacecraft observed nearly identical
geomagnetic conditions. These comparisons demonstrated that
GOES-18, equipped with the new Goddard magnetometers
(GMAG), exhibits diurnal and long-term stability within ±1 nT,
compared to variations of ∼2 nT on GOES-17 and >10 nT on
GOES-16 (Loto’aniu et al., 2023). This improvement reflects both
the change in vendor (NASA Goddard vs. MEDA for GOES-16/17)
and significant engineering upgrades, including redesigned sensor
and electronics units, added heaters and thermal isolation spacers,
enhanced blanketing, and extensive ground and on-orbit thermal
testing, all of which mitigated the thermal instabilities seen in
earlier MAG instruments (Loto’aniu et al., 2023).

2.2 Contamination in the magnetic field
measurements

The arcjet thrusters aboard the GOES-R series satellites—
GOES-16 to GOES-19—are periodically fired to maintain the
spacecraft’s geostationary orbit. Each satellite is equipped with four
thrusters, numbered 13, 14, 15, and 16 (Figure 1), nominally fire in
alternating pairs (13–15 or 14–16) approximately every four days
for around 90 minutes per maneuver (Califf et al., 2020a), although
the exact pairing may occasionally vary. During these firings, the
GOES-R magnetometers detect a significant artificial disturbance
in the local magnetic field, introducing deviations of up to ∼20 nT,
20% of the typical geomagnetic field strength at geostationary orbit
(Califf et al., 2020b). This contamination occurs due to two primary
physical mechanisms: (i) the diamagnetic effect of the thruster
plume, which reduces the local ambient magnetic field strength,
and (ii) plasma pressure gradients within the thruster exhaust that
introduce additional localized magnetic perturbations (Califf et al.,
2020b,a). The disturbance is most pronounced along the thrust axis,
primarily affecting the poleward (P) component of the measured
magnetic field, and remains relatively stable throughout the burn
period. Although rapid recovery of the magnetic field occurs once
the thrusters are deactivated, small residual offsets (∼1-2 nT) may
persist for hours due to thermal effects on the magnetometer
electronics (Califf et al., 2020a).

Similar contamination in magnetic field measurements can
also be observed in GOES-17 and GOES-18 (Figure 2). During
the GOES-17/18 collocation described above, both satellites
measured the Earth’s magnetic field under nearly identical
conditions, enabling direct cross-satellite comparisons. Outside this
overlap, the longitudinal separation between the satellites leads to
differences in the ambient field, preventing one from being used as
ground truth for the other.

During the collocation, we identified 21 GOES-17 arcjet
firing events during which GOES-18 did not fire its arcjets
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simultaneously. This situation provided us with a great opportunity
to directly compare the effects of arcjet contamination in GOES-
17 measurements. To avoid ambiguity, only events that occurred
during geomagnetically quiet to moderate conditions (generally Kp
≤ 4, with no major disturbances such as magnetopause crossings)
were selected. Any background wave activity present during the
collocation would have been observed nearly identically by both
satellites (given their 0.4 degree longitudinal separation) and
therefore does not introduce bias in the cross-satellite correction.
All magnetic field data are analyzed in the Earth-Pointing
Normal (EPN) coordinate system, where the X-axis points toward
Earth’s center, the Y-axis is aligned opposite the solar panel axis
(approximately anti-sunward), and the Z-axis completes the right-
handed system, generally pointing northward along the spacecraft’s
orbital normal. This coordinate system is spacecraft-fixed and
provides a stable reference frame for interpreting arcjet-related
disturbances, which are closely aligned with specific spacecraft
structures and thruster directions. When the arcjets are activated,
their current (Figure 2c) and voltage (Figure 2d) levels increase
and remain elevated while firing. Simultaneously, there is a clear
reduction in the magnetic field measurements in the E and P
components of the EPN coordinate frame, which persists for the
full firing duration (Figures 2a, b).

Given the significance of GOES magnetometer data for
scientific research, mitigation of arcjet-induced contamination is
crucial. A correction algorithm was developed for both the OB and
IB magnetometers on each GOES-R series spacecraft, based on an
observed linear relationship between the arcjet disturbance and the
ambient magnetic field (Califf et al., 2020a). While both sensors
are corrected independently, OB data are generally prioritized
due to its improved thermal and bias stability. This least-squares
regression correction was initially found to reduce residual errors
to below 1.5 nT during steady-state firings in GOES-16 (Califf
et al., 2020a). However, in cases involving non-nominal firing
configurations, such as single-thruster firings or evolving thrust
levels, residuals from the matrix correction can be substantially
larger, particularly on GOES-17 (Califf et al., 2020a). These
abnormal cases are relatively uncommon compared to the standard
paired-thruster maneuvers but illustrate the need for more robust
correction techniques. Our study focused on well-defined paired
thruster firings during the GOES-17/18 collocation; therefore, the
performance of XGBoost in these rarer abnormal cases remains to
be evaluated. Importantly, the existing correction matrix does not
account for the short-lived transient effects at the start and end of
arcjet burns, which are flagged as invalid in operational data. In
designing our approach, we developed the XGBoost model to better
capture these transient shoulders, providing a framework that can
in principle address such short-duration features.

2.3 XGBoost: training, validation, and test

XGBoost (Extreme Gradient Boosting) is an advanced,
scalable tree boosting system designed for efficiency, accuracy,
and performance in large-scale machine learning applications
(Chen and Guestrin, 2016). It is an implementation of gradient
boosted decision trees (Friedman, 2001) that introduces several

FIGURE 1

Illustration of the inboard and outboard GOES magnetometers
mounted on a boom and arcjet thrusters. The axes show the
relationship between earthward-poleward-normal (EPN) coordinate
frame (Califf et al., 2020a).

optimizations to enhance speed and scalability. XGBoost iteratively
constructs an ensemble of decision trees, where each new tree
corrects errors made by previous trees, optimizing an objective
function through gradient descent (Chen and Guestrin, 2016). The
system incorporates a regularized learning objective to control
model complexity and mitigate overfitting, ensuring generalization
to unseen data.

To develop XGBoost models for each EPN coordinate frame
component, we used data from the GOES-17/18 collocation period.
We selected 21 GOES-17 arcjet firing events during which GOES-
18 had no simultaneous firings, ensuring a clean reference for
training and validation. GOES-18 magnetic field measurements
were used as the ground truth, and data from both IB and OB
magnetometers were combined to increase the training volume and
enhance generalizability.

Before training the XGBoost models, we preprocessed the data
to make sure that the GOES-18 data, which is used as the ground
truth, and the GOES-17 data, which will be corrected, overlap
without any longer-term effects due to the slightly higher thermal
sensitivity of the GOES-17 magnetometers (Figure 3). To achieve
this objective, we first subtracted the GOES-18 measurements in
each component of the EPN coordinate frame from the GOES-
17 measurements during the periods when there are no arcjet
firings (Figures 3a, d) for each of the 21 days from the IB and
OB magnetic field data. Subsequently, we fitted a piecewise linear
regression function to each difference to determine the longer-
term difference between the two satellites (Figures 3b, e). We then
subtracted this longer-term trend in magnetic field measurements
from the GOES-18 data for each component in the EPN frame
(Figures 3c, f) to create “adjusted GOES-18” values that effectively
represent what GOES-17 would have measured in the absence of

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1628029
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Inceoglu and Loto’aniu 10.3389/frai.2025.1628029

FIGURE 2

The top panels show the magnetic field measurements from 26-27 July 2022 from GOES-17 (red) and GOES-18 (orange) in the E (a), P (b), and N (c)
components of the EPN frame. The lower panels (d, e) show the current and voltage values corresponding to the arcjet firings on GOES-17.

arcjet contamination. These adjusted values are no longer the raw
GOES-18 measurements but serve as a proxy ground truth for
training and validation.

Training, validation, and test sets were created from 21
GOES-17 arcjet events during the collocation period, using
adjusted GOES-18 data as ground truth and GOES-17 current
and voltage as inputs. We restricted the inputs to spacecraft-
intrinsic parameters (current and voltage), as these directly drive
the contamination mechanism and keep the correction algorithm
self-contained. External variables such as the ambient magnetic
field or interplanetary conditions were not included, because GOES
satellites are normally located at different longitudes and the 2.5-
month collocation period did not provide enough variability in
interplanetary and ambient magnetic fields to train a generalized
model that incorporates broader space weather effects.

Each “dataset” refers to a time window centered on a single
arcjet firing, typically spanning the duration of the maneuver with a
buffer before and after. This process yielded 30 arcjet events across
15 days for training, 4 events from 2 days for validation, and 4
events from 4 days for testing. Only IB magnetometer data were
used for testing, as IB and OB arcjet responses are highly similar.
To ensure test-day independence, all OB data from the test days
were excluded from the training and validation sets.

Hyperparameter optimization was explored using a Bayesian
search over a range of values (Table 1). However, optimization
did not yield significant improvements compared to the default
values, largely due to the limited size and variability of the
training dataset. Therefore, we retained the default values in all
further analyses.

3 Results

The R2 and mean squared error (MSE) values for each
component of the EPN coordinate frame for the training and
validation sets display very high and low values, respectively
(Table 2). These values primarily reflect the fact that the GOES-17
data and the adjusted GOES-18 ground truth are nearly identical
outside the arcjet firing periods, which make up roughly 10%
of the total data length. Since the XGBoost correction algorithm
is applied across the full time window–including before, during,
and after arcjet events–the evaluation metrics are computed over
the entire period to reflect overall model performance. Visual
inspection of the corrected time series during arcjet activity is used
in tandem to assess the model’s effectiveness in addressing the
contamination.

We chose four dates as our test days where GOES-17 fired
its arcjets to maneuver while GOES-18 continued to measure
the undisturbed magnetic field; 22, 26, and 29 July and 2
August 2022. Using the corrected IB magnetic field data from
GOES-17 and the adjusted magnetic field data from GOES-18
we calculated the Pearson correlations and MSE values. The
results show that our correction algorithm for each component
of the EPN coordinate frame has very strong correlations,
except for the component P on August 2nd, and component
E on July 29th when the R2 is lower and hence the MSE
value is higher compared with other days and components
(Table 3).

In general, the corrected GOES-17 magnetic field
measurements in the E component, obtained using the
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FIGURE 3

The left panels (a, d, g) show the magnetic field measurements from GOES-17 (red) and GOES-18 (orange) in the E (a), P (d), and N (g) components
of the EPN coordinate frame. The middle panels (b, e, h) show the differences between the GOES-18 and GOES-17 magnetic field measurements
(black dots) for the E (b), P (e), and N (h) components, together with the piecewise linear regression fits (red lines). The right panels (c, f, i) show the
adjusted GOES-18 values (green) after subtracting the piecewise linear regression fits for the E (c), P (f), and N (i) components.

TABLE 1 Default XGBoost hyperparameter values and the parameter
ranges explored using Bayesian optimization.

Parameter Default value Search range

booster gbtree gbtree

learning_rate 0.3 {0.0001, 0.001}

max_depth 6 {64, 128, 256}

max_leaves - {128, 256, 512}

n_estimators 100 {30, 100, 500, 1,000, 1,500}

max_bin - {10, 100, 1,000}

min_child_weight - [0.01, 10.0]

subsample 1 -

colsample_bytree 1 -

gamma 0 -

reg_alpha 0 -

reg_lambda 1 -

Parameters without a search range were kept fixed.

XGBoost algorithm (orange lines in Figures 4a, d, g, j),
closely follow the adjusted GOES-18 values (green lines
in Figures 4a, d, g, j). Additionally, the existing correction
algorithm, which is based on a correction matrix, exhibits slight

TABLE 2 XGBoost performance metrics for training and validation sets.

Training Validation

R2 MSE R2 MSE

E 0.9983 0.1066 0.9897 0.1734

P 0.9999 0.0598 0.9977 0.4944

N 0.9993 0.0317 0.9903 0.1101

TABLE 3 Correlation coefficients and mean squared errors (MSE) for E, P,
and N components calculated using the corrected GOES-17 magnetic
field data and adjusted GOES-18 data for the test set.

Date E P N

R2 MSE R2 MSE R2 MSE

22 July 0.9713 0.3612 0.9976 0.2419 0.9973 0.1058

26 July 0.9887 0.0991 0.9985 0.0711 0.9903 0.2333

29 July 0.9559 0.2746 0.9980 0.2217 0.9970 0.0424

02 Aug 0.9938 0.1258 0.9774 2.7067 0.9966 0.1766

differences in long-term trends (blue lines in Figures 4a, d, g,
j).

When zooming in on the arcjet firing periods each day, the
XGBoost-based correction is observed to perform significantly
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FIGURE 4

The left panel shows 4 dates we tested the XGBoost developed to correct the E component of the EPN coordinate frame from GOES-17 (red),
adjusted GOES-18 (green), the corrected GOES-17 using the current (blue) and XGBoost (orange) methods. The middle panel shows the same but
focused around the arcjet firing periods, while the right panel shows the histograms of the differences between the adjusted GOES-18 values and the
XGBoost (orange) and the current (blue) models. The left panel (a, d, g, j) shows 4 dates we tested the XGBoost developed to correct the E
component of the EPN coordinate frame from GOES-17 (red), adjusted GOES-18 (green), the corrected GOES-17 using the current (blue) and
XGBoost (orange) methods. The middle panel (b, e, h, k) shows the same but focused around the arcjet firing periods, while the right panel (c, f, i, l)
shows the histograms of the differences between the adjusted GOES-18 values and the XGBoost (orange) and the current (blue) models.

better, particularly on July 26 (Figure 4e) and August 2, 2022
(Figure 4k). On July 22, while the existing correction algorithm
removes the overall reduction in the magnetic field measurements
during the arcjet firing period, a shoulder remains visible at 19:30
(Figure 4b). Conversely, the XGBoost-based correction algorithm
eliminates the shoulder at the beginning of the arcjet firing but
introduces a dip in the measurements (Figure 4b). On July 29,
the XGBoost-based correction algorithm erroneously produces
reduced values toward the end of the arcjet firing period, starting
around 20:15 (Figure 4h).

We then compared the distributions of the differences between
the adjusted GOES-18 magnetic field values in the E component
and the corrections obtained using the XGBoost- and matrix-
based algorithms (Figures 4c, f, i, l). In general, the XGBoost-
based correction yields differences within 2 nT, whereas the existing
correction algorithm can exceed 4 nT in some cases. This shows that
the XGBoost algorithm provides better corrections overall.

Both the XGBoost-based algorithm and the existing correction
method produce results without any deviation in the long-term
trend of the P component (Figures 5a, d, g, j). However, sudden
spikes at the beginning of nearly every arcjet firing event can be
observed in the existing correction method (Figures 5a, d, g, j).

When zooming in on the arcjet firing periods, these structures
become more pronounced, whereas the XGBoost method does
not generate spikes of comparable magnitude (Figures 5b, e, h, k).
Additionally, the XGBoost correction algorithm fails to properly
correct the arcjet contamination on August 2 (Figure 5k), which is
also evident from the R2 and MSE values (Table 3).

Overall, the XGBoost correction algorithm generally performs
slightly better than the existing correction algorithm for the P
component (Figures 5c, f, i, l).

For the N component, results from the test data indicate
that the XGBoost correction algorithm slightly underperforms
compared to the existing correction algorithm (Figure 6).
Although the XGBoost algorithm provides corrections
without any deviation from the long-term trend (Figures 6a,
d, g, j), it does not correct the arcjet contamination as
effectively as the existing correction algorithm when zoomed in
Figures 6b, e, h, k.

This is also evident from the distributions of the differences
between the adjusted GOES-18 magnetic field values in the N
component and the corrections produced by the XGBoost and
current methods (Figures 6c, f, i, l). The primary reason for this
limitation is the insufficient amount of training data, particularly
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FIGURE 5

The same as Figure 4, but for the P component of the EPN coordinate frame. The left panel (a, d, g, j) shows 4 dates we tested the XGBoost developed
to correct the P component of the EPN coordinate frame from GOES-17 (red), adjusted GOES-18 (green), the corrected GOES-17 using the current
(blue) and XGBoost (orange) methods. The middle panel (b, e, h, k) shows the same but focused around the arcjet firing periods, while the right panel
(c, f, i, l) shows the histograms of the differences between the adjusted GOES-18 values and the XGBoost (orange) and the current (blue) models.

in the N component, which had fewer contaminated magnetic
field measurements compared to the others. Unfortunately, the
limited data availability is a direct consequence of the short
collocation period.

3.1 Uncertainties and potential bias

In addition to the performance of the model, it is important to
consider uncertainties at the instrument and platform levels that
may influence the corrected results.

First, daily and seasonal changes in the thermal environment
in geostationary orbit can cause diurnal structure and long-
term drifts on the raw measurements, especially for the earlier
R-series MAG sensors. Intersatellite analyses show that GOES-
16 OB data exhibit artificial diurnal variations of order ±3
nT (1σ ≈ ±1.5 nT), whereas GOES-17 OB exhibits minimal
daily variation and long-term stability within ∼ ±2 nT (Rich
et al., 2024). By contrast, the GOES-18 GMAG demonstrates
much improved thermal stability: on-orbit OB-IB differences
remain � ±0.2 nT under diurnal cycling, and overall accuracy
meets the NOAA ±1 nT requirement (excluding arcjet periods)
(Loto’aniu et al., 2023).

Second, zero-level (offset) calibration and its refinement can
introduce step-like biases if not updated. For GOES-17, yaw-flip
maneuvers (180◦ rotations) were used to refine the OB zero offsets

(e.g., −0.25 nT in P and +1.82 nT in N) and reduce long-term OB
differences with other GOES spacecraft (Rich et al., 2024). Related
analyses also indicate component-dependent biases on GOES-15
that manifest as pre/post-yaw-flip shifts (Rich et al., 2024). During
the GOES-17/18 collocation, IB-OB statistics further show a mean
offset in the GOES-17 N component (IB−OB ≈ −2.1 ± 0.62 nT),
while GMAG (GOES-18) IB-OB means are near zero (Loto’aniu
et al., 2023). Additionally, GOES-17 experienced a 2021 safehold
event after which a small residual bias shift persisted (Loto’aniu
et al., 2023).

Third, sensor placement and thermal coupling lead to IB/OB
differences. Prior work showed the GOES-16 IB sensor is more
thermally susceptible than OB, producing time-varying offsets
of several nT tied to eclipse seasons and diurnal heating; ML
corrections reduced these variations from ∼3-5 nT to ∼0-2 nT (E
component) but some residual, MLT-dependent offsets remained
(Inceoglu and Loto’aniu, 2021). These findings motivate our use of
GOES-18 as the reference and our emphasis on spacecraft-intrinsic
inputs for the correction.

In the context of our study, these factors imply that (i) residual
uncertainty in the corrected GOES-17 series is bounded below
by the stability/accuracy of the GOES-18 GMAG (order ∼1 nT)
and by any residual, component-dependent GOES-17 biases during
the collocation; and (ii) IB and OB arcjet responses are highly
similar in our data, but long-term IB/OB thermal susceptibilities
differ. Practically, this is why we (a) trained against adjusted
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FIGURE 6

The same as Figure 4, but for the N component of the EPN coordinate frame. The left panel (a, d, g, j) shows 4 dates we tested the XGBoost
developed to correct the N component of the EPN coordinate frame from GOES-17 (red), adjusted GOES-18 (green), the corrected GOES-17 using
the current (blue) and XGBoost (orange) methods. The middle panel (b, e, h, k) shows the same but focused around the arcjet firing periods, while
the right panel (c, f, i, l) shows the histograms of the differences between the adjusted GOES-18 values and the XGBoost (orange) and the current
(blue) models.

GOES-18 (collocation-aligned) values, (b) withheld OB data from
test days, and (c) evaluate performance by component and day.
We recommend users treat start/end-of-burn transients and days
with known configuration changes or post-anomaly bias shifts
with additional caution, and we view uncertainty quantification
(e.g., confidence intervals on corrections or QC flags) as a natural
extension for future operational use.

It should be noted that the XGBoost correction was designed to
address plume-related arcjet contamination during firing periods
and does not explicitly correct for the small residual thermal
offsets (∼1-2 nT) that can persist for hours after thruster shutdown
(Califf et al., 2020a). These long-lived effects were removed during
preprocessing and remain a separate calibration challenge.

4 Conclusions

The GOES magnetometers provide critical measurements
for space weather monitoring and scientific research. However,
the magnetic field data measured by the GOES missions
are periodically contaminated by arcjet thruster firings due
to attitude and maneuver corrections, introducing artificial
disturbances that can impact both operational and research
applications. The existing correction method, the correction
matrix approach, mitigates these effects, but struggles with

transient variations and residual errors, necessitating a more
adaptive solution.

In this study, we developed an XGBoost-based machine
learning model for each component of the EPN coordinate
frame to correct arcjet-induced contamination in the GOES-
17 magnetometer data using GOES-18 as a ground truth, after
adjusting for longer-term trends. Our results demonstrate that the
XGBoost shows great promise in reducing artificial disturbances,
particularly in that it outperforms the existing correction in
mitigating the non-linear features observed in the P component
at the start and end of thruster firings. Although the model shows
strong performance, some limitations remain due to training data
constraints, particularly in certain magnetic field components in
the EPN frame.

Although our model was developed and evaluated
retrospectively, the underlying architecture and speed of XGBoost
inference suggest that, with appropriate data preprocessing
pipelines, the approach could be adapted for near-real-time
implementation. This opens the possibility of future operational
integration, enabling better correction of thruster-related
contamination as part of the NOAA space weather monitoring
workflow.

From an operational standpoint, interpretability remains a
critical factor when assessing correction methods. Although
the existing matrix approach is deterministic and familiar to
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operators, it can leave residual artifacts that resemble genuine
geophysical events, such as magnetopause crossings, potentially
leading to false positives. In contrast, ML-corrected data more
effectively suppresses such artifacts but introduces a level
of complexity in traceability and confidence, especially when
corrections are based on patterns learned from other satellites. For
operational users, a hybrid approach, in which ML corrections
are applied but are accompanied by quality flags or confidence
intervals, may offer the best balance between accuracy and
interpretability.

We emphasize the importance of satellite collocation,
such as the overlapping orbits of GOES-17 and GOES-
18, as it provides a unique opportunity for cross-satellite
calibration and validation, which is essential for improving
magnetometer data accuracy and enhancing space weather
monitoring capabilities.

Data availability statement

The training, validation, and test data, which were used for
our models to correct arcjet-related anomalies in the magnetic
field data, contain several different components. These include
1) magnetic field data in the EPN coordinate frame from two
GOES-R series magnetometers, GOES-17 and GOES-18. And 2)
arcjet specific data, including current and voltage supplied to the
arcjets, and a binary arcjet flag derived from these values. Different
components of these training data are subject to different export
controlled restrictions. GOES-R Level 1b (L1b) data are generally
publicly available on the NCEI product site (https://www.ncei.
noaa.gov/products/goes-r-magnetometer). The L1b files contain
the magnetic field data and the arcjet flag. However, the GOES-
18 data from the time period used for this study were produced
prior to provisional maturity validation of the data product, and
as such are not available in the public archive. The GOES-17 and
GOES-18 magnetic field data and the associated arcjet flag for
days corresponding to the training, validation and test set will be
published in a Zenodo repository (doi: 10.5281/zenodo.15721786)
alongside the trained models. These data have been retroactively
reprocessed, and have the same calibrations applied as the publicly
archived GOES-R L1b data (temperature, zero-level offset and
alignment). The arcjet flag is a binary flag indicating no arcjet firing
(flag value 0) or arcjet firing (1). Thus, it is possible to identify
the periods of arcjet firings in the magnetic field data. The arcjet
currents and voltages, however, cannot be made available publicly
due to International Traffic in Arms (ITAR) restrictions. The raw
telemetry corresponding to currents and voltages is available in
the Level 0 (L0, https://doi.org/doi:10.25921/sv2f-sm24) GOES-R
MAG files which can be requested and evaluated on a case-by-
case basis through NCEI customer support (ncei.info@noaa.gov).
Please note that the specific process to convert L0 telemetry
values into scientific units is not part of the L0 metadata, and
the relevant documentation to do so cannot be released due to
ITAR restrictions. Users may be able to create synthetic current
and voltage estimates based on the information provided both
in this paper, and the previous paper on the arcjet correction

(Califf et al., 2020a). For further information or questions about the
GOES-R data products, users can email swx.mag@noaa.gov.
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