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The Exposome—the totality of environmental exposures across a lifetime—
remains one of the most significant challenges in understanding and preventing 
human disease. Translating its vast, heterogeneous data streams into actionable 
knowledge requires artificial intelligence (AI) integrated with human-relevant 
experimental systems. We propose a unifying vision in which Microphysiological 
Systems (MPS) and multi-omics platforms generate high-quality, context-specific 
data that iteratively calibrate AI models, enabling the creation of digital twins 
of organs, individuals, and ultimately populations. This “Exposome Moonshot” 
parallels the Apollo program in ambition, with MPS as the rocket, multi-omics as 
the lunar module, and AI as the guidance computer. Early applications demonstrate 
that deep learning can already outperform canonical animal tests for several 
toxicological endpoints, while reducing cost and time to decision. Realizing the 
full potential of Exposome intelligence will require expanding the applicability 
domain of models, implementing robust data security, and prioritizing transparent, 
interpretable algorithms. By linking predictive AI with experimental feedback, 
we can move toward a prevention-driven, personalized paradigm for human 
health and regulatory science.
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1 Ignition: why exposomics needs an AI engine

Genomics taught us that mapping static code is only half the story; the Exposome—
the moving target of everything we breathe, eat, touch, or worry about—drives most of 
the remaining disease burden (Wild, 2005; Hartung, 2023c). Complex human in vitro 
systems, also known as Microphysiological Systems (MPS), allow modeling these 
exposures. Yet exposure effects arrive as an unruly torrent of heterogeneous, high-
dimensional data. Turning that torrent into knowledge requires artificial intelligence (AI) 
in the same way the Apollo spaceflight program needed an onboard guidance computer: 
“Mass-spectroscopy is our telescope, MPS our lunar module, and AI the guidance computer 
that stitches the trajectory.” Extending the analogy, Microphysiological Systems (MPS) can 
be viewed as the rocket delivering our mission payload. At the same time, multi-omics 
technologies function as the lunar module enabling precision landing on specific 
biological questions.

Recently, we have already fused the terms into Exposome Intelligence (EI = Exposome + 
AI), calling it the “central tool for making sense of ~omics big data” (Sillé et al., 2024; Hartung, 
2025). EI is no longer aspirational: industrial-scale machine learning now integrates 
untargeted mass-spectrometry, wearables, satellite feeds, and electronic health records in 
near-real time.

OPEN ACCESS

EDITED BY

Frank Emmert-Streib,  
Tampere University, Finland

REVIEWED BY

Adrian J. Green,  
Sciome LLC, United States

*CORRESPONDENCE

Thomas Hartung  
 Thomas.Hartung@uni-konstanz.de

RECEIVED 21 May 2025
ACCEPTED 27 August 2025
PUBLISHED 10 September 2025

CITATION

Sillé FCM and Hartung T (2025) AI: the Apollo 
guidance computer of the Exposome 
moonshot.
Front. Artif. Intell. 8:1632520.
doi: 10.3389/frai.2025.1632520

COPYRIGHT

© 2025 Sillé and Hartung. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Perspective
PUBLISHED  10 September 2025
DOI  10.3389/frai.2025.1632520

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1632520&domain=pdf&date_stamp=2025-09-10
https://www.frontiersin.org/articles/10.3389/frai.2025.1632520/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1632520/full
https://orcid.org/0000-0003-4305-2049
https://orcid.org/0000-0003-1359-7689
mailto:Thomas.Hartung@uni-konstanz.de
https://doi.org/10.3389/frai.2025.1632520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1632520


Sillé and Hartung� 10.3389/frai.2025.1632520

Frontiers in Artificial Intelligence 02 frontiersin.org

2 Pattern-finding at planetary scale

Early proof-points show what happens when deep learning meets 
safety science. Neural networks trained on 600,000 chemicals already 
outperform the canonical animal tests for skin sensitization, acute 
toxicity, mutagenicity, and skin and eye hazards, and screen thousands 
of structures in hours (Luechtefeld et al., 2018; Golden et al., 2021; 
Walter et  al., 2024; Duy and Srisongkram, 2025). In the 
Implementation Moonshot Project for Alternative Chemical Testing 
(IMPACT) (Sillé et  al., 2024), we  combine those predictors with 
evidence-to-decision frameworks1 so that regulators can rank hazards 
and benefits on the same probabilistic scale. Let the algorithms sweat 
the data so that scientists can sweat the hypotheses.

While AI models show promising performance across diverse 
toxicological endpoints, their predictive accuracy is ultimately 
constrained by the applicability domain—defined by the chemical 
structures, exposure scenarios, and biological contexts represented in 
their training data. Applicability domain is a concept we introduced 
earlier (Hartung et al., 2004) for in vitro systems, borrowing from the 
Quantitative Structure-Activity Relationship (QSAR) literature. Still, 
it is now equally applicable to AI-facilitated New Approach Methods 
(NAMs), also known as alternatives to animal testing. Current 
coverage of both chemical space and human-relevant biological 
responses remains incomplete, particularly for complex mixtures, 
low-abundance environmental contaminants, and underrepresented 
population groups. Extrapolation beyond these domains can lead to 
overconfident or biased predictions (Hartung et al., 2025b). To address 
these limitations, AI development in exposomics must be coupled to 
an iterative feedback loop with experimental platforms such as 
Microphysiological Systems (MPS). In this approach, AI models guide 
targeted MPS experiments to fill gaps in chemical–biological coverage, 
while new experimental data are used to recalibrate and extend model 
applicability. This bidirectional exchange not only improves model 
robustness and generalizability but also ensures that predictions 
remain anchored in human-relevant biology, thereby increasing 
regulatory and clinical confidence in their use.

3 Microphysiological systems and 
their digital twins—the test bed for 
human digital twins with destination 
personalization

Fueled by stem cell and sensor technologies (Young et al., 2019), 
MPS platforms have evolved, which do not only keep single cell types 
alive and measure cell death, but also replicate aspects of native tissue 
architecture—such as multi-cellular organization, 3D structure, and 
barrier function—and physiological functionality, including 
electrophysiological activity, hormone secretion, and metabolic 
processing (Roth and Berlin, 2019; Marx et al., 2025; Hartung and 
Smirnova, 2025). They can act both as human-relevant testbeds and 
as embodied simulators that refine in-silico models on the fly. So, by 
creating a digital twin of an MPS, running virtual experiments and 
based on this refining our twin (Smirnova et al., 2018), we learn how 

1  Available online at: https://www.ebtox.org.

to build the twins for entire humans and then populations. Like this, 
we  are teaching our computers to model organ and whole body 
responses, so that regulators can finally press ‘quit’ on obsolete 
animal tests.

In a fully integrated workflow, MPS platforms act as dynamic, 
human-relevant testbeds that both inform and are informed by AI 
models. Initial in silico predictions, generated from existing chemical–
biological data, can be  used to prioritize compounds, exposure 
scenarios, or biological pathways for targeted MPS experimentation. 
These experiments generate high-content, mechanistically anchored 
datasets—spanning molecular, cellular, and functional endpoints—
which are then fed back into the AI pipeline to refine parameters, 
extend the applicability domain, and reduce prediction uncertainty. 
This iterative calibration cycle not only enhances model robustness 
but also guides the design of subsequent experiments, ensuring that 
each new data generation step strategically fills knowledge gaps 
identified by the computational models. Such bidirectional learning 
aligns with the “systems toxicology” vision, in which experimental and 
computational tools evolve in concert to progressively approximate 
human biology while minimizing reliance on animal testing 
(Smirnova et al., 2018).

The Exposome moonshot ultimately aims at full human digital 
twins—virtual replicas that integrate genomics, exposomics and 
clinical trajectories to forecast individual risk and therapy response 
(De Domenico et  al., 2025; Trevena et  al., 2024; Gangwal and 
Lavecchia, 2025). Building such twins depends on advanced modelling 
plus constant data assimilation, a textbook task for adaptive AI. Key 
components have been sketched2—data fusion, generative modelling, 
iterative validation. The Exposome Moonshot aims to scale these 
approaches. If the genome was Apollo 11, the Exposome is Artemis—
same audacity, bigger destination.

4 AI-driven knowledge creation: 
faster, cheaper, fairer

Chemical safety testing is traditionally slow, costly and biased 
toward animal biology. A Human Exposome Project platform uses 
AI to transform this paradigm (Hartung, 2023a, 2023b; Kleinstreuer 
and Hartung, 2024). It accelerates data interpretation, slashes costs 
by automating analysis and reducing animal use, and opens the 
door to more equitable science by leveraging diverse, real-world 
datasets—including those from underrepresented populations. An 
AI-powered Human Exposome Project platform can democratize 
access to knowledge creation, enabling even low-resource labs and 
countries to contribute insights. As we expand from chemical safety 
to exposure sciences and human biomonitoring, AI enables high-
throughput, real-time synthesis of data that mirrors how people 
actually live. Calibrating these outputs against human disease 
etiology, has the potential to upend medicine as we  know it—
shifting the gravity from symptom-treatment to prevention 
and personalization.

2  Available online at: https://digital-strategy.ec.europa.eu/en/policies/

virtual-human-twins.
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In practice, implementing this vision requires integration of: (i) 
high-resolution environmental exposure data (e.g., air pollutants, 
dietary profiles, occupational hazards); (ii) biological readouts from 
minimally invasive sampling (e.g., blood, saliva, hair metabolomics); 
and (iii) contextual data from wearables and geospatial mapping. 
MPS platforms can incorporate these datasets by simulating relevant 
exposure mixtures, using donor-specific induced pluripotent stem 
cell (iPSC) lines to enable personalized risk modeling. Stem cell-
derived MPSs allow individual genetic and epigenetic backgrounds 
to be represented in exposure-response testing.

5 Trust, transparency and the 
hallucination hang-over

Sceptics fear the “black-box” nature of large models. Encouragingly, 
hallucination rates in leading large language models have dropped from 
~9% to 1–3% in the past year alone, the latest release of Chat-GPT-5 claims 
0.7%, and explainability toolkits mature alongside. As Eliezer Yudkowsky 
warned, “The greatest danger of AI is that people conclude too early that 
they understand it.” Our task as a community is therefore four-fold:

	 1.	 Make models legible—through open weights, provenance 
metadata and causal audits.

	 2.	 Make data FAIR by design—so that learning systems evolve 
under robust version control (Hartung et al., 2025a).

	 3.	 Make the scientific community more AI literate to create a 
workforce for the Human Exposome and beyond.

	 4.	 Using the simplest model when possible ensures highest data 
security. Where model performance is comparable, simpler 
and more interpretable algorithms should be  favored to 
facilitate regulatory uptake. Moreover, given the sensitive 
nature of Exposome and personal health data, the highest 
standards of data security and privacy must be maintained to 
ensure public trust and foster data sharing.

6 A collective flight-plan

Moonshots are team sports. The Exposome Moonshot Forum 
(Washington DC, 12–15 May 2025) convened AI researchers, 
exposure and environmental health scientists, regulators, policy-
makers, ethicists and the public to co-author a “Declaration toward 
a Human Exposome Project.” Working groups shall tackled now 
critical priorities—from exposomics reporting standards and model 
cards for safety AI to avenues for public–private co-funding. 
Regulators aren’t just kicking the tires of new approach methods 
anymore—they are asking for the keys.

7 Conclusions: lighting the next-gen 
engines

AI has progressed to the point where dismissing it as futuristic is 
no longer tenable. While some AI domains—such as large language 
models—are currently doubling in specific performance benchmarks 
every few months, domains such as exposure science, genomics, and 
chemistry advance at different rates due to data generation constraints. 
By the time this reaches print, today’s algorithms will already look 

vintage. What matters is how quickly we embed them in transparent, 
ethical and human-centric frameworks.

“You will never see an AI as bad as today’s—tomorrow’s will 
be  twice as smart and half as hallucinogenic,” we  told journalists 
recently at an Science Media Centre (SMC) London media briefing. 
The same exponential curve that propels model capability can, if 
we  steer wisely, propel the Exposome moonshot from concept to 
clinical and regulatory reality. So let us strap in, check the boosters, 
and light the engines—Exposome intelligence is ready for lift-off.
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