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Introduction: General purpose language models often struggle with accurately 
identifying domain specific terminology in the medical field, resulting in 
suboptimal performance in named entity recognition (NER) tasks. This challenge 
is particularly pronounced in Chinese electronic medical records (EMRs), which 
lack clear word boundaries and contain complex medical expressions.
Methods: This study proposes a novel NER method for Chinese EMRs that 
integrates ClinicalBERT, a language model pre trained on clinical corpora, with 
structured knowledge from a medical knowledge graph. Entity representations 
derived via Translating Embeddings (TransE) are incorporated to inject external 
semantic knowledge. Furthermore, the model fuses multiple character level 
features, including positional labels, contextual category clues, and semantic 
embeddings, to enhance boundary detection. The input text is annotated using 
the BIOES (Begin, Inside, Outside, End, Single) tagging scheme and subsequently 
encoded by ClinicalBERT. The encoded features are then passed through a 
bidirectional long short term memory (BiLSTM) network and a conditional 
random field (CRF) layer for final label prediction.
Results: Experiments conducted on publicly available datasets demonstrate 
that the proposed approach achieves an F1 score of 89.44 percent, surpassing 
multiple existing baseline models in performance.
Discussion: These findings confirm that the integration of domain specific 
language modeling, structured medical knowledge, and enriched character level 
features significantly enhances NER accuracy in Chinese EMRs. The proposed 
method shows strong potential for practical deployment in clinical information 
extraction systems.
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1 Introduction

With the advent of the artificial intelligence era, the use of emerging data technologies in 
the construction of electronic medical information has been strongly supported by national 
policies. The modern medical field has introduced intelligent diagnostic systems to assist 
doctors in disease diagnosis and drug recommendation, these systems usually rely on a large 
number of patients’ electronic medical records, which serve as important carriers of modern 
medical diagnosis and contain a large amount of unstructured text data, such as the patient’s 
medical history records, examination results, medical advice and treatment records, medical 
records, discharge summaries, and nursing care records (Shan et al., 2024). However, these 
raw medical data cannot be directly used by intelligent diagnostic systems due to their highly 
unstructured format and specialized content.
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Named Entity Recognition (NER), as one of the key sub-tasks of 
Natural Language Processing, accurately identifies specific named entities 
in unstructured text and categorizes them into corresponding entity types 
(Liu et al., 2022). In the medical field, NER is able to accurately annotate 
medical domain-specific medical entities including diseases and 
diagnoses, surgical procedures, anatomical locations, and drug names. 
The entities extracted through medical NER serve as foundational 
elements for a wide range of downstream clinical applications, effectively 
bridging unstructured narrative text and structured decision-making 
systems. Specifically, high-quality NER enables the automatic construction 
of structured electronic health records (EHRs), facilitates population of 
clinical knowledge graphs, and supports rule-based or machine-learning-
driven clinical decision support systems (CDSS). For example, accurate 
recognition of disease names and medication entities can aid in drug-
disease interaction detection and pharmacovigilance. Extraction of 
anatomical locations and surgical terms contributes to precise treatment 
planning and retrospective clinical auditing. Moreover, NER output can 
be directly leveraged in downstream tasks such as relation extraction, 
medical question answering, adverse event monitoring, and cohort 
identification for clinical trials. In essence, medical NER not only 
improves data usability but also plays a pivotal role in enabling secondary 
use of EMRs for intelligent analytics and evidence-based healthcare. 
Therefore, enhancing the accuracy, robustness, and domain adaptability 
of NER systems is of paramount importance for the effective deployment 
of AI in clinical environments. Therefore, numerous NER methods and 
techniques have been proposed to effectively integrate medical data and 
extract core information for medical diagnosis. However, due to the 
complexity and diversity of medical terminology, expert knowledge is 
required for data annotation, resulting in a serious scarcity of annotated 
medical data.

With the continuous advancement of deep learning, models such 
as Convolutional Neural Networks (CNN) (Li et  al., 2021) and 
Bi-directional Long Short-Term Memory (BiLSTM) (Zhou et al., 2016) 
have been widely used in English NER applications. However, due to 
structural differences between English and Chinese texts, Chinese 
named entity recognition still faces significant challenges compared to 
its English counterpart. For example, words in English are separated by 
spaces, while Chinese has no explicit word boundaries. In addition, 
proper nouns in English, such as names of people and places, are often 
distinguished by initial capital letters, whereas Chinese does not 
provide such typographic cues. Therefore, recognizing named entities 
in Chinese requires more refined algorithmic design and the 
incorporation of domain-specific knowledge into the models.

To distinguish our work from existing knowledge-enhanced NER 
frameworks, we  highlight the key methodological innovations 
introduced in this study:

First, unlike prior BERT-based knowledge-enhanced NER 
frameworks that typically perform token-level entity injection or rely 
on external gazetteers, our model integrates pre-trained knowledge 
graph embeddings at the character level in Chinese EMRs, which lack 
explicit word boundaries. This fine-grained fusion allows for more 
precise disambiguation and boundary localization, particularly for 
nested or semantically ambiguous entities.

Second, we  introduce a multi-source character-level encoding 
scheme, which incorporates not only contextual representations from 
ClinicalBERT and entity embeddings from the knowledge graph, but 
also auxiliary linguistic features such as BIOES (Begin, Inside, Outside, 
End, Single) tags and contextual categories. This holistic representation 

captures both structural and semantic cues, which, to the best of our 
knowledge, has not been jointly explored in Chinese clinical NER.

Third, we  design a joint embedding and contextualization 
mechanism, in which external TransE (Translating Embeddings for 
Modeling Multi-relational Data) vectors are linearly projected and 
fused with BERT outputs prior to sequence modeling. Unlike 
attention-based knowledge injection or post-hoc entity fusion, this 
early fusion strategy allows for end-to-end joint optimization of 
internal and external representations.

Finally, while prior studies have primarily focused on general-
domain or biomedical corpora in English, our work is tailored to real-
world Chinese EMRs, which are noisier, more abbreviation-heavy, and 
lack high-quality annotations. This necessitates a novel integration 
strategy that is robust to linguistic irregularities and domain-
specific ambiguities.

2 Related work

Medical Named Entity Recognition aims to identify and extract 
key medical entities—such as diseases, drugs, organs, symptoms, and 
examination results—from medical texts. It serves as a fundamental 
step for applications such as medical information extraction and 
knowledge graph construction and is typically regarded as a sequence 
annotation task. Early sequence annotation primarily relied on rule-
based and dictionary-based approaches, which used manually 
designed rules and feature templates to identify specific types of 
entities. Although manually crafted rules and dictionaries can 
be  tailored to specific domains and often yield better recognition 
results, these approaches heavily rely on manual effort and suffer from 
several limitations, including high labor costs, inefficiency, and poor 
generalization. With technological advancement, traditional machine 
learning methods represented by Conditional Random Fields (CRF) 
(Quattoni et  al., 2004) have been increasingly adopted, effectively 
reducing labor costs compared to rule-based and lexicon-based 
approaches, but they still suffer from limited semantic understanding, 
inefficient feature extraction, and slow training. In recent years, 
artificial intelligence and deep learning technologies have achieved 
significant success in the field of natural language processing. 
Compared to traditional machine learning methods, deep learning 
approaches can automatically learn feature representations, better 
capture complex semantic features, and model long-distance textual 
dependencies, thereby improving training efficiency. Currently, 
mainstream NER approaches utilize Transformer-based deep learning 
models—such as BERT (Bidirectional Encoder Representations from 
Transformers), RoBERTa (Robustly Optimized BERT Approach), and 
ERNIE (Enhanced Representation through Knowledge Integration)—
for feature extraction. Feng et al. (2023) proposed a BERT-based NER 
method for Chinese electronic medical records, which incorporates 
Char-CNN to learn character-level features and integrates them into 
vectors generated by the BERT pre-trained model to obtain word 
representations, which achieved an F1 value of 91.64% on the CCKS17 
dataset; Wu et  al. (2021) constructed a deep learning model by 
combining head features with the Ra-RC model, which uses RoBERTa 
to learn medical-specific features and form feature vectors, then 
applies BiLSTM to capture internal feature correlations, and finally 
uses CRF to obtain the optimal label sequence. Experiments show that 
the model achieves F1 scores of 93.26 and 82.87% on the CCKS2017 

https://doi.org/10.3389/frai.2025.1634774
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Xu et al.� 10.3389/frai.2025.1634774

Frontiers in Artificial Intelligence 03 frontiersin.org

and CCKS2019 datasets, respectively; Wang et al. (2020) proposed an 
ERNIE-based joint model, ERNIE-joint, designed for both NER and 
text classification tasks through joint training using both sentence-
level and token-level features, and experimental results demonstrated 
that it achieved state-of-the-art (SOTA) performance on the 
corresponding dataset.

Beyond improving training effectiveness through deep learning, 
many researchers have further optimized NER models to accommodate 
the structural characteristics of Chinese electronic health records 
(EHRs). To address the challenges of word polysemy and incomplete 
word segmentation in Chinese EHR NER, Zhang et  al. (2022) 
improved Chinese named entity recognition by combining the 
RoBERTa-WWM model with the BiLSTM-CRF model, and 
experimental results indicate that this model is better suited for 
Chinese EHR NER tasks. In order to cope with the problem of serious 
scarcity of annotated data in the medical field, Dao et  al. (2024) 
proposed an entity-aware mask-based local fusion named entity 
recognition data enhancement EALMDA method, which increases 
sample diversity while preserving core semantics, thereby generating 
enhanced training samples, which significantly improves the effect 
compared with the mainstream baseline method of data enhancement. 
Shan et al. (2024) proposed a novel framework, NER-CMR, to address 
entity nesting and boundary recognition challenges in traditional NER, 
which consists of a character encoding module, word embedding 
module, graph construction module, fusion module, and CRF module, 
and was shown to outperform baseline models in recognition 
performance on the CCKS and DIABETES datasets.

On the other hand, to fully recognize and utilize knowledge in the 
medical domain—and to address the issue of polysemy in medical 
terminology—many researchers have proposed incorporating 
Knowledge Graphs (KGs) into medical named entity recognition. Hu 
et  al. (2022) proposed a knowledge graph-inspired NER method, 
KGNER, which uses a masking and encoding strategy to incorporate 
common knowledge into the Transformer-based BERT model, enabling 
more effective use of external knowledge while preserving the semantic 
information of the original sentence; Jin et al. (2019) constructed the 
TCMKG-LSTM-CRF model to address the low recognition rate of rare 
words, which is commonly found in the field of traditional Chinese 
medicine, and used the knowledge graph information to enhance the 
model learning ability to identify rare words, in addition, the model 
introduces a knowledge-attention mechanism between neural network 
hidden vectors and candidate vectors from the knowledge graph, also 
considering the influence of the preceding word; Harnoune et al. (2021) 
proposed an end-to-end knowledge graph-based approach to extract and 
analyze information from biomedical clinical notes using the BERT 
model and CRF, effectively handling abstract biomedical concepts. 
Experiments showed that the method achieved a recognition accuracy 
of 90.7% on the Online PIPE dataset.

To fully leverage domain expertise in medicine, this paper 
proposes integrating the knowledge graph into the training process of 
the medical NER model by analysing the lexical relationship problem 
of the Chinese electronic medical record, strengthening the model’s 
understanding of the professional vocabulary in the medical field, by 
constructing a model that fuses the knowledge graph with the named 
entity recognition framework, and using the ClinicalBERT 
pre-training model (Huang et al., 2019) to obtain the text sequence of 
initial vector representations, where domain knowledge and entity 
relationships are encoded via knowledge graph embeddings. In 

addition, the proposed model utilizes a BiLSTM-CRF architecture to 
perform sequence modeling on the initial features, extracting 
contextual feature vectors to enhance representation learning, and 
finally decodes the optimal label sequences through CRF, which in 
turn improves the performance of the named entity recognition model.

Although previous studies have demonstrated the effectiveness of 
pre-trained models like BERT and BioBERT for clinical NER, these 
models are typically trained on general biomedical corpora and may 
lack adequate adaptation to the linguistic characteristics of real-world 
clinical narratives, such as abbreviations, incomplete sentences, and 
institution-specific terminology (Sun et al., 2021).

Moreover, most existing methods treat NER purely as a 
sequence labeling task, relying exclusively on token-level 
embeddings. They rarely leverage structured domain knowledge, 
which can be  crucial for disambiguating similar entities and 
enhancing recognition performance in low-resource settings (Hu 
et al., 2022).

These limitations motivate our approach, which leverages 
ClinicalBERT for improved contextual representation of clinical texts 
and integrates a domain-specific medical knowledge graph to 
provide complementary semantic cues for the NER model (Zhou 
et al., 2021).

In recent years, large language models (LLMs), such as GPT-3, 
GPT-4, T5, and PaLM, have demonstrated remarkable performance in 
a wide range of natural language processing tasks, including few-shot and 
zero-shot named entity recognition (NER). By leveraging large-scale 
pre-training on diverse textual corpora, these models can generalize to 
downstream tasks with minimal supervision. Several studies have 
explored the application of LLMs to NER by reformulating the task as a 
generative problem or prompt-based classification. For instance, UIE 
(Unified Information Extraction) and PromptNER have shown that 
LLMs can perform information extraction without task-specific training, 
while maintaining strong flexibility and task adaptability.

In the biomedical domain, domain-adapted LLMs such as 
BioGPT, BioMedLM, and Med-PaLM have further extended the 
applicability of LLMs to clinical and biomedical NER. These models 
incorporate domain-specific corpora during pre-training and achieve 
promising results in zero-shot clinical concept extraction and question 
answering. However, the deployment of LLMs in medical NER still 
faces several challenges, including high computational cost, limited 
explainability, and difficulty in grounding predictions with structured 
external knowledge such as medical ontologies or knowledge graphs.

Therefore, this study deliberately adopts a lightweight and 
interpretable architecture based on ClinicalBERT and knowledge graph 
embeddings. This design enables better domain adaptation to Chinese 
EMRs, facilitates knowledge-guided entity disambiguation, and allows 
explicit integration of structured semantic constraints. While LLMs offer 
significant potential, future research may investigate hybrid paradigms 
that combine LLMs with structured domain knowledge to enhance 
performance and interpretability in clinical NER tasks.

3 Methodology

In this paper, based on the input representations generated by 
ClinicalBERT, we propose a Chinese electronic medical record named 
entity recognition model, CBT-KG, which integrates a knowledge 
graph and the ClinicalBERT pre-trained model, which mainly consists 
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of a ClinicalBERT layer, a knowledge graph embedding layer, a BiLSTM 
layer, and a CRF layer. The overall structure is illustrated in Figure 1.

3.1 Text labelling and representation

We use a word segmentation tool to divide the text and apply the 
BIOES annotation scheme to mark the positions and entity categories 
within the sequence. The BIOES annotation scheme is more fine-
grained than the traditional BIO format. In this scheme, the position 
labels are defined as follows B stands for the starting position of the 
entity (Begin), I stands for the inner part of the entity (Inside), O stands 
for the non-entity part (Outside), E stands for the ending position of 
the entity (End), and S stands for the entity consisting of a single word 
or character (Single). For entity category annotation, we  adopt a 
two-layer label structure in the form of “position—entity_type,” 
tailored to electronic medical records BODY (Anatomical part), DRUG 
(Drugs), DISEASES (Diseases and diagnosis), EXAMINATIONS 
(Imaging examination), TEST (Laboratory test) and TREATMENT 
(Surgery), which are labeled as illustrated in Table 1.

To represent character-level features, we construct a character 
dictionary that indexes character attributes. Specifically, each character 
is labeled with its position, context category, and embedding features; 
then the corresponding feature embedding matrix is found according 
to the indexes corresponding to these labels, and these features are 
projected into a vector space. Finally, feature vectors from different 
dimensions are concatenated to form a comprehensive representation 
for each character. Let the input sequence be  { }= …1 2, , , nS x x x , in 
which the label corresponding to character ic  is vector-mapped to 
obtain the positional feature ∈ d

ip R , the contextual category feature 
∈ d

it R , and the embedding feature ∈ d
ia R . The multidimensional 

feature vector corresponding to each character ic  can be obtained by 

stitching the above three feature vectors element by element, and the 
calculation is shown in Equation 1:

	 ( )= , ,i i i ix Concat p t a 	 (1)

3.2 ClinicalBERT module

BERT is a bidirectional Transformer model that excels in natural 
language processing tasks through large-scale unsupervised 
pre-training and supervised fine-tuning. The Transformer consists of 
multi-layered encoders and decoders. Each encoder includes a multi-
head attention mechanism, a feed-forward neural network, residual 

FIGURE 1

Named entity recognition model structure.

TABLE 1  Example of labelling.

Character Position Entity type

无 O O

胸 S S-BODY

闷 O O

胸 S S-BODY

痛 O O

胸 B B-BODY

前 I I-BODY

区 E E-BODY

压 O O

榨 O O

感 O O
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connections, and layer normalization. The pre-training objective 
function of the ClinicalBERT model is defined by two unsupervised 
tasks, masked language modelling and next sentence prediction.

However, the pre-training data of standard BERT models (e.g., 
Wikipedia and BookCorpus) do not cover the terminology, syntax, 
and context specific to the medical domain. To address this issue, 
ClinicalBERT conducts domain-specific pre-training based on BERT 
using medical texts such as electronic health records, clinical notes, 
and medical literature, enabling it to better understand linguistic 
expressions in the medical domain, such as diagnostic terminology, 
treatment plans, and drug names; In addition, ClinicalBERT is well-
suited for handling clinical texts that contain specialized terminology 
and complex medical syntax. It inherits the advantages of dynamic 
contextual representations from BERT, enabling it to better handle 
word sense ambiguity compared to traditional static embedding 
methods. Traditional static embedding methods only focus on the 
word itself and the local features of its location, making it difficult to 
handle word polysemy. In contrast, ClinicalBERT leverages 
bidirectional semantics, focuses on different contextual information 
through multi-head self-attention mechanisms across multiple 
encoder layers and calculates dependency relationships between 
words within a sentence, thereby assigning different weights to each 
word. As a result, the same word receives different vector 
representations in varying contexts, which effectively solves the 
problem of word sense ambiguity. The architecture of the ClinicalBERT 
model is illustrated in Figure 2.

ClinicalBERT primarily relies on multi-head attention 
mechanisms to compute input vectors, as shown in Equation 2:

	
( )

 
=   

 
, , max

TQKAttention Q K V soft V
d 	

(2)

where Q, K , and V  refer to the query, key, and value vectors, 
respectively, and d  refers to the dimensions of the query, key, and 
value vectors, Q is used to perform dot product operation on each 
key vector, and the result is scaled and normalised by softmax 
function to obtain the attention weight matrix. Specifically, the multi-
head attention mechanism uses multiple parallel attention heads to 
capture different feature representations at the same time, and each 
head computes self-attention in different subspaces to make the 
model pay attention to different input information from multiple 
perspectives, and finally the heads are spliced together and linearly 
transformed to obtain the output of the feature matrix that integrates 

the attention information, which is computed as shown in 
Equations 3–5.

	
( ) ( ) ( )( )= , ,h h h

hhead Attention Q K V
	

(3)

	 ( )= …1 2, , , hMultiHeadOutput Concat head head head 	 (4)

	 ( )= …1 2, , , h oOutput Concat head head head W 	 (5)

where oW  is the output weight matrix.
In the input phase of the ClinicalBERT model, each input sentence 

is represented as the summation of three embeddings: token 
embeddings, positional embeddings, and segment embeddings. A 
special token [CLS] is added at the beginning of the sentence to 
represent the overall sequence, while [SEP] is inserted at the end to 
indicate sentence boundaries or separate multiple segments (see 
Figure 3).

The ClinicalBERT model adopts two unsupervised tasks, namely 
Masked Language Modelling and Next Sentence Prediction, to 
pre-train the model, and in addition, by incorporating the 
knowledge of medical text in the pre-training process, the 
performance of the model in the recognition of named entities in 
medical-related domains is greatly improved. Domain named entity 
recognition by incorporating medical text-related knowledge in the 
pre-training process, and the pre-training process is shown in 
Figure 4.

Figure  4 illustrates the pre-training process of ClinicalBERT, 
which is based on the standard BERT architecture but trained 
specifically on clinical narratives. The input text is tokenized and 
embedded using WordPiece, and special tokens such as [CLS], [SEP], 
and [MASK] are inserted. Two training objectives are employed: 
masked language modeling (MLM), where certain tokens (e.g., 
“acute,” “##sto”) are randomly masked and the model learns to predict 
them based on context; and next sentence prediction (NSP), where the 
model predicts whether one sentence logically follows another.

Unlike general-purpose BERT models, ClinicalBERT is 
pre-trained on de-identified clinical notes from MIMIC-III, enabling 
it to better understand the unique characteristics of medical language, 
such as frequent abbreviations, fragmented grammar, and domain-
specific terminology. This domain adaptation enhances the model’s 
effectiveness in downstream clinical NLP tasks, including named 
entity recognition and clinical relation extraction.

3.3 Knowledge graph embedding module

3.3.1 Building the knowledge graph
A Knowledge Graph is a graph-based structure consisting of nodes 

(entities) and edges (relationships). As a structured semantic 
knowledge base, it serves as a critical foundation for many artificial 
intelligence applications (Zhao et al., 2024). In the field of medicine, it 
usually includes entities such as diseases, drugs, body parts, symptoms, 
and treatments as well as relationships such as “treat” and “cause.”

To enhance the performance of the NER model, we constructed 
a domain-specific medical knowledge graph using a semi-
automatic pipeline. The sources of knowledge include publicly 
available and widely used datasets such as MIMIC-III discharge 

FIGURE 2

ClinicalBERT structure.
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summaries, DrugBank, and UMLS. These sources ensure that the 
extracted entities and relations are of high relevance 
and consistency.

The knowledge graph contains seven types of entities—Check, 
Department, Disease, Drug, Food, Producer, and Symptom—as well 
as several semantic relations such as “belongs_to,” “common_drug,” 
“drugs_of,” “need_check,” “recommend_drug,” “has_symptom,” and 
“accompany_with.” For instance, the triple (“Hypertension,” 
“recommend_drug,” “Captopril”) represents a common therapeutic 
relation. In total, 28,765 entities and 63,182 relations were identified, 
resulting in approximately 95,000 triples. The detailed construction 
process is illustrated in Figure 5.

To enhance the quality of the constructed medical knowledge 
graph, we employed a set of rule-based and resource-guided strategies 
to reduce ambiguity and noise. Synonym normalization was 
performed using UMLS, SNOMED CT, and DrugBank, supplemented 
by a manually curated dictionary, to unify variants such as “MI” and 
“myocardial infarction.” Abbreviations were expanded using context-
aware rules based on co-occurring terms and section information 
within clinical notes. Low-frequency entities and relations were 
pruned based on an empirically determined threshold to eliminate 
unreliable triples. Finally, each triple was cross-validated against 
multiple trusted sources, and only those confirmed by at least two 
databases were retained, ensuring the semantic accuracy and clinical 
reliability of the graph.

The knowledge graph constructed in this paper contains seven 
types of entity types and entity relationship types, whose names and 
Chinese meanings are shown in Table 2. The neo4j graph database is 
used as a visualization tool, and its local effect is shown in Figure 6.

3.3.2 Knowledge graph embedding
Knowledge graph embedding (KGE) is the process of constructing 

entities and relationships within a knowledge graph in a 
low-dimensional vector space, which facilitates downstream tasks to 
capture complex semantic relationships in the knowledge graph more 
efficiently and accurately (Yan et al., 2022), and is fundamental research 
in important areas such as semantic retrieval, knowledge query and 
recommendation. Integrating knowledge graph embeddings into 
medical NER tasks can enhance model accuracy, extend recognition 
coverage, improve performance in low-resource scenarios, and provide 
semantic understanding and reasoning capabilities to better support 
clinical decision-making and medical research.

Knowledge graph embedding methods usually consist of simple 
embedding methods based on embedding lookup and classical KGE 
methods, the former relying on entity ID mapping to pre-trained 
embedding vectors to achieve knowledge graph embedding and 
integrating it into downstream tasks by splicing with text 
embedding. The method is simple to implement and suitable for 
rapid integration into existing models, in addition to being 
computationally efficient as it only requires lookup operations to 

FIGURE 3

ClinicalBERT input style.

FIGURE 4

ClinicalBERT pre-training process.
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obtain the embedding vectors of entities. However, the method 
lacks relational modelling and does not explicitly model the 
relationships between entities, which may result in the model failing 
to effectively capture the complex semantic associations between 
entities. On the other hand, the method may not be fully adapted 
to the needs of downstream tasks since the embeddings of the 
entities are pre-trained and remain unchanged throughout the 
training process without fine-tuning.

Bordes et al. (2013) proposed TransE (Translation Embedding) 
knowledge graph embedding method for embedding entities and 
relations from multi-relational data into low-dimensional vector 
spaces. Therefore, the introduction of TransE method to embed 
knowledge graphs can effectively utilize the structural information of 
knowledge graphs to enhance the performance of models. TransE 
assumes that there exists a triple ( ), ,h r t  in the knowledge graph, and 
the core idea is to map head entities, relations and tail entities into a 

continuous vector space by translation, such that the triple satisfies the 
following equation, as shown in Equation 6:

	 + ≈h r t	 (6)

where h is the vector representation of the head entity, r  is the vector 
representation of the relation, and t is the vector representation of the tail 
entity. Specifically, TransE models the relationships in the knowledge 
graph as displacements between the head and tail entities by means of a 
translation operation, and for a correct ternary ( ), ,h r t , the TransE model 
is to minimise the distance function ( ), ,f h r t , as shown in Equation 7:

	
( ) = + −, , pf h r t h r t

	 (7)

where • p  is the L1-paradigm (absolute sum) or L2-paradigm 
(Euclidean distance) of the vector, and the smaller the value of 
( ), ,f h r t , the more valid the triad ( ), ,h r t  is.

The core goal of TransE is to preserve the structural information 
in the knowledge graph by optimising the loss function so that the 
embedding vectors of the correct triples (h, r, t) are closer together and 
the wrong triples, the negative samples, are farther away. TransE is 
optimised using a margin-based ranking loss function, which is 
formulated as Equation 8:

	 ( ) ( )
( ) ( )

τ τ
γ

+
∈ ′ ′ ′ ′∈

 = ′+ − ′ ′ ∑ ∑
, , , ,

, , , ,
h r t h r t

L f h r t f h r t
	

(8)

where τ  represents the set of positive samples; τ ′ represents the 
set of negative samples, which is usually generated by randomly 

FIGURE 5

The process of constructing a knowledge graph.

TABLE 2  Entities and entity relationship types.

Entity type Chinese 
meaning

Type of entity 
relationship

Chinese 
meaning

Check 诊断检查项目 belongs_to 属于

Department 医疗科室 common_drug 常用药品

Disease 疾病 drugs_of 在售药品

Drug 药品 need_check 疾病所需检查

Food 食物 recommend_drug 推荐药品

Producer 在售药品 has_symptom 疾病症状

Symptom 疾病症状 accompany_with 并发疾病
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replacing h or t ; γ  is the Margin hyperparameter, which controls 
the spacing between the positive and negative samples; and 

( )+ =   max 0,x x  is a ReLU operation that guarantees a 
non-negative loss.

3.4 Integration of ClinicalBERT and 
knowledge graph embeddings

To enable joint modeling of contextual semantics and structured 
domain knowledge, this study adopts an early fusion strategy that 
integrates the hidden representations produced by ClinicalBERT with 
entity embeddings derived from a medical knowledge graph. After 
tokenizing a Chinese electronic medical record at the character level, 
the input sequence is fed into ClinicalBERT to produce contextual 
embeddings { }…1 2, , ,BERT BERT BERT

nh h h , where ∈BERT d
ih   denotes 

the output for the i-th character.
Concurrently, an entity linking step is performed to associate each 

character (or character span) with its corresponding medical entity in 
the knowledge graph. For each matched entity, a semantic embedding 

′∈KG d
ie   is retrieved, which is pre-trained using the TransE 

algorithm. To ensure dimensional consistency with the ClinicalBERT 

output space, each knowledge embedding is passed through a 
learnable linear projection, as shown in Equation 9:

	 = + ∈ ,KG KG KG d
i e i e iW e be e  	 (9)

The projected knowledge vector KG
ie  is then concatenated with 

the contextual embedding BERT
ih  to form a joint representation, as 

shown in Equation 10:

	
 = ∈ 



int 2;jo BERT KG d
i iih h e 

	
(10)

For characters that are not linked to any entity in the knowledge 
graph, a zero vector or learned placeholder embedding is used to 
substitute KG

ie , ensuring that all characters contribute to the same 

fused sequence. The final joint representation sequence { }
=

int
1

njo
i i

h  is 

passed into a BiLSTM layer to model bidirectional sequential 
dependencies, and the optional label sequence is decoded using a 
CRF layer.

FIGURE 6

Example of a knowledge graph (partial).
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This integration mechanism allows the model to simultaneously 
leverage the local contextual understanding from ClinicalBERT and the 
structured domain semantics from the knowledge graph. For example, 
in the sentence “患者出现糖尿病视网膜病变” (“the patient exhibited 
diabetic retinopathy”), ClinicalBERT captures the immediate context 
surrounding the term “糖尿病,” while the knowledge embedding 
conveys that this entity is a chronic metabolic disease with established 
links to ocular complications such as “视网膜病变.” This complementary 
fusion strengthens the model’s ability to disambiguate semantically 
similar terms, identify rare entities, and improve overall recognition 
performance, particularly in complex and noisy clinical narratives.

3.5 BiLSTM-CRF module

To effectively capture contextual dependencies in clinical text and 
ensure global consistency of predicted labels, this study integrates 
Bidirectional Long Short-Term Memory (BiLSTM) networks with a 
Conditional Random Field (CRF) layer. The BiLSTM captures both 
forward and backward contextual information, enhancing the semantic 
understanding of medical terminology, while the CRF layer optimizes 
the label sequence by modeling dependencies between adjacent tags.

3.6 BiLSTM encoding

While standard LSTM networks alleviate vanishing and exploding 
gradient issues through gating mechanisms, they process sequences in 
a single direction. In contrast, BiLSTM employs two LSTM networks 
to process the input sequence in both forward and backward directions, 
allowing it to simultaneously capture past and future information. This 
is particularly beneficial for modeling the unstructured and complex 
nature of electronic medical records (EMRs). After inputting the initial 
vector representation E  into the BiLSTM layer, the formula of the 
forward LSTM module is shown as Equations 11–13:

	

σ
σ
σ −

   
        = +            
      

1
tanh

t

t

t t

t

i
o E

W b
f h
c

	

(11)

	 −= + 
 1t t t t tc f c i c 	 (12)

	 ( )=  tanht t th o c 	 (13)

Finally, the output vectors of the forward and backward LSTMs 
are spliced together as the output of the BiLSTM neural network, as 
shown in Equation 14:

	
 =  
 

;t t th h h
	

(14)

3.6.1 CRF decoding
Although Transformer-based models such as ClinicalBERT can 

generate rich semantic representations, they typically predict labels 
independently and fail to model dependencies among output tags, 

which may result in invalid label sequences. To address this issue, 
we apply a CRF layer on top of the BiLSTM outputs to capture the 
correlations between adjacent labels and ensure valid transitions. 
Given an input sequence X  and a label sequence Y , the conditional 
probability defined by CRF is shown as Equation 15:

	
( ) ( ) ( )ω −

− −

 
 =
 
 
∑∑ 1
1 1

1| exp • , ,
n k

j j i i i
i j

P Y X f x y y
Z X

	
(15)

where ( )|P Y X  denotes the probability of occurrence of the output 
sequence Y  given the input sequence X ; ( )Z X  is the normalization 
factor over all possible label sequences, the calculation is shown as 
Equation 16:

	
( ) ( )ω −

= −

 
 =
 
 

∑ ∑∑ 1
1 1

exp • , ,
n k

j j i i iY
i j

Z X f x y y
	

(16)

where Y  denotes all possible combinations of label sequences; ω j  
is a model parameter used to assign the corresponding weight to the 
feature function ( )−1, ,j i i if x y y  and k is the total number of 
feature functions.

The CRF parameters are learned by maximizing the log-likelihood 
of the correct label sequences. During inference, the optimal label path 
is obtained using the Viterbi algorithm.

The BiLSTM-CRF architecture effectively combines contextual 
semantic encoding with global sequence optimization, yielding more 
accurate and consistent recognition of medical entities.

4 Experiments

4.1 Datasets

The experiments in this paper use the electronic medical record 
datasets CCKS2019 and CCKS2020, which were released by the China 
conference on knowledge graph and semantic computing (CCKS) in 
2019 and 2020. Each medical record data contains raw text and 
predefined entity labels, and the datasets are labelled with a total of six 
entity types, namely Disease and Diagnosis (Dis), Drug, Surgery 
(Operation), Imaging Exam (ImgExam), Anatomical Sites (Anatomy), 
and Laboratory Exam (LabExam). The CCKS2019 dataset contains 
1,379 pieces of data, of which 1,000 data for training and 379 data for 
testing; CCKS2020 dataset contains 1,500 data, of which 1,200 data for 
training and 300 data for testing, and the statistics of the number of 
each entity type in the training and testing sets of the two datasets are 
shown in Table 3.

4.2 Evaluation metrics

The experiments used Precision, Recall and F1 values to evaluate 
the recognition effectiveness of the model, which are calculated as 
Equations 17–19:

	
= ×

+
100%TPP

TP FP 	
(17)
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TABLE 5  CCKS2019 experimental data.

Models P/% R/% F1/%

BiLSTM-CRF 80.45 80.37 81.92

Lattice-LSTM 

(Zhang and Yang, 

2018)

79.52 81.59 82.12

FLAT (Li et al., 2020) 81.56 83.34 83.55

BERT-BiLSTM-CRF 

(Dai et al., 2019)
81.35 84.23 84.75

ME-NER (Xu et al., 

2019)
83.49 82.57 83.24

MacBERT (Cui et al., 

2020)
87.28 84.52 86.45

PL-Marker (Falk and 

Lapesa, 2022)
88.59 84.59 87.27

CBT-KG 90.47 88.37 89.44

The bold values indicate the best performance for each metric.

TABLE 6  CCKS2020 experimental data.

Models P/% R/% F1/%

BLSTM-CRF 81.88 84.23 83.12

Lattice-LSTM 

(Zhang and Yang, 

2018)

84.25 85.96 85.08

FLAT (Li et al., 2020) 85.67 87.79 86.72

BERT-BiLSTM-CRF 

(Dai et al., 2019)
86.25 88.50 87.54

ME-NER (Xu et al., 

2019)
87.59 89.14 88.32

MacBERT (Cui et al., 

2020)
88.22 87.16 85.49

PL-Marker (Falk and 

Lapesa, 2022)
87.29 88.53 87.95

CBT-KG 90.69 89.31 89.29

The bold values indicate the best performance for each metric.

	
= ×

+
100%TPR

TP FN 	
(18)

	
× ×

= ×
+

21 100%P RF
P R 	

(19)

where: TP denotes the number of correctly identified positive 
samples; FP denotes the number of negative samples incorrectly 
identified as positive samples; and FN  denotes the number of positive 
samples incorrectly identified as negative samples. P  denotes the 
proportion of correctly predicted results to the total number of 
predicted results; R  denotes the proportion of correctly predicted 
results in all the data; and 1F  is the reconciled mean of P  and R .

4.3 Experimental settings

Before the experiments, the maximum length of the sentences was 
set to the maximum length of 512 supported by ClinicalBERT using 
the BIOES annotation method, and the sentences exceeding this 
length were added to the dataset after being cut. The experiments were 
conducted using python3.8.19, pytorch2.3.1 framework, and cuda11.8 
to train the model, while the model parameters were fine-tuned 
during the experiments, and the model with the best performance on 
the validation set was finally chosen to evaluate the test set.

The detailed parameters of the models in this paper are shown in 
Table 4.

4.4 Discussion

4.4.1 Model performance analysis
In order to validate the effectiveness of the model proposed in this 

paper, the experiments are selected to compare and analyse some of the 
baseline models commonly used in the field of named entity recognition, 
the experiments are firstly conducted on the dataset CCKS2019, and the 
results obtained from the experiments are shown in Table 5.

To further prove the effectiveness of the proposed model in this 
paper, the CCKS2020 dataset is also selected for experiments, and its 
experimental results are shown in Table 6.

From the experimental data in Tables 5, 6, it can be seen that the 
F1 value of the model proposed in this paper reaches 90.44% on the 
CCKS2019 dataset, which improves the overall effect from 4.69 to 

7.52% compared with the other benchmark models; and the F1 value 
on the CCKS2020 dataset reaches 89.29%, which improves the overall 
effect from 0.97 to 6.17%, which can prove the effectiveness of the 

TABLE 3  Types and number of data entities.

Entity 
type

CCKS2019 CCKS2020

Training 
set

Test 
set

Training 
set

Test 
set

Dis 3,645 1,808 6,211 1,361

Operation 908 162 1,327 221

Drug 1,593 485 2,841 942

Anatomy 7,158 3,094 12,660 2,661

ImgExam 888 348 1,490 270

LabExam 991 590 1,885 251

TABLE 4  Parameter list.

Hyperparameter Value

Batch Size 16

Learning rate 1.0 10 4× −

Dropout 0.5

Optimiser Adam

Epoch 100

Hidden layers 256

BiLSTM layers 2
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proposed model in the Chinese EHR named entity recognition task. 
The experimental results are analyzed as follows:

Among the baseline models, BiLSTM-CRF effectively integrates 
contextual information and global label dependencies, but its ability 
to represent complex semantics is limited. When incorporating BERT 
as a pre-trained encoder, the BERT-BiLSTM-CRF model shows 
substantial gains in F1 scores, benefiting from BERT’s bidirectional 
contextual encoding and deep semantic representation capabilities. 
These enhancements help the model better capture long-distance 
dependencies and ambiguous expressions in clinical narratives.

The Lattice-LSTM model further improves performance by 
introducing a lattice structure to integrate character-level and word-level 
features. This structure enables multi-granular representation and 
enhances disambiguation in Chinese sequences, especially for ambiguous 
or nested entities. However, its performance still lags behind BERT-based 
models, likely due to its limited semantic modeling capacity compared 
to large-scale pre-trained language models.

Building upon Lattice-LSTM, FLAT replaces the lattice structure 
with span-based encoding and introduces relative position 
representations via self-attention mechanisms. These enhancements 
yield further performance improvements by enabling more effective 
modeling of long text spans and flexible contextual relationships.

Our proposed model differs fundamentally from these approaches 
by incorporating both domain-specific contextual modeling and 
structured external knowledge. ClinicalBERT, pre-trained on clinical 
corpora, offers improved understanding of medical terminology and 
fragmented clinical syntax, making it more suitable for EMR texts 
than general-purpose BERT variants. In parallel, we embed structured 
semantics from a curated medical knowledge graph using TransE-
based embeddings. This integration enriches the model with domain 
knowledge, improving its ability to disambiguate similar entities and 
capture inter-entity relationships, which general-purpose pre-trained 
models cannot readily provide.

Recent models such as MacBERT and PL-Marker have shown 
promise in general-domain NER tasks, with improved masking 
strategies and prompt-based formulations. However, these methods 
are trained primarily on general-purpose corpora and lack adaptation 
to clinical language, where challenges like medical abbreviations, 
domain-specific vocabulary, and irregular syntax are prevalent. In 
contrast, our model is explicitly designed for clinical text by combining 
ClinicalBERT with a structured medical knowledge graph, 
demonstrating clear superiority on both datasets.

In summary, while traditional models emphasize internal 
linguistic patterns or span-based encoding strategies, our approach 
bridges contextual learning and external domain knowledge. This 
synergy leads to the most consistent and significant improvements 
across all baselines, underscoring the effectiveness of combining 
ClinicalBERT and knowledge graph embeddings in the medical 
NER task.

Although the current experimental setup compares CBT KG with 
widely adopted and strong baseline models such as BiLSTM CRF, 
BERT BiLSTM CRF, MacBERT, and PL Marker, we acknowledge that 
a direct comparison with more recent knowledge enhanced named 
entity recognition models such as KALA, LUKE, KnowPrompt was 
not included. This is primarily because most of these advanced 
models lack available Chinese medical domain adaptations or open 
source implementations that support integration with structured 
knowledge resources like the medical knowledge graph developed in 

this study. Furthermore, many of these models are designed and 
evaluated on general domain or English language datasets, such as 
CoNLL 2003 and TACRED, which makes fair and controlled 
comparisons within the context of Chinese clinical named entity 
recognition nontrivial.

Nevertheless, we acknowledge the importance of placing CBT KG 
within the broader context of recent knowledge enhanced NER 
research. In future studies, we intend to explore the integration of 
newly developed large scale knowledge based models and prompt 
driven learning approaches into our framework. We also plan to assess 
their effectiveness on Chinese electronic medical record datasets. Such 
efforts will provide further evidence of the flexibility and potential of 
CBT KG when applied to more complex and varied clinical scenarios.

4.4.2 Comparison of knowledge graph 
embedding methods

To further evaluate the impact of different knowledge graph 
embedding strategies on the performance of medical NER, 
we  compared three representative translation-based embedding 
models: TransE, TransH, and TransR. These methods were chosen for 
their wide adoption and conceptual diversity, allowing us to assess 
how varying levels of modeling complexity affect the downstream 
entity recognition task. The results of the experiments are shown in 
Table 7.

TransE, the simplest among the three, treats relations as 
translation operations in the embedding space. Given a triple (head, 
relation, tail), it learns embeddings such that the vector of the tail 
entity is close to the head entity plus the relation vector. This method 
is computationally efficient and well-suited for large-scale or 
moderately structured graphs. In our experiments, the TransE-based 
model achieved the highest F1 score (89.44%), demonstrating that 
even a basic geometric representation of relations is sufficient to 
enhance entity disambiguation when combined with ClinicalBERT.

TransH extends TransE by allowing entities to have different 
representations when involved in different relations. It introduces a 
relation-specific hyperplane to better handle one-to-many, many-
to-one, and many-to-many relationships. However, in our 
experiments, the TransH-based model achieved a slightly lower F1 
score (88.86%). Although theoretically more expressive, TransH may 
overfit small or moderately sized graphs due to its increased 
parameterization, which is consistent with prior findings that complex 
embeddings can degrade performance when relational density is low.

TransR further increases modeling capacity by projecting 
entities and relations into distinct vector spaces. Each relation has 
an associated projection matrix, enabling it to model heterogeneous 
interactions more flexibly. Despite this, the TransR variant yielded 
only marginal improvement over TransH (F1 = 89.17%) and did 

TABLE 7  Comparison of knowledge graph embedding methods (on 
CCKS2019).

KGE method P/% R/% F1/%

TransE 90.47 88.37 89.44

TransH 89.82 87.94 88.86

TransR 90.25 88.12 89.17

Without KG 89.60 84.64 85.49

The bold values indicate the best performance for each metric.
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not surpass TransE. The additional complexity introduced by 
relation-specific matrices led to slower convergence and greater 
sensitivity to hyperparameter tuning. This suggests that the 
expressiveness of TransR may not yield proportional performance 
gains for clinical NER tasks grounded in relatively simple 
ontological structures.

In summary, while all three KGE methods improved performance 
over the non-KG baseline (F1 = 85.49%), TransE demonstrated the 
best trade-off between representational adequacy, computational 
efficiency, and model generalizability in our setting. These results 
reinforce the observation that lightweight and interpretable 
embedding strategies are often more suitable for integration into 
language models targeting clinical applications, particularly when the 
knowledge graph is carefully curated and domain-specific.

4.4.3 Ablation experiments
In order to verify the impact of each module of the model on the 

overall performance of the model, this paper designs ablation 
experiments, mainly exploring the impact of the embedding of the 
knowledge graph on the model to perform the task of recognising 
named entities in Chinese EHRs, and the results of the experiments 
are shown in Table 8.

The following analysis can be derived from the data in Table 8:
The CBT-KG model incorporates medical knowledge graph 

embedding compared to the CBT model, and the knowledge graph 
embedded in the named entity recognition model can enhance the 
model’s ability to understand medical terminology and complex 
semantic relationships, which in turn improves the model’s 
recognition performance in the task of recognizing named entities 
in Chinese electronic medical records. From the experimental 
results, it can be  seen that the model with the addition of 
knowledge graph embedding improves the accuracy, recall and F1 
value by 0.87, 3.73 and 3.95% on the CCKS2019 dataset, and by 
2.24, 5.05 and 4.5% on the CCKS2020 dataset compared 
with the model without knowledge graph embedding, respectively. 
This demonstrates the effectiveness of knowledge graph 
embedding for improving the model named entity recognition  
performance.

To investigate the individual contributions of the multi-source 
character-level features described in Section 3.1, namely, BIOES 
positional tags, contextual category features, and semantic embedding 
vectors, an ablation study was conducted by selectively removing each 
component from the input representation while keeping the other two 
fixed. The results, summarized in Table 9, reveal that all three feature 
types contribute significantly to the model’s overall performance, with 
varying degrees of impact.

The ablation results indicate that all three character-level features 
contribute substantially to model performance, with semantic 

embedding vectors having the greatest impact, a 3.18% drop in F1 
when removed. These vectors provide domain-level semantic cues 
from the knowledge graph, aiding in the disambiguation of rare or 
ambiguous entities. Removing BIOES positional tags leads to a 1.32% 
F1 decrease, as these tags guide entity boundary recognition in 
Chinese texts lacking explicit word delimiters. The absence of 
contextual category features results in a 1.94% performance drop, 
reflecting their role in refining entity type classification based on 
linguistic patterns. Overall, the features offer complementary benefits 
in semantic disambiguation, boundary detection, and type prediction, 
jointly enhancing NER robustness in clinical narratives.

4.4.4 Error analysis
To further understand the limitations of the proposed model, 

we performed a qualitative analysis of its prediction errors on the 
CCKS2020 test set. One recurring issue lies in the inaccurate 
identification of entity boundaries, especially for multi-character 
medical terms. For instance, in the phrase “右侧肾上腺腺瘤可能性

大” (“high likelihood of right adrenal adenoma”), the model 
sometimes extracts only “腺瘤” (“adenoma”), omitting the preceding 
anatomical modifier “右侧肾上腺” (“right adrenal”). This results in 
semantically incomplete entities and underscores the challenges posed 
by the lack of explicit word delimiters in Chinese clinical text, as well 
as the complexity of nested or compound expressions.

Another common source of error involves confusion between 
semantically similar entity types. In some cases, entities such as “心
包积液” (“pericardial effusion”) are misclassified as symptoms rather 
than diagnoses. These errors suggest that, although the model 
incorporates contextual signals and external knowledge, it still 
struggles with fine-grained semantic distinctions across entity 
categories. In addition, recognition performance tends to degrade for 
rare or unseen medical terms that are not present in the knowledge 
graph. For example, “库欣综合征” (“Cushing’s syndrome”) was 
occasionally missed or incorrectly labeled, likely due to the absence 
of corresponding entity embeddings. This reveals the model’s reliance 
on the coverage and quality of the external knowledge base.

These findings reflect ongoing challenges in accurate boundary 
detection, semantic disambiguation, and robust handling of 
low-frequency medical terms. Future efforts may focus on integrating 
span-based decoding strategies, confidence-aware classification, or 
dynamically updating knowledge representations to further enhance 
the model’s precision and generalizability in clinical named entity 
recognition tasks.

TABLE 8  Results of ablation experiments.

Model CCKS2019 CCKS2020

P/% R/% F1/% P/% R/% F1/%

CBT-KG 90.47 88.37 89.44 90.69 89.31 89.29

CBT (w/o 

KG)
89.60 84.64 85.49 88.45 84.26 84.79

The bold values indicate the best performance for each metric.

TABLE 9  Contribution analysis of character-level features (on 
CCKS2019).

Model variant P/% R/% F1/%

Full multi-source 

features
90.47 88.37 89.44

w/o BIOES positional 

features
89.32 86.95 88.12

w/o contextual 

category features
88.90 86.13 87.50

w/o embedding 

semantic vectors
87.45 85.09 86.26

The bold values indicate the best performance for each metric.
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4.4.5 Computational considerations
To assess the practical feasibility of the proposed CBT KG model 

in clinical scenarios, we report its computational performance during 
training and inference. All experiments were conducted on a 
workstation equipped with an NVIDIA RTX 2080 GPU with 8 
gigabytes of memory. The training process required approximately 9 h 
to converge on the CCKS2019 dataset and 7.5 h on the CCKS2020 
dataset, with a batch size of 16. During inference, the model achieved 
an average processing speed of approximately 30 records per second 
in batch mode. Although the integration of ClinicalBERT, knowledge 
graph embeddings, BiLSTM, and CRF introduces additional 
computational overhead compared to simpler baseline models, the 
observed inference speed is acceptable for offline or periodic electronic 
medical record processing. For real-time deployment or resource-
constrained clinical environments, further optimization techniques 
such as knowledge distillation, model pruning, or architecture 
simplification may be explored. These results suggest that the CBT KG 
model is compatible with typical GPU settings in hospital information 
systems and can serve as a foundation for practical clinical 
NLP applications.

4.4.6 Impact of knowledge graph quality on NER 
performance

While the integration of a structured medical knowledge graph 
significantly enhances entity recognition, it also introduces potential 
vulnerabilities related to the quality of the graph itself. The synonym 
normalization and abbreviation expansion steps used in the 
construction process, although effective in increasing coverage, may 
inadvertently introduce noisy or incorrect triples due to rule-based 
heuristics or incomplete dictionaries. These inaccuracies can 
propagate through the model by introducing misleading semantic 
signals, ultimately impacting the reliability of entity classification and 
boundary detection.

In the context of clinical applications, where high accuracy is 
essential, this risk of error propagation cannot be overlooked. To 
address this concern, future versions of the model could 
incorporate strategies for noise-aware knowledge integration. For 
instance, assigning confidence scores to triples based on their 
source reliability or semantic coherence can help filter out less 
trustworthy information. Additionally, incorporating consistency 
checks or embedding-space denoising techniques may further 
reduce the impact of spurious knowledge. Dynamic fine-tuning 
of knowledge embeddings alongside the NER objective is another 
promising direction, allowing the model to adjust the influence of 
external knowledge in task-specific contexts. These strategies can 
enhance model robustness, ensuring safer deployment in real-
world clinical scenarios.

4.4.7 Multilingual adaptability and generalization 
potential

This study is designed specifically for Chinese electronic 
medical records, which pose distinctive challenges due to the 
absence of clear word boundaries and the complexity of clinical 
language. These factors influenced our decision to adopt character-
level modeling and integrate structured domain knowledge into the 
model. However, we  recognize that this focus may limit direct 
application to other languages, and a broader discussion on 
generalization is necessary.

In languages such as Japanese and Thai, which also lack explicit 
word separators, our approach based on character-level representation 
and positional information may still be applicable. The core idea of 
incorporating external domain knowledge to enhance contextual 
understanding is not language dependent and can be extended to 
other medical languages if domain-specific resources are available.

For alphabetic languages like English, Spanish, or French, where 
token boundaries are more clearly defined and the writing system 
differs substantially, some components of the current model may 
require adjustment. The importance of character-level features may 
decrease, while word-level or phrase-level embeddings may play a 
more dominant role. Nevertheless, the integration of structured 
medical knowledge remains valuable for improving recognition of 
rare or ambiguous terms.

A major challenge in cross-lingual adaptation lies in the 
availability of appropriate resources. English has well-established 
clinical corpora, ontologies, and pre-trained models such as BioBERT 
and ClinicalBERT. In contrast, many other languages do not yet have 
comparable resources, which makes adaptation more difficult. 
However, recent progress in multilingual pre-trained models such as 
multilingual BERT, XLM RoBERTa, and biomedical versions of XLM 
suggests that extending our framework to other languages is becoming 
increasingly feasible.

Future work will explore these directions by incorporating 
multilingual encoders and evaluating the model on non-Chinese 
clinical datasets when available. This would help assess the 
generalization capacity of our method and broaden its potential use 
in international clinical applications.

5 Conclusion

This paper proposes a named entity recognition method for 
Chinese electronic medical records that integrates medical knowledge 
graph and ClinicalBERT pre-trained model. The improvement of this 
method is to use the ClinicalBERT model pre-trained with medical 
text for feature extraction of Chinese electronic medical records, and 
at the same time, the medical knowledge graph is embedded in the 
training process of the model by using the TransE method, which can 
effectively improve the model’s comprehension of medical terminology 
and semantic relationships. As shown by the experiments, the model 
proposed in this paper has been improved in terms of recognition 
accuracy and robustness.

Although the model achieves promising results on public datasets 
such as CCKS2019 and CCKS2020, its generalizability to real-world 
clinical settings remains to be  further validated. In practical 
applications, models trained solely on public corpora may overfit to 
specific annotation styles or institution-specific patterns. To address 
this limitation, future work will explore domain adaptation techniques 
to transfer the model to EMRs from different hospitals or clinical 
departments. Additionally, external dataset validation using 
independently collected EMRs will be  considered to assess the 
robustness and adaptability of the proposed method in diverse 
clinical environments.

In addition, the TransE knowledge graph embedding method 
used in this experiment relies more on negative sampling, generating 
negative samples is the key to the training effect, and simple on-the-fly 
replacement may generate low-quality negative samples, thus imaging 
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the performance of the model. Therefore, in future work, the 
embedding of the knowledge graph can be further optimised, such as 
using semantic matching-based or neural network-based embedding 
models, to improve the model’s ability to model complex semantics as 
well as to promote the model to make full use of the local or global 
structural information of the knowledge graph to generate high-
quality entity and relationship embeddings, so as to further improve 
the recognition effect of the model.
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