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AI-enabled microscopy is emerging for rapid bacterial classification, yet

its utility remains limited in dynamic or resource-limited settings due to

imaging variability. This study aims to enhance the generalizability of AI

microscopy using domain adaptation techniques. Six bacterial species, including

three Gram-positive (Bacillus coagulans, Bacillus subtilis, Listeria innocua)

and three Gram-negative (Escherichia coli, Salmonella Enteritidis, Salmonella

Typhimurium), were grown into microcolonies on soft tryptic soy agar plates

at 37◦C for 3–5 h. Images were acquired under varying microscopy modalities

and magnifications. Domain-adversarial neural networks (DANNs) addressed

single-target domain variations and multi-DANNs (MDANNs) handled multiple

domains simultaneously. E�cientNetV2 backbone provided fine-grained feature

extraction suitable for small targets, with few-shot learning enhancing scalability

in data-limited domains. The source domain contained 105 images per species

(n = 630) collected under optimal conditions (phase contrast, 60×magnification,

3-h incubation). Target domains introduced variations in modality (brightfield,

BF), lower magnification (20×), and extended incubation (20x-5h), each with

<5 labeled training images per species (n ≤ 30) and test datasets of 60–

90 images. DANNs improved target domain classification accuracy by up to

54.5% for 20× (34.4% to 88.9%), 43.3% for 20x-5h (40.0% to 83.3%), and 31.7%

for BF (43.4% to 73.3%), with minimal accuracy loss in the source domain.

MDANNs further improved accuracy in the BF domain from 73.3% to 76.7%.

Feature visualizations by Grad-CAM and t-SNE validated the model’s ability

to learn domain-invariant features across conditions. This study presents a

scalable and adaptable framework for bacterial classification, extending the utility

of microscopy to decentralized and resource-limited settings where imaging

variability often challenges performance.
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1 Introduction

Rapid detection and identification of foodborne bacteria,

including both pathogenic and spoilage species, are essential for

ensuring food safety and quality. However, traditional methods rely

on time-intensive culture-based approaches, requiring prolonged

incubation to form visible bacterial colonies (Ferone et al., 2020).

These methods are further constrained by the need for selective

media tailored to specific pathogens, limiting their scope and

generalizability (Ferone et al., 2020; Qiu et al., 2021). Such

challenges not only delay the implementation of corrective actions

but also increase the risk of outbreaks, product recalls, and

economic losses across the food supply chain (Qiu et al., 2021;

Hoffmann et al., 2024). Addressing these limitations requires

innovative approaches that combine speed, accuracy, scalability,

and minimized resource demands in bacterial classification.

Artificial intelligence (AI)-enabled microscopy has emerged

as a promising solution, integrating deep learning for rapid

analysis of microscopic patterns captured through quick imaging

snapshots. Our previous work demonstrated that convolutional

neural networks (CNNs) can classify bacteria at the microcolony

stage, significantly reducing testing time compared to traditional

methods that require lengthy enrichment and full incubation

(Ma et al., 2023). However, this approach relied on an existing

CNN architecture optimized for computational performance on

generic datasets rather than addressing the unique challenges of

microscopic imaging. Moreover, model training was conducted

on datasets collected under controlled laboratory conditions,

limiting its generalizability to real-world scenarios characterized

by optical and biological variability. Similarly, other early efforts

in AI-enabled microscopy relied on small datasets and generic

architectures, increasing the risk of overfitting and restricted their

applicability to diverse imaging conditions (Melanthota et al., 2022;

Wu and Gadsden, 2023). These constraints highlight the critical

need for tailored architectural advancements and methods that

enhance robustness to variability.

Recent advancements in CNN architecture design and

data-centric techniques have shown potential to address these

challenges. EfficientNet, for example, employs a compound scaling

approach that systematically balances depth, width, and resolution,

enabling the capture of fine-grained morphological features in

small targets while minimizing computational cost (Tan and

Le, 2019). EfficientNet variants have been applied to identify

cellular defects and detect blood cells in hematology, showing

their adaptability to small targets within cell imaging contexts

(Otamendi et al., 2021; Xu et al., 2022). The newer EfficientNetV2

incorporates faster training and enhanced regularization, making it

even more suitable for tasks requiring subtle or fine-grained feature

extraction on limited datasets (Tan and Le, 2021). Additionally,

image augmentation techniques have proven effective in improving

bacterial classification and generalization across growth stages in

clinical microscopy by simulating variability inherent to imaging

conditions (Chin et al., 2024; Jeckel and Drescher, 2020). Together,

these architectural innovations and data augmentation strategies

address some limitations of previous approaches, enabling more

effective analysis of small bacterial targets.

Beyond architectural advancements, domain adaptation

techniques have been increasingly explored to address variability

in optical setups and biological conditions (Tomczak et al.,

2021). Traditional deep learning models often assume that

training and testing data follow the same probability distribution.

However, real-world applications like bacterial image classification

encounter significant distribution shifts due to variations in

microscopes, imaging conditions, or bacterial growth conditions

across laboratories and testing sites. Collecting and annotating

large datasets for every new environment is both impractical and

expensive for biological images. Domain adaptation addresses this

challenge by enhancing model robustness, enabling generalization

to diverse setups without extensive data annotation. Previous

studies applying domain adaptation in biomedical imaging have

shown enhanced generalization across imaging modalities and

biological conditions for tasks such as image classification and

cell segmentation (Tomczak et al., 2021; Xing et al., 2021). Such

techniques have shown promise for addressing variability while

reducing reliance on annotated datasets.

Thus, this study aims to develop a domain-adaptive image

classification model that generalizes from controlled laboratory

conditions (source domain) to variable laboratory conditions

(target domains), with only a few labeled examples. The

objectives are to i) enhance the generalizability of AI-enabled

microscopy for bacterial classification using adversarial domain

adaptation and image augmentation, and ii) compare the

performance of classical single-target domain adaptation with

multi-domain adaptation for simultaneous generalization across

multiple domains. To achieve these goals, domain-adversarial

neural networks (DANNs) and multi-domain adversarial neural

networks (MDANNs) were employed to learn shared, domain-

invariant feature representations optimized through adversarial

training. By implementing these advancements with as few as 1–5

labeled samples per bacterial species, this study effectively addresses

challenges posed by natural biological variability and domain shifts

in microscopic imaging.

2 Materials and methods

2.1 Source and target domain conditions

In domain adaptation, the source domain is the dataset

used for training, collected under controlled conditions, while

target domains are datasets with variations used to test the

model’s generalizability. The source domain (“PC") dataset,

primarily derived from our previous work (Ma et al., 2023),

was collected under controlled laboratory conditions using phase

contrast microscopy at 60× magnification with microcolonies

incubated for 3 h. These conditions were identified as optimal

for bacterial microcolony imaging in our prior study. To

evaluate generalizability in this study, additional datasets were

collected under varying conditions simulating optical setups and

microbial variability. These target domains included: i) brightfield

microscopy at 60× magnification (“BF” domain), representing

lower-contrast imaging often used in resource-limited setups; ii)

phase contrast microscopy at a lower magnification of 20× (i.e.,

“20×” domain), using more accessible, less specialized equipment

that trades resolution for broader applicability; and iii) phase

contrast microscopy at a 20× magnification with an extended
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TABLE 1 Source and target domains with laboratory conditions.

Abbreviation Domain type Microscopy modality Magnification Incubation time

PC Source Phase contrast 60× 3 h

BF Target Brightfield 60× 3 h

20× Target Phase contrast 20× 3 h

20x-5h Target Phase contrast 20× 5 h

incubation time of 5 h (i.e., “20x-5h” domain), capturing the

additional biological variability introduced by longer growth

periods, which might arise from deviations in protocol or the need

to enhance detectability with lower magnification. A summary of

laboratory conditions for all domains is presented in Table 1.

2.2 Data collection

2.2.1 Bacterial strains
To enable controlled evaluation of domain adaptation across

biologically meaningful variation, six foodborne bacterial species

were selected to span three Gram-positive (Bacillus coagulans,

Bacillus subtilis, Listeria innocua) and three Gram-negative

strains (Escherichia coli, Salmonella enterica serovar Enteritidis,

Salmonella enterica serovar Typhimurium), reflecting distinct

surface structures and microcolony morphologies relevant to

microscopy-based classification. The selection included both

pathogenic and spoilage organisms commonly encountered in

food safety contexts. Species were drawn from multiple genera,

with two Bacillus species and two Salmonella serovars included to

capture within-genus variability at the species and serovar levels.

All bacterial strains were stored in tryptic soy broth (TSB, Sigma-

Aldrich, St. Louis, MO, USA) supplemented with 15% v/v glycerol

at -80◦C. Prior to experimentation, a bacterial glycerol stock was

streaked onto a tryptic soy agar (TSA, Sigma-Aldrich) plate and

incubated for 24 h. Subsequently, a single bacterial colony was

transferred from the TSA plate to 10 mL of TSB, followed by

overnight shaking at 175 rpm. With the exception of Pseudomonas

fluorescens, which was incubated at 30◦C, all strains were incubated

at 37◦C. The fresh overnight culture was then diluted with sterile

phosphate-buffered saline (PBS, Fisher Scientific, Pittsburg, CA,

USA) to obtain specific concentrations for microcolony cultivation.

2.2.2 Microcolony cultivation and microscopy
Bacterial microcolonies were formed following our previously

published method (Ma et al., 2023). Briefly, 1 mL of bacterial

suspension was deposited onto soft TSA plates (0.7% w/v agarose)

and incubated at 37◦C for 3 h. To ensure consistency, the thickness

of the soft TSA plates was maintained at 1 mm by adding 2 mL of

growth media into a 60-mm petri dish. Microscopic images were

acquired using an Olympus IX71 inverted microscope, equipped

with 20× and 60× objective lenses. For phase contrast imaging,

Ph2 objective lenses were used in conjunction with a phase turret

to match the phase ring corresponding to the selected objective.

For brightfield imaging, the phase turret was adjusted to the open

aperture position to allow standard brightfield illumination with

a standard objective lens. Raw images were captured using a

CCD camera (Model C4742-80-12AG, Hamamatsu, Tokyo, Japan)

and the Metamorph imaging software (version 7.7.2.0, Universal

Imaging Corporation). All images were acquired as TIF files

and subsequently converted into JPG format using the image

processing software ImageJ (Schneider et al., 2012). Eeah image had

a resolution of 672× 512 pixels with a pixel size of 107.5 nm.

2.3 Data preparation and augmentation

To prepare the datasets for model training, image files

were structured to work seamlessly with the PyTorch deep

learning framework, leveraging its built-in tools for data loading

and augmentation. Images were organized into a hierarchical

directory structure, with bacterial species (serving as the true

class labels) represented as folder names within parent directories

that encoded metadata for laboratory conditions. Image files were

loaded using the torchvision.datasets.ImageFolder,

and pixel values were normalized to the range of 0–1 by dividing

by 255. To maximize data efficiency, augmentation techniques

such as flips, random rotations, and random brightness contrast

adjustments were applied using the albumentations library

(Buslaev et al., 2020). During model training, each image had a

50% probability of undergoing transformation at each step of the

augmentation pipeline. Consequently, the specific combination of

augmentations applied to a given image varied across epochs. For

example, an image could undergo random rotation and Gaussian

blur in one epoch, and to random rotation and stretching in

another epoch. Augmentations were applied dynamically rather

than generating a static, expanded dataset, in order to reduce

memory overhead and allow for greater variability. This stochastic

augmentation process was repeated for each training epoch,

exposing the model to a unique variant of each image throughout

training. These augmentation strategies were designed to mimic

physical variability inherent inmicroscopic imaging and tomitigate

overfitting by increasing dataset diversity (Simard et al., 2003;

Olenskyj et al., 2022).

Datasets were split into training, validation, and test sets based

on the specific requirements of source and target domains. Domain

adaptation in this study involved training on a larger dataset from a

single source domain and testing on smaller datasets from multiple

target domains. For the source domain, 15% of the images for

each of the 6 bacterial species were held out as a test dataset,

while the remaining images were randomly split into training

and validation sets in a 70/30 ratio. This resulted in 377 training

images, 162 validation images, and 90 test images. Target domains

contained fewer labeled samples compared to the source domain, so
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a maximum of 5 images per bacterial species was used for training

(30 images total). The test sets for the target domains consisted of

90 images for 20×, and 60 images each for BF and 20x-5h domains.

2.4 Model architecture and training

2.4.1 Feature extractor
EfficientNetV2 was selected as the backbone of the proposed

architecture due to its superior accuracy and computational

efficiency in feature extraction. EfficientNets are a family

of CNN architectures with state-of-the-art performance

on image classification tasks, offering better accuracy and

efficiency compared to other CNN models (Tan and Le, 2019).

EfficientNetV2, introduced in 2021, further improves training

speed and parameter efficiency through a combination of training-

aware neural architecture search and progressive scaling (Tan and

Le, 2021). This progressive learning strategy involves training the

model on smaller image size with weak regularization initially

(i.e., weak constraints to the learning process), then transitioning

to larger image sizes with stronger regularization. This approach

ensures efficient model training while improving generalization by

capturing both low-level and high-level features. In this study, the

EfficientNetV2 backbone served as the shared feature extractor for

both classification and domain adaptation tasks, as detailed in the

following sections.

2.4.2 Adversarial domain adaptation
To address domain shifts across optical and biological

variability, DANNs were implemented. These networks were

designed to achieve domain invariance and accurate classification

across multiple target domains while requiring a minimal number

of labeled samples. The model was trained on 539 bacterial

images from the source (PC) domain (including 377 training and

162 validation) under the controlled laboratory conditions and

evaluated on target domains with variations in optical setups and

microbial sample incubation times, as detailed in Table 1. Each

target domain had fewer than 5 labeled samples available per

bacterial species.

A variant of DANNs, referred to as MDANN, was also

employed to extend domain adaptation to multiple domains

simultaneously (Ganin et al., 2016). As shown in Figure 1,

the model was designed to learn a shared feature extractor

capable of capturing domain-invariant features from microscopic

images. These extracted features were then passed to a task-

specific classification head to predict class labels (i.e., bacterial

species), optimized using a task loss calculated as the cross-

entropy between predicted and true class labels. To enforce domain

invariance, a multi-domain discriminator network was trained

concurrently to predict the domain labels of input images based

on their feature representations. The domain loss, calculated as

the cross-entropy across predicted domain probabilities (with 0

representing the source domain and 1, . . . ,m representing the m

target domains), was backpropagated through the discriminator

network. A gradient reversal layer was applied to multiply the

gradient of weights of the discriminator network with respect to

the training loss by −λ, a tunable hyperparameter that controls

the strength of domain alignment. The adjusted gradients were

then propagated through the backbone network, promoting the

extraction of domain-invariant feature representations. As the

discriminator network improved in distinguishing domain labels,

the backbone network simultaneously adapted to generate features

that minimized domain-specific biases.

2.4.3 Model training
The model training process was structured to achieve

simultaneous classification and domain adaptation using a multi-

task learning framework. Let S denote the source domain and T =

{T1, . . . ,Tm−1} denote the target domains. The combined dataset

is denoted as (S ∪ T) = {S,T1 . . . ,Tm−1}, where the class labels for

any x ∼ (S∪T) are defined as {0, . . . , 5}. The shared EfficientNetV2

feature extractor, fe, is parameterized by θe. The forward pass of

the extractor is represented as fe(x, θe) = e, where e ∈ R
2152

is the feature embedding of the input x and θe are the learnable

parameters of the feature extractor. The extracted features are

processed by two separate heads: a classification head and a domain

regressor head. The classification head, fc(fe(x, θe), θc) :R
2152 →

R
6, maps the embeddings to probabilities for each class label, while

the domain regressor head, fd(fe(x, θe), θd) :R
2152 → R

m, maps

the embeddings to domain labels, where m is the total number of

domains (including the source domain).

The multi-task loss function comprises the classification loss,

LC , and the domain adaptation loss, LD, and is defined as follows:

L = LC + LD (1)

LC = −

m∑

i=1

yi · logfc(fe(xi, θe), θc) (2)

LD = −λ

m∑

i=1

di · logfd(fe(xi, θe), θd) (3)

where xi ∼ (S∪T) is an input sample with class label yi ∈ {0, . . . , 5}

and domain label di ∈ {0, . . . ,m − 1}, where di = 0 corresponds

to S, di = 1 corresponds to T1, and so on. The hyperparameter

λ controls the relative importance of the domain loss. A higher

value of λ increases the alignment of features representations across

domains.

Finally, the model parameter are updated during training using

the following equations:

θf ← θf − α
∂LC

∂θf
+ α · τ · λ

∂LD

∂θf
(4)

θc ← θc − α
∂LC

∂θc
(5)

θd ← θd − α · λ
∂LD

∂θd
(6)

where α is the learning rate and p is the scaling factor. Gradient

reversal is applied in Equation 4 to the domain-regressor loss in
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FIGURE 1

Schematic of the model training process using a domain-adversarial neural network (DANN) for domain adaptation for M domains.

the update of θf by adding rather than subtracting its gradient. The

scaling factor τ is applied to the domain-regressor loss during the

gradient reversal step, a monotonically increasing sigmoid function

as follows:

τ =
2

1+ e
−10ti

t

− 1 (7)

where ti denotes the current epoch and t is the maximum number

of epochs set before training. This adaptive weighting mechanism

allows the feature extractor to learn discriminative features in early

epochs and transition to domain-invariant features in later epochs,

typically after 30–40 epochs (Chen et al., 2019).

Training was conducted for a maximum of 90 epochs with a

batch size of 6. The AdamW optimizer was used, with a learning

rate of 0.001 and a weight decay of 0.001. For each experiment, the

model checkpoint corresponding to the lowest validation loss was

selected for evaluation on the held-out test set.

2.5 Model evaluation and visualization

The performance of bacterial image classification was evaluated

using classification accuracy, precision, recall, and F1-score. These

metrics were calculated for each bacterial species, and the final

reported values reflect the average across all classes to ensure

balanced assessment regardless of class size. Models were evaluated

on both the source and target domains under different training

conditions, including source-only and domain-adversarial training

with 1-shot, 3-shot, and 5-shot labeled samples per class.

Additionally, Gradient-based class activation mapping (Grad-

CAM) (Selvaraju et al., 2017) was employed to gain qualitative

insights into the specific image features utilized by the model to

predict bacterial species. Grad-CAM is widely used visualization

technique in image classification tasks that highlights regions of an

input image receiving significant attention from the model during

prediction. While the model outputs a single value corresponding

to the predicted bacterial species, the Grad-CAM visualizations

indicate the regions in the input image that most influence the

prediction. In this study, it was hypothesized that these regions

would correspond to areas of the input image where individual

microcolony is visible, although other features of the input, such

as the spatial arrangement of multiple microcolonies, might also

contribute to the predictions.

For qualitative understanding of domain alignment within

the model, t-distributed stochastic neighbor embedding (t-SNE)

(Hinton and Roweis, 2002) was employed to project the feature

vectors of test images from the source and target domains into two-

dimensional space. This technique enabled visualization of whether

domain-adversarial training facilitated domain alignment between

the input images of different domains.

3 Results

3.1 Domain variability in microcolony
imaging

This study explores domain adaptation across one source

domain and three target domains, each characterized by distinct

laboratory conditions (Table 1). The source domain (PC) dataset

consisted of images collected under controlled laboratory
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FIGURE 2

Example of bacterial microcolony images across domains. Columns represent di�erent bacterial species, including Bacillus coagulans (Bc), Bacillus

subtilis (Bs), Listeria innocua (Li), Escherichia coli (Ec), Salmonella Enteritidis (SE), Salmonella Typhimurium (ST). Rows represent domains with

di�erent laboratory conditions, as detailed in Table 1.

conditions using phase contrast microscopy at 60× magnification

from microcolonies incubated for 3 h. Target domains were chosen

to simulate variations encountered in real-world applications,

including brightfield microscopy at 60× magnification (BF),

phase contrast microscopy at a lower magnification (20×), and

phase contrast microscopy at 20× magnification with an extended

incubation time to capture additional biological variability

(20x-5h).

Substantial variability was observed in microcolony imaging

across domains, as illustrated in Figure 2. Source domain images

displayed granular backgrounds and fine distinctions between

individual bacterial cells, in addition to well-defined microcolonies.

These features were attributable to the higher magnification

and phase contrast microscopy under controlled cell growth

conditions. In contrast, images from the BF target domain,

exhibited lower contrast, rendering microcolonies less discernible

against the background. Similarly, images from the 20× domain

presented smaller targets with reduced cellular features resolution,

attributable to the lower magnification. Extended incubation in the

20x-5h domain resulted in larger microcolony sizes but introduced

variability in spatial distributions and subtle focal shifts, further

complicating feature discrimination.

This variability in optical and biological factors diminishes the

discriminative quality of image features, presenting challenges for

bacterial detection and classification. Addressing this variability

necessitated models capable of effectively transferring performance

from the high-quality source domain (PC) to variable target

domains (BF, 20×, 20x-5h). Given that the bacterial species

remained consistent across domains, the model needed to learn

domain-invariant features that were unaffected by optical and

biological variability, while simultaneously maintaining the ability

to classify species-specific traits. To achieve this, DANNs and

MDANNs were further implemented, as detailed in Section

2.4. These architectures and training processes were specifically

designed to align feature representations across domains, ensuring

both domain invariance and accurate classification across all target

domains.

3.2 Classification performance
improvements with domain adaptation

The ability of DANNs for single-target domain adaptation

and MDANNs for multi-domain adaptation was evaluated

to address the classification performance gaps between the

source domain (PC) and target domains (BF, 20×, 20x-5h).

Single-target domain adaptation aligned feature representations

for individual target domains, while multi-domain adaptation

generalized across multiple target domains simultaneously. Both

approaches leveraged limited labeled samples (1-shot, 3-shot, or 5-

shot) from the target domains, enabling significant performance

improvements despite substantial variability in optical setups and

microbial sample incubation times.

Figure 3 presents confusion matrices that illustrate class-

wise changes in bacterial classification performance across target

domains, highlighting the effect of domain-adversarial training.

The left panels illustrate the limited performance of source-only

training, which relied solely on data from the source domain. This

approach struggled to generalize to target domains due to domain

shifts. In contrast, domain-adversarial training effectively aligned

feature representations across domains, enhancing classification

accuracy in the target domains, as shown in the right panels. In

the BF target domain (Figure 3a), B. coagulans, S. Enteritidis, and
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FIGURE 3

Confusion matrices comparing bacterial classification performance of source-only training and domain-adversarial training across three target

domains: (a) BF, (b) 20×, and (c) 20x-5h. Each confusion matrix shows how well the model’s predictions match the actual labels. For each target

domain, the left matrix shows results from source-only training, and the right matrix shows results from domain-adversarial training using DANNs.

Each matrix displays the alignment between true and predicted classes. Bc, B. coagulans; Bs, B. subtilis; Ec, E. coli; Li, L. innocua; SE, S. Enteritidis; ST,

S. Typhimurium.

S. Typhimurium exhibited near-zero or zero classification accuracy

under source-only training, but all showed marked improvement

with domain-adversarial training. Similarly, in the 20× domain

(Figure 3b), B. coagulans, E. coli, and S. Typhimurium were

largely misclassified in the absence of adaptation and benefited

from adversarial training. In the 20x-5h domain (Figure 3c),

S. Enteritidis, which had zero classification accuracy under

source-only training, also demonstrated substantial gains. Overall,

the results show that domain-adversarial training led to substantial

improvements in classification accuracy across all target domains

and all bacterial species.

The classification performance of single-target domain

adaptation using DANNs is quantified in Table 2, with target

domain accuracy increasing by up to 54.5%, while source domain
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TABLE 2 Classification performance for domain-adversarial neural networks (DANNs) with E�cientNetV2 backbone.

Domain Metric Source-only 1-shot DANN 3-shot DANN 5-shot DANN

BF source Accuracy (%) 94.4 91.1 94.4 93.3

Precision (%) 94.6 91.1 94.5 93.6

Recall (%) 94.4 91.1 94.4 93.3

F1-score (%) 94.4 91.0 94.4 93.3

BF target Accuracy (%) 41.7 56.7 75.0 73.3

Precision (%) 37.6 56.2 76.1 73.4

Recall (%) 41.7 56.7 75.0 73.3

F1-score (%) 38.2 53.4 73.1 73.3

20× source Accuracy (%) 94.4 90.0 90.0 93.3

Precision (%) 94.6 90.4 90.1 93.5

Recall (%) 94.4 90.0 90.0 93.3

F1-score (%) 94.4 90.0 89.9 93.4

20× target Accuracy (%) 33.3 54.4 82.2 88.9

Precision (%) 40.3 43.3 83.3 89.9

Recall (%) 33.3 54.4 82.2 88.9

F1-score (%) 28.1 46.8 82.0 88.8

20x-5h source Accuracy (%) 94.4 94.4 94.4 94.4

Precision (%) 94.6 94.6 94.7 94.8

Recall (%) 94.4 94.4 94.4 94.4

F1-score (%) 94.4 94.4 94.5 94.5

20x-5h target Accuracy (%) 40.0 71.7 83.3 83.3

Precision (%) 43.4 80.1 84.1 84.1

Recall (%) 40.0 71.7 83.3 83.3

F1-score (%) 34.1 70.9 81.3 81.3

Results are presented for source-only training and domain-adversarial training with 1-shot, 3-shot, and 5-shot labeled samples. Bold values indicate the highest accuracy for each domain and

setting.

accuracy experienced minimal degradation, within 1.1% of

source-only training. The model performed better on the 20×

and 20x-5h domains compared to BF. Specifically, accuracy

improvements reached up to 54.5% and 43.3% for 20× and

20x-5h domains, respectively, while BF domain showed a more

modest improvements of 31.7%. In addition to accuracy, other

performance metrics also improved across target domains with

DANN. In the 20× domain, F1-score increased from 28.1%

(source-only) to 88.8% with 5-shot DANN, with similar gains

observed in precision (from 40.3% to 89.9%) and recall (from

33.3% to 88.9%). The 20x-5h domain showed a rise in F1-score

from 34.1% to 81.3%, while precision and recall improved to 84.1%

and 83.3%, respectively. Improvements in the BF domain were

more modest, with F1-score rising from 38.2% to 73.3% under

5-shot DANN. These consistent gains across metrics support the

effectiveness of adversarial training for enhancing performance in

label-limited, variable imaging conditions.

Multi-domain adaptation using MDANNs further showed

strong generalization across multiple target domains, as shown in

Table 3. MDANNs achieved accuracy comparable or higher than

single-target domain adaptation for BF domain, with accuracy

improvement of 33.3% (from 43.3% to 76.7%), while preserving

source domain accuracy to within 4.4% of source-only training.

However, for the 20× domain, MDANNs achieved slightly lower

performance compared single-target DANNs, despite showing

substantial improvement of 47% (from 34.4% to 82.2%). Precision,

recall, and F1-score also improved with MDANN. In the BF target

domain, F1-score increased from 57.8% (1-shot) to 76.2% (5-shot),

with corresponding gains in precision (from 57.4% to 77.3%) and

recall (from 60.0% to 76.7%). In the 20× domain, F1-score reached

74.8% with 5-shot MDANN, up from 48.4% with 1-shot training,

alongside increases in precision (from 60.6% to 75.3%) and recall

(from 54.4% to 75.6%). These improvements further demonstrate

that MDANNs effectively generalize across domains even under

few-shot constraints.

Overall, these results highlight the effectiveness of domain-

adversarial training in both single-target and multi-domain

scenarios. DANNs and MDANNs demonstrated the ability to

learn domain-invariant features and align feature representations

across domains, enabling accurate bacterial classification despite

the variations in optical setups and microbial sample incubation

times.
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TABLE 3 Classification performance for multi-domain adversarial neural networks (MDANNs) with E�cientNetV2 backbone.

Domain Metric 1-shot MDANN 3-shot MDANN 5-shot MDANN

Source Accuracy (%) 87.8 92.2 90.0

Precision (%) 88.0 92.4 90.5

Recall (%) 87.8 92.2 90.0

F1-score (%) 87.8 92.1 89.8

Target (BF) Accuracy (%) 60.0 68.3 76.7

Precision (%) 57.4 67.7 77.3

Recall (%) 60 68.3 76.7

F1-score (%) 57.8 65.1 76.2

Target (20×) Accuracy (%) 54.4 82.2 75.6

Precision (%) 60.6 84.0 75.3

Recall (%) 54.4 82.2 75.6

F1-score (%) 48.4 82.1 74.8

The source domain was PC and the target domains were BF and 20×. Results are shown for domain-adversarial training with 1-shot, 3-shot, and 5-shot labeled samples. Bold values indicate

the highest accuracy for each domain and setting.

3.3 Visualizing feature representations and
domain alignment

Grad-CAM visualizations (Figure 4) provided insights into

how the model identified important features across different

imaging domains, highlighting the regions of microcolony images

that were most influential during classification. Warmer colors

(e.g., red and yellow) represented areas with stronger activation,

indicating the model’s focus during prediction. In the PC domain,

activations were sharply localized along the well-defined edges

of individual microcolonies, reflecting the high-contrast details

available in phase contrast microscopy under controlled laboratory

conditions. In the BF domain, activations were broader and

slightly less concentrated. While the overall activation structure

resembled that of the PC domain, the model adapted to the lower

contrast of brightfield microscopy by expanding its focus to include

central regions of microcolonies. In the 20× domain, activations

were noticeably more diffuse and less sharply defined. The lower

magnification reduced the resolution of individual cells, making

edge-specific features less informative. As a result, themodel shifted

its attention to the spatial arrangement and overall morphology of

microcolonies, which became the most informative distinguishing

features.

The alignment of feature representations was further validated

using t-SNE visualization (Figure 5). This visualization projected

high-dimensional feature embeddings into a two-dimensional

space, allowing the formation of visually distinct clusters for

each bacterial species. In the visualization, the source domain

(PC) embeddings are represented by circles and the target

domain (e.g., 20x-5h) embeddings are represented by crosses,

with colors indicating different bacterial species. Overlap or close

alignment between source and target embeddings within the same

bacterial species cluster indicates that domain-adversarial training

successfully aligned features across domains. For most species, such

as B. coagulans, B. subtilis, E. coli, and L. innocua, the source

and target clusters overlap significantly, demonstrating effective

alignment of features across domains. However, for closely related

species such as S. Enteritidis and S. Typhimurium, the visualization

shows overlapping clusters withminimal separability between these

two species, revealing challenges in distinguishing them.

4 Discussion

4.1 Generalizing bacterial classification
beyond sample preparation and long
incubation constraints

This study demonstrates the application of adversarial

domain adaptation to enhance the generalizability of AI-

enabled microscopy for bacterial classification under diverse

laboratory conditions. By integrating a pretrained EfficientNetV2

backbone with domain-adversarial training, our approach achieved

up to a 54.5% improvement in classification accuracy across

target domains, effectively addressing domain shifts such as

variations in optical setups and microbial sample incubation

times. Previous studies in AI-enabled bacterial classification

predominantly focused on optimizing model performance within

controlled laboratory settings, often relying on sample preparation

techniques such as staining, selective enrichment, or the use

of specialized reagents, which extended processing times and

required skilled personnel (Chen et al., 2024; Ramesh et al., 2024;

Wakabayashi et al., 2024). For example, Chen et al. (2024) utilized

selective media and Gram staining to isolate and chemically label

bacterial samples, enabling their model to classify pre-processed

colonies but constraining the scope to well-prepared datasets, with

incubation times of 18–24 h for enrichment and an additional

18–48 h for further processing. Similarly, many studies, including

Ramesh et al. (2024), utilized the publicly available Digital Images

of Bacteria Species (DIBaS) dataset, which consisted of Gram-

stained samples imaged at high magnification (100×), providing

high-quality data but without addressing generalizability across

broader sample preparation and imaging conditions. Wakabayashi

et al. (2024) introduced variability by working with inoculated
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FIGURE 4

Gradient-based class activation mapping (Grad-CAM) visualizations illustrating model attention during prediction with a 5-shot MDANN. Panels show

activation heatmaps for correctly classified bacterial microcolonies in (a) PC (source domain), (b) BF (target domain), and (c) 20× (target domain).

Warmer colors indicate regions with stronger contribution to the model’s prediction, providing model interpretability.

FIGURE 5

t-distributed stochastic neighbors embedding (t-SNE) visualization of feature embeddings extracted by the 5-shot DANN. The source domain is PC,

and the target domain is 20x-5h. Clusters represent feature embeddings for specific bacterial species, with source samples (black dots) and target

samples (colored crosses). Overlapping clusters indicate e�ective alignment of features across domains. Bc, B. coagulans; Bs, B. subtilis; Ec, E. coli; Li,

L. innocua; SE, S. Enteritidis; ST, S. Typhimurium.

meat samples, yet relied on extended incubation times (20 h) and

selective media, which may not be feasible in resource-limited

settings. In these studies, AI models were employed to analyze

highly processed or enriched datasets, often focusing on tasks like

counting fully grown colonies or identifying pre-processed features

rather than generalizing to diverse conditions. In contrast, our

study focused on minimizing the reliance on extensive sample

preparation, long incubation times, and precise skillsets required

for high-quality image acquisition. By using general-purpose

media with a reduced incubation time of 3 h, we demonstrated

the potential to shift bacterial classification from labor-intensive

preparation to automated abstract feature recognition. To the

best of our knowledge, this is the first study to explicitly

evaluate the generalizability of a model trained on high-quality,

controlled datasets to diverse image domains, encompassing

optical and biological variability. These advancements highlight

the model’s potential for resource-limited and variable laboratory

environments.
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4.2 Adversarial domain adaptation for
cross-modality imaging in bacterial
classification

The results of this study highlight the effectiveness of

adversarial domain adaptation for bacterial classification in

microscopy, showcasing its ability to address optical variability

and reduce dependence on specific microscopy modalities

and resource-intensive sample preparation. Cross-modality

microscopy has been extensively explored in biomedical imaging,

particularly for tasks like cell and nucleus detection, where large,

curated datasets are often used to achieve robust performance.

For example, previous work utilized k-means clustering and

modality-specific deep learning models for cell segmentation

across diverse microscopy modalities, such as brightfield, phase

contrast, differential interference contrast (DIC), and fluorescence

microscopy, emphasizing the need for domain adaptation to

improve generalizability beyond individual models (Wang et al.,

2023). Similarly, adversarial domain adaptation was applied to

translate between stained and unstained images for cell and

nucleus detection, improving detection performance compared

to baseline “source-only” training (Xing et al., 2021). However,

these studies primarily focused on instance detection and often

relied on staining information for classification. Another study

applied domain adaptation to digitally stain white blood cells,

reducing the need for staining procedures and preserving structural

information critical for classification, though it did not address

optical variability, such as changes in magnification (Tomczak

et al., 2021). In contrast, this study emphasizes optical variability

for bacterial classification, exploring the practicality of adversarial

domain adaptation with small datasets containing as few as 1–5

labeled samples per species in target domains. It demonstrated

robust performance across variations in optical setups, including

transitions between microscopy modalities (phase contrast to

brightfield) and magnifications (60× to 20×). This few-shot

approach can be particularly advantageous in scenarios where

collecting and annotating large datasets is impractical. By reducing

dependency on extensive labeled data, the proposed framework

ensures scalability for real-world applications. A key advantage

of this approach lies in its ability to learn abstract features that

are domain-invariant, enabling robust classification of both

Gram-positive and Gram-negative bacteria across diverse imaging

conditions without relying on staining or contrast-enhancing

techniques. Unlike earlier bacterial classification methods that

required Gram-staining to enhance image contrast (Chen et al.,

2024; Ramesh et al., 2024) or phase contrast microscopy for

microcolony visualization (Ma et al., 2023), this method shifts the

classification burden to the model, bypassing optical and chemical

dependencies inherent to traditional workflows. Additionally,

transitioning from 60× to 20× magnification facilitates the

use of more accessible, less specialized equipment, balancing

resolution with broader applicability. By leveraging a few-shot

domain adaptation approach to address variability in optical

setups, this domain-adversarial framework ensures scalability

while maintaining robust performance. This makes it particularly

suitable for decentralized and resource-limited environments such

as onsite food safety testing.

4.3 Learning abstract features for small
targets and biological variability

The EfficientNetV2 backbone showed remarkable effectiveness

in this study, particularly for classifying small bacterial

microcolonies under challenging imaging conditions, such as lower

magnifications in the 20× domain. Its compound scaling strategy,

which balances depth, width, and resolution, enables hierarchical

feature learning that is well-suited for capturing fine-grained

features of small targets. Unlike previous approaches that employed

shallow CNN architectures, such as the five-layer convolutional

model used for foodborne pathogen classification (Chen et al.,

2024), EfficientNetV2’s deeper architecture (13–60 convolutional

layers) excelled in extracting information-rich abstract features.

While Chen et al. (2024) achieved promising results for rapid

detection using brightfield microscopy, their approach relied on

Gram-staining, high magnifications with oil immersion objectives,

and extended incubation times to grow fully formed colonies. In

contrast, our EfficientNetV2 backbone, combined with adversarial

domain adaptation, enabled classification of microcolonies

cultivated for shorter incubation periods without staining or high-

resolution imaging. Additionally, previous approaches in bacterial

image classification often excluded low-quality images manually to

mitigate errors (Chen et al., 2024), whereas EfficientNetV2’s ability

to generalize stemmed from its progressive learning strategies,

advanced regularization techniques, and integration with an

image augmentation pipeline. These capabilities allowed the

model to perform robustly even with suboptimal image quality.

EfficientNetV2 also addressed limitations of object detection

models like YOLOv3, which struggled with small bacterial targets

due to specific design constraints (Wakabayashi et al., 2024). Its

grid cell mechanism often failed to localize small microcolonies

accurately, downsampling erases fine-grained details, and

predefined anchor boxes were poorly suited to microcolony

sizes and shapes. These limitations, observed in our preliminary

experiments with YOLOv4, hindered performance in the 20×

domain. In contrast, EfficientNetV2’s hierarchical feature learning

and dynamic scaling captured subtle spatial and morphological

details, making it well-suited for small bacterial target analysis

under varying conditions.

The flexibility of EfficientNetV2 is further supported by

Grad-CAM and t-SNE analyses, which highlighted its ability to

adapt to varying imaging conditions. Grad-CAM visualizations

revealed that in the PC domain, the model focused on edge-

specific features, leveraging high-contrast details provided by

phase contrast microscopy. For the 20× domain, where reduced

magnification limited the visibility of fine cellular features, the

model shifted its focus to broader microcolony-level characteristics

such as shape, size, and spatial arrangement, demonstrating

dynamic feature extraction. Similarly, the t-SNE visualization for

the 20x-5h domain showed significant alignment between source

(PC) and target embeddings for most species, confirming the

model’s ability to learn domain-invariant features and generalize

across optical and biological variability. However, overlapping t-

SNE clusters for closely related species, such as S. Enteritidis

(SE) and S. Typhimurium (ST), underscored the challenge of

distinguishing morphologically similar species, as also reflected
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in the confusion matrix (Figure 3c). These findings emphasized

the combined strength of EfficientNetV2 and adversarial domain

adaptation in handling variability across domains.

4.4 Future directions for enhancing
domain adaptation in microscopy

This study highlights the strengths and challenges of DANNs

and MDANNs in addressing domain variability across diverse

optical and biological conditions. While DANN improved

classification performance across multiple target domains, results

from Table 2 and Section 3.2 indicate that low contrast in the

BF domain posed greater alignment difficulties than variations

in magnification or microbial sample incubation times in other

domains. MDANNs demonstrated strong generalization across

multiple domains by leveraging shared features across bacterial

species, but results from Table 3 and Section 3.2 show that

the BF domain consistently exhibited lower improvements

compared to others, underscoring the persistent challenges of

low-contrast imaging. Building on prior multi-domain adversarial

approaches, which have demonstrated success with larger datasets

and complex discriminator architectures (Zhao et al., 2018;

Pei et al., 2018), this study extended these advancements by

achieving domain-adversarial training with as few as 1–5 labeled

samples per bacterial species. This few-shot approach reduces

the labor-intensive process of manual annotation and aligns

with the broader CNN-based strategies prevalent in this field.

To support this proof-of-concept evaluation under constrained

labeling conditions, we selected six foodborne species that enabled

controlled testing of domain generalization across biologically

meaningful variation. These taxa span Gram-positive and Gram-

negative groups and multiple genera and include two Bacillus

species and two Salmonella serovars, allowing us to assess model

robustness across genus-, species-, and serovar-level distinctions.

Future work will expand to broader taxa to further enhance

generalizability. In particular, including additional Gram-negative

genera such as Shigella, Yersinia, and Vibrio will allow us to

evaluate model performance under greater phenotypic ambiguity.

These organisms can exhibit overlapping growth characteristics

in non-selective media like TSB, despite significant genetic

and physiological differences (Schiemann, 1983; Dekker and

Frank, 2015). Incorporating these genera would provide a more

rigorous test of classification robustness across closely related

taxa. Moreover, expanding the range of environmental growth

conditions, including variations in media composition, pH,

and substrate type, may help capture the phenotypic plasticity

observed in real-world bacterial populations. Such variability

is likely to influence morphological and physiological traits

relevant to imaging-based classification. Broader validation efforts

could help align model predictions with established taxonomic

criteria and support integration with conventional classification

frameworks.

Another promising future direction would be to transition

toward unsupervised domain adaptation, eliminating the reliance

on labeled samples entirely. Leveraging generative adversarial

networks (GANs), we could digitally generate pixel-level

labels or synthetic training data, enabling an unsupervised

workflow that emphasizes pixel-level classification. This

shift would address both labor limitations and the need for

enhanced alignment at finer spatial resolutions, such as in

low-contrast modalities like brightfield microscopy. GAN-based

approaches for digital staining or synthetic dataset generation

have shown potential in recent studies on biomedical imaging

(Mukherjee et al., 2023; Goyal et al., 2024), and their integration

could further improve domain alignment and classification

performance. Additionally, future efforts could incorporate

spectral or biochemical features into the dataset, improving

the differentiation of closely related bacterial species, such

as S. Enteritidis and S. Typhimurium, providing additional

discriminatory power. Building on this direction, integrating other

data modalities may further improve classification resolution

beyond morphology alone. Our recent study using AI-enabled

hyperspectral microscopy (Papa et al., 2025) demonstrates that

spectral features, which are often associated with physiological

and biochemical differences, can enhance the differentiation of

closely related bacterial strains. Combining such multimodal

approaches with domain adaptation could further strengthen

performance in complex classification tasks involving subspecies,

pathovars, or functional variants. Dynamic phenotypic traits

such as microcolony spreading or motility may also offer

discriminative features beyond morphology. Incorporating

multi-frame or time-resolved imaging could allow models to

learn behavioral patterns that vary across subspecies or functional

variants. These advancements would enhance the robustness of

domain-adversarial frameworks and broaden their scalability

and applicability to decentralized or resource-limited laboratory

environments.

5 Conclusions

This study demonstrates the potential of adversarial domain

adaptation for bacterial classification in microscopy, addressing

variability in optical setups and microbial sample incubation

times. By integrating EfficientNetV2 image classification backbone

with DANNs and MDANNs, the framework achieved robust

generalization from controlled laboratory conditions to various

setups with optical and biological variability. Single-target

adaptation improved performance across individual domains,

while multi-domain adaptation achieved strong generalization

across multiple domains with slight trade-offs in some cases.

Grad-CAM and t-SNE visualizations validated the model’s

ability to extract domain-invariant features, enabling robust

adaptation to challenges such as low-contrast imaging, low

magnifications, and extended incubation times. The few-

shot learning approach underscores the scalability of this

framework for real-world applications, such as onsite food safety

testing, where labeled data are limited. Follow-on studies could

explore unsupervised approaches to further enhance domain

adaptation by reducing reliance on labeled samples, improving

contrast in low-quality images, and enabling alignment at finer

spatial resolutions. This study establishes a strong foundation

for optimizing multi-domain adaptation and enhancing
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scalability and accuracy in decentralized and resource-limited

settings.
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