
TYPE Original Research

PUBLISHED 07 August 2025

DOI 10.3389/frai.2025.1628943

OPEN ACCESS

EDITED BY

Mark Eisen,

Johns Hopkins University, United States

REVIEWED BY

Tarun Kumar Vashishth,

IIMT University, India

Domingos F. Oliveira,

Mandume Ya Ndemufayo University, Angola

Nur Alamsyah,

Universitas Informatika dan Bisnis Indonesia,

Indonesia

*CORRESPONDENCE

Musheng Chen

07015@qztc.edu.cn

RECEIVED 16 June 2025

ACCEPTED 16 July 2025

PUBLISHED 07 August 2025

CITATION

Huang Z, Chen M and Zheng S (2025) Spectral

momentum integration: hybrid optimization

of frequency and time domain gradients.

Front. Artif. Intell. 8:1628943.

doi: 10.3389/frai.2025.1628943

COPYRIGHT

© 2025 Huang, Chen and Zheng. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Spectral momentum integration:
hybrid optimization of frequency
and time domain gradients

Zhigao Huang, Musheng Chen* and Shiyan Zheng

Department of Physics and Information Engineering, Quanzhou Normal University, Quanzhou, Fujian,

China

We propose Spectral Momentum Integration (SMI), an optimization

enhancement that processes gradients in both frequency and time domains.

SMI applies the Fast Fourier Transform to selectively filter gradient frequency

components before blending them with original gradients using an adaptive

scheduling mechanism. Experiments on a character-level language model

demonstrate that SMI can achieve inference acceleration while maintaining

model performance. Our approach integrates with existing optimizers without

modifying model architecture, though it introduces computational overhead

and hyperparameter complexity. While our current validation is limited to

small-scale experiments, SMI provides a proof-of-concept for incorporating

frequency-domain processing into neural network optimization, suggesting

potential for broader applications pending large-scale validation.

KEYWORDS

deep learning, optimization, Fast Fourier Transform, gradient processing, spectral

filtering, inference acceleration

1 Introduction

Deep learning optimization has evolved significantly in recent years, with adaptive

gradient methods such as Adam (Kingma and Ba, 2014), AdamW (Loshchilov and Hutter,

2017), and more recent variants like Adafactor (Shazeer and Stern, 2018) and Apollo (Ma

et al., 2020) becoming standard tools for training neural networks. Despite these advances,

optimization efficiency remains a critical challenge in the era of increasingly large models

(Brown et al., 2020; Radford et al., 2021; Touvron et al., 2023; OpenAI, 2023; Team et al.,

2023). Current optimizers primarily operate in the time domain, processing gradients

based on their magnitudes and historical momentum, a paradigm that has remained largely

unchanged since the introduction of momentum-based methods (Polyak, 1964; Nesterov,

1983).

Recent studies have highlighted the limitations of conventional optimizers in dealing

with gradient noise. Liu et al. (2020) demonstrated that gradient noise can significantly

impede convergence, while Zhuang et al. (2020) showed that uncertainties in gradient

estimates lead to erratic training dynamics. Zhang and Zhang (2022) further identified that

gradient-based optimizers often struggle to differentiate between informative signal and

stochastic noise, especially in complex loss landscapes typical of large neural networks (Li

et al., 2018; Fort and Dziugaite, 2019).

The frequency domain offers a complementary perspective for gradient analysis that

has received limited attention in optimization literature.While spectral properties of neural

networks have been studied in contexts such as generalization (Rahaman et al., 2019; Xu

et al., 2019a), initialization (Yang et al., 2022), and pruning (Wang et al., 2020), direct

application to gradient processing in optimization algorithms remains underexplored.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1628943
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1628943&domain=pdf&date_stamp=2025-08-07
mailto:07015@qztc.edu.cn
https://doi.org/10.3389/frai.2025.1628943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1628943/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

Related frequency-domain approaches in optimization

include Augmented RMSProp (Martinez et al., 2022),

which decomposes gradients into high and low-frequency

components but lacks adaptive blending mechanisms, and

SignGD (Bernstein et al., 2018), which can be interpreted

as focusing on phase while disregarding magnitude

information (Balles and Hennig, 2020). Spectral methods

have also been explored in neural architecture search

(Mellor et al., 2021) and network compression (Wang et al.,

2020), though these focus on network analysis rather than

optimization dynamics.

More broadly, frequency-domain analysis has been applied to

understanding training dynamics (Fort and Dziugaite, 2019; Li

et al., 2018) and loss landscape properties (Garipov et al., 2018;

Nguyen and Hein, 2017), but direct manipulation of gradients in

the frequency domain for optimization purposes remains rare. Our

work builds on these foundations while exploring direct frequency-

domain gradient processing.

The frequency domain representation of gradients contains

valuable information about different spatial scales of parameter

updates. Low-frequency components typically correspond to

broader, more structural changes in the parameter space,

while high-frequency components often represent noise or fine

details (Xu et al., 2019b; Loshchilov and Hutter, 2019). This

natural decomposition aligns with observations from information

geometry (Zhang et al., 2019; Tsuji et al., 2022) and manifold

perspectives of optimization (Martens, 2020; Bernacchia et al.,

2022), suggesting that different frequency bands contribute

differently to the optimization process.

Conventional optimizers treat all frequency components

equally, which can lead to suboptimal parameter updates.

Adaptively weighting these components could potentially improve

convergence, especially in the presence of noisy gradients

(Defazio and Mishchenko, 2022) or when navigating complex loss

landscapes (Yang et al., 2021). Recent work by Liu et al. (2022)

demonstrated that gradient components at different scales exhibit

varying levels of informativeness throughout training, but did not

explore frequency-domain solutions. Similarly, Wang et al. (2022)

showed that selective dampening of certain gradient components

can improve stability, though their approach remained in the

time domain.

In this paper, we introduce Spectral Momentum Integration

(SMI), an optimization enhancement that incorporates frequency-

domain gradient processing alongside traditional time-domain

methods. While existing optimizers operate exclusively in the

time domain, our approach explores the potential benefits of

processing gradients in both domains simultaneously. SMI

applies Fast Fourier Transform (FFT) to represent gradients

in the frequency domain (essentially decomposing gradients

into different “frequency patterns”), selectively filters frequency

components based on their magnitudes (keeping the most

important patterns while removing noise), and then combines the

filtered spectral gradients with the original time-domain gradients,

using a time-dependent blending coefficient. This substantially

differs from prior work such as Augmented RMSProp (Martinez

et al., 2022) which lacks adaptive integration mechanisms, and

from traditional adaptive methods like Adam (Kingma and Ba,

2014) which cannot distinguish between informative signals and

noise in frequency space.

Our key contributions include:

• A spectral optimizer wrapper that enhances gradient-

based optimizers without modifying model architecture,

demonstrating 15% inference speedup with 4.5% training

overhead in our small-scale experiments.

• A frequency-domain filtering technique that preserves

important spectral components while reducing noise,

employing quantile-based adaptive thresholding.

• An adaptive blending mechanism with cosine scheduling

that outperforms linear approaches in our experiments,

reducing loss variance by 43.5%.

• Empirical evidence on a small-scale model showing

that frequency-domain gradient processing can improve

parameter quality for inference, achieving 8% faster

convergence alongside 15% inference acceleration in our

experimental setting.

Our work explores connections between signal processing

principles and deep learning optimization, building on spectral

analysis approaches in computer vision (Durall et al., 2020; Huang

et al., 2022) and time series processing (Liang et al., 2022; Rao

et al., 2022). The approach may complement recent advancements

in second-order methods (Anil et al., 2021; Liu et al., 2023),

distributed optimization (Jiang et al., 2020; Tang et al., 2023), and

large-scale training methods (Hoffmann et al., 2022), though such

combinations require further investigation.

We validate our approach through comprehensive experiments

on a character-level language model trained on the Shakespeare

dataset. Results demonstrate that SMI with cosine scheduling and

75% frequency preservation not only accelerates inference by 15%

but also provides 8% faster convergence and more stable training

dynamics compared to standard AdamW optimization. These

findings align with recent observations on the relationship between

optimization trajectories and model efficiency (Cheng et al., 2023;

Chen et al., 2023), suggesting that frequency-domain information

can guide optimizers toward parameter configurations that enable

more efficient computation.

The remainder of this paper is organized as follows: Section

2 reviews related work in optimization and frequency-domain

processing. Section 3 details our proposed Spectral Momentum

Integration approach. Section 4 describes the experimental setup,

followed by results and analysis in Section 5. Finally, Section 7

concludes with a discussion of implications and future work.

2 Related work

2.1 Neural network optimization

Gradient-based optimization forms the foundation of deep

neural network training. Stochastic Gradient Descent (SGD)

(Robbins and Monro, 1951) and its variants with momentum

(Polyak, 1964) have been standard approaches for decades.

More recently, adaptive optimization methods such as AdaGrad

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

(Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012), and

Adam (Kingma and Ba, 2014) have gained popularity for their

ability to automatically adjust learning rates for each parameter.

Adam (Kingma and Ba, 2014) combines momentum and

adaptive learning rates, making it widely used across various

deep learning applications. AdamW (Loshchilov and Hutter, 2017)

improved upon Adam by decoupling weight decay regularization

from the gradient update. Subsequent works like RAdam (Liu

et al., 2019) addressed the warmup instability issues in Adam by

rectifying the adaptive learning rate.

Gradient clipping (Pascanu et al., 2013) is another important

technique for stabilizing training, particularly for recurrent neural

networks. It prevents gradient explosions by scaling gradients when

their norm exceeds a threshold. While effective, these methods

all operate in the time domain and do not explicitly consider the

frequency characteristics of gradients.

2.2 Frequency domain analysis in deep
learning

The analysis of neural networks in the frequency domain

has gained attention in recent years. Rahaman et al. (2019)

demonstrated the “spectral bias” of neural networks, showing that

they tend to learn low-frequency functions before high-frequency

ones. This finding suggests that frequency-aware optimization

might better align with the natural learning dynamics of neural

networks.

The Fast Fourier Transform (FFT) has been applied in

deep learning primarily to accelerate convolution operations

(Mathieu et al., 2013). Rippel et al. (2015) proposed spectral

representations for convolutional networks, demonstrating

improved computational efficiency and parameter interpretability.

In the context of generative models, spectral normalization

(Miyato et al., 2018) has been introduced to stabilize GAN training

by normalizing the spectral norm of weight matrices. While related

to our work in terms of spectral analysis, this approach focuses on

weight normalization rather than gradient processing.

2.3 Inference acceleration techniques

Various techniques have been developed to improve neural

network inference speed. Model compression approaches such as

pruning, quantization, and Huffman coding (Han et al., 2015)

reduce model size and computational requirements. Knowledge

distillation (Hinton et al., 2015) transfers knowledge from larger

teacher models to smaller student models, improving efficiency

without significant performance drops.

Mixed precision training (Micikevicius et al., 2017) uses lower

precision representations (e.g., FP16) to accelerate computation

while maintaining numerical stability. These approaches typically

modify model structure or representation, whereas our method

focuses on improving parameter quality during training to achieve

faster inference without structural changes.

The novelty of our approach lies in the integration of

frequency-domain analysis directly into the optimization process.

While previous works have separately explored spectral properties

of neural networks and various optimization techniques, SMI

uniquely combines these perspectives to create an enhanced

optimizer that leverages both time and frequency domain

information.

3 Method

Our Spectral Momentum Integration (SMI) approach enhances

existing optimizers by incorporating frequency-domain processing

of gradients. The core idea is to filter gradients in the frequency

domain to emphasize important spectral components and then

blend these filtered gradients with the original gradients using an

adaptive weighting scheme.

3.1 Theoretical foundation

3.1.1 Signal processing foundation
The effectiveness of SMI is grounded in fundamental signal

processing theory and optimization dynamics. When transforming

gradients to the frequency domain, we achieve a decomposition

that separates structural information from noise:

Ĝp = F(Gp) = Sp + Np (1)

where Sp represents structural signal components and

Np represents noise or less informative components. This

decomposition enables more precise gradient filtering than is

possible in the time domain alone.

From information theory perspective, the frequency domain

representation provides an orthogonal basis that maximizes the

separation between signal and noise components. The Parseval’s

theorem ensures that energy is preserved across domains:

‖Gp‖22 = ‖Ĝp‖22 (2)

This energy conservation property guarantees that no

information is lost during the transformation, only redistributed

across frequency components.

3.1.2 Optimization theory connection
During neural network training, gradients contain information

across different frequency scales. Low-frequency components

typically correspond to broader structural changes in the parameter

space, while high-frequency components often represent either

fine-grained local adjustments or noise (Rahaman et al., 2019; Xu

et al., 2019b; Loshchilov and Hutter, 2019).

We can formalize this as a gradient decomposition theorem:

Theorem 3.1. [Gradient Frequency Decomposition] For any

gradient tensor Gp ∈ R
n×d, the frequency domain representation

Ĝp = F(Gp) admits a natural decomposition into low-frequency

structural components Ĝ
(L)
p and high-frequency detail components

Ĝ
(H)
p such that:

Ĝp = Ĝ
(L)
p + Ĝ

(H)
p (3)

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

where Ĝ
(L)
p captures global optimization directions and Ĝ

(H)
p

captures local noise and fine details.

Conventional optimizers process all frequency components

equally, potentially allowing noise to interfere with learning. Our

frequency filtering approach preferentially retains components

with larger magnitudes, which typically carry more information

about the loss landscape structure.

3.1.3 Inference acceleration mechanism
While our experiments demonstrate inference acceleration, the

underlying mechanisms require careful interpretation based on our

limited experimental scope:

3.1.3.1 Observed spectral regularization e�ect

SMI appears to act as an implicit spectral regularizer. By

filtering gradient frequencies, we hypothesize that it encourages

parameters to have specific spectral properties:

min
θ

L(θ)+ λRspectral(θ) (4)

where Rspectral(θ) represents a hypothesized implicit spectral

regularization term. However, the exact form and magnitude

of this regularization require further theoretical and empirical

investigation.

3.1.3.2 Empirical complexity reduction

Our experiments suggest that filtered gradients may guide

optimization toward parameter configurations with lower effective

complexity:

Ceff (WSMI) . Ceff (Wbase) (5)

where Ceff represents effective computational complexity

during forward pass. This relationship is observed empirically but

lacks theoretical guarantees.

3.1.3.3 Activation pattern hypothesis

We observe that frequency-filtered gradients correlate with

more efficient activation patterns, quantified through activation

sparsity:

Asparse(WSMI) = E[‖ReLU(WSMI · x)‖0/‖WSMI · x‖0] (6)

While higher activation sparsity may translate to

computational savings during inference, the causal relationship

and generalizability of this observation require validation on larger

models and diverse architectures.

3.1.4 Convergence analysis
Weprovide a preliminary convergence analysis for SMI, though

rigorous theoretical guarantees require further investigation:

Theorem 3.2 (SMI Convergence—Preliminary). Under standard

smoothness assumptions (Lipschitz smoothness, bounded

gradients), SMI with appropriately chosen blending schedule αt

maintains convergence to a stationary point. The convergence

rate is conjectured to be O(1/
√
T), similar to the base optimizer,

though formal proof is pending.

3.1.4.1 Proof sketch

The key insight is that filtered gradients should remain

unbiased estimators of the true gradient direction in expectation,

while potentially reducing variance through frequency domain

denoising. However, the bias introduced by frequency filtering

and its impact on convergence guarantees require rigorous

mathematical analysis that goes beyond our current scope.

3.1.4.2 Open questions

Several theoretical questions remain: (1) Under what

conditions does frequency filtering preserve gradient unbiasedness?

(2) How does the choice of filtering parameters affect convergence

rates? (3) What are the optimal blending schedules for different

problem classes? These questions represent important directions

for future theoretical work.

3.2 Overview

SMI operates as a wrapper around any gradient-based

optimizer, intercepting gradients after the backward pass but before

the parameter update step. The wrapper performs several key

operations:

1) Transform gradients from the time domain to the frequency

domain using Fast Fourier Transform (FFT).

2) Calculate and update exponential moving averages (EMA) of the

frequency magnitudes.

3) Apply a magnitude-based threshold to filter frequency

components.

4) Transform filtered gradients back to the time domain using

inverse FFT.

5) Blend filtered gradients with original gradients using a time-

dependent mixing coefficient.

6) Pass the blended gradients to the base optimizer for parameter

updates.

This process allows SMI to selectively preserve important

frequency components while reducing noise, resulting in improved

parameter updates that lead to both better training dynamics and

faster inference.

3.2.1 Practical implementation notes
SMI can be easily integrated with existing optimizers through

a simple wrapper class. The key implementation considerations

include: (1) ensuring gradient tensors are properly reshaped for

2D FFT operations, (2) managing complex number arithmetic

in PyTorch using torch.fft functions, (3) efficient memory

management for spectral history buffers, and (4) proper device

placement for GPU acceleration. For models with irregular tensor

shapes, padding or alternative reshaping strategies may be required.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

FIGURE 1

Spectral Momentum Integration workflow showing gradient

processing through frequency and time domains.

3.3 Spectral gradient processing

For each parameter tensor p with gradient∇pL, we first reshape
it to a 2D matrix to enable FFT processing:

Gp = reshape(∇pL) ∈ R
n×d (7)

where n represents the flattened spatial dimensions and d is the

channel dimension. We then apply the 2D Fast Fourier Transform

(which decomposes the gradient into its frequency components,

similar to how a musical chord can be decomposed into individual

notes):

Ĝp = F(Gp) ∈ C
n×d (8)

The magnitude spectrum is computed as:

Mp = |Ĝp| (9)

Tomaintain a stable estimate of frequency importance, we track

an exponential moving average (EMA) of these magnitudes:

H
(t)
p = βH

(t−1)
p + (1− β)M

(t)
p (10)

where β is the EMA decay factor (ranging from 0.9 to 0.99 in

our experiments).

Figure 1 illustrates the overall flow of our Spectral Momentum

Integration algorithm, showing how gradients are processed

through both frequency and time domains before being combined

for the final parameter updates.

3.4 Frequency filtering and gradient
blending

Based on the EMA of magnitude spectrum Hp, we filter

frequency components using a threshold τp, which is the q-th

quantile of Hp (essentially keeping only the strongest frequency

components while discarding the weakest ones):

τp = quantile(Hp, q) (11)

where q ranges from 0.25 to 0.5 in our experiments,

corresponding to retaining the top 75% to 50% of frequency

components (similar to noise reduction in audio processing). The

binary mask is computed as:

�p = 1Hp≥τp (12)

The filtered spectrum is obtained by element-wise

multiplication of the original spectrum with the mask:

G̃p = Ĝp ⊙�p (13)

This filtered spectrum is then transformed back to the time

domain using inverse FFT:

G′p = F
−1(G̃p) (14)

Finally, we blend the filtered and original gradients using a

time-dependent mixing coefficient αt :

∇pLfinal = αt∇ ′pL+ (1− αt)∇pL (15)

The mixing coefficient αt varies throughout training according

to a schedule. In our experiments, we explore both linear and cosine

schedules:

3.4.1 Linear schedule

αt = α + (αend − α) · t
T

(16)

3.4.2 Cosine schedule

αt = α + (αend − α) ·
1− cos(π · t

T)

2
(17)

where t is the current iteration, T is the total number of

iterations, α is the initial value (typically 0.1), and αend is the final

value (typically ranging from 0.5 to 0.9).

3.5 Computational complexity analysis

The computational overhead of SMI consists of several

components that scale differently with model size:

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

3.5.1 FFT operations
For each parameter tensor of size n × d, the 2D FFT requires

O(nd log(nd)) operations. For typical transformer layers, this

overhead is manageable and often parallelizable.

3.5.2 Memory overhead
SMI requires additional memory to store the spectral history

Hp for each parameter, effectively doubling memory requirements.

However, this can be mitigated using mixed-precision storage.

3.5.3 Scalability analysis
The total computational overhead scales as:

TSMI = Tbase · (1+ γ · log(P)) (18)

where P is the number of parameters, γ is a small constant (≈ 0.05),

and Tbase is the baseline training time.

3.5.4 Large-scale model considerations
For very large models (100M+ parameters), several critical

factors emerge:

3.5.5 Memory bandwidth bottleneck
At extreme scales (1B+ parameters), the primary limitation

shifts from computational complexity to memory bandwidth. FFT

operations require reading and writing large tensors multiple times,

potentially saturating memory bandwidth before computational

resources. The spectral history storage approximately doubles

optimizer state memory requirements, requiring careful analysis of

memory-to-computation ratios.

3.5.6 Distributed training implications
FFT operations introduce additional complexity in distributed

training scenarios:

• Data parallel: FFT operations remain local to each GPU,

maintaining scalability but requiring synchronized spectral

history updates.

• Model parallel: Cross-device parameter tensors complicate

FFT application, potentially requiring tensor gathering or

specialized distributed FFT implementations.

• Pipeline parallel: Gradient synchronization timing may be

affected by FFT processing latency.

3.5.7 Hardware optimization opportunities
Modern hardware offers several optimization paths:

• GPU acceleration: optimized cuFFT libraries can significantly

reduce overhead, particularly for regularly-shaped

transformer parameters.

• Tensor core utilization:mixed-precision FFT operations can

leverage specialized hardware units.

• Memory hierarchy: intelligent caching of spectral histories in

faster memory tiers can mitigate bandwidth limitations.

3.5.8 Scaling trade-o�s
The cost-benefit analysis evolves with model scale:

• Training cost: 5–15% overhead becomes significant for multi-

million dollar training runs.

• Inference benefits: 15% inference acceleration provides

substantial value for deployed models with high query

volumes.

• Break-even analysis: for models deployed for extensive

inference workloads, training overhead is typically amortized

within weeks of deployment.

3.6 Hyperparameter selection guidelines
and method complexity

SMI introduces several hyperparameters that require careful

tuning, representing a significant complexity burden:

3.6.1 Frequency threshold (q)
• Recommended default: q = 0.25 (75% retention) for most

transformer models.

• For noisy tasks: Use q = 0.5 (50% retention) when dealing

with very noisy gradients or small batch sizes.

• For stable tasks: Use q = 0.15 (85% retention) for well-

conditioned problems with large batch sizes.

• Avoid: q < 0.1 to prevent over-filtering that can destroy

important gradient information.

• Tuning strategy: Start conservatively with q = 0.25 and adjust

based on training loss smoothness.

3.6.2 EMA decay (β):
• Recommended default: β = 0.99 for stable training with

most optimizers (Adam, AdamW).

• For dynamic gradients: use β = 0.95 for tasks with rapidly

changing gradient patterns.

• For very stable gradients: use β = 0.999 for well-conditioned

optimization landscapes.

• Integration guideline: match or slightly exceed the

β2 parameter of the base optimizer.

• Memory consideration: higher β requires longer warmup

periods but provides more robust filtering.

3.6.3 Alpha scheduling
• Recommended: cosine schedule from 0.1 to 0.5 for most

applications.

• Conservative start: linear 0.1→ 0.3 for sensitive models or

initial experiments.

• Aggressive setting: cosine 0.1 → 0.7 only for very noisy

gradients with careful monitoring.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

• Safety guidelines: always start with conservative values and

monitor training loss variance.

3.6.4 Integration with popular optimizers
• AdamW: use β = 0.99, q = 0.25, cosine α 0.1→ 0.5 (most

tested combination).

• Adam: similar to AdamW but consider slightly higher β =
0.995 for stability.

• SGD with momentum: use β = 0.9, q = 0.3, linear α 0.1→
0.4 for better compatibility.

• Lion: experimental—start with very conservative q = 0.4,

α 0.1→ 0.3.

3.6.5 Method limitations:
• Hyperparameter complexity: the method introduces 3–4

additional hyperparameters that require careful tuning,

increasing optimization complexity.

• Computational overhead: while modest (4.5%).

• Memory requirements: storing spectral history

approximately doubles memory usage for optimizer states.

• Architecture constraints: FFT operations work best with

regularly-shaped tensors, potentially limiting applicability to

certain architectures.

3.7 Algorithm

The complete Spectral Momentum Integration algorithm is

presented in Algorithm 1. This algorithm can be implemented as

a wrapper around any gradient-based optimizer, making it easily

applicable to existing training pipelines.

4 Experimental setup

To evaluate the effectiveness of our Spectral Momentum

Integration approach, we conducted experiments on a character-

level language model trained on the Shakespeare dataset.

4.1 Model architecture

We used a small-scale GPT-like transformer model with the

following specifications:

• 6 transformer layers.

• 6 attention heads per layer.

• 384-dimensional embeddings.

• Block size (context length) of 256 characters.

• Total parameters:∼10.7 million.

The model uses layer normalization (Ba et al., 2016) and

incorporates flash attention when available. This architecture, based

on the nanoGPT implementation (Karpathy, 2023), represents a

simplified but representative example of modern language models.

1: Input: Base optimizer O, initial α = 0.1, final

αend = 0.5, total iterations T, EMA decay β = 0.99,

frequency threshold q = 0.25

2: Memory Allocation: Initialize spectral history

buffers Hp = None for all parameters p

3: Setup: t← 0, device ← current GPU/CPU device

4: while not converged do

5: t← t+ 1
6: Calculate gradients ∇pL for all parameters p via

backpropagation

7: for each parameter tensor p with gradient ∇pL
do

8: Tensor Preprocessing:

9: Original shape ← ∇pL.shape
10: Gp ← reshape(∇pL,[n,d]) {Convert to 2D

for FFT}

11: Frequency Domain Transform:

12: Ĝp ← torch.fft.fft2(Gp) {2D FFT

operation}

13: Mp ← |Ĝp| {Magnitude spectrum}

14: Spectral History Management:

15: if Hp is None then

16: Hp ← Mp.clone() {Initialize with

current magnitudes}

17: else

18: Hp ← β · Hp + (1 − β) · Mp {Exponential

moving average}

19: end if

20: Adaptive Frequency Filtering:

21: τp ← torch.quantile(Hp,q) {Dynamic

threshold}

22: �p ← (Hp ≥ τp).float() {Binary mask}

23: G̃p ← Ĝp ⊙�p {Element-wise filtering}

24: Reconstruction:

25: G′p ← torch.fft.ifft2(G̃p).real {Inverse

FFT, take real part}

26: ∇ ′pL ← G′p.reshape(original shape)

{Restore tensor shape}

27: Gradient Blending:

28: αt ← α + (αend − α) · 1−cos(πt/T)
2 {Cosine

schedule}

29: ∇pL ← αt · ∇ ′pL + (1 − αt) · ∇pL {Weighted

combination}

30: end for

31: Optimization Step: O.step() with modified

gradients {∇pL}
32: end while

33: Cleanup: Release spectral history buffers if needed

Algorithm 1. Spectral momentum integration (enhanced

implementation).

4.2 Dataset and training configuration

The Shakespeare dataset consists of complete works of William

Shakespeare, providing a character-level language modeling task.

The data was split into training and validation sets (90%/10%).

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

TABLE 1 Performance comparison of optimization methods (mean ± SEM, n = 2).

Method Train loss Val loss Inference speed
(tokens/sec)

Train time
(sec)

Baseline (AdamW) 0.813± 0.009 1.468± 0.0001 397.28± 1.00 286.43± 1.05

Linear α (0.1→ 0.9) 0.838± 0.005 (+3.1%) 1.470± 0.002 (+0.14%) 444.91± 1.50 (+12.0%) 299.42± 0.85 (+4.5%)

Linear α (0.1→ 0.5) 0.822± 0.007 (+1.2%) 1.464± 0.002 (−0.27%) 450.00± 4.76 (+13.3%) 299.97± 1.06 (+4.7%)

Higher EMA (0.99) 0.815± 0.003 (+0.3%) 1.467± 0.0003 (−0.04%) 448.41± 0.13 (+12.9%) 299.32± 1.13 (+4.5%)

Top 75% Freq 0.807 ± 0.005 (−0.7%) 1.465 ± 0.002 (−0.2%) 449.74± 1.01 (+13.2%) 299.45± 1.03 (+4.5%)

Cosine α 0.813± 0.008 (0.0%) 1.466± 0.004 (−0.1%) 456.70 ± 0.19 (+15.0%) 299.18± 1.16 (+4.5%)

Bold values indicate best performance in each metric category: lowest training loss, lowest validation loss, and highest inference speed.

Training was performed with the following configuration:

• Batch size: 64.

• Learning rate: 1e-3 with cosine decay.

• Weight decay: 0.1.

• Beta1: 0.9, Beta2: 0.99 for AdamW.

• Maximum iterations: 5,000.

• Dropout: 0.2.

• Gradient clipping: 1.0.

All experiments were conducted on a single NVIDIA GPUwith

mixed-precision training (FP16/BF16) where available.

4.3 Evaluation metrics

We evaluated our approach using the following metrics:

• Training loss: cross-entropy loss on training data.

• Validation loss: cross-entropy loss on held-out validation

data.

• Inference speed: tokens per second during inference.

• Training time: total seconds required for training.

Each experiment was run with two different random seeds, and

we report the mean values across these runs.

4.4 Experimental configurations

We conducted a series of experiments to systematically explore

different configurations of our Spectral Momentum Integration

approach:

• Run 0: baseline—standard AdamW optimizer without

spectral processing.

• Run 1: basic SMI—linear alpha schedule (0.1 → 0.9), EMA

decay = 0.9, and 50% magnitude threshold.

• Run 2: conservative alpha—linear alpha schedule (0.1→ 0.5),

EMA decay = 0.9, and 50% magnitude threshold.

• Run 3: higher EMAdecay—linear alpha schedule (0.1→ 0.5),

EMA decay = 0.99, and 50% magnitude threshold.

• Run 4: adaptive threshold—linear alpha schedule (0.1→ 0.5),

EMA decay = 0.99, and 75% magnitude threshold.

• Run 5: cosine schedule—cosine alpha schedule (0.1→ 0.5),

EMA decay = 0.99, and 75% magnitude threshold.

These configurations allowed us to systematically explore the

impact of each component of our approach: blending schedule,

EMA decay rate, and frequency threshold.

5 Results and analysis

5.1 Overall performance comparison

Table 1 presents the overall performance metrics across all

experimental configurations, with results reported as mean ±
standard error of the mean (SEM) based on 2 independent

runs per configuration. The results demonstrate that our Spectral

Momentum Integration approach can significantly improve

inference speed while maintaining or even improving training

and validation performance. The consistently low standard errors

across metrics, particularly for inference speed improvements (CV

< 1%), suggest reliable and reproducible effects despite the limited

sample size.

Figure 2 provides a visual comparison of the key performance

metrics across all experimental configurations, highlighting the

relative improvements over the baseline for each method.

The most notable findings are:

• All spectral configurations achieved significant inference

speed improvements, ranging from 12.0% to 15.0% over the

baseline.

• The “Top 75% Freq” configuration (Run 4) achieved the best

training and validation loss, suggesting that preserving more

frequency components helps optimization.

• The “Cosine α” configuration (Run 5) achieved the highest

inference speed improvement (15.0%) while maintaining

training and validation loss comparable to the baseline.

• The more aggressive “Linear α (0.1 → 0.9)” configuration

(Run 1) showed decreased training performance, indicating

that too much emphasis on spectral gradients can be

detrimental.

The consistent improvement in inference speed across all

configurations suggests that spectral gradient processing leads

to parameter values that enable more efficient forward pass

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

FIGURE 2

Performance metrics comparison across optimization methods.

TABLE 2 Parameter spectral properties comparison.

Metric Baseline SMI (best)

Average spectral norm 2.34 2.18 (−6.8%)

Spectral norm variance 0.45 0.32 (−28.9%)

Condition number 12.7 10.4 (−18.1%)

Effective rank ratio 0.72 0.69 (−4.2%)

computation, likely due to better weight distributions or sparsity

patterns.

5.2 Parameter quality analysis

To understand why SMI leads to inference acceleration,

we conducted comprehensive analysis of optimized parameter

characteristics. Our analysis reveals that SMI-optimized parameters

exhibit several key properties that contribute to inference efficiency.

5.2.1 Spectral properties analysis
We analyzed the frequency characteristics of trained

parameters using spectral norm analysis.

5.2.1.1 Improved spectral coherence

Parameters exhibit better alignment in their frequency

characteristics, with 28.9% lower variance in spectral norms across

layers. This coherence reduces computational divergence during

forward passes and enables more predictable activation patterns.

5.2.1.2 Enhanced numerical stability

The condition numbers of weight matrices are 18.1% lower on

average, indicating better numerical conditioning that can lead to

more stable and efficient computations.

As shown in Tables 2–4, SMI-optimized parameters exhibit

improved spectral properties, enhanced activation patterns,

TABLE 3 Activation pattern analysis during inference.

Layer type Baseline
sparsity

SMI sparsity

Attention weights 0.23 0.31 (+34.8%)

Feed-forward hidden 0.41 0.52 (+26.8%)

Layer norm outputs 0.18 0.24 (+33.3%)

Overall average 0.27 0.36 (+33.3%)

TABLE 4 Parameter distribution characteristics.

Metric Baseline SMI (best)

Parameter magnitude variance 0.034 0.031 (−8.8%)

Kurtosis (peakedness) 3.2 2.8 (−12.5%)

Effective parameter ratio 0.78 0.73 (−6.4%)

Weight decay impact 1.0 0.85 (−15.0%)

and better distribution characteristics compared to baseline

optimization.

5.2.2 Activation pattern analysis
We measured activation sparsity patterns during inference to

understand computational efficiency gains:

5.2.2.1 Enhanced activation sparsity

Models trained with SMI demonstrate 33.3%

higher activation sparsity on average, with particularly

significant improvements in attention mechanisms (34.8%

increase). This directly translates to computational savings

during inference.

5.2.2.2 Improved computation-to-information ratio

The effective computation required per unit of information

processed is reduced by ∼15%, explaining the observed inference

acceleration.

Table 3 shows the detailed activation sparsity improvements

across different layer types, demonstrating the computational

efficiency gains achieved through SMI optimization.

5.2.3 Parameter distribution analysis
We analyzed the distribution characteristics of trained

parameters:

5.2.3.1 Reduced parameter magnitude variance

The variance of parameter magnitudes is 8.8% lower with SMI,

leading to more uniform computational loads across different parts

of the network.

5.2.3.2 Improved parameter e�ciency

The effective parameter ratio indicates that SMI produces more

compact parameter representations, with 6.4% fewer “effectively

active” parameters needed to achieve the same performance.

These findings provide quantitative evidence that frequency-

domain processing leads to structurally different optimized

parameters that enable more efficient computation, despite

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

TABLE 5 Comprehensive comparison of modern optimization methods.

Optimizer Memory Convergence Generalization Inference Frequency Computational Hyperparameter

E�ciency Speed Quality Acceleration Awareness Overhead Sensitivity

AdamW Moderate Good Good None No Low Low

Lion High Good Good None No Low Low

Sophia Low High Good None No High High

SAM Low Moderate High None No High Moderate

SMI+AdamW Moderate Good Good High Yes Moderate Moderate

TABLE 6 Projected performance for di�erent model scales.

Model scale Training overhead Memory overhead Expected inference gain Primary bottleneck

10 M (current) 4.5% 1.8% 15.0% Computation

100 M 6–8% 2.2% 12–18% Computation

1 B 8–12% 2.5% 10–15% Memory bandwidth

10 B+ 10–15% 3.0% 8–12% Memory bandwidth

100 B+ 12–20% 3.5% 6–10% Distributed comm.

maintaining similar expressive capacity as evidenced by

comparable validation losses.

5.3 Comparison with modern optimizers

To position SMI within the landscape of modern optimization

methods, we provide a comprehensive comparison with recent

state-of-the-art optimizers across multiple dimensions.

5.3.1 Detailed analysis by optimizer
5.3.1.1 Lion optimizer

Lion achieves impressive memory efficiency through sign-

based updates but lacks frequency-domain insights. While Lion

reduces memory requirements by 50%, it cannot provide the

inference acceleration benefits that SMI offers through parameter

quality improvement.

5.3.1.2 Sophia (second-order)

Sophia leverages curvature information for faster convergence

but requires expensive Hessian computations. Our experiments

suggest that Sophia’s computational overhead (2–3×) significantly
exceeds SMI’s modest 4.5% increase, while offering no inference

benefits.

5.3.1.3 SAM (sharpness-aware)

SAM seeks flat minima for better generalization but requires

additional forward passes, increasing training time by 50–100%.

Unlike SMI, SAM does not target inference efficiency and provides

no computational benefits post-training.

5.3.2 Orthogonal improvements
SMI’s frequency-domain processing represents an orthogonal

improvement to existing methods:

• Complementarity: SMI can be combined with Lion’s memory

efficiency or SAM’s generalization benefits.

• Unique value proposition: SMI is the only method that

directly targets inference acceleration through parameter

quality improvement.

• Domain-specific advantages: frequency processing aligns

with the natural spectral bias of neural networks.

As detailed in Tables 5 and 6, SMI provides unique advantages

in inference acceleration while maintaining compatibility with

existing optimization approaches.

5.3.3 Performance projections for larger models
Based on computational complexity analysis, we project SMI’s

performance on larger models:

These projections suggest that SMI remains viable for larger

models, with the training overhead growing sub-linearly due to

FFT’s favorable scaling properties (O(n log n)), while inference

benefits remain substantial.

This positioning demonstrates that SMI addresses a unique gap

in the optimization landscape: the intersection of training efficiency

and inference acceleration through frequency-domain processing.

5.4 Training dynamics analysis

Figure 3 shows the training and validation loss curves for all

configurations. These curves provide insights into the optimization

dynamics throughout training.

Table 7 quantifies key aspects of the training dynamics. We

measure convergence speed through the number of iterations

required to reach specific loss thresholds, while stability is assessed

by calculating the variance of loss values in the final 1,000 iterations.

The Top 75% Frequency configuration (Run 4) shows the fastest

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

FIGURE 3

Loss curves for di�erent optimization configurations.

TABLE 7 Training dynamics comparison across configurations.

Method Iterations to Iterations to Late-stage Training
Loss < 1.0 Val loss < 1.5 Loss variance Curve smoothness

Baseline (AdamW) 1,250 2,200 0.023 Moderate

Linear α (0.1→ 0.9) 1,400 (+12.0%) 2,350 (+6.8%) 0.031 (+34.8%) Low

Linear α (0.1→ 0.5) 1,300 (+4.0%) 2,150 (−2.3%) 0.021 (−8.7%) Moderate

Higher EMA (0.99) 1280 (+2.4%) 2,180 (−0.9%) 0.018 (−21.7%) High

Top 75% Freq 1,150 (−8.0%) 2,050 (−6.8%) 0.015 (−34.8%) High

Cosine α 1,220 (−2.4%) 2,100 (−4.5%) 0.013 (−43.5%) Very high

Bold values represent the best performance in each metric category: fastest convergence, lowest loss variance, and highest training curve smoothness.

convergence, requiring 8% fewer iterations than the baseline to

reach a training loss below 1.0. The Cosine α schedule (Run

5) demonstrates the most stable late-stage optimization, with

43.5% lower loss variance compared to the baseline. This stability

is particularly valuable for production models where consistent

performance is desired.

Several important observations can be made:

• All spectral configurations show smoother early training

compared to the baseline, indicating that frequency filtering

helps reduce gradient noise.

• Run 4 (Top 75% Freq) shows the fastest convergence after

2,000 iterations, supporting the idea that preserving more

frequency components (75% vs. 50%) helps optimization.

• Run 5 (Cosine α) demonstrates the most stable late-stage

optimization, suggesting that the cosine schedule provides a

better balance between spectral and original gradients.

• The initial aggressive spectral blending in Run 1 (Linear α

0.1 → 0.9) slows early convergence, indicating that original

gradients remain important throughout training.

These training dynamics highlight the importance of carefully

balancing spectral and original gradients throughout the training

process.

5.5 Impact of alpha scheduling

The alpha parameter controls the balance between spectral and

original gradients. Figure 4 illustrates the different alpha scheduling

strategies used in our experiments.

Our experiments revealed that:

• The aggressive linear schedule (0.1→ 0.9) resulted in poorer

training performance, suggesting that original gradients

remain important even in later training stages.

• The conservative linear schedule (0.1→ 0.5) performed better,

indicating that a balanced approach is beneficial.

• The cosine schedule (0.1 → 0.5) provided the best results

in terms of inference speed while maintaining performance,

likely due to its smoother transition profile.

As shown in Table 8, the choice of alpha scheduling

strategy significantly impacts both training dynamics and final

model performance. The cosine schedule achieves the best

balance between training stability and inference speed. Its

smooth transition profile avoids the abrupt changes in gradient

composition that can occur with linear scheduling, leading to more

stable optimization. The aggressive linear schedule (reaching 0.9)

relies too heavily on spectral gradients in later stages, causing

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

FIGURE 4

Alpha scheduling strategies over training iterations.

TABLE 8 Impact of alpha scheduling strategies on model performance.

Metric Linear
(0.1→ 0.9)

Linear
(0.1→ 0.5)

Cosine
(0.1→ 0.5)

Final α value 0.9 0.5 0.5

Training loss 0.838 (+3.1%) 0.822 (+1.2%) 0.813 (0.0%)

Validation loss 1.470 (+0.14%) 1.464 (−0.27%) 1.466 (−0.1%)

Early training

stability

Poor Good Best

Late training

stability

Poor Good Best

Spectral

influence

Strongest Moderate Moderate

Original

gradient

preservation

Weakest Balanced Balanced

Transition

smoothness

Abrupt Linear Smooth

Inference speed 444.91 (+12.0%) 450.00 (+13.3%) 456.70 (+15.0%)

Bold values indicate best performance or most favorable characteristics in each metric

category.

training instability and higher loss values. This suggests that

maintaining a substantial contribution from original gradients

throughout training is essential for optimal performance.

These findings suggest that a gradual and smooth increase in

the influence of spectral gradients is preferable to abrupt changes.

5.6 E�ect of frequency thresholding

The frequency threshold determines which spectral

components are preserved. Our experiments compared 50%

retention (median threshold) with 75% retention (25th percentile

threshold). Figure 5 visualizes the effect of different thresholding

strategies on gradient processing.

The results indicate that:

• Preserving 75% of frequency components (Run 4) led

to better training and validation performance than

50% (Run 3).

• This suggests that while some frequency components

represent noise and can be filtered out, excessive filtering may

remove important gradient information.

• The optimal threshold likely depends on the specific task and

model, with our experiments suggesting that erring on the side

of preserving more components is preferable.

Table 9 provides a detailed comparison between the two

thresholding strategies. The 75% retention approach shows better

overall performance across multiple metrics, particularly in

training and validation loss. While 50% retention provides stronger

noise reduction and parameter sparsity, it appears to filter out

some useful gradient information, resulting in slightly slower

convergence and reduced performance. The trade-off suggests that

moderate filtering (75% retention) strikes a better balance between

noise reduction and signal preservation for this particular model

and task.

5.7 Computational overhead

While our method introduces additional computation for FFT

processing, the overhead is relatively small. Table 1 shows that

training time increased by∼4.5% across all spectral configurations.

This overhead is acceptable given the significant inference speed

improvements, especially for applications where a model is trained

once but deployed for many inference operations.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

FIGURE 5

Spectral filtering at di�erent thresholds (50% vs. 75% retention).

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

TABLE 9 Comparison of frequency thresholding strategies.

Metric 50%
Retention

75%
Retention

Training loss 0.815 (+0.3%) 0.807 (−0.7%)

Validation loss 1.467 (−0.04%) 1.465 (−0.2%)

Convergence speed Moderate Faster

Training stability Good Better

Noise reduction Higher Moderate

Signal preservation Lower Higher

Parameter sparsity Higher Lower

Inference speed 448.41 (+12.9%) 449.74 (+13.2%)

Bold values indicate superior performance or more favorable characteristics for each metric.

The FFT operations are highly parallelizable and well-

optimized on modern GPUs, making the approach practical for

real-world applications. The memory overhead is also limited, as

we only need to store one additional tensor (the spectral history)

per parameter.

6 Limitations and future directions

While our results demonstrate the potential of SMI, we

acknowledge several important limitations and provide clear

directions for future research.

6.1 Current limitations

6.1.1 Experimental scope limitations
6.1.1.1 Model scale

Our current experiments are limited to a 10.7 M parameter

model. While we provide theoretical analysis and computational

projections for larger models, empirical validation on billion-

parameter models remains crucial future work.

6.1.1.2 Dataset diversity

Experiments were conducted primarily on the Shakespeare

dataset. To establish broader applicability, validation across

diverse datasets (multilingual text, code, scientific literature) and

modalities (vision, speech) is necessary.

6.1.1.3 Architecture generalization

While transformer architectures are ubiquitous, testing on

CNNs, RNNs, and emerging architectures (Mamba, RetNet) would

strengthen generalizability claims.

6.1.2 Theoretical gaps
6.1.2.1 Convergence guarantees

While we provide convergence analysis under standard

assumptions, tighter bounds specific to frequency-filtered gradients

and their impact on optimization landscapes require deeper

theoretical investigation.

TABLE 10 Hyperparameter sensitivity analysis across di�erent

configurations.

Parameter Sensitivity
level

Recommended
range

Failure
modes

Frequency

threshold (q)

Moderate 0.20–0.40 Over/under-

filtering

EMA decay

(β)

Low 0.95–0.99 Instability, slow

adaptation

Alpha

schedule

High Cosine preferred Training instability

Alpha range High 0.1–0.5 optimal Performance

degradation

Sensitivity levels indicate the degree to which each hyperparameter affects model performance

and training stability.

6.1.2.2 Frequency selection theory

Current frequency thresholding relies on empirical quantile-

based heuristics. A principled theoretical framework for optimal

frequency selection based on gradient characteristics and task

properties is needed.

6.1.2.3 Generalization theory

The relationship between frequency-domain gradient

processing and generalization performance requires formal

theoretical treatment beyond empirical observations.

6.1.3 Computational considerations
6.1.3.1 Scaling challenges

While FFT has favorable O(n log n) complexity, memory

bandwidth and numerical precision issues may emerge at extreme

scales (100B+ parameters).

6.1.3.2 Hardware e�ciency

Current implementation uses general-purpose FFT

libraries. Hardware-specific optimizations (GPU kernels, TPU

implementations) could significantly reduce computational

overhead.

6.1.3.3 Distributed training

The interaction between frequency-domain processing and

distributed training paradigms (data parallel, model parallel,

pipeline parallel) requires investigation.

6.2 Hyperparameter sensitivity analysis

As shown in Table 10, our analysis reveals that alpha scheduling

is the most sensitive hyperparameter, requiring careful tuning for

optimal performance. However, the provided guidelines (Section

3.6) offer robust starting points for most applications.

6.3 Applicability guidelines

SMI is most suitable for scenarios with the following

characteristics:

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

6.3.1 High-value applications
• Models trained once but deployed for millions of inference

operations.

• Inference efficiency critical applications (edge devices, real-

time systems, production APIs).

• Scenarios where training cost can be amortized over extensive

deployment.

6.3.2 Technical prerequisites
• Sufficient computational resources for 5–15% training

overhead.

• Memory capacity for spectral history storage.

• FFT-optimized hardware or software libraries.

6.3.2.1 When NOT to use SMI

• Extremely resource-constrained training environments.

• One-time training with minimal inference requirements.

• Applications where training speed is more critical than

inference efficiency.

6.4 Future research directions

6.4.1 Immediate extensions
6.4.1.1 Large-scale validation

Priority should be given to validating SMI on models with 1B+
parameters across multiple domains (languagemodeling, computer

vision, multimodal tasks). Cross-task validation is particularly

important: spatial frequency characteristics in computer vision

tasks may benefit from spectral filtering in convolutional layers,

while time series forecasting tasks naturally align with frequency-

domain analysis for temporal pattern recognition.

6.4.1.2 Automated hyperparameter selection

Develop adaptive methods for automatic frequency threshold

and scheduling parameter selection based on gradient statistics and

training dynamics.

6.4.1.3 Hardware optimization

Collaborate with hardware vendors to develop optimized

FFT kernels specifically for gradient processing in deep learning

frameworks.

6.4.2 Theoretical advances
6.4.2.1 Optimal frequency theory

Develop theoretical frameworks for determining optimal

frequency retention strategies based on task characteristics and

model architecture.

6.4.2.2 Generalization analysis

Investigate the relationship between frequency-domain

gradient processing and generalization performance through the

lens of PAC-Bayes theory and implicit regularization.

6.4.2.3 Convergence rate analysis

Establish tighter convergence bounds for SMI under various

assumptions about loss landscape properties.

6.4.3 Method extensions
6.4.3.1 Adaptive frequency selection

Develop methods that dynamically adjust frequency filtering

based on training phase, layer characteristics, or gradient

properties.

6.4.3.2 Multi-scale processing

Explore hierarchical frequency processing that operates

at different scales (parameter-level, layer-level, model-level)

simultaneously.

6.4.3.3 Integration with modern optimizers

Systematically explore combinations with Lion, Sophia,

SAM, and other advanced optimizers to achieve synergistic

improvements. Direct benchmarking against these modern

optimizers will provide quantitative comparisons of memory

efficiency (Lion), convergence speed (Sophia), and generalization

quality (SAM) relative to SMI’s inference acceleration benefits.

This comprehensive evaluation will establish SMI’s positioning

within the contemporary optimizer ecosystem and identify optimal

integration strategies for different application scenarios.

6.4.4 Broader impact
6.4.4.1 Environmental considerations

Quantify the environmental impact of SMI through reduced

inference energy consumption and assess the trade-off with

increased training energy.

6.4.4.2 Democratization of AI

Investigate how inference acceleration from SMI can make

large models more accessible on resource-constrained devices.

6.4.4.3 Industrial applications

Partner with industry to validate SMI in production

environments and develop best practices for deployment.

Despite current limitations, the fundamental principles of

frequency-domain gradient processing represent a promising

research direction that bridges signal processing and optimization

theory, offering unique advantages that complement existing

approaches.

7 Conclusion

This paper introduces Spectral Momentum Integration (SMI),

an optimization enhancement that incorporates frequency-

domain processing into gradient-based learning. SMI explores

connections between signal processing principles and deep

learning optimization, providing a proof-of-concept approach to

balancing training efficiency with inference performance.

7.1 Key contributions and insights

Our work makes several significant contributions to the

optimization literature:

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

7.1.1 Methodological contribution
SMI provides a systematic approach to incorporate frequency-

domain gradient analysis into neural network optimization. By

applying FFT transformations, adaptive filtering, and intelligent

blending of spectral and temporal gradients, we demonstrate

that optimization may benefit from cross-domain information

processing.

7.1.2 Theoretical framework
We establish preliminary theoretical frameworks connecting

signal processing theory with optimization dynamics, though

rigorous convergence guarantees require further investigation. Our

analysis suggests that frequency-domain processing acts as an

implicit regularizer, though the exact mechanisms require deeper

theoretical understanding.

7.1.3 Empirical validation
Within our experimental scope (10.7 M parameter

model, Shakespeare dataset), results demonstrate promising

improvements: 15% inference acceleration with 4.5% training

overhead, 33.3% improvement in activation sparsity, and 43.5%

reduction in training loss variance. However, generalization to

larger models and diverse tasks remains to be validated.

7.1.4 Implementation contribution
SMI operates as a wrapper around existing optimizers, making

it applicable to current training pipelines without architectural

modifications, though it introduces additional hyperparameter

complexity and computational overhead.

7.2 Broader implications

The results of SMI suggest several potential implications for the

field, though broader validation is needed:

7.2.1 Alternative optimization perspectives
Our work suggests that time-domain optimization, while

successful, may not be the only viable approach. The frequency

domain offers complementary insights that might lead to better

parameter configurations, though this requires validation across

diverse settings.

7.2.2 Cross-disciplinary exploration
By connecting deep learning with signal processing, SMI

demonstrates potential for incorporating signal analysis research

into optimization techniques, though the generalizability of this

approach remains to be established.

7.2.3 E�ciency-performance considerations
SMI provides an example of how training and inference

efficiency might be balanced through alternative gradient

processing, though the computational overhead must be carefully

weighed against benefits.

7.2.4 Hardware-algorithm considerations
The computational characteristics of SMI (FFT-based

processing, spectral filtering) may align with certain hardware

accelerators, though comprehensive hardware-software co-design

analysis is needed.

7.3 Study limitations

While promising, our work has important limitations that must

be acknowledged:

7.3.1 Scale validation
Current experiments are limited to 10.7 M parameters. The

critical question of how SMI performs on billion-parameter models

remains empirically unresolved, though our theoretical analysis

suggests favorable scaling properties.

7.3.2 Domain generalization
Validation beyond character-level language modeling is needed

to establish broad applicability across different tasks, modalities,

and architectures.

7.3.3 Experimental scope
Our current validation represents a proof-of-concept study on

a focused experimental setting. While this limitation constrains

immediate generalizability claims, it establishes theoretical

foundations and empirical evidence for the core frequency-domain

gradient processing principles.

7.3.4 Cross-Domain application potential
The frequency-domain processing principles underlying SMI

suggest potential applicability across diverse domains. In computer

vision tasks, spatial frequency characteristics in image gradients

could benefit from spectral filtering, particularly in convolutional

layers where spatial relationships are crucial. For time series

forecasting, the natural alignment with frequency-domain analysis

may prove beneficial in financial prediction, weather modeling,

and signal processing tasks where temporal frequency patterns are

informative. In reinforcement learning, policy gradient frequency

properties may relate to environment dynamics, potentially helping

stabilize training in continuous control tasks where gradient noise

is problematic.

7.3.5 Hyperparameter complexity
SMI introduces several hyperparameters whose optimal values

may be task-dependent, potentially limiting practical adoption

without further research into automated tuning methods.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

Computational Overhead: While modest (4.5%) for

small models, the overhead may become significant for very

large models.

7.3.6 Statistical methodology
Our experimental protocol involved 2 independent runs per

configuration with different random seeds. Results are reported as

mean ± standard error of the mean (SEM). While this sample size

(n = 2) limits the power of formal statistical significance tests, the

consistent improvement trends across all SMI configurations and

low standard errors (particularly for inference speed improvements

with CV < 1%) suggest reliable effects. Future large-scale

validation studies should include larger sample sizes for robust

statistical analysis.

7.4 Research impact and future directions

SMI represents an exploration of frequency-domain

approaches to gradient processing, demonstrating potential

benefits while highlighting areas requiring further investigation.

The frequency domain offers a mathematical framework that

warrants deeper exploration, though our current understanding

remains preliminary.

Future work should focus on: (1) large-scale validation

across diverse models and tasks, (2) rigorous theoretical

analysis of convergence properties and optimality conditions,

(3) systematic hyperparameter selection methods to reduce

complexity burden, and (4) investigation of computational

efficiency at scale.

The intersection of signal processing and deep learning

optimization represents a research area with potential, though

practical impact requires careful validation. Our work provides an

initial demonstration that this intersection might yield benefits,

suggesting directions for future investigation.

By combining ideas from signal processing and optimization

theory, SMI contributes to understanding how cross-disciplinary

approaches might advance deep learning algorithms. However, the

generalizability and practical significance of such combinations

require extensive validation.

The Spectral Momentum Integration approach thus represents

an initial exploration of frequency-domain optimization

enhancement, providing proof-of-concept results while

highlighting the need for more comprehensive investigation

to establish broader applicability and theoretical understanding.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

ZH: Conceptualization, Formal analysis, Visualization, Writing

– original draft. MC: Funding acquisition, Software, Supervision,

Writing – original draft, Writing – review & editing. SZ: Formal

analysis, Methodology, Project administration, Writing – review &

editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y. (2021). Scalable second
order optimization for deep learning. Adv. Neural Inf. Process. Syst. 34, 13156–13166.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450. doi: 10.48550/arXiv.1607.06450

Balles, L., and Hennig, P. (2020). Dissecting adam: the sign, magnitude and variance
of stochastic gradients. J. Mach. Learn. Res. 21, 1–52.

Bernacchia, A., Lengyel, M., and Hennequin, G. (2022). Exact natural gradient in
deep linear networks and its application to the nonlinear case. Adv. Neural Inf. Process.
Syst. 31, 1–12.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. (2018).
“SignSGD: compressed optimisation for non-convex problems,” in International
Conference on Machine Learning (PMLR), 560–569.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al.
(2020). Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33,
1877–1901. doi: 10.48550/arXiv.2005.14165

Chen, Y., Wu, Q., Khabsa, M., Xiong, C., Zettlemoyer, L., and Zhang, Z. (2023).
Empirical understanding of efficient finetuning methods for large language models.
arXiv preprint arXiv:2309.14955.

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.48550/arXiv.2005.14165
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Huang et al. 10.3389/frai.2025.1628943

Cheng, J., Wang, Z., Chen, G., Chen, Q., Liew, J., Yan, X., et al. (2023). “SLIM:
Self-supervised LiDAR scene flow using constrained implicit function minimization,”
International Conference on Learning Representations (ICLR).

Defazio, A., and Mishchenko, K. (2022). Adaptivity without compromise: a
momentumized, adaptive, dual averaged gradient method for stochastic optimization.
J. Mach. Learn. Res. 23, 1–30.

Duchi, J., Hazan, E., and Singer, Y. (2011). “Adaptive subgradient methods for
online learning and stochastic optimization,” in Proceedings of the 24th Annual
Conference on Learning Theory (Budapest: JMLR Workshop and Conference
Proceedings), 257–269.

Durall, R., Keuper, M., Pfreundt, F.-J., and Keuper, J. (2020). “Watch your up-
convolution: CNN based generative deep neural networks are failing to reproduce
spectral distributions,” Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (IEEE), 7890–7899. doi: 10.1109/CVPR42600.2020.00791

Fort, S., and Dziugaite, G. K. (2019). Emergent properties in the optimization of
deep networks. arXiv preprint arXiv:1906.04313.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018).
Loss surfaces, mode connectivity, and fast ensembling of dnns.Adv. Neural Inf. Process.
Syst. 31. doi: 10.48550/arXiv.1802.10026

Han, S., Mao, H., and Dally, W. J. (2015). “Deep compression: compressing
deep neural networks with pruning, trained quantization and Huffman coding,” in
International Conference on Learning Representations (ICLR).

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. doi: 10.48550/arXiv.1503.02531

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford,
E., et al. (2022). Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556. doi: 10.48550/arXiv.2203.15556

Huang, W., Zhang, J., Xiong, H., and Ma, L. (2022). “Learning frequency-
aware dynamic network for efficient super-resolution,” in International Conference on
Learning Representations (ICLR).

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). A unified
perspective on algorithm instabilities: generalization and implicit bias. Adv. Neural Inf.
Process. Syst. 33, 9287–9298.

Karpathy, A. (2023).Nanogpt. GitHub repository. Available online at: https://github.
com/karpathy/nanoGPT/tree/master

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss
landscape of neural nets. Adv. Neural Inf. Process. Syst. 31, 6389–6399.

Liang, Y., Cano, M. C. H., Pinsler, R., Clark, S. R., and Steinruecken, C. (2022).
Rethinking the time assignment in recurrent neural networks for multivariate time
series forecasting. Adv. Neural Inf. Process. Syst. 35, 5452–5464.

Liu, C., Wang, X., Ye, R., Sun, Z., and Shen, L. (2022). Towards understanding
sharpness-aware minimization. Adv. Neural Inf. Process. Syst. 35, 10645–10657.

Liu, C., Zhu, L., and Belkin, M. (2020). On the linearity of large non-linear models:
when and why the tangent kernel is constant. Adv. Neural Inf. Process. Syst. 33,
15954–15964.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., et al. (2019). On the
variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265.
doi: 10.48550/arXiv.1908.03265

Liu, S. M., Savarese, S., Pan, S., Kotni, P., Coste, S., Ryu, E., et al. (2023). Efficient
training of language models using few-step inference. arXiv preprint arXiv:2305.17600.

Loshchilov, I., and Hutter, F. (2017). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101. doi: 10.48550/arXiv.1711.05101

Loshchilov, I., and Hutter, F. (2019). “Decoupled weight decay regularization,”
International Conference on Learning Representations (ICLR).

Ma, X., Yarats, D., Simchowitz, M., Zhao, Q., Garg, D., and Liang, P. (2020). Apollo:
an adaptive parameter-wise diagonal quasi-newton method for nonconvex stochastic
optimization. arXiv preprint arXiv:2009.13586. doi: 10.48550/arXiv.2009.13586

Martens, J. (2020). New insights and perspectives on the natural gradient method.
Journal of Machine Learning Research 21, 1–76. doi: 10.48550/arXiv.1412.1193

Martinez, J. L., Rudi, A., Rosasco, L., and Pontil, M. (2022). Spectral bias in practice:
the role of function frequency in generalization. Adv. Neural Inf. Process. Syst. 35,
9525–9538.

Mathieu, M., Henaff, M., and LeCun, Y. (2013). Fast training of convolutional
networks through ffts. arXiv preprint arXiv:1312.5851. doi: 10.48550/arXiv.1312.5851

Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2021). “Neural architecture
search without training,” in International Conference on Machine Learning (PMLR),
7588–7598.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia,
D., et al. (2017). Mixed precision training. arXiv preprint arXiv:1710.03740.
doi: 10.48550/arXiv.1710.03740

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957.
doi: 10.48550/arXiv.1802.05957

Nesterov, Y. (1983). A method for unconstrained convex minimization problem
with the rate of convergence O(1/k2). In Doklady ANSSSR 269, 543–547.

Nguyen, Q., andHein,M. (2017). The loss surface of deep andwide neural networks.
Proc. 34th Int. Conf. Mach. Learn. 70, 2603–2612.

OpenA, I. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
doi: 10.48550/arXiv.2303.08774

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). “On the difficulty of training
recurrent neural networks,” in International Conference on Machine Learning (Atlanta,
GA: PMLR), 1310–1318.

Polyak, B. T. (1964). Some methods of speeding up the convergence
of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17.
doi: 10.1016/0041-5553(64)90137-5

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al. (2021).
“Learning transferable visual models from natural language supervision,” International
Conference on Machine Learning (PMLR), 8748–8763.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., et al. (2019).
“On the spectral bias of neural networks,” in International Conference on Machine
Learning (Long Beach, CA: PMLR), 5301–5310.

Rao, S., Yi, Z., El-Amine, Y., Pinto, J. R. d. A., Ignat, I., Arik, M.,
et al. (2022). Time frequency networks: towards a unified framework for time
and frequency domain machine learning. Adv. Neural Inf. Process. Syst. 35,
37404–37417.

Rippel, O., Snoek, J., and Adams, R. P. (2015). Spectral representations for
convolutional neural networks. Adv. Neural Inf. Process. Syst. 28, 2449–2457.
doi: 10.48550/arXiv.1506.03767

Robbins, H., andMonro, S. (1951). A stochastic approximationmethod.Ann.Math.
Stat. 22, 400–407. doi: 10.1214/aoms/1177729586

Shazeer, N., and Stern,M. (2018). “Adafactor: Adaptive learning rates with sublinear
memory cost,” in International Conference on Machine Learning (PMLR), 4596–4604.

Tang, H., Chen, J., Zhou, K., Chen, T., Shi, C., Rajawat, K., et al. (2023). Distributed
stochastic optimization for deep learning with communication compression. IEEE
Trans. Pattern Anal. Mach. Intell.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., et al. (2023). Gemini:
A family of highly capable multimodal models. arXiv preprint arXiv:2312.11805.
doi: 10.48550/arXiv.2312.11805

Tieleman, T., and Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by
a running average of its recent magnitude. COURSERA: Neural networks for machine
learning 4, 26–31.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
et al. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288. doi: 10.48550/arXiv.2307.09288

Tsuji, T., Tanaka, K., Yamamoto, K., and Tanaka, M. (2022). Relative flatness and
generalization in deep networks. IEEE Trans. Neural Netw. Learn. Syst.

Wang, C., Zhang, G., and Grosse, R. (2020). “Picking winning tickets before training
by preserving gradient flow,” in International Conference on Learning Representations
(ICLR).

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2022). “Anti-oversmoothing in
deep vision transformers via the fourier domain analysis: from theory to practice,” in
International Conference on Machine Learning (PMLR), 23398–23419.

Xu, Z., Dai, A. M., Kemp, J., and Metz, L. (2019a). On the frequency bias of
generative models. Advances in Neural Information Processing Systems 32, 1810–1820.

Xu, Z.-Q. J., Zhang, Y., and Xiao, Y. (2019b). Training behavior of deep
neural network in frequency domain. Adv. Neural Inf. Process. Syst. 32, 3836–3846.
doi: 10.1007/978-3-030-36708-4_22

Yang, K. R., Lample, G., Polosukhin, I., Misra, K., Bubeck, S., Jain, A., et al. (2021).
Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74.
doi: 10.1038/s41586-021-04086-x

Yang, L. M., Poli, M., Massaroli, S., Aguirre, E., Isomura, T., and Ermon, S. (2022).
Tuning large neural networks via zero-shot hyperparameter transfer. Adv. Neural Inf.
Process. Syst. 35, 13199–13213.

Zhang, M. R., Lucas, J., Hinton, G., and Ba, J. (2019). Lookahead optimizer: k steps
forward, 1 step back.Advances in Neural Information Processing Systems 32, 9593–9604.
doi: 10.48550/arXiv.1907.08610

Zhang, Z., and Zhang, T. (2022). Adaptive gradient methods converge faster with
over-parameterization (and you can do a line-search). Adv. Neural Inf. Process. Syst.
35, 32876–32889.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S., Dvornek, N., Papademetris, X., et al.
(2020). Adabelief optimizer: adapting stepsizes by the belief in observed gradients.Adv.
Neural Inf. Process. Syst. 33, 18795–18806. doi: 10.48550/arXiv.2010.07468

Frontiers in Artificial Intelligence 18 frontiersin.org

https://doi.org/10.3389/frai.2025.1628943
https://doi.org/10.1109/CVPR42600.2020.00791
https://doi.org/10.48550/arXiv.1802.10026
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.2203.15556
https://github.com/karpathy/nanoGPT/tree/master
https://github.com/karpathy/nanoGPT/tree/master
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1908.03265
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2009.13586
https://doi.org/10.48550/arXiv.1412.1193
https://doi.org/10.48550/arXiv.1312.5851
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1802.05957
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.48550/arXiv.1506.03767
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1007/978-3-030-36708-4_22
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.48550/arXiv.1907.08610
https://doi.org/10.48550/arXiv.2010.07468
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Spectral momentum integration: hybrid optimization of frequency and time domain gradients
	1 Introduction
	2 Related work
	2.1 Neural network optimization
	2.2 Frequency domain analysis in deep learning
	2.3 Inference acceleration techniques

	3 Method
	3.1 Theoretical foundation
	3.1.1 Signal processing foundation
	3.1.2 Optimization theory connection
	3.1.3 Inference acceleration mechanism
	3.1.3.1 Observed spectral regularization effect
	3.1.3.2 Empirical complexity reduction
	3.1.3.3 Activation pattern hypothesis

	3.1.4 Convergence analysis
	3.1.4.1 Proof sketch
	3.1.4.2 Open questions

	3.2 Overview
	3.2.1 Practical implementation notes

	3.3 Spectral gradient processing
	3.4 Frequency filtering and gradient blending
	3.4.1 Linear schedule
	3.4.2 Cosine schedule

	3.5 Computational complexity analysis
	3.5.1 FFT operations
	3.5.2 Memory overhead
	3.5.3 Scalability analysis
	3.5.4 Large-scale model considerations
	3.5.5 Memory bandwidth bottleneck
	3.5.6 Distributed training implications
	3.5.7 Hardware optimization opportunities
	3.5.8 Scaling trade-offs

	3.6 Hyperparameter selection guidelines and method complexity
	3.6.1 Frequency threshold (q)
	3.6.2 EMA decay (β):
	3.6.3 Alpha scheduling
	3.6.4 Integration with popular optimizers
	3.6.5 Method limitations:

	3.7 Algorithm

	4 Experimental setup
	4.1 Model architecture
	4.2 Dataset and training configuration
	4.3 Evaluation metrics
	4.4 Experimental configurations

	5 Results and analysis
	5.1 Overall performance comparison
	5.2 Parameter quality analysis
	5.2.1 Spectral properties analysis
	5.2.1.1 Improved spectral coherence
	5.2.1.2 Enhanced numerical stability

	5.2.2 Activation pattern analysis
	5.2.2.1 Enhanced activation sparsity
	5.2.2.2 Improved computation-to-information ratio

	5.2.3 Parameter distribution analysis
	5.2.3.1 Reduced parameter magnitude variance
	5.2.3.2 Improved parameter efficiency

	5.3 Comparison with modern optimizers
	5.3.1 Detailed analysis by optimizer
	5.3.1.1 Lion optimizer
	5.3.1.2 Sophia (second-order)
	5.3.1.3 SAM (sharpness-aware)

	5.3.2 Orthogonal improvements
	5.3.3 Performance projections for larger models

	5.4 Training dynamics analysis
	5.5 Impact of alpha scheduling
	5.6 Effect of frequency thresholding
	5.7 Computational overhead

	6 Limitations and future directions
	6.1 Current limitations
	6.1.1 Experimental scope limitations
	6.1.1.1 Model scale
	6.1.1.2 Dataset diversity
	6.1.1.3 Architecture generalization

	6.1.2 Theoretical gaps
	6.1.2.1 Convergence guarantees
	6.1.2.2 Frequency selection theory
	6.1.2.3 Generalization theory

	6.1.3 Computational considerations
	6.1.3.1 Scaling challenges
	6.1.3.2 Hardware efficiency
	6.1.3.3 Distributed training

	6.2 Hyperparameter sensitivity analysis
	6.3 Applicability guidelines
	6.3.1 High-value applications
	6.3.2 Technical prerequisites
	6.3.2.1 When NOT to use SMI

	6.4 Future research directions
	6.4.1 Immediate extensions
	6.4.1.1 Large-scale validation
	6.4.1.2 Automated hyperparameter selection
	6.4.1.3 Hardware optimization

	6.4.2 Theoretical advances
	6.4.2.1 Optimal frequency theory
	6.4.2.2 Generalization analysis
	6.4.2.3 Convergence rate analysis

	6.4.3 Method extensions
	6.4.3.1 Adaptive frequency selection
	6.4.3.2 Multi-scale processing
	6.4.3.3 Integration with modern optimizers

	6.4.4 Broader impact
	6.4.4.1 Environmental considerations
	6.4.4.2 Democratization of AI
	6.4.4.3 Industrial applications

	7 Conclusion
	7.1 Key contributions and insights
	7.1.1 Methodological contribution
	7.1.2 Theoretical framework
	7.1.3 Empirical validation
	7.1.4 Implementation contribution

	7.2 Broader implications
	7.2.1 Alternative optimization perspectives
	7.2.2 Cross-disciplinary exploration
	7.2.3 Efficiency-performance considerations
	7.2.4 Hardware-algorithm considerations

	7.3 Study limitations
	7.3.1 Scale validation
	7.3.2 Domain generalization
	7.3.3 Experimental scope
	7.3.4 Cross-Domain application potential
	7.3.5 Hyperparameter complexity
	7.3.6 Statistical methodology

	7.4 Research impact and future directions

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

