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evaluation, and future directions
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Background: Anxiety is a pervasive mental health disorder with severe
implications for individual wellbeing and societal productivity. The contemporary
rise of anxiety, particularly among youth in digitally-saturated environments,
underscores a critical need for advanced predictive tools to facilitate early
intervention and mitigation. While machine learning (ML) holds significant
promise in this domain, a comprehensive synthesis of its application in anxiety
prediction, along with a critical evaluation of methodological trends and gaps, is
only emerging in the literature. The main idea of the current systematic review is
to bridge the understanding of current ML applications in mental health with the
critical needs for enhanced diagnostic precision, personalized interventions and
prevention.

Objectives: This systematic review aims to systematically synthesize research
on ML approaches to predicting anxiety, critically evaluating the algorithms,
features, and validation techniques employed across studies. The objective is to
identify prevailing ML techniques, assess their performance, and highlight crucial
methodological trends, existing gaps, and their implications for effective early
intervention and real-world deployment.

Eligibility criteria: Studies included had to apply machine learning techniques to
predict anxiety or its severity using either clinical or behavioral datasets. Exclusion
criteria included non-English language papers, reviews, older or previously
reviewed publications, and those not specifically targeting anxiety. We focus on
questionnaire research, but also discuss multimodal fusion techniques.
Information sources: We searched the Scopus database and Google Scholar
for articles published between 2018 and 2025 using combinations of keywords
including "anxiety prediction,” “machine learning,” and “mental health.” The last
search was conducted in July 2025.

Risk of bias: Studies were screened in two phases: (1) by verifying the presence of
relevant keywords in the main body, and (2) by reviewing title, introduction, and
conclusion to ensure alignment with anxiety prediction via ML. Studies relying
solely on self-reported metrics or with unclear algorithmic transparency were
noted for potential bias.

Results: A total of 19 studies were included, encompassing 44, 608 participants.
GAD-7 and DASS-21 were the most commonly used diagnostic instruments. ML
techniques such as Random Forest and Gradient Boosting achieved the highest
predictive accuracy, with some studies reporting up to 98% accuracy. Metrics like
F1-score, AUC, and specificity were commonly reported.

Limitations of evidence: Existing studies display a range of methodological and
conceptual limitations that constrain their generalizability and clinical utility. The
review identified significant methodological limitations hindering generalizability
and clinical utility, including reliance on small, homogeneous samples, which
raises concerns about overfitting and population bias. Furthermore, common
issues include a lack of external validation, inconsistent evaluation metrics, and
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the "black-box" nature of many ML algorithms, which impedes clinical trust and
adoption.

Interpretation: The findings support the effectiveness of machine learning for
anxiety detection and prediction, particularly in early intervention contexts. The
integration of explainable ML and diverse, clinically validated data is necessary
for real-world deployment. The existing body of research also shows a notable
scarcity in studies predicting anxiety before symptom manifestation. These
insights emphasize the critical need for integrating explainable ML (XAl) and
utilizing diverse, clinically validated datasets to enable real-world deployment
and proactive mental health support.

KEYWORDS

anxiety prediction, machine learning, mental health diagnostics, anxiety symptoms,

mental health

Introduction

“The ‘anxious generation’ faces new pressures unlike any
before, where virtual social lives can provoke intense stress and
worry about acceptance and self-worth.” — Haidt, 2024, p. 58

Anxiety is considered a future-oriented, long-acting response
broadly focused on a diffuse threat, whereas fear is an appropriate,
present-oriented, and short-lived response to a clearly identifiable
and specific threat (American Psychological Association, 2018).
Dedicating more resources and attention to the topic of anxiety
can ultimately assist individuals in leading happier, healthier lives.
Findings of research suggest that anxiety significantly influences
individuals’ self-perceived health and overall wellbeing, much like
depression (Hanna and Strober, 2020). This is a significant concern
because anxiety can ultimately lead to suicide. To emphasize this
point, Nepon et al. (2010) concluded that more than 70% of
respondents who had attempted suicide at some point in their lives
also had experienced an anxiety disorder.

Recent cultural analyses, such as Haidts The Anxious
Generation (2024) highlight a growing mental health crisis among
youth, particularly anxiety-related disorders, in relation to digital
environments and social media exposure. This sociocultural
backdrop further motivates the application of machine learning
techniques to better understand, predict, and mitigate anxiety
in younger populations. In the following section, we examine
machine learning methodologies used in mental health research,
with particular attention to how they might offer insights into
the behavioral patterns, risk factors, and intervention pathways for
anxiety disorders in digitally immersed generations.

The symptoms of anxiety encompass a range of experiences that
can significantly impact an individual’s wellbeing. These include
excessive worry, which often manifests as persistent thoughts about
potential future events (Fell et al., 2023; Stapinski et al., 2010; Wells,
1995; Mathews, 1990; Stein and Sareen, 2015; Hoge et al., 2012).
Physically, anxiety may manifest in physiological responses such
as an increased heart rate, sweating, muscle tension, and headache
(Stein and Sareen, 2015; Crawley et al., 2014; Hoge et al., 2012; Pary
et al,, 2003). Additionally, individuals experiencing anxiety may
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find themselves withdrawing from social interactions, leading to a
sense of isolation (Teo et al., 2013). Sleep disturbances, particularly
insomnia, are common manifestations of anxiety, as the mind races
with persistent thoughts, making it challenging to relax (Crawley
et al,, 2014; Stein and Sareen, 2015; Hoge et al.,, 2012; Pary et al,,
2003). Moreover, symptoms include difficulty concentrating and
irritability (Pary et al., 2003; Vidal-Ribas et al., 2016; Stringaris,
2011).

Detection of anxiety refers to the process of identifying or
recognizing the presence, symptoms, or indicators of anxiety
disorders or heightened anxiety levels in individuals. Prediction of
anxiety involves forecasting or estimating the likelihood, severity,
or future progression of anxiety-related conditions in individuals.
Detecting anxiety involves recognizing current symptoms or
indicators, which then inform predictive models for estimating
future anxiety levels or risk. Anxiety can have various symptoms.
Physically, it might mean a racing heart, tense muscles, or
trouble breathing. Mentally, it can bring excessive worry, difficulty
concentrating, or racing thoughts. Emotionally, it might result
in irritability, fear, or sudden panic. Behaviorally, it could lead
to avoiding certain situations or experiencing trouble sleeping.
Recognizing these symptoms helps build models that estimate
future anxiety levels or risks in individuals.

One way of mitigating the impact of anxiety could be early
detection. Research by Hanna and Strober (2020) indicates that
early identification of anxiety reduces its effects. Notably, machine
learning algorithms have proven their power in diagnosing anxiety.
For example, a study by Priya et al. (2020) successfully predicted
anxiety, defined the Random Forest algorithm as the best, and has
been foundational work for subsequent research in the past 3 years.
In one such recent study, the Marine Predators Algorithm and kNN
demonstrated a high accuracy of 98.11% in detecting anxiety and
depression in pregnant women (Ogiir et al., 2023). Moreover, in
a separate study involving a sample of 3,984 students aged 10—
15 years in fifth to ninth grades, researchers made remarkable
progress in predicting anxiety, achieving an impressive accuracy
rate of 92.4% (Qasrawi et al., 2022). In a different study conducted
by Sajja (2021), the anxiety levels of 600 university students were
predicted using machine learning techniques, reaching an accuracy
rate of 94%. Additionally, Ratul et al. (2023) concentrated on
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predicting psychological and social stress levels. In this research,
machine learning models demonstrated remarkable accuracy,
achieving 80.5%. These results emphasize the efficiency of machine
learning in diagnosing and categorizing anxiety, highlighting its
fundamental role in addressing mental health issues.

Artificial intelligence (AI) and machine learning (ML)
are integrated now in diagnostic assistance. By integrating
behavioral and physiological data from digital methods, the
approach enables passive, real-time detection of anxiety risk. The
methodological innovation is in the use of interpretable temporal
models, grounded in computational clinical psychology and
psychiatry, to capture symptom trajectories and environmental
triggers. This work offers generalizable lessons for embedding
ML within educational informatics to enable proactive, data-
driven mental health support. ML has progressively transformed
the understanding and treatment of mental health disorders,
tracing its roots back to early computational models of human
communication and decision-making. One of the pioneering
efforts in this domain was Weizenbaum (1966) development of
ELIZA, an early natural language processing program simulating
therapeutic conversations, which laid foundational groundwork
for human-computer interaction in mental health contexts.
Subsequent advances in probabilistic reasoning and Bayesian
models, exemplified by Charniak and Goldman (1993), further
contributed to the computational modeling of complex psychiatric
diagnosis processes. More recently, machine learning techniques
have been extensively applied in clinical psychology and psychiatry
to enhance diagnostic accuracy and predict treatment outcomes
(Dwyer et al, 2018). The advent of digital phenotyping, as
articulated by Insel (2017), has introduced novel methods for
behavioral data collection via ubiquitous devices, enabling a new
science of mental health that leverages continuous, real-world
monitoring. Complementing these approaches, natural language
processing applied to non-clinical texts offers promising avenues
for detecting mental health signals outside traditional clinical
settings, broadening the scope of computational psychiatry (Calvo
etal, 2017). Together, these advances highlight a multidisciplinary
convergence that is reshaping both the theoretical understanding
and practical management of mental health conditions through Al

The rapid development of machine learning (ML) has
catalyzed significant advances in mental health diagnostics,
particularly through secondary studies that synthesize evidence
across empirical models. Systematic reviews and narrative
surveys have become essential in revealing methodological
trends, identifying bias sources, and guiding future designs in
anxiety detection. Among the most influential recent studies are
a systematic review targeting student populations (Schaab et al.,
2024), a biosignal-centered survey of detection systems (Ancillon
et al., 2022), and a broad scoping review on mental disorders
and stress-related predictions (Razavi et al., 2023). Also, Schaab
et al. (2024) examined 48 studies assessing ML-based detection of
anxiety, depression, and stress in undergraduate students. While
most models showed internal accuracy exceeding 70%, anxiety-
specific performance varied from 53.7 to 98%. A key limitation
noted was the near-total absence of external validation—only
one study employed it—rendering most findings potentially
overfit and context-specific. The authors applied the GRADE
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framework and rated the overall certainty of evidence as “very low,”
emphasizing the gap between promising technical performance
and clinical applicability.

Additional reviews provide further insight into MLs application
across diverse populations and data sources. Pintelas et al. (2018)
conducted a comparative review focused specifically on anxiety
disorders, revealing that ML methods show substantial potential in
disorder prediction, although accuracy varied by anxiety subtype
and algorithm used. They reviewed 16 studies from 2010 to 2017.
Similarly, Ahmed et al. (2022) reviewed 54 studies, from 2010 to
2021, leveraging social media data to detect anxiety and depression,
particularly during the COVID-19 pandemic. Their findings
highlighted how users’ online behaviors and language patterns—
collected from platforms such as Twitter, Facebook, Reddit, and
Weibo—can inform predictive modeling. This approach holds
promise for augmenting traditional screening tools, especially in
contexts with limited access to mental health services.

Further expanding the landscape, Abd-alrazaq et al. (2023)
conducted a systematic review and meta-analysis on wearable Al
technologies for anxiety detection. Synthesizing results from 21
studies, they reported a pooled mean accuracy of 0.82, sensitivity
of 0.79, and specificity of 0.92. While the performance was not
significantly moderated by device type, algorithm, or validation
method, the review concluded that wearable AT is not yet suitable
for clinical deployment and should be used to complement—rather
than replace—traditional assessments. Notably, the authors called
for more refined tools capable of real-time anxiety detection and
differentiation between anxiety subtypes.

A complementary survey by Ancillon et al. (2022) explored
anxiety detection via physiological biosignals, including EEG,
ECG, electrodermal activity (EDA), and respiration. They reviewed
studies from 2012 to 2022, with sample sizes ranging from
10 to 102 and reported accuracies between 55 and 98%. The
highest-performing models typically integrated multiple signals—
especially EDA and heart rate—suggesting that multimodal
approaches outperform univariate models. Despite this, limitations
persisted: small datasets, lack of benchmarking, and inconsistent
preprocessing protocols hindered generalization. Traditional
ML classifiers such as random forests and SVMs remained
dominant, while neural networks were increasingly adopted
for automated feature learning. Expanding the scope, Razavi
et al. (2023) conducted a scoping review of 98 studies focused
on stress and related disorders, reinforcing earlier observations.
The authors noted strong methodological convergence—reliance
on supervised learning, limited personalization, and rarely
interpretable models. Issues such as scarce real-world deployment,
missing transparency metrics, and poor adaptation to contextual
variables remain common.

These studies converge on four recurring themes. First,
most models exhibit high internal accuracy but suffer from
limited external validation, undermining their readiness for
deployment (Schaab et al., 2024; Ancillon et al, 2022; Abd-
alrazaq et al., 2023). Second, biosignal fusion—especially EEG,
ECG, and EDA—significantly improves predictive performance,
though such methods remain largely confined to controlled
lab settings (Ancillon et al., 2022; Abd-alrazaq et al., 2023).
Third, the widespread use of tree-based and neural architectures
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reveals a methodological plateau, while interpretability, fairness,
and contextual modeling are underprioritized (Razavi et al,
2023; Pintelas et al, 2018). Fourth, the lack of standardized
feature engineering, preprocessing pipelines, and benchmarking
frameworks continues to fragment the field (Razavi et al., 2023;
Ahmed et al., 2022).

These findings inform our conceptual pipeline design for
anxiety prediction rooted in behavioral science. Specifically, they
stress the need for external validation protocols, multimodal
data integration, and transparent model architectures. Embedding
psychological theory and intersectional sensitivity at each pipeline
stage may help resolve persistent challenges and align AI systems
more closely with human experience.

We invite the reader to think about trying to predict a storm:
current ML models are excellent at recognizing the signs of
an approaching storm (detecting anxiety symptoms) and even
forecasting its intensity once its visible (predicting severity).
However, this review highlights that we're still building the tools
to reliably predict a storm before the clouds even gather on the
horizon, and we need to ensure our weather stations (data sources)
are diverse and our forecasting models (algorithms) are transparent
enough for meteorologists (clinicians) to truly trust and act upon
their predictions.

We structured our inquiry around one primary research
question, supported by three secondary questions that guide and
deepen our discussion. These research questions are as follows:

1. (1) To what extent has machine learning (ML) been used to
predict anxiety, and how comprehensively has this area been
explored in the literature?

And then the secondary questions:

2. (1.1) What machine learning methods have been applied to
anxiety prediction, and which have demonstrated superior
performance?

3. (1.2) Which feature selection algorithms are most commonly
utilized in building predictive models for anxiety?

4. (1.3) What evaluation metrics are used to assess the accuracy and
effectiveness of ML models in anxiety prediction?

The increasing number of individuals having anxiety creates
the need to improve the prevention and treatment strategies.
As discussed above, Machine learning techniques are showing
good results in predicting the disorder, which could prevent
the deterioration of the symptoms. However, there is a lack
of investigations of studies focusing on predicting anxiety with
Machine learning and it is a fairly new area of research.

This systematic review synthesizes existing research on
machine learning (ML) approaches for anxiety prediction by
critically examining the algorithms, feature sets, and validation
techniques employed across studies. The primary objective is to
identify the most commonly used ML models, evaluate their
predictive performance, and extract key methodological trends. In
doing so, the review also highlights significant limitations, research
gaps, and implications for early detection, clinical implementation,
and real-world deployment of ML-based anxiety prediction
systems. Ultimately, this paper aims to provide a comprehensive
understanding of the current landscape of ML applications
in anxiety prediction-identifying successful strategies, recurring
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challenges, and opportunities for methodological advancement.
The study is intended to serve as a valuable resource for
mental health professionals, machine learning practitioners,
software developers, and researchers in psychology, psychiatry, and
computational healthcare.

Methodology

We utilized the Scopus database and Google Scholar for
our paper analysis. Scopus, an abstract and indexing database,
contains peer-reviewed literature with full-text links. It was named
after the Hammerkop bird, known for its exceptional navigation
abilities. The Scopus records span back to 1,788 and comprise over
44,000 titles from around 7,000 publishers. Among these titles,
nearly 35,000 are peer-reviewed journals in various subject areas.
Scopus encompasses a range of formats, including books, journals,
and conference papers, across fields such as science, technology,
medicine, social sciences, and arts and humanities.

A search query looks as follows: (“anxiety predict*” OR
“predict* anxiety” OR “predict* depression” OR “predict* distress”)
AND (“machine learning” OR “artificial intelligence” OR “data
mining” OR “predictive modeling”). It produced 255 results.
Depression and distress are other mental health disorders that are
often studied in conjunction with anxiety. It is important to note
that by excluding the terms “depression” and “distress” from the
query and searching for “(“anxiety predict*” OR “predict* anxiety”)
AND (“machine learning” OR “artificial intelligence” OR “data
mining” OR “predictive modeling”),” we obtained a reduced set
of only 55 results. This represents approximately 20% of the total
results. This suggests that comprehensive research on machine
learning predicting anxiety is still in its infancy.

Google Scholar is a freely available service that allows to search
for scholarly literature - scientific papers, articles and books, which
is an academic version of Google. It was built 20 years ago, in
2004 by Anurag Acharya and Alex Verstak, the same year as the
Scopus database. We used the search query “machine learning”
AND “anxiety prediction.” The results were filtered to include only
recent years (2018-2025). The papers retrieved went through a
two-step process to determine whether they should be excluded
based on specific exclusion criteria. In the first step, we checked
whether the keywords “Anxiety” and “Machine learning” were
used and excluded publications where they were used only in
the bibliography. Furthermore, papers that were too short (less
than 7 pages) and not written in English were excluded. In the
second step, we read the title, introduction, and conclusion of each
paper. The papers that do not research the topic of predicting
anxiety with ML were excluded. Among those were publications
that discussed predicting other types of mental disorders such
as apathy, depression, burnout, and suicidal ideation along with
diseases like cancer, dementia, heart disease, etc. Additionally, we
excluded literature review papers (see Figure 1). Moreover, the
publications that were old and have already been analyzed in
previous literature reviews were also excluded, so we focused on
new research.

Despite notable progress in the application of AI to
mental health,

a critical review of the literature reveals
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* Google Scholar
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- Published before 2017
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Excluded literature
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review papers

Screening the paper

Records excluded:

Y

- <7 pages
- Not written in English

Screening the title,

Records removed:

discussed predicting other

introduction, conclusion

FIGURE 1

interdisciplinary investigation.

PRISMA flowchart describing the selection process of papers analyzed in the current review. It is noteworthy that while recent advancements
demonstrate the growing role of Al in mental health, at least thirteen foundational and review papers explicitly comment on the persistent limitations
in our understanding of core psychiatric disorders, particularly anxiety and depression. These works often highlight the relatively low volume of
targeted research in this space compared to other medical domains, signaling both a challenge and an opportunity for more rigorous,

Y

mental disorders: apathy,
depression, burnout, and
suicidal ideation

Studies included in analysis:

N=19

that at least thirteen key a lack of the use of these
technologies in foundational

disorders such as anxiety. These papers frequently point to

understanding of psychiatric

a disproportionately lower research focus in computational
psychiatry This
imbalance highlights a need for more robust, theory-driven

compared to other medical domains.

research that integrates clinical knowledge with advanced AI
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methodologies, thereby strengthening the translational impact of
these technologies.

In the following section, we explore machine learning methods
that have been applied to mental health research, with a
particular focus on their potential to improve diagnostic precision,
enable personalized interventions, and uncover latent patterns in
behavioral and clinical data.
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Overview of machine learning anxiety
prediction techniques

A variety of Machine Learning (ML) algorithms have been
employed to predict anxiety and related mental health outcomes,
utilizing diverse datasets and methodological approaches.
Machine learning broadly encompasses three main types:
Supervised, Unsupervised, and Reinforcement Learning. Among
these, Supervised machine learning is predominantly used for
making predictions and relies on structured, labeled training
data.

strong methodological convergence, indicating a reliance on

The studies reviewed in the sources demonstrate a
supervised learning for anxiety prediction. This approach is
well-explored for classification tasks in machine learning. In
contrast, Unsupervised machine learning is generally employed
to understand relationships within datasets, while Reinforcement
Learning is used to enable models to choose actions within an
environment to maximize rewards in particular states. These
distinctions are important for understanding the different
applications of machine learning approaches in predicting anxiety.

Below, we will examine several different types of ML
models and comprehensively explore their respective strengths
and limitations. This includes both classical algorithms—such as
decision trees, support vector machines, and logistic regression—
and more complex architectures like deep neural networks
and fuzzy systems. Each class of model offers distinct trade-
offs: while some excel in interpretability and simplicity, others
prioritize predictive performance at the cost of transparency.
Understanding these differences is essential when selecting models
for sensitive domains such as mental health, where both accuracy
and explainability are crucial.

Support Vector Machines (SVM) are particularly valuable
for anxiety prediction due to their ability to effectively handle
high-dimensional, low-sample-size data—a frequent challenge in
clinical psychological datasets. SVMs excel in binary classification
tasks such as distinguishing between anxious and non-anxious
individuals. Kernel functions such as the radial basis function (RBF)
allow SVMs to model complex, nonlinear relationships between
behavioral, physiological, or multimodal input features and anxiety
states (Cortes and Vapnik, 1995; Noble, 2006). This is critical when
working with heterogeneous features (e.g., EEG, facial expressions,
self-reports) that often exhibit nonlinear correlations with anxiety.
Prior studies have demonstrated SVMs superior performance in
clinical prediction tasks, including anxiety disorder classification,
compared to other machine learning models (Gavrilescu and
Vizireanu, 2019).

Decision Trees, with their transparent and hierarchical
decision logic, are frequently employed in mental health research,
particularly when model interpretability is critical. This is especially
important in clinical and psychological settings, where explainable
outcomes can inform therapeutic decision-making and increase
clinician trust (Lundberg and Lee, 2017). Decision Trees enable the
tracing of anxiety-related decision paths, allowing researchers and
practitioners to identify threshold values in stress, sleep quality,
or physiological signals that contribute to high-risk classifications
(Figure 2a). Their capacity to visualize branching logic and feature
importance makes them well-suited for analyzing multi-factorial
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mental health data in a way that is both human-interpretable and
diagnostically useful (Pratt et al., 2016; Wu et al., 2020).

Here it also important to mention other Tree-Based Models
and Boosting Techniques. Benito et al. (2024). used XGBoost for
classifying anxiety severity based on self-report and environmental
variables. SHAP values were utilized to enhance interpretability.
Qasrawi et al. (2022) and Bhatnagar et al. (2023) applied Gradient
Boosting (GB) and Random Forest (RF) models. GB minimized
additive loss functions, while RF relied on majority voting. Sau
and Bhakta (2017) tested multiple classifiers, including Random
Forest and Naive Bayes, with RF outputs derived from aggregated
tree votes. Li et al. (2024) employed a Random Forest with
Under-Sampling (RF-US) algorithm, which predicts outcomes
based on an ensemble of decision trees, each voting for the
most probable class. Under-sampling was specifically applied to
balance class distribution by randomly reducing the majority
class samples. Hyperparameters were optimized through Bayesian
optimization minimizing the out-of-bag error. Random Forest
constructs multiple decision trees on subsets of data and aggregates
predictions through majority voting.

Bayesian Networks, are especially useful in modeling
probabilistic relationships among psychosocial variables such as
stress, sleep, and social support (see Figure 2b). Their strength
lies in explicitly representing conditional dependencies, enabling
scenario testing (e.g., how does improved sleep modify anxiety risk
under high stress?), as shown in Equation 1.

P(Xy,.... Xy) = [ [ P(Xi | pa(Xy) 1)

i=1

where pa(X;) denotes the set of parent nodes of X; in the Bayesian
Network graph.

In regards to anxiety, Artificial Neural Networks (ANNs)
shine. They model complex interactions and learning hidden
representations from behavioral, physiological, and text-
based features that are so important to combine for accurate
diagnosis, prevention of anxiety. ANNs are highly adaptable
and capable of data

(e.g., GSR, speech, smartphone usage) for dynamic anxiety

incorporating multimodal streams

prediction. The foundational transformation is shown in
Equation 2, where feature weights and bias are optimized
through backpropagation to minimize prediction error. ANNs
have become a cornerstone in anxiety prediction research
due to their ability to model nonlinear, high-dimensional
relationships across diverse input features. Studies such as Priya
et al. (2020) and Schaab et al. (2024) have demonstrated the
effective use of ANNs for classifying anxiety severity based on
behavioral, self-reported, and physiological indicators. ANNs
are particularly valuable in settings where patterns of anxiety
symptoms are subtle, temporally variable, and influenced by

complex contextual cues. A simple ANN is given in Equation 2:

z=f_ (wi-x)+b), @)

i=1

where f is an activation function such as the sigmoid,
tanh, or ReLU. Here, z represents the neuron’s output, x; are
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(a) Decision Tree for Anxiety Prediction
FIGURE 2

(a) Decision Tree and (b) Bayesian Network for Anxiety Prediction. Sleep and stress are widely recognized as critical factors influencing the risk of
anxiety. Increased sleep deprivation and heightened stress levels both elevate the likelihood of anxiety symptoms manifesting (b). A Bayesian
Network for Anxiety Variables illustrates the interrelationships between key factors: “Sleep,” “Stress,” “Social Support,” and “Anxiety.” In this network,
“Sleep” and “Stress” are variables that potentially influence the development of anxiety, while “Social Support” acts as a mitigating factor. The arrows
in the network represent causal relationships. Specifically, both “Sleep” and "Stress” are shown to have a direct influence on "Anxiety,” as indicated by
arrows pointing from insufficient sleep and heightened stress to anxiety. Notably, the arrow pointing from "Anxiety” to “Social Support” is reversed,
reflecting literature that suggests higher anxiety can negatively impact social engagement, thereby reducing social support.

(b) Bayesian Network for Anxiety Variables

input features such as sleep quality, stress level, or heart rate
variability, w; are learned weights indicating the importance of
each input, and b is a bias term allowing the network to fit
data more flexibly. During training, the model updates w; and
b to minimize prediction error, typically via backpropagation
and gradient descent. ANNs have proven particularly useful in
fusing multiple modalities. For instance, Ancillon et al. (2022)
reported that neural networks achieved high accuracy in anxiety
detection when combining biosignals (e.g., GSR, ECG) with
speech-derived features, even outperforming traditional classifiers
in multimodal settings. Razavi et al. (2023) further emphasized
their scalability in analyzing large time-series datasets from
wearable sensors, enabling passive and continuous monitoring of
anxiety symptoms.

Despite their strengths, a common criticism of ANNs is their
opacity-the so-called “black-box” problem. This poses challenges
in clinical applications where interpretability is essential. However,
recent advances in Explainable AI (XAI) are beginning to
mitigate this concern. Notably, SHapley Additive exPlanations
(SHAP) and Layer-wise Relevance Propagation (LRP) allow for
attributing a model’s output to specific input features, enabling
practitioners to understand whether anxiety predictions are driven
by elevated heart rate, disrupted sleep, or sudden behavioral shifts
(Lundberg and Lee, 2017). These methods improve trust and
transparency in neural models applied to mental health. ANNs
are particularly well-suited for anxiety prediction due to their
ability to:

e capture nonlinear
psychophysiological and behavioral features,

complex, dependencies  among
e scale across datasets with high input dimensionality,

e integrate multimodal signals effectively, and

e adapt to real-time streaming data for continuous monitoring,

so important for digitalised applications.
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These capabilities make ANNs a compelling tool in both
research and clinical applications for mental health, especially when
paired with interpretability tools to foster trust and transparency.

Vitoria et al. (2024) implemented a Multilayer Perceptron
(MLP) to predict anxiety and depression scores based on responses
to PROMIS® questionnaires and self-reported wellbeing indicators
(see Figure 3). The MLP architecture consisted of fully connected
layers where each neuron applies a weighted sum of inputs followed
by a non-linear activation. The forward propagation process is
defined as in Equation 3:

nj—1
i) _ (i—1) (i—1)
hjl —f<2wk,j hkl ),

k=1

3)

where h]@ is the activation of the j-th neuron in the i-th hidden

layer, ng_

and neuron j in the i-th layer, and f is the activation function. The

Y is the weight between neuron k in the (i — 1)-th layer

model was trained using the Adam optimizer with a learning rate of
1 x 10~ batch size of 128, and early stopping based on the number
of epochs. A five-fold cross-validation was used for evaluation.
Mohamed et al. (2023) developed a hybrid model integrating
Support Vector Machines (SVM), Multilayer Perceptrons (MLP),
and Random Forests. The MLP produced outputs via a nonlinear
activation function, see Equation 4:

y= @(wa +b) (4)
where ®(-) is a nonlinear activation function. Thus, ANNs as a
powerful tool for both research and clinical applications in mental
health—particularly ~ when
that
among practitioners.

combined with interpretability

techniques enhance transparency and build trust

Fuzzy Inference System is another promising yet, less known
approach to ML methods in predicting anxiety (see Figure 4).
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FIGURE 3

A single-layer perceptron serves as a foundational model for predicting anxiety levels based on physiological inputs. In this setup, each input node
represents a specific biomarker associated with anxiety, such as heart rate, galvanic skin response (GSR), sleep quality, and speech rate. These inputs,
each assigned a corresponding weight reflecting their learned contribution to the prediction task. The bias term allows the decision boundary to
shift. This linear combination z is then passed through a nonlinear activation function, such as the sigmoid or ReLU and produce a final anxiety risk
score. The resulting output reflects the likelihood or intensity of anxiety in the subject based on the input features. This basic structure forms the
computational unit for more complex neural architectures employed in affective computing and mental health prediction systems.

HRV
(Heart Rate
Variability)

GSR (Gal-
vanic Skin
Response)

Fuzzy Sets

Fuzzifier

Rule Base

Inference

Engine

Speech Tempo Defuzziﬁﬂ

Anxiety
Facial Tension Risk Score

FIGURE 4

This diagram illustrates a fuzzy inference system (FIS) architecture designed for anxiety risk prediction using multimodal physiological and behavioral
inputs. Key features such as heart rate variability (HRV), galvanic skin response (GSR), speech tempo, and facial tension are first mapped into fuzzy
sets through the fuzzifier. These fuzzy representations are then processed by a rule base governed by expert-defined linguistic rules. The inference
engine aggregates outcomes, which are then translated back into a crisp output via the defuzzifier, yielding an interpretable anxiety risk score. The
modular design emphasizes explainability, enabling integration with clinical or wearable Al applications for mental health monitoring.

One type of Fuzzy Inference System are Neuro-Fuzzy Systems  and output variables. NFSs are used for modeling complex and
(NFS). NFS combine elements of neural networks and fuzzy logic. ~ uncertain systems and find applications in various fields, including
They can develop fuzzy rules and membership functions for input  control systems, decision support, and pattern recognition.
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The system processes inputs through five layers:
Layer 1 (Fuzzification): Each node computes a membership
grade, see Equation 5:

oﬁ” = jua; (1), O;I) = pg;(x2) )

Layer 2 (Rule Firing Strength): Each node multiplies incoming
signals, see Equation 6:

wi = ja;(x1) - 1, (x2) (6)

Layer 3 (Normalization): Normalized firing strength, see
Equation 7:
_ Wi
J— 7
Wi w1+ w, (7)
Layer 4 (Weighted Rule Output): Each node computes, see
Equation 8:

wifi = wi(pix1 + gixa + 1) (8)

Layer 5 (Output Aggregation): Final output, see Equation 9:

y= wf ©)

Gaussian process and general linear models

Portugal et al. (2019) applied Gaussian Process Regression
(GPR) to predict anxiety levels based on fMRI activation patterns.
GPR is appropriate for small sample sizes and high-dimensional
fMRI data. They used both two-fold and five-fold CV with balanced
scanner distributions across folds, applied 1,000 permutations
and Bonferroni correction (threshold = 0.005), which is very
cautious. Jafari et al. (2025) utilized Logistic Lasso Regression
(LLR) and Logistic Elastic Net Regression (LENR) to classify
anxiety in preschool children based on functional connectivity
(FC) from fMRI data and clinical variables. LLR incorporates an
L1 penalty to shrink coefficients of less important features to
zero, effectively performing feature selection. LENR combines L1
and L2 penalties to handle correlated features and reduce model
complexity. Perpetuini et al. (2021) employed a General Linear
Model (GLM) for predicting state anxiety using physiological data
such as pulse rate variability (PRV) and estimated systolic blood
pressure (ABP).

Other Al methods

Priya et al. (2020) compared five algorithms using DASS-
21 scores, finding SVM most effective. Ku_Min_2024 evaluated
five classifiers and introduced a composite score (CS) to assess
model robustness. Bhatnagar et al. (2023) also employed Naive
Bayes, which estimates class probabilities. Al-Nafjan and Aldayel
(2024) employed three machine learning algorithms-Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random
Forest (RF)—for anxiety classification based on Galvanic Skin
Response (GSR) signals. The SVM classifier separates classes by
constructing an optimal hyperplane that maximizes the margin
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between different classes. The KNN classifier predicts class labels
based on the majority class among the k closest samples.

Ensemble methods technique is another approach. They aim to
improve the accuracy of results in models by combining multiple
models instead of a single model. In machine learning models,
errors often come from noise, variance, and bias sources. Ensemble
methods in machine learning play a crucial role in minimizing
these factors, ultimately improving the accuracy and stability of
machine learning algorithms. They proved their effectiveness in
reducing model variance, thereby increasing prediction accuracy.
This reduction in variance occurs through the combination of
multiple models, forming a single prediction selected from the
various predictions generated by the ensemble of models. There are
three types of ensemble methods: stacking, boosting, bagging. In
Figure 5, the process of stacking is illustrated.

For example, Basterfield and Newman (2025) used Elastic
Net and Gradient Boosted Trees to predict Generalized Anxiety
Disorder (GAD). Daza et al. (2023) proposed a stacking ensemble
approach using multiple base learners, with predictions aggregated
by a level-1 meta-mode. Aldayel and Al-Nafjan (2024) utilized
ensemble learning algorithms—Random Forest (RF), AdaBoost
Bagging, and Gradient Bagging-to classify anxiety states from
EEG signals.

Multimodal learning with pretrained transformer and LSTM
models were used in Li et al. (2024). The researchers proposed
a multimodal anxiety prediction model that integrates text
and audio modalities. For the text modality, they employed
BERT (Bidirectional Encoder Representations from Transformers)
pretrained on Chinese corpora, fine-tuned on speech transcripts.
For the audio modality, they used Long Short-Term Memory
(LSTM) networks to extract temporal features such as pitch
and Mel-Frequency Cepstral Coeflicients (MFCCs). The output
from both modalities was concatenated and passed to a linear
classification layer for binary anxiety prediction (anxious vs. non-
anxious). The model was evaluated using five-fold cross-validation,
with early fusion yielding the best results.

Anxiety screening methods

There are many methods currently used in the diagnosis of
anxiety. The most used methods in the relevant literature include:

1. GAD-7: a questionnaire measuring generalized anxiety disorder
severity. It has seven questions, with scores ranging from 0
to 21, with higher scores indicating more severe anxiety. It
helps assess and monitor anxiety levels in clinical settings. It is
widely used in studies by many researchers such as Daza et al.
(2023), Qasrawi et al. (2022), and Bailey and Strunk (2023),
etc., while some researchers utilized it as a base in building an
original questionnaire.

2. DASS-21: stands for the Depression, Anxiety, and Stress Scale-
21 Items. It is a self-report questionnaire designed to measure
the severity of common mental health symptoms. The DASS-
21 is a shorter version of the original DASS with 42 items.
The questionnaire consists of three subscales, each focusing
on a different aspect of mental health: depression, anxiety,
and stress. Participants rate the extent to which they have
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FIGURE 5

Stacking ensemble is an advanced machine learning technique that combines multiple base models to improve predictive performance. By training a
meta-learner on the outputs of these base models, stacking leverages their complementary strengths and reduces generalization error.
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experienced each symptom over the past week on a Likert
scale. The DASS-21 is widely used in research and clinical
settings to assess and monitor the emotional wellbeing of
individuals. A study with the highest number of citations used
it to screen anxiety and classify the severity (Priya et al,
2020). This research specifically identifies the consistency of
optimal machine learning algorithms applicable across various
scenarios, ultimately pinpointing Naive Bayes as the ideal choice.

Results

Dataset characteristics

The quality, diversity, and contextual relevance of datasets
used in anxiety prediction research play a pivotal role in
determining the robustness and generalizability of machine
learning models. However, a review of current literature reveals
recurring limitations in sample composition, data collection
methodology, and transparency.

A major issue across studies is the reliance on relatively small
and demographically narrow samples. For instance, Bhatnagar
et al. (2023), Priya et al. (2020), Daza et al. (2023), Morr
et al. (2024), and Vitéria et al. (2024) used data collected
from fewer than 400 participants, often drawn from specific
university departments or regions, without stratifying for gender,
socioeconomic status, or mental health history. Such constraints
increase the risk of overfitting and restrict the applicability of
models to broader populations. Even in studies with larger samples,
such as Ku_Min_2024 (N = 4,184), the data was sourced from
a single French university, thus limiting geographic and cultural
diversity. An illustrative example is the study by Vitoria et al
(2024), which collected longitudinal self-report data from 249
participants at a single Brazilian university using the PROMIS®
questionnaires. Although this study leveraged a rich feature set
(80 variables) and repeated follow-ups (up to 15 responses per
participant, totaling 1,924 records), the sample was restricted to
university students, faculty, and staff aged 18 or older. While
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longitudinal designs enhance temporal understanding of mental
health variation, the limited demographic scope and lack of clinical
diagnosis constrain broader generalization.

Another concern lies in the age and educational homogeneity
of participants. Studies like Benito et al. (2024), Basterfield and
Newman (2025), and Li et al. (2024) primarily involved older
adults or highly educated samples, while Portugal et al. (2019)
and Perpetuini et al. (2021) included only healthy young adults.
This creates a gap in model training data for mid-life or clinically
diverse populations. Furthermore, some studies (e.g., Mohamed
etal,, 2023) did not clearly separate training features from outcome
labels, introducing potential data leakage.

Sampling methods also varied in rigor. Several studies used
convenience or snowball sampling via online forms (e.g., Qasrawi
et al,, 2022; Priya et al, 2020; Morr et al., 2024), which may
result in self-selection bias and underrepresentation of vulnerable
populations. In many cases, there was no mention of how
missing data were handled (Qasrawi et al., 2022), nor were data
distributions across anxiety severity levels provided.

Transparency in feature reporting was also inconsistent. While
some studies provided full lists of variables used (e.g., Daza et al.,
2023; Sau and Bhakta, 2017), others either omitted this information
entirely or failed to report the wording of questionnaire items
(Bhatnagar et al., 2023; Basterfield and Newman, 2025), making
it difficult to replicate or extend the findings. In contrast, Vitoria
et al. (2024) explicitly detailed the feature importance using
a connection weight algorithm, listing the top predictors for
anxiety and depression, which enhances model interpretability
and reproducibility.

Additional limitations emerge even in studies using relatively
large or neurobiologically rich datasets. For example, Li et al. (2024)
employed data from over 24,000 participants in the Canadian
Longitudinal Study on Aging (CLSA), incorporating diverse
predictors such as biological aging indices, personality traits,
and mental health scales. However, the reliance on self-reported
anxiety diagnoses and the relatively low recorded prevalence
(2.93%) raise concerns about recall bias and underreporting.
Similarly, Aldayel and Al-Nafjan (2024) utilized EEG data
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from only 23 participants exposed to anxiety-inducing stimuli,
combining objective neurophysiological measures with subjective
scales (HAM-A, SAM), but their small sample size and dependence
on SMOTE for balancing may compromise external validity.
Neuroimaging-based studies, like Jafari et al. (2025), also struggle
with data constraints; despite using fMRI to analyze functional
connectivity in preschool children, their final sample was limited
to just 45 subjects after data cleaning, reducing statistical power
and generalizability. Finally, even well-known public datasets such
as WESAD, used by Al-Nafjan and Aldayel (2024), are constrained
by small sample sizes (N = 15), male-skewed demographics, and
lab-induced anxiety conditions that limit ecological validity. These
examples collectively underscore the challenge of balancing dataset
richness with representativeness, particularly in physiological and
neurobiological anxiety prediction research.

While existing studies provide valuable insights into anxiety
prediction, the datasets used often lack the heterogeneity, size,
and documentation necessary for building scalable and clinically
reliable models. These limitations highlight the need for more
representative, longitudinal, and well-annotated datasets in future
research efforts.

Prediction models characteristics

This section summarizes various studies that utilize machine
learning for predicting anxiety levels. The discussions encompass
study outcomes, limitations, and future directions, offering insights
into the achieved results, drawbacks encountered, and potential
avenues for further exploration in this field. The key information
for each study is presented in the Table 1. The Table 2 illustrates the
distribution of machine learning method categories used across the
reviewed studies on anxiety detection.

The mean classification accuracy across the selected studies is:

n 16

1
. ':Rin:83.45%

i=1 i=1

The variance is:
1 n
ot = - § (x; — %)% ~ 88.49
n
i=1

The standard deviation is:
o =+/88.49 = 941

Table 2 summarizes and critically examines the limitations
and constraints encountered in each study, such as sample size
variability, data heterogeneity, model generalizability, and the
interpretability of machine learning outputs in clinical contexts.
Key information extracted from each study-including the nature
of the sample, instruments used for anxiety assessment, machine
learning algorithms implemented, participant numbers, parameter
settings, and primary findings. This allows for a direct comparison
of methodologies and outcomes across studies.

Table 1 emphasis is also placed on identifying trends in
algorithm selection and the types of features most frequently
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associated with successful anxiety detection. It complements this
by categorizing the machine learning methods employed, thereby
offering a visual summary of the methodological landscape in this
emerging area of research on anxiety detection.

Review of machine learning for anxiety
prediction

ML for anxiety prediction in geriatric and general
populations

Sau and Bhakta (2017) researched predicting anxiety and
depression in elderly patients using ML algorithms. They evaluated
520 geriatric patients using the Hospital Anxiety and Depression
Scale (HADS). Ten ML algorithms were assessed, including
Random Forest, Bayesian Network, Logistic Regression, Multiple
Layer Perception, Naive Bayes, and others. Random Forest
demonstrated the highest accuracy at 89% using 10-fold cross-
validation. Predictors such as age, sex, marital status, socio-
economic conditions, family environment, literacy, job security,
history of depression, and chronic medical conditions were
considered. Priya et al. (2020) aimed to identify the most
suitable ML algorithm for predicting anxiety, depression, and
stress using the DASS-21 questionnaire with 348 participants
aged 20-60. They employed Decision Tree, Random Forest Tree,
Naive Bayes, Support Vector Machine, and KNN algorithms.
The study revealed Naive Bayes achieved a high accuracy of
73.3%, while Random Forest emerged as the best model based on
the f1 score, highlighting the importance of considering metrics
beyond accuracy, especially with imbalanced classes. Key items
of a questionnaire such as “scared_without_any_good_reason,”
“Life_was_meaningless,” and “Difficult_to_relax” were identified
as significant for predicting Anxiety, Depression, and Stress,
respectively. This underscores the relevance of specific indicators
for each mental health dimension. Qasrawi et al. (2022) investigated
efficient algorithms for anxiety and depression prediction among
pregnant and postpartum women using a dataset from five Arab
countries during the COVID-19 pandemic. They included 3 569
participants and assessed seven ML algorithms, and found Gradient
Boosting (GB) and Random Forest (RF) excelled, achieving 82.9
and 81.3% accuracy for anxiety and 83.3 and 83.2% for depression,
respectively. Drawbacks included a relatively small sample size
and the subjective nature of online self-reported assessments.
To enhance future research, the study suggests expanding efforts
with larger, more representative datasets that include clinical
information, especially in low- and middle-income countries,
to improve generalizability. In Bhatnagar et al. (2023), a study
involving 127 students in India, they used a questionnaire based
on GAD-7 and DASS-21 and applied Naive Bayes, Decision Tree,
Random Forest, and SVM algorithms to classify anxiety levels. The
ML algorithms achieved an average accuracy of 75%, with Random
Forest leading at 78.9%. Their research aimed to uncover the causes
and effects of anxiety among Indian students, measure anxiety
levels using their questionnaire, and determine the most effective
ML algorithm for classification. Results indicated that as causes of
anxiety increase, the corresponding effects worsen, offering insights
for potential mitigation strategies.
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TABLE 1 Summary of machine learning studies on anxiety detection with participant numbers and parameters.

Sample and

instruments

ML methods

N-participants and
parameters

10.3389/frai.2025.1630047

Ogiir et al. (2023) Data of pregnant women MPA and kNN combined N =393, kNN neighbors=>5, Accuracy = 98.11%
window size = 2s
Portugal et al. (2019) young adults, fMRI data GPR N = 154, GPR with 5-fold CV r=0.28

Ku and Min (2024)

University students

CNN, RF, XGBoost, LR, NB

N = 4,184, CNN layers = 3,
max depth = 12

RF accuracy = 90%

Benito et al. (2024)

COVID-19 HADS survey
(Spain)

RF, XGBoost, SVM, NB, MLP,
LR

N =9,291, MLP hidden layers
=2

AUROC =0.72

Sau and Bhakta (2017) HADS clinical data BN, RE, MLP, 48, SMO, etc. N =520, multiple classifiers RF accuracy = 89%
Basterfield and Newman (2025) Diagnosed with GAD GB trees, elastic net N =126, lambda grid search Balanced accuracy = 72%
Perpetuini et al. (2021) Healthy volunteers GLM, supervised learning N =102 (54M/48F), age 20-70 | r =10.28

Fukazawa et al. (2019) Smartphone logs + STAI RF ensemble N =20, 10 decision trees F-score = 74.2%

Mohamed et al. (2023)

Pre-clinical mental health

SVM, MLP, RF

N =215, 80/20 split

RF =98.13%

Qasrawi et al. (2022)

Arab countries dataset

GBM, DRE ERE, etc.

N = 3,569, feature vector =
16-dim

GB = 82.9%, RF = 81.3%

Priya et al. (2020)

Online DASS-21

DT, RE NB, SVM, KNN

N = 348, distance metric:
Euclidean

NB accuracy = 73%

Daza et al. (2023)

GAD-7 online

Stacking 1A-4A

N =284, meta-learner: LR

Stacking 4A = 97.83%

Bhatnagar et al. (2023)

GAD-7 and DASS-21

NB, DT, RE, SVM

N =127, 5-fold CV

RF =78.9%

Vitoria et al. (2024)

Self-report data + air quality

MLP, RE, GB, SVM, DT

N =249, MAPE loss function

RF: MAPE = 6.31%

Lietal. (2024) CLSA dataset RF with undersampling N = 24,388 (714 anxiety), Balanced accuracy = 74%
resampling strategy
Jafari et al. (2025) Preschool MRI data LLR, LENR N =45, regularization A tuned | LLR accuracy = 78%

DASPS EEG, DWT/PSD

Ensemble, KNN, LDA, SVM

N =249, KNN k = 3, SVM

Aldayel and Al-Nafjan (2024)

RF accuracy = 87.5%
RBF kernel

Al-Nafjan and Aldayel (2024) GSR from WESAD

SVM, KNN, RF

KNN: 98.2%, classic:
96.9%

N =15, 14-layer autoencoder

Morr et al. (2024) Lebanese universities, COVID

+ lifestyle

LR, MLP, SVM, RE, etc.

N =329, 9 classifiers, 70/30 NB: AUC =76.37%

split

Additionally, the questionnaire reliably measured anxiety
levels, while Random Forest emerged as the best classifier with
78.9% accuracy. For future endeavors, they suggested expanding
the research across various academic departments and locations
within India to comprehend the regional impacts and diverse
challenges students face. This broader scope aims to tailor
interventions more effectively to cater to the specific needs
of different student subsets. Mohamed et al. (2023) examined
anxiety stages in a dataset of 215 individuals using SVM, MLP,
and RF models. RF achieved 98.13% accuracy in predicting
minimal to severe anxiety stages. Limitations included the absence
of biological markers, a small sample size, and the “black
box” nature of ML algorithms in mental health. “Black box”
means that ML algorithms often lack transparency as there are
difficulties in understanding how these algorithms generate their
recommendations or predictions. Because of that, people may
not have much trust in the results of techniques, especially when
dealing with sensitive issues, such as mental health. The study
proposed a hybrid model prediction and recommendation model
based on anxiety prevalence. It suggests the potential for broader
data inclusion in complex contexts like conflict zones for improved

Frontiersin Artificial Intelligence

diagnoses. In Li et al. (2024), researchers used Random Forest with
Under-Sampling (RF-US) to prospectively predict anxiety onset
approximately 3 years later among 24,388 middle-aged and older
Canadian adults from the CLSA dataset. The study included 2,599
predictors covering demographics, personality traits, frailty, and
mental health indicators. Shapley values highlighted significant
predictors such as prior depression or mood disorders, frailty,
anxious personality, and emotional instability. The model achieved
an AUC of 0.814 =+ 0.016, balanced accuracy of 74.1%, sensitivity
of 74.3%, and specificity of 73.8%, demonstrating strong predictive
capacity. This study illustrates machine learning’s potential for
early detection of anxiety onset, which can support preventive
interventions in aging populations.

Smartphone-based behavioral monitoring for
anxiety

Fukazawa et al. (2019) explored using smartphone logs
and anxiety state assessments to predict anxiety levels. They
employed Random Forest, an ensemble of decision trees, and
proposed a method combining environmental, real-world, and
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TABLE 2 Categorized ML methods across studies.

Study SVM kNN

Ogiir et al. (2023) v

Neural Nets

10.3389/frai.2025.1630047

IGES Linear Probabilistic Ensemble

Portugal et al. (2019)

Ku and Min (2024)

Benito et al. (2024) v

Sau and Bhakta (2017)

Basterfield and Newman (2025)

Perpetuini et al. (2021)

<\
IR
<\

Fukazawa et al. (2019)

Mohamed et al. (2023)

Qasrawi et al. (2022)

Priya et al. (2020) v v

Daza et al. (2023)

Bhatnagar et al. (2023)

Vitoria et al. (2024) v v

Li et al. (2024)

N N RN RN NI ENEEN

Jafari et al. (2025) v

Aldayel and Al-Nafjan (2024)

Al-Nafjan and Aldayel (2024)

SSENEEN
SSRENEEN

Morr et al. (2024)

Total

o
<))
(=2

online behavioral aspects into categorical features. This approach
achieved a high F-score of 74.2%, surpassing the existing
method by 4.0%. The study aimed to correlate smartphone
data with anxiety levels, using STAI questionnaires to detect
anxiety states. The method’s success suggests that combining
environmental, real-world behavioral, and online behavioral
features can accurately predict anxiety levels, highlighting the
importance of smartphone usage patterns, especially viewing
smartphones in dark places, in detecting increases in anxiety.
Additionally, the study proposed the potential for measuring
stress levels without self-assessment by leveraging combined
smartphone-acquired features. In Daza et al. (2023), a study
targeting anxiety levels among college students using the GAD-7
questionnaire with 284 participants, they proposed and compared
four combined models based on Stacking techniques. Their
best-performing model, Stacking 4A: KNN-Ensemble, achieved
a high accuracy of 97.83% by employing data oversampling
for balancing. They concluded that the combined approach
outperformed individual algorithms, effectively predicting anxiety
levels. However, the study acknowledged limitations, suggesting
the consideration of more comprehensive assessment tools like
Dass 21 for a detailed analysis of other mental health disorders
beyond anxiety, such as stress and depression. Additionally, they
proposed the creation of a new test incorporating environmental,
social, and socio-economic factors for a more holistic analysis of
anxiety levels. In Benito et al. (2024), researchers analyzed data
from 9,291 individuals in Northern Spain using socioeconomic,
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demographic, lifestyle, and COVID-19-specific factors to predict
anxiety, depression, and self-perceived stress. Utilizing machine
learning algorithms (Random Forest, XGBoost, SVM, Naive
Bayes, Multi-layer Perceptron, and Logistic Regression), XGBoost
emerged as the highest-performing model, achieving AUROC
scores of 0.78 for depression, 0.72 for anxiety, and 0.74 for self-
perceived stress. Binary classification models (healthy vs at-risk)
showed high precision and recall, making them effective screening
tools. Important predictors were poor self-reported health status,
chronic mental conditions, and lack of social support. A novel
combination of SHAP and UMAP was used to explain the models’
predictions and effectively identify high-risk phenotypic clusters,
aiding targeted intervention strategies. The authors recommended
further validation in broader populations and emphasized the
approach’s potential to enhance public health preparedness and
tailored mental health interventions during emergencies.

Neuroimaging and physiological signal-based
models

In Portugal et al. (2019), a study involving 154 young
adults (103 females) with various levels of psychological distress,
including subthreshold cases and diagnosed psychiatric disorders,
utilized functional MRI data during a dynamic emotional face
processing task. Gaussian Process Regression (GPR) was applied
to predict anxiety and depression symptoms measured by self-
report and clinician-rated scales (STAI-T, STAI-S, MASQ-D,
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HAM-A, HDRS). The models significantly predicted trait anxiety
(STAI-T) scores with an average correlation (r) of 0.28 and
mean squared error (MSE) around 4.5 using two-fold and
five-fold cross-validation. Findings indicated neural responses
to emotional faces correlated with anxiety severity along a
continuum, rather than distinct categorical diagnoses. Predictive
brain patterns involved subtle, distributed activation across
various cortical regions rather than localized regions, suggesting
a dimensional and multivariate approach may effectively inform
clinical assessment and interventions. The authors recommended
extending this approach to larger, multi-dimensional studies to
further refine clinical prediction models based on neuroimaging.
Perpetuini et al. (2021) explored the prediction of state anxiety
using physiological features extracted from photoplethysmography
(PPG) signals and a multivariate machine learning model. The
study included 102 healthy participants (54 males, 48 females;
age range: 20-70 years, M = 34.3, SD = 15.5) who avoided
stimulants prior to the experiment. Using features like RMSSD
and LF/HE a Generalized Linear Model (GLM) was trained to
predict STAI-Y anxiety scores, achieving a strong correlation
(r = 0.81). Gender was also found to be a relevant predictor.
The findings demonstrate the potential of PPG and machine
learning for real-time anxiety monitoring in affective computing
and human-robot interaction contexts. In Xu et al. (2024), authors
examined the relationship between neuroanatomical brain features
and anxiety trajectories in adolescence using logistic regression.
Drawing on data from 4,119 participants in the Adolescent Brain
Cognitive Development (ABCD) study, the authors extracted
cortical thickness and surface area measurements across 68 brain
regions. Participants were categorized into high- or low-anxiety
trajectory groups based on longitudinal anxiety symptom patterns
assessed over 2 years. Logistic regression models trained on
surface area features achieved the highest performance, with
an AUC of 0.74 and accuracy of 70%. These findings suggest
that neuroanatomical features may serve as early biomarkers for
identifying youth at risk of chronic anxiety. In Jafari et al. (2025),
researchers aimed to identify functional MRI (fMRI) biomarkers
and evaluate machine learning methods to diagnose anxiety in
preschool children using emotional face tasks. Forty-five preschool
children from the Duke Preschool Anxiety Study underwent
fMRI scans under angry and fearful face conditions. Functional
connectivity (FC) between limbic system regions was computed
and combined with demographic and clinical data to classify
anxiety using Logistic Lasso Regression (LLR) and Logistic Elastic
Net Regression (LENR). The LLR model performed optimally,
achieving accuracies of 78% (angry) and 78% (fearful), highlighting
specific connectivity biomarkers such as medial prefrontal cortex
(MPFC) connectivity patterns as predictive features. This approach
demonstrates promise in using neuroimaging biomarkers for early
anxiety diagnosis. In Basterfield and Newman (2025), researchers
used machine learning to predict long-term recovery in 126
individuals with Generalized Anxiety Disorder (GAD), using
demographic, clinical, psychological, biological, and lifestyle data
collected at baseline. Two machine learning models were tested:
Gradient Boosted Trees and Elastic Net Logistic Regression.
The Elastic Net model showed superior performance with an
AUC of 0.81 and balanced accuracy of 72% (sensitivity = 0.70,
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specificity = 0.76), effectively predicting GAD recovery 9 years later.
Important predictors of non-recovery included higher depressed
affect, frequent experiences of daily discrimination, and more
visits to healthcare providers. Conversely, predictors of recovery
encompassed higher education, older age, stronger friend support,
higher waist-to-hip ratio, and greater positive affect. The findings
provide critical insights into factors influencing long-term anxiety
outcomes and suggest that Elastic Net models are valuable tools
for tailoring interventions and improving prognosis in individuals
with GAD.

Deep learning and robust neural approaches

In Vitoria et al. (2024), researchers applied machine learning
models, primarily Multi-Layer Perceptron (MLP), to predict
anxiety and depression scores using PROMIS®) questionnaire data
collected from 249 participants at a Brazilian university. The dataset
included 80 variables, capturing symptoms, general wellbeing, and
environmental perceptions over a three-month follow-up period.
Among multiple models tested (RF, SVM, DT, GB, and MLP),
the MLP model demonstrated superior performance, achieving an
average MAPE of 6.31%, R? of 0.76, and a Spearman correlation
of 0.8886 (or 0.89). These findings highlight the efficacy of neural
network models in capturing complex mental health patterns and
underscore the significance of subjective wellbeing and symptom
perception variables in predicting anxiety and depression. In Ku
and Min (2024), a study involving 4,184 undergraduate students
from the University of Nice Sophia Antipolis, France, utilized
demographic, biomedical, and self-reported survey data to evaluate
the predictive capabilities of machine learning algorithms for Major
Depressive Disorder (MDD) and Generalized Anxiety Disorder
(GAD). Five ML techniques-CNN, Random Forest, XGBoost,
Logistic Regression, and Naive Bayes-were employed. CNN
exhibited superior performance and robustness when faced with
subjective response errors, maintaining high accuracy, Cohen’s
kappa, and positive precision. Random Forest also demonstrated
significant precision in correctly identifying individuals with these
conditions. Physiological markers (e.g., heart rate, blood pressure)
and environmental factors (e.g., parental home environment)
emerged as significant predictors. The study underscores the
importance of algorithmic resilience and recommends CNN as
particularly effective in scenarios involving unreliable subjective
data. In Aldayel and Al-Nafjan (2024), researchers explored EEG-
based anxiety detection using machine learning and ensemble
learning techniques on the DASPS dataset comprising EEG signals
from 23 participants exposed to anxiety-provoking stimuli. EEG
features were extracted using discrete wavelet transform (DWT)
and power spectral density (PSD), labeled with Hamilton Anxiety
Rating Scale (HAM-A) and Self-Assessment Manikin (SAM).
Various classifiers, including Random Forest (RF), AdaBoost
Bagging, Gradient Bagging, KNN, LDA, and SVM were evaluated.
The Random Forest classifier with DWT-based features and
HAM-A labeling achieved the highest accuracy (87.5%), precision
(87.65%), and recall (87.5%), outperforming other classifiers. This
study highlights the effectiveness of ensemble methods and EEG
signal processing techniques for reliable anxiety detection.
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Comparative algorithm studies and metric
evaluation

In Al-Nafjan and Aldayel (2024), the authors developed
an anxiety detection system using Galvanic Skin Response
(GSR) signals and machine learning methods. They analyzed
the WESAD dataset, extracting features through traditional
statistical methods and an automatic approach employing
a 14-layer autoencoder. Three classifiers—Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and Random
Forest (RF)-were evaluated. The KNN algorithm achieved
the highest rates  of
98.2% with
statistical methods. This research highlights the potential of

performance, attaining accuracy

with automatic feature extraction and 96.9%

advanced feature extraction techniques and emphasizes the
robustness of GSR signals combined with KNN for accurate
anxiety detection.

Evaluation metrics for assessing the
precision of anxiety measurements

Evaluation metrics play a crucial role in determining
the precision and reliability of anxiety prediction models,
guiding researchers in assessing model performance and clinical
applicability. Table 3 presents the metrics used to assess students’
anxiety and stress using prediction models. Based on this, the
most frequently used metrics were Accuracy (Bhatnagar et al,
2023; Priya et al., 2020; Daza et al., 2023; Sau and Bhakta, 2017;
Mohamed et al,, 2023; Qasrawi et al., 2022; Basterfield and
Newman, 2025; Ku and Min, 2024; Li et al., 2024; Jafari et al.,
2025; Aldayel and Al-Nafjan, 2024; Al-Nafjan and Aldayel, 2024;
Morr et al,, 2024), which measures the overall correctness of
a model, and F1 Score (Priya et al, 2020; Daza et al., 2023;
Fukazawa et al., 2019; Qasrawi et al., 2022; Benito et al., 2024; Ku
and Min, 2024; Al-Nafjan and Aldayel, 2024; Morr et al., 2024),
which balances precision and recall and is particularly useful with
imbalanced datasets.

Some studies (e.g., Perpetuini et al, 2021) reported AUC
but omitted essential classification metrics such as Fl-score
and sensitivity, which are crucial in clinical screening contexts.
Similarly, Vitéria et al. (2024) focused on regression-based
metrics (MAPE, R2, and Spearman correlation) to assess anxiety
and depression scores, but did not report classification-specific
measures such as accuracy or Fl-score. While this is appropriate
given their continuous outcome variables, it complicates the
comparability with studies using classification tasks and limits
insights into clinical decision thresholds. Additionally, several
papers, including Daza et al. (2023) and Priya et al. (2020),
relied on oversampling techniques without reporting class-specific
performance, raising concerns about potential overfitting in
minority anxiety classes. In contrast, only a few studies, like
Qasrawi et al. (2022), reported multiple metrics including MCC
and Fl-score, providing a more comprehensive evaluation. These
inconsistencies highlight the need for a standardized evaluation
framework, especially in mental health prediction, where dataset
imbalance and false negatives can have critical implications.
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Variable selection methods used for anxiety
prediction

The variable selection process plays a critical role in refining
model performance, reducing overfitting, and identifying features
that are most predictive of anxiety-related outcomes. In the
reviewed literature, a variety of selection techniques were used,
although their application varied considerably in transparency and
rigor. The Table 4 presents the studies and the variable selection
methods that they used.

Some studies employed formal feature selection methods. For
instance, Daza et al. (2023) utilized Information Gain to rank
input variables before feeding them into stacking models, while
Mohamed et al. (2023) selected top predictors using filter-based
techniques. Sau and Bhakta (2017) tested five different selection
methods (CFS, PCA, Relief, Gain Ratio, and Info Gain) before
selecting a final feature set, which enhanced interpretability and
minimized redundant inputs. Similarly, Ku and Min (2024) used
mRMR (Minimum Redundancy Maximum Relevance) to filter
features from an initial set of 161 to improve model generalizability.
These approaches demonstrate an awareness of the importance of
input optimization.

A notable example of model interpretability is found in
Vitéria et al. (2024), who applied a connection weight algorithm
to quantify the relative importance of each input variable in
their MLP-based regression model. This method calculated
the contribution of each input node based on learned weights,
providing transparency into which PROMIS® questionnaire
items and self-reported symptoms most influenced anxiety
and depression predictions. Features such as emotional
distress, fatigue, and perceived social functioning were
identified as the most influential. Although the study did
not apply a feature reduction step before training, the post
hoc analysis of feature importance helped clarify the model’s
decision-making process.

However, in several other studies, variable selection was
either underreported or completely omitted. For example, Priya
et al. (2020) and Bhatnagar et al. (2023) relied solely on DASS-
21-derived responses or custom questionnaires, yet did not
disclose whether or how any feature reduction was applied. In
these cases, it remains unclear whether all questionnaire items
were used or whether multicollinearity and redundancy were
considered-raising concerns about possible noise retention and
overfitting. Additionally, Mohamed et al. (2023) used GAD-7 both
to derive input variables and classify output labels, potentially
introducing data leakage and undermining the validity of feature
importance analysis. However, some studies did not use variable
selection methods, but instead relied on domain knowledge and
previously validated EEG techniques (Aldayel and Al-Nafjan,
2024). Furthermore, embedded feature selection was indirectly
performed via ensemble methods, particularly Random Forest,
inherently selecting important features by emphasizing informative
features during tree construction. Some studies, such as Aldayel
and Al-Nafjan (2024) and Al-Nafjan and Aldayel (2024) did not
use explicit external feature selection methods (e.g., recursive
feature elimination or SHAP), but used alternatives like ensemble
techniques (Aldayel and Al-Nafjan, 2024), traditional statistical
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TABLE 3 Performance metrics and their corresponding methodological references used in evaluating machine learning models across clinical and

mental health datasets.

MAPE Error rate RMSE

Accuracy Precision Recall

Specificity F1 AUC Sensitivity

Bhatnagar et al. (2023)

Priya et al. (2020) v v v v

Daza et al. (2023) v v

Sau and Bhakta (2017) v

Mohamed et al. (2023) v v
Qasrawi et al. (2022) v v v v

Basterfield and Newman (2025) v v v

Ku and Min (2024) v v v v v v

Lietal. (2024) v v v v

Jafari et al. (2025) v v v v

Aldayel and Al-Nafjan (2024) v v v v

Al-Nafjan and Aldayel (2024) v v v

Morr et al. (2024) v v v v v v

Portugal et al. (2019) v
Benito et al. (2024) v v

Fukazawa et al. (2019) v

Perpetuini et al. (2021) v

Vitoria et al. (2024) v

Total 13 8 8 6 8 7 5 1 2 2

These metrics offer perspectives on model performance and are selected based on the specific diagnostic goals and characteristics of the class imbalance.

extraction (Al-Nafjan and Aldayel, 2024), Random Forest (Morr
et al., 2024).

Furthermore, some models, such as those in Benito et al.
(2024) and Qasrawi et al. (2022), included a wide array
of sociodemographic and lifestyle variables, but lacked a
clear methodological explanation of how input features were
selected or filtered. The absence of such documentation hinders
reproducibility and raises questions about model robustness,
especially when applied to new populations.

Overall, the inconsistent application and reporting of feature
selection methods highlight the need for clearer standards in
anxiety prediction research. Models that omit or insufficiently
describe this process may suffer from reduced generalizability and
increased risk of overfitting, particularly when working with small
or imbalanced datasets.

Discussion

The integration of machine learning into mental health
research offers unprecedented opportunities to improve the
prediction, diagnosis, and treatment of anxiety disorders,
yet this rapidly evolving field remains hindered by critical
methodological challenges and gaps in clinical applicability.
The current study systematically examined current machine
learning approaches in anxiety research, identifying recurring
limitations such as small and homogeneous datasets, inconsistent
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evaluation metrics, and a lack of model interpretability, ultimately
emphasizing the urgent need for standardized methodologies
and explainable AI to enhance both scientific rigor and
clinical trust.

The primary research question guiding this systematic review
was: (1) To what extent has machine learning (ML) been
used to predict anxiety? Our analysis reveals a growing body
of work applying ML to classify anxiety status or estimate
severity based on diverse data modalities, including self-report
instruments (e.g., GAD-7, DASS-21), physiological signals (e.g.,
heart rate variability, electrodermal activity), and behavioral
patterns. However, the field remains fragmented. Most studies rely
on cross-sectional or small-scale datasets, limiting generalizability.
There is also a lack of methodological consistency, and longitudinal
or prospective models capable of predicting future anxiety onset
remain notably scarce.

The secondary research question explored: (1.1) What ML
methods have been applied, and which have demonstrated superior
performance? Across the literature, ensemble techniques such
as Random Forests and Gradient Boosting consistently yield
high predictive accuracy (often exceeding 95%). Support Vector
Machines (SVMs) perform robustly with high-dimensional data,
while K-Nearest Neighbors (KNN) and Stacking ensembles have
also shown promise. Neural network-based approaches, including
Artificial Neural Networks (ANNs) and Multilayer Perceptrons
(MLPs), are well-suited for capturing nonlinear relationships,
particularly in multimodal datasets.
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TABLE 4 Variable selection techniques and their corresponding references commonly used in clinical and behavioral data analysis.

Study None CFS RF XGB

Bhatnagar et al. (2023) v

Chi2 (€] mRMR PLR CWA SHAP LLR/LNR

Daza et al. (2023)

Qasrawi et al. (2022)

Priya et al. (2020)

Portugal et al. (2019)

Ku and Min (2024)

Aldayel and Al-Nafjan (2024)

RN N N ENEEN

Al-Nafjan and Aldayel (2024)

Sau and Bhakta (2017) v

Fukazawa et al. (2019) v v

Morr et al. (2024)

Sahu et al. (2023)

Mohamed et al. (2023)

Benito et al. (2024)

Basterfield and Newman (2025)

Vitdria et al. (2024)

Lietal. (2024)

Jafari et al. (2025)

v

Total 8 1 2 1

1 1 1 1 1 1 1

These methods-ranging from filter approaches like mutual information to embedded techniques such as LASSO-help reduce model complexity, enhance interpretability, and improve

generalization by identifying the most relevant predictors.

An additional research question examined: (1.2) Which feature
selection algorithms are commonly used? Commonly reported
techniques include Recursive Feature Elimination (RFE), Principal
Component Analysis (PCA), and embedded methods such as L1
regularization or tree-based feature importance. However, many
studies fail to explicitly describe feature selection procedures,
undermining model interpretability and reproducibility.

Finally, we addressed: (1.3) What evaluation metrics are used
to assess the performance of ML models in anxiety prediction?
Accuracy is the most frequently reported metric. However, F1 Score
and Area Under the ROC Curve (AUC-ROC) are increasingly
utilized, particularly in the context of class imbalance. Additional
metrics such as Precision, Recall, and Mean Squared Error (MSE)
also appear in some studies. Nonetheless, external validation
is rarely conducted, posing a barrier to clinical translation
and deployment.

Strengths of Al methods in anxiety
prediction

The current application of Al in anxiety prediction and
diagnosis exhibits several promising strengths. First, machine
learning models can process and integrate large, complex
datasets-ranging from clinical assessments to digital behavioral
data such as smartphone usage and physiological signals—
enabling richer, multidimensional insights beyond traditional
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methods. This capacity facilitates earlier and potentially more
accurate identification of anxiety symptoms, even before clinical
presentation. Second, AI algorithms have demonstrated the
ability to uncover subtle patterns and biomarkers associated with
anxiety disorders that may be imperceptible to human clinicians,
enhancing precision in diagnosis and personalized treatment
planning. Techniques such as natural language processing (NLP)
applied to patient narratives or social media posts allow non-
invasive monitoring of mental health trends in real-time. Third,
the scalability and efficiency of Al-driven tools offer great potential
for extending mental health services to underserved populations,
addressing resource constraints and improving accessibility. For
instance, digital screening apps powered by AI can facilitate
continuous, remote anxiety monitoring, which is especially
valuable in contexts with limited mental health professionals.
Lastly, advancements in explainable AI and model interpretability
are beginning to address previous transparency concerns, allowing
clinicians to better understand and trust Al recommendations,
which is crucial for integration into routine care. Together,
these strengths underscore AT’s transformative potential in anxiety
research, diagnosis, and intervention, even as the field continues to
address remaining challenges.

A further constraint is the limited ecological validity of
current studies. Most multimodal systems are validated in
lab-controlled settings with low environmental variability and
narrow population samples—often university students or clinical
volunteers. Real-world deployment would require addressing
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hardware constraints (e.g., wearable sensor stability, smartphone
microphone fidelity), minimizing signal dropout, and improving
preprocessing pipelines to handle artifacts and missing data.
Additionally, assembling diverse, large-scale datasets that span race,
age, socioeconomic background, and health conditions is critical to
building generalizable models (Razavi et al., 2023).

Beyond performance, multimodal fusion also meaningfully
contributes to model interpretability, which is critical for clinical
application. By triangulating across data modalities, clinicians
can gain a more holistic view of a patients mental state and
better understand the model’s rationale. In explainable AI (XAI)
frameworks, modalities can be independently analyzed using
tools such as SHAP (Shapley Additive Explanations), LIME,
or attention maps to identify which features drove a specific
prediction. For instance, an anxiety alert may be triggered due to
a combination of increased speech tempo, elevated heart rate, and
reduced lexical diversity-patterns that align with known clinical
markers (Lakomkin et al., 2021). This disaggregation enables
transparent dialogue between AI and clinician, promoting trust,
accountability, and ethically sound integration into care workflows.
Moreover, recent developments in transformer-based models and
self-supervised learning present new opportunities for multimodal
learning without the need for vast labeled datasets. Frameworks
like MM-BERT and UniT leverage cross-modal attention to learn
shared representations from sparse or weakly labeled data, which
could be pivotal in mental health applications where annotation
is costly and subjective (Tsai et al., 2019). These architectures not
only improve robustness but also provide modular interpretability,
where individual attention heads can be assigned to specific
modalities for transparent inference tracking.

In summary, integrating multimodal data into anxiety
prediction frameworks represents a tangible advancement in
building robust, sensitive, and trustworthy AI systems. However,
realizing this potential requires standardizing fusion strategies,
improving dataset diversity, and expanding validation beyond
lab settings. Multimodal fusion, when implemented thoughtfully,
bridges the gap between complex human affect and computational
representations, and holds promise for more accurate, accessible,
and ethical mental health care - promising for the future work.

Multimodal fusion systems

In addition to the limitations identified, one promising yet
underexplored direction in anxiety prediction research is the use
of multimodal fusion techniques—the integration of multiple data
types such as text, audio, and physiological signals. Multimodal
approaches hold the potential to enrich ML models by capturing
diverse dimensions of anxiety expression. For example, while
self-reported textual input or linguistic cues from social media
can reflect cognitive aspects of anxiety, physiological data (e.g.,
electrodermal activity, heart rate variability) provide insights into
somatic arousal, and vocal features (e.g., pitch, tone) can signal
emotional instability. Integrating these sources allows models to
learn richer, temporally synchronized representations that mirror
the multifaceted nature of anxiety more closely than unimodal
inputs alone (Ancillon et al., 2022). Recent reviews, such as that
of Ancillon et al. (2022), underscore the increasing viability of
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multimodal systems, particularly when sensor data (e.g., ECG,
EEG, GSR) is combined with behavioral inputs (e.g., text, facial
microexpressions) and paralinguistic features (e.g., vocal tone and
prosody). These approaches have demonstrated superior diagnostic
capabilities in detecting anxiety, depression, and stress-related
disorders, often achieving classification accuracies above 90% in
controlled environments. For example, Mishra and Lin (2021)
reported significant improvement in detection performance when
fusing electrodermal activity with facial expression cues using deep
neural networks.

Despite these promising outcomes, key technical and practical
challenges remain. Synchronizing heterogeneous data streams
across different temporal resolutions is nontrivial; behavioral
signals like speech and typing cadence are challenging with
physiological rhythms. This demands sophisticated time-alignment
mechanisms, dynamic windowing, or attention-based architectures
to retain signal coherence. Furthermore, the field lacks consensus
on fusion strategy taxonomy-i.e., whether features should be
combined at raw input (early fusion), representation (intermediate
fusion), or decision level (late fusion). While early fusion offers the
potential for richer representations, it is more sensitive to noise and
missing modalities; in contrast, late fusion sacrifices some nuance
but offers modularity and robustness (Baltrusaitis et al., 2019).

Overall, integrating ML systems into real-world clinical
workflows involves challenges of trust, regulatory approval, and
model drift over time. Anxiety prediction systems must be adaptive
to evolving behavioral patterns, yet stable enough for long-term
clinical use. Addressing these challenges will require collaboration
between data scientists, clinicians, and ethicists, as well as advances
in privacy-preserving ML and federated learning paradigms.

Critical analysis

One major limitation in current mental health research
employing machine learning (ML) is the often opaque or “black-
box” nature of these algorithms. As highlighted by Mohamed et al.
(2023), many ML models operate in ways that are difficult for
researchers and clinicians to interpret, making it challenging to
understand the rationale behind specific predictions. This lack
of transparency can significantly undermine confidence in the
outcomes generated by these systems, particularly when applied
to sensitive and high-stakes areas such as mental health diagnosis
and treatment. Trust and interpretability are crucial for clinical
adoption, and their absence poses a serious barrier to integrating
ML tools effectively in practice.

Another critical issue concerns the limited sample sizes used in
many studies, which restricts the generalizability and robustness of
findings. As shown in Table 1, only two studies analyzed included
more than 1,000 participants, while the average sample size across
others hovers around 270. Such small datasets increase the risk of
overfitting and reduce statistical power, ultimately compromising
the reliability of the models. Additionally, certain studies, including
Bailey and Strunk (2023) and Mohamed et al. (2023), fail to report
key performance metrics like specificity-the algorithm’s ability to
correctly identify negative cases (i.e., patients without the disorder).
Without this information, it is difficult to fully assess the clinical
utility and safety of these ML approaches. The reviewed studies
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collectively illustrate a clear and growing interest in leveraging
machine learning techniques for predicting anxiety. However,
a number of recurring methodological and practical limitations
hinder the progress and applicability of this research.

Related work

The landscape of machine learning (ML) applications in
mental health has seen the emergence of several secondary studies
that synthesize existing evidence, providing valuable insights into
methodological trends and challenges. Influential recent works
include systematic reviews and surveys by Schaab et al. (2024),
Ancillon et al. (2022), and Razavi et al. (2023).

Schaab et al. (2024) examined 48 studies focusing on ML-
based detection of anxiety, depression, and stress, particularly
in undergraduate students. While models showed high internal
accuracy (over 70%, with anxiety-specific performance ranging
from 53.7 to 98%), a critical limitation was the near-total absence
of external validation, leading to a “very low” certainty of
evidence. However, Ancillon et al. (2022) specifically reviewed
anxiety detection using physiological biosignals like EEG, ECG,
and electrodermal activity (EDA). Their findings highlighted that
multimodal approaches integrating multiple signals, especially
EDA and heart rate, generally achieved superior accuracies
(between 55 and 98%) compared to univariate models. However,
this review also noted persistent limitations such as small
datasets, lack of benchmarking, and inconsistent preprocessing
protocols hindering generalization. Razavi et al. (2023) conducted
a broader scoping review of 98 studies on stress and related
disorders, reinforcing observations of methodological convergence
on supervised learning, limited personalization, and a dearth
of interpretable models. They also identified issues like scarce
real-world deployment and missing transparency metrics as
common. These related works collectively converge on several
recurring themes. First, is that there is limited external validation
despite high internal accuracy. Seocnd, is the effectiveness of
biosignal fusion, primarily confined to controlled lab settings.
Third, is the methodological plateau in model architectures,
with underprioritized interpretability, fairness, and contextual
modeling. And lastly, there is a lack of standardized feature
engineering, preprocessing, and benchmarking frameworks. While
these studies effectively delineate existing problems, the current
systematic review offers a uniquely compelling direction for
future research by highlighting a notable scarcity in studies
predicting anxiety before symptom manifestation. This is a crucial
distinction, as most related works, like the primary studies
they analyze, primarily focus on the classification or detection
of existing anxiety. By emphasizing the need for a “paradigm
shift from reactive classification to proactive risk forecasting,
this review’s findings are more interesting and impactful for
future research. It explicitly paves the way for studies aimed
at early intervention and prevention, which could “significantly
improve mental health outcomes and decrease healthcare costs.”
This ambition for genuinely preventative solutions, akin to
reliably “predict[ing] a storm before the clouds even gather
on the horizon,” sets the current review apart from those
primarily summarizing current detection capabilities. It provides a
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foundational roadmap, advocating for a shift toward anticipating
anxiety onset, diversifying study populations, and integrating
explainable Al for robust and ethical mental health support.

Research challenges

A primary concern is the frequent reliance on relatively small
and homogeneous datasets. Many models are trained on samples
primarily composed of university students (Bhatnagar et al., 2023;
Priya et al., 2020; Daza et al., 2023; Vitoria et al., 2024; Morr et al.,
2024), or older adults drawn from narrowly defined geographic
regions (Benito et al., 2024; Basterfield and Newman, 2025). Such
population biases significantly limit the generalizability of findings,
raising questions about the models” effectiveness when applied to
broader, more diverse populations.

Furthermore, the reporting of evaluation metrics across these
studies is often inconsistent and, at times, inadequate. Several
investigations rely solely on accuracy to assess model performance,
despite the common presence of imbalanced class distributions
in anxiety prediction tasks. More nuanced metrics such as the
Fl-score, Area Under the Curve (AUC), and recall provide
richer insights into model behavior but are underutilized. Feature
selection approaches also vary considerably; while some studies
employ formal and well-established techniques like minimum
Redundancy Maximum Relevance (mRMR) or information gain
(Daza et al,, 2023; Ku and Min, 2024), others either neglect this
critical step or do not clearly describe their selection processes. This
inconsistency in methodology further complicates replication and
the assessment of comparative model quality.

Finally, the limited application of interpretability tools,
such as SHapley Additive exPlanations (SHAP)-in the reviewed
literature significantly constrains the clinical relevance of many
machine learning models. Explainability is especially vital in
mental health contexts where practitioners must understand and
trust algorithmic predictions, particularly for early screening or
real-time monitoring applications. The absence of transparent,
interpretable frameworks undermines clinicians’ confidence and
reduces the likelihood of these models being integrated into
practice. Taken together, these issues provide the need for
standardized methodological guidelines, more rigorous validation
on diverse cohorts, and the development of explainable models to
advance machine learning’s role in anxiety research meaningfully.

Future research

The systematic review’s findings offer a uniquely compelling
vision for future research in anxiety prediction, distinguishing itself
from related studies that primarily focus on existing detection
or classification challenges. While other comprehensive analyses,
such as those by Schaab et al. (2024), Ancillon et al. (2022),
and Razavi et al. (2023), meticulously highlight methodological
pitfalls like small datasets, lack of external validation, and
interpretability issues, this review makes a critical conceptual leap.
It underscores a “notable scarcity” in studies predicting anxiety
before symptom manifestation, identifying this as a direction with
“substantial potential for preventive healthcare.” This “paradigm

frontiersin.org


https://doi.org/10.3389/frai.2025.1630047
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Taskynbayeva and Gutoreva

shift from reactive classification to proactive risk forecasting” is
profoundly more interesting and impactful for future endeavors.
By systematically synthesizing current limitations and explicitly
foregrounding the urgent need to predict anxiety onset to
enable early intervention and reduce healthcare costs, this review
provides a foundational roadmap. It clarifies how to move beyond
simply identifying present anxiety toward genuinely preventative
solutions, making its results exceptionally valuable for guiding the
next generation of anxiety research. The suggested emphasis on
diverse populations and explainable Al further ensures a robust and
ethical future for ML in mental health.

Conclusion and future scope

This study reviewed current applications of machine learning
(ML) models for the prediction and classification of anxiety.
Empirical findings across the literature indicate that ensemble-
based approaches such as Random Forest and Gradient Boosting,
along with Support Vector Machines (SVM) and model-stacking
frameworks, offer high performance in detecting anxiety-related
states. These models demonstrate strong classification capabilities,
particularly when applied to multimodal and high-dimensional
psychological datasets.

However, a notable limitation in the existing body of work is its
predominant focus on classification-that is, distinguishing between
anxious and non-anxious individuals based on already-present
symptoms-rather than on early prediction or symptom trajectory
modeling. Very few studies attempt to estimate the probability
of anxiety onset in the future, a direction that holds substantial
potential for preventive healthcare.

Future research should thus prioritize predictive modeling
that aims to identify individuals at risk before anxiety symptoms
become clinically manifest. This paradigm shift from reactive
classification to proactive risk forecasting could enable timely
interventions, reduce the burden on mental health infrastructure,
and improve individual wellbeing. Additionally, there is a
critical need to diversify study populations, incorporating a
broader range of demographic variables such as age, region,
socioeconomic background, and occupational context. This would
facilitate the development of culturally sensitive and contextually
relevant ML models, increasing their applicability and fairness
across populations.

In summary, the integration of explainable, generalizable, and
ethically aligned ML systems for anticipatory anxiety prediction
represents a promising yet underexplored avenue for future
interdisciplinary research.
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