
TYPE Original Research

PUBLISHED 14 August 2025

DOI 10.3389/frai.2025.1635932

OPEN ACCESS

EDITED BY

Kele Xu,

National University of Defense Technology,

China

REVIEWED BY

Sanjay Singh,

Manipal Institute of Technology, India

Gaojun Zhang,

Tongji University, China

Jiazhen Xu,

Central China Normal University, China

*CORRESPONDENCE

Yi Zeng

yi.zeng@ia.ac.cn

†These authors have contributed equally to

this work and share first authorship

RECEIVED 27 May 2025

ACCEPTED 11 July 2025

PUBLISHED 14 August 2025

CITATION

Liang Y, Wang Y, Fang H, Zhao F and Zeng Y

(2025) A brain-inspired memory

transformation based di�erentiable neural

computer for reasoning-based question

answering. Front. Artif. Intell. 8:1635932.

doi: 10.3389/frai.2025.1635932

COPYRIGHT

© 2025 Liang, Wang, Fang, Zhao and Zeng.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

A brain-inspired memory
transformation based
di�erentiable neural computer
for reasoning-based question
answering

Yao Liang1,2†, Yuwei Wang1,3†, Hongjian Fang1,4†, Feifei Zhao1 and

Yi Zeng1,2,3,4,5*

1Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences,

Beijing, China, 2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing,

China, 3Center for Long-term Artificial Intelligence, Beijing, China, 4School of Future Technology,

University of Chinese Academy of Sciences, Beijing, China, 5Key Laboratory of Brain Cognition and

Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, China

Reasoning and question answering, as fundamental cognitive functions in

humans, remain significant hurdles for artificial intelligence.While large language

models (LLMs) have achieved notable success, integrating explicit memory

with structured reasoning capabilities remains a persistent di�culty. The

Di�erentiable Neural Computer (DNC) model, despite addressing these issues

to some extent, still faces challenges such as algorithmic complexity, slow

convergence, and limited robustness. Inspired by the brain’s learning and

memory mechanisms, this paper proposes a Memory Transformation based

Di�erentiable Neural Computer (MT-DNC) model. The MT-DNC integrates two

brain-inspired memory modules—a working memory module inspired by the

cognitive system that temporarily holds and processes task-relevant information,

and a long-term memory module that stores frequently accessed and

enduring information—within the DNC framework, enabling the autonomous

transformation of acquired experiences between these memory systems. This

facilitates e�cient knowledge extraction and enhances reasoning capabilities.

Experimental results on the bAbI question answering task demonstrate that

the proposed method outperforms existing Deep Neural Network (DNN) and

DNC models, achieving faster convergence and superior performance. Ablation

studies further confirm that the transformation of memory from working

memory to long-term memory is critical for improving the robustness and

stability of reasoning. This work o�ers new insights into incorporating brain-

inspired memory mechanisms into dialogue and reasoning systems.

KEYWORDS

neural turing machine, memory-augmented networks, reasoning and question

answering, working/long-term memory, di�erentiable neural computer

1 Introduction

Reasoning and Question Answering (QA) are fundamental cognitive functions that are

central to evaluating artificial intelligence systems. Despite the remarkable success of large

language models (LLMs) (Touvron et al., 2023; Dubey et al., 2024; Achiam et al., 2023),

challenges remain in developing methods that integrate explicit memory and structured

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1635932
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1635932&domain=pdf&date_stamp=2025-08-14
mailto:yi.zeng@ia.ac.cn
https://doi.org/10.3389/frai.2025.1635932
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1635932/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

reasoning capabilities. The Differentiable Neural Computer (DNC)

model, proposed by Graves et al. (2016), provides a feasible

solution for studying reasoning and QA. DNC consists of a DNN-

based computational controller and an external memory module,

with which the neural network can interact (read and write). The

memorymodule is responsible for representing and storing learned

structures.

The DNC model has demonstrated good performance on

various image reasoning and QA tasks (Graves et al., 2016; Rasekh

and Safi-Esfahani, 2020). However, it faces several key challenges,

including high algorithmic complexity, slow convergence speed,

and a high average test error rate, all of which limit its

further development and broader application. The BrsDNC

model (Franke et al., 2018) improves the DNC model by

introducing normalization and dropout, which have been shown to

enhance robustness and scalability. The primary issues with current

DNC models stem from restricted memory, which may lead to the

loss of critical knowledge. As training time increases, the pressure

on the memory module for reading and writing grows rapidly,

thus limiting the model’s training speed and performance. Besides,

existing methods lack references from brain learning and memory

mechanisms. Thus, there is still much room for improvement.

Memory in the brain encompasses both short-term and long-

term memory, among others (Baddeley, 2007; Lee and Wilson,

2002; Winocur et al., 2010; Marshall and Born, 2007; Ji and

Wilson, 2007). These types of memory play crucial roles in

various cognitive functions, including learning, decision-making,

and reasoning. Short-term memory has limited storage capacity

and, therefore, cannot retain information indefinitely (Diamond,

2013). As a result, some memories are forgotten, while others

that are repeatedly accessed are retained and transferred to

long-term memory. Information can be stored in long-term

memory for extended periods, continuously aiding learning and

reasoning (Atkinson and Shiffrin, 1968). The collaboration and

division of labor between working memory and long-termmemory

enable the brain to consolidate and apply acquired knowledge

more efficiently, thereby enhancing the brain’s capacity to perform

multiple cognitive tasks (Kitamura et al., 2017). While short-term

memory refers primarily to the brief retention of information,

working memory further includes active manipulation and

processing of information required for cognitive tasks, thus making

it distinct and crucial for reasoning.

Inspired by the brain’s learning and memory mechanisms,

we propose a brain-inspired Memory Transformation based

Differentiable Neural Computer (MT-DNC). Unlike the original

DNC model, which has a single memory module, MT-DNC

introduces two distinct memory modules: working memory and

long-term memory. Working memory stores information directly

relevant to the current task, while long-term memory holds more

meaningful, enduring knowledge. These two memory modules are

interconnected through a memory transformation algorithm. The

core principles of the memory transformation algorithm are as

follows: knowledge that is repeatedly accessed is transferred to

long-term memory, while irrelevant information is discarded from

working memory (Zhao et al., 2017; LeCun et al., 2015).

The innovations of our method are primarily reflected in the

following aspects:

1. Integration of working and long-term memory: MT-DNC

introduces a novel architecture that explicitly combines working

memory and long-term memory. This design enhances the

model’s ability to comprehensively store and utilize acquired

knowledge, mimicking the human brain’s memory system.

2. Brain-inspired memory transformation algorithm: A key

contribution of MT-DNC is the development of a memory

transformation algorithm inspired by biological memory

mechanisms. This algorithm dynamically identifies and retains

useful information by transferring it from working memory to

long-term memory, while discarding irrelevant data, thereby

optimizing memory efficiency.

3. Improved performance on reasoning tasks: Extensive

experiments on the bAbI reasoning-based question-answering

benchmark demonstrate that MT-DNC achieves superior

accuracy and faster convergence compared to existing DNC-

based methods. Moreover, the results highlight the crucial role

of memory transformation in enhancing the model’s stability

and robustness during complex reasoning tasks.

2 Related work

Neural Turing Machine (NTM): The core idea of NTM

is to combine neural networks with external memory, thereby

expanding the capabilities of neural networks and enabling

interaction through an attention mechanism (Graves et al.,

2014). To some extent, NTM can be compared to a Turing

machine (Xiong et al., 2016; Zaremba and Sutskever, 2015), with

experiments verifying its Turing completeness (Tao et al., 2021;

Zaremba and Sutskever, 2015). The main advantage of NTM is its

ability to handle complex tasks that require memory participation.

Differentiable Neural Computer (DNC): DNC, which is

considered an improved version of NTM, shares the same core

idea of using external memory to enhance the ability of neural

networks (Graves et al., 2016; Santoro et al., 2016; Lake et al.,

2017). Compared to the original NTM, DNC introduces significant

improvements in the addressing mechanism (Hassabis et al.,

2017; Chan et al., 2018), removes the index shift operation, and

better supports memory allocation and de-allocation functions.

Additionally, DNC shows notable performance improvements over

NTM.

Recent works have further enhanced the DNC architecture.

Franke et al. (2018) improved the model’s performance by

optimizing the memory module, increasing the bidirectional

connections between memory modules, and introducing the layer

normalization training method (Ba J. L. et al., 2016). By refining

the addressing and memory allocation processes, Csordás and

Schmidhuber (2019) achieved better accuracy on the bAbI task.

Rasekh and Safi-Esfahani (2020) integrated the NeuroEvolution

algorithm into the DNC framework, demonstrating faster encoding

speed in various cognitive tasks, leading to improved model

performance.

To summarize, none of these approaches fully address the

issues of low accuracy and slow convergence associated with

DNC’s limited external memory. This paper draws inspiration

from the brain’s learning and memory mechanisms and proposes

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

Memory Layer

Working Memory Long-Term Memory

Signal Genera!on

Write Keys Write Vector

Memory Manager

Erase Vector Read Keys Read Vectors Read Vectors

transform

Inputs Linear Layer OutputsController Layer

Back Vectors

sf

,

FIGURE 1

Overall architecture of MT-DNC.

the MT-DNC model, which integrates two coordinated memory

modules: working memory and long-term memory (Seo et al.,

2016; Ba J. et al., 2016; Le et al., 2019, 2020). The proposed model

improves both accuracy and convergence speed, offering superior

performance compared to existing DNC-based models.

3 Method

In this section, we provide a comprehensive introduction to

the MT-DNC model. MT-DNC extends the memory module of

the DNC by incorporating both a working memory module and

a long-term memory module. Inspired by the brain’s learning

and memory mechanisms, MT-DNC introduces a dual-memory

architecture that consists of both working memory and long-

term memory. This architecture enables the model to manage and

store information more effectively, thereby enhancing its reasoning

and knowledge retention capabilities. The core innovation lies

in a dynamic memory transformation mechanism that selectively

transfers frequently accessed or meaningful information from

working memory to long-term memory, enabling the model to

maintain a compact yet informative working memory.

In the MT-DNC architecture, working memory (or short-

term memory) rapidly processes and updates information needed

immediately, while the long-term memory persistently retains

valuable knowledge, with the memory transformation mechanism

dynamically managing information transfer between thesememory

modules to enhance reasoning efficiency.

The overall framework of MT-DNC consists of three layers:

the controller layer, memory layer, and linear layer, as shown

in Figure 1. The controller layer is responsible for encoding and

processing both the input data and the output from the previous

time step of the controller layer and the memory layer, learning

temporal patterns from the training data, and transmitting the

results to both the memory and linear layers. The memory layer

is responsible for storing the controller’s output and extracting

useful information through a series of storage and transformation

mechanisms. This layer also incorporates memory transformation

between the working memory and long-term memory modules,

enabling the MT-DNC model to exhibit strong memory and

reasoning capabilities. The linear layer combines the outputs from

the controller andmemory layers, and produces the final prediction

result via a linear transformation.

3.1 Controller layer

The controller layer combines the original input data xt ∈ R
X

with the output of the memory layer from the previous time step,

Om
t−1 ∈ R

2RW , as well as the output of the controller layer from

the previous time step, after undergoing Dropout processing. After

performing a Long Short-Term Memory (LSTM) operation and

applying layer normalization (Klambauer et al., 2017; Franke et al.,

2018), the resulting output Oc
t is transmitted to the memory layer.

As shown in Equation 1:

Oc
t = LayerNorm−LSTM((xt ⊕ Om

t−1 ⊕ Dropout(Oc
t−1)), ct−1;

W
c
t , b

c
t), (1)

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

where Oc
t ∈ R

C denotes the output at time step t. The term ct−1

represents the cell state from the previous time step, and W
c
t ∈

R
(X+2RW+C)×C is the weight matrix that maps the input to the

gates. Additionally, bct ∈ R
C is the bias vector associated with the

input to the gates, and⊕ denotes the concatenation of vectors.

Here, X represents the dimension of the input data, C

represents the output dimension of the controller layer, and W

represents the width of the memory region.

3.2 Memory layer

The memory layer consists of the working memory

module (functionally analogous to working memory in human

cognition, temporarily storing and actively processing task-

relevant information), the long-term memory module (storing

enduring and frequently accessed knowledge), and the memory

transformation mechanism. The working memory module stores

the most recent interaction data from the controller layer, while

the long-term memory holds frequently used information of high

importance that may eventually be discarded by the working

memory. Both the working memory and long-term memory

require dynamic update and extraction rules to continuously

replace stored information. The memory transformation

mechanism selectively transfers data from working memory

to long-term memory for processing. Finally, the memory layer

combines the outputs from the controller layer, working memory,

and long-term memory to make decisions.

3.2.1 Working memory module
The working memory module is functionally designed to store

interactive information from the controller layer’s output in real

time, updating and extracting relevant information based on the

controller layer’s output. Due to storage limitations, we draw

inspiration from the memory update and decay mechanisms in the

human brain, replacing information that is similar to the current

interaction data (Oc
t). Additionally, information that has already

been extracted or used is more likely to be replaced in order to

retain as much novel information as possible.

The read, write, and gating signals within the memory region

are generated from Oc
t through a linear transformation. Let St ∈

R
(2R+6)W+6+4R represent the signal vector at time step t, derived

via layer normalization, as shown in Equation 2:

St = LayerNormalization
(

Oc
t ·W

s
t + bst

)

, (2)

where W
s
t ∈ R

C×((2R+6)W+6+4R) is the weight matrix and

bst ∈ R
((2R+6)W+6+4R) is the bias vector. The dimension of

St is carefully designed based on the operational needs of

both working and long-term memory modules, involving signals

for writing, reading, erasing, and gating controls. Specifically,

(2R + 6)W represents memory signals corresponding to multiple

read/write operations across working and long-term memories,

while the additional terms 6 and 4R account for scalar gates and

strengths. A comprehensive step-by-step derivation is provided in

Appendix A.

This normalized signal vector is systematically partitioned

into several distinct components, each corresponding to specific

memory regions and operational functionalities, ensuring that the

total length of all variables matches the dimension of St .

Initially, the first W elements of St are designated as the write

query signal for the working memory region, denoted by Kwk
t ∈

R
W , while the subsequent W elements serve as the write query

signal for the long-term memory region, denoted by K lt
t ∈ R

W .

Following these, the next two elements are processed through the

oneplus activation function to yield the write scaling factors

βwkt ∈ R and β ltt ∈ R for the working and long-term memory

regions, respectively. The oneplus function is defined as:

oneplus(x) = 1+ softplus(x) = 1+ ln(1+ ex)

This function ensures that the scaling factors are strictly

positive, facilitating stable and controlled scaling during the write

operations.

Subsequently, the next 2W elements of St are passed through

the sigmoid activation function to generate the erase signals Ewkt ∈

R
W and Eltt ∈ R

W , which facilitate the controlled removal of

information within the working and long-term memory regions,

respectively. The following 2W elements are directly extracted to

form the write signals Vwk
t ∈ R

W and V lt
t ∈ R

W , enabling the

storage of new information.

To regulate weight allocation and the strength of write

operations, the subsequent four elements are processed through the

sigmoid function to derive the gating scalars gwkt ∈ R, gltt ∈ R,

γ wk
t ∈ R, and γ lt

t ∈ R. These gating scalars modulate the write

operations within both the working and long-termmemory regions

effectively.

For multi-head read operations, the signal vector is further

partitioned into components corresponding to each of the R read

heads. Specifically, the read query signals Kwk,i
t ∈ R

R×W and

K lt,i
t ∈ R

R×W are extracted for the working and long-term

memory regions, respectively. The corresponding read scaling

factors βwk,it ∈ R
R and β lt,it ∈ R

R are obtained by applying the

oneplus function to the relevant segments of St . Additionally, the

free gating vectors f wk,it ∈ R
R and f lt,it ∈ R

R are computed using

the sigmoid function, providing flexible control over information

retrieval across all read heads.

Here, W represents the width of the memory region,

and R specifies the number of read heads. The regions

wk and lt refer to the working and long-term memory,

respectively, while t denotes the current time step in the signal

processing sequence. The total length of all these variables

collectively equals the dimension of St , which is (2R + 6)W +

6 + 4R. This meticulous segmentation of St into dedicated

variables, each with explicitly defined dimensionalities, ensures

efficient and optimized storage and retrieval processes across

both memory regions. Consequently, this enhances the overall

functionality and performance of the working memory module by

enabling precise control and manipulation of information within

the system.

Working Memory Updating Algorithm. The updating of the

working memory is based on the following principles:

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

1. Delete memory slots with lower usage frequency or longer

recency intervals. Specifically, items with the lowest usage value,

tracked by the usage vectorUwk
t , are prioritized for deletion. The

usage vector is updated at each time step based on previous read

and write weights, which progressively reduces the usage value

of slots that have not been accessed or updated recently.

2. Delete items after extraction, which corresponds to actively

setting low retention values using the free gates (f wk,it), effectively

marking them for replacement.

3. Delete memory items whose content is highly similar to

newly stored information. The similarity is measured by cosine

similarity in content-based addressing.

4. Retain recently updated novel items, identified as slots with

recent write operations and relatively higher usage values in the

usage vector.

Based on these principles, we update the working memory

in real-time according to the dynamic addressing algorithm in

Equation 3 (Graves et al., 2016; Hsin, 2016).

ψwk
t =

R
∏

i=1

(1− f wk,it Cwk,i
t−1),

Uwk
t = (Uwk

t−1 +W
wk
t−1 − (Uwk

t−1 ◦W
wk
t−1)) ◦ ψ

wk
t ,

φwkt = SortIndiceAscending(Uwk
t),

Awk
t [φwkt [j]] = (1− Uwk

t [φwkt [j]])

j−1
∏

i=1

Uwk
t [φwkt [j]]],

(3)

where ψwk
t ∈ R

N is the result of scaling and accumulating the

read weight matrix Cwk,i
t−1 from the previous time step using the f wk,it

gated vector. The φwkt ∈ R
N tensor is the index tensor, sorted

in ascending order by the memory region management tensor

Uwk
t ∈ R

N , where N represents the length of the memory region.

Additionally, Awk
t ∈ R

N represents the write weight of the working

memory region based on dynamic addressing.

Specifically, in Equation 3, the tensor Uwk
t precisely tracks

the usage frequency and recency of each memory slot. A low

value in Uwk
t directly indicates infrequent access or prolonged

non-usage. The free gate vectors (f wk,it) from multiple read heads

further modulate the retention values of memory slots, explicitly

controlling the deletion of recently extracted items. Consequently,

memory slots with persistently low Uwk
t values, resulting from

limited read/write activities over multiple consecutive time steps,

are considered to have not been used for a “long time” and thus are

candidates for deletion.

The method for calculating write weights based on content

addressing in the working memory region is presented in

Equation 4 (Graves et al., 2016; Hsin, 2016):

Cwk
t =

exp(d(Kwk
t , Mwk

t)βwkt)
∑

exp(d(Kwk
t , Mwk

t)βwkt)
, (4)

where Cwk
t ∈ R

N , βwkt ∈ R, Kwk
t ∈ R

W , and Mwk
t ∈ R

N×W

represent the working memory region, and d(u, v) = u·v
|u||v| . Here,

N represents the length of the memory region, and W represents

the width of the memory region.

The write algorithm for the working memory region is

presented in Equation 5 (Graves et al., 2016; Hsin, 2016):

W
wk
t = γ wk

t [gwkt Awk
t + (1− gwkt)Cwk

t],

Mwk
t = Mwk

t−1 −Mwk
t−1 ◦W

wk
t (Ewkt)T +W

wk
t (Vwk

t)T ,
(5)

where Wwk
t ∈ R

N represents the final write weight of the working

memory region, and gwkt ∈ [0, 1] denotes the write weight

allocation gate scalar, which controls the allocation proportion of

the two addressingmodes in the final write. The gating scalar γ wk
t ∈

[0, 1] serves to protect the data in the memory region, preserving

its relative stability and preventing it from being overwhelmed by

unimportant, redundant, or irrelevant information.

Working Memory Extraction Algorithm. In the extraction of

working memory, the information most relevant to the current

interactive read query signal Kwk,i
t is retrieved. The extraction

weighting algorithm is defined by Equation 6 as follows (Graves

et al., 2016; Hsin, 2016):

Cwk,i
t =

exp(d(Kwk,i
t ,Mwk

t)βwk,it)
∑

exp(d(Kwk,i
t ,Mwk

t)βwk,it)
, (6)

where Cwk,i
t ∈ R

R×N , Kwk,i
t ∈ R

R×W , and βwk,it ∈ R
R, with R

representing the total number of read operations, and i indicating

the specific label.

The information extraction algorithm within the working

memory region is defined by Equation 7 as follows:

Rwk,it = (Mwk
t)TCwk,i

t , (7)

where Rwk,it ∈ R
R×W .

3.2.2 Memory transformation mechanism
The DNC-based model (Graves et al., 2016; Franke et al., 2018)

directly maps the output of the working memory (Rwk,it) to a linear

layer. However, since the items that have been used are deleted from

working memory, this leads to the loss of important information,

which in turn affects both performance and robustness.We propose

a memory transformation algorithm that transfers information

extracted from the working memory into the long-term memory,

compensating for information loss due to frequent updates and

deletions in the working memory.

The algorithm for updating and extracting information in long-

term memory is similar to that in working memory. The only

difference is that the input in working memory originates from the

controller layer, whereas the input in long-term memory originates

from the working memory module. The update formula for the

long-term memory region is given in Equation 8:

W
lt
t = γ lt

t [g
lt
t A

lt
t + (1− gltt)C

lt
t],

Bwkt =

R
∏

i=1

Rwk,it ,

Mlt
t = Mlt

t−1 −Mlt
t−1 ◦W

lt
t (E

lt
t)

T +W
lt
t (B

wk
t)T ,

(8)

where Mlt
t ∈ R

N×W , Bwtt ∈ R
W , and gltt ∈ [0, 1] represents

the long-term memory write weight allocation gate scalar, which

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

controls the allocation proportion of the two addressing modes in

the final write.

Information extraction from the memory layer integrates

information from both the working memory region, Rwk,it , and the

long-term memory region, Rlt,it . This calculation is given by the

following equation in Equation 9:

Om
t = R

(

Rwk,it ⊕ Rlt,it

)

, (9)

where Om
t ∈ R

2RW , and R(·) represents the reshaping operation

applied to the concatenated tensor Rwk,it ⊕Rlt,it , transforming it into

a vector of length 2RW.

3.3 Linear layer

The output of the linear layer, ŷt , is determined by the output

of the controller layer, Oc
t , after Dropout processing (Franke et al.,

2018; Gal and Ghahramani, 2016; Srivastava et al., 2014), as well as

the output of the memory layer, Om
t , given by Equation 10:

ŷt = Softmax((Om
t ⊕ Dropout(Oc

t)) ·W
o
t + bot), (10)

where ŷt ∈ R
Y , Wo

t ∈ R
(2RW+C)×Y is the output weight matrix,

and bot ∈ R
Y is the bias vector.

The detailed procedure of our MT-DNC model is shown in

Algorithm 1.

Input: Training set xt,yt.

Output: The MT-DNC model.

1: randomly initialize weight W.

2: for e = 0; e < Epoch;e++ do

3: %Forward propagation

4: xt = xt + inverse(xt).

5: As shown in Equation 1, xt and Omt−1 are used as

input data for the control layer.

6: After processing by Equations 2–7, the output

Rwk,it of the working memory region is obtained.

7: Rwk,it will be input to the long-term memory

region and processed by Equations 2–4, 6–8 to

generate Rlt,it .

8: After the processing of Equation 9, the memory

layer output tensor Omt is obtained.

9: After the processing of Equation 10, the model

output ŷt is obtained.

10: %Back propagation

11: The difference between yt and ŷt is optimized

by Cross Entropy.

12: end for

13: return MT-DNC model

Algorithm 1. Execution algorithm for MT-DNC.

4 Experiments

4.1 The bAbI task

The bAbI1 is a reasoning-based text question-and-answer

task (Weston et al., 2015; Kumar et al., 2016). We use the en-

10k dataset for experimentation, which contains 20 sub-tasks.

Each subtask contains numerous stories, with each story consisting

of supporting facts, multiple questions, and their corresponding

answers. The correct answers rely on one or more supporting

facts. A joint training approach is employed to evaluate the text

comprehension and reasoning ability of the MT-DNC model.

Unlike other previous works, our method uses end-to-end training

without any pre-processing of the bAbI dataset itself.

4.2 Training details

The bAbI question-and-answer task, comprising 20 sub-tasks,

is combined into a single training session. A training sample is

generated for each sub-task in the dataset, based on different stories.

The detailed generation process is as follows:

1. The text sequence training samples are processed by removing

digits, converting words to lowercase, removing line breaks, etc.

2. The text sequence training samples are split into lists of word

sequences (including 3 punctuation marks).

3. The “answer words” in the list are replaced with “-”, and the list

is then encoded into word vectors using a one-hot word vector

processor. The length of the list corresponds to the length of the

largest text sequence in the current batch, and shorter texts are

padded with “0”. A word in the list is represented as xt ∈ R
X ,

where X is the length of the word vector, with a value of 159.

4. All training input samples and target samples are combined to

form the training sample list.

5. 10% of the data in the training sample list is used as the

validation dataset.

6. The MT-DNC model is trained for 300 epochs, with validation

and testing after each epoch.

The total number of parameters in the model is 1,267,337, and

the batch size is 32. The number of control layer nodes is 172,

corresponding to the output dimension C of the control layer. Both

memory regions have a length of 128 (i.e., dimension N) and a

width of 64 (i.e., dimension W), with 4 read heads (i.e., R), 1 write

head, and a dropout rate of 0.9. The learning rate is 0.0003, and the

momentum value of the Rmsprop optimizer is 0.9 (Kingma and Ba,

2014). The gradient clipping value is set to 10.

4.3 Experimental results

To verify the effectiveness of the proposed MT-DNC model,

we conducted comparison experiments with DNC, EntNet (Henaff

1 https://research.facebook.com/downloads/babi/

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://research.facebook.com/downloads/babi/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

TABLE 1 The average word error rate (WER) of di�erent models on bAbI task (Hena� et al., 2016; Hochreiter and Schmidhuber, 1997; Rae et al., 2016;

Franke et al., 2018).

Task DNC EntNet LSTM SDNC BrsDNC MT-DNC-DI MT-DNC

1: 1 supporting fact 9.0± 12.6 0.0± 0.1 28.4± 1.5 0.0± 0.0 0.1± 0.1 0.0± 0.0 0.0 ± 0.0

2: 2 supporting facts 39.2± 20.5 15.3± 15.7 56.0± 1.5 7.1± 14.6 0.8± 0.2 0.3± 0.2 0.4 ± 0.3

3: 3 supporting facts 39.6± 16.4 29.3± 26.3 51.3± 1.4 9.4± 16.7 2.4± 0.6 2.8± 0.8 2.7± 0.8

4: 2 argument relations 0.4± 0.7 0.1± 0.1 0.8± 0.5 0.1± 0.1 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

5: 3 argument relations 1.5± 1.0 0.4± 0.3 3.2± 0.5 0.9± 0.3 0.7± 0.1 0.6± 0.3 0.5 ± 0.1

6: yes/no questions 6.9± 7.5 0.6± 0.8 15.2± 1.5 0.1± 0.2 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

7: counting 9.8± 7.0 1.8± 1.1 16.4± 1.4 1.6± 0.9 1.0± 0.5 0.6± 0.3 0.6 ± 0.2

8: lists/sets 5.5± 5.9 1.5± 1.2 17.7± 1.2 0.5± 0.4 0.5± 0.3 0.0± 0.0 0.1 ± 0.1

9: simple negation 7.7± 8.3 0.0± 0.1 15.4± 1.5 0.0± 0.1 0.1± 0.2 0.0± 0.0 0.0 ± 0.0

10: indefinite knowledge 9.6± 11.4 0.1± 0.2 28.7± 1.7 0.3± 0.2 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

11: basic coreference 3.3± 5.7 0.2± 0.2 12.2± 3.5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

12: conjunction 5± 6.3 0.0± 0.0 5.4± 0.6 0.2± 0.3 0.0± 0.1 0.0± 0.0 0.0 ± 0.0

13: compound coreference 3.1± 3.6 0.0± 0.1 7.2± 2.3 0.1± 0.1 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

14: time reasoning 11± 7.5 7.3± 4.5 55.9± 1.2 5.6± 2.9 0.8± 0.7 0.0± 0.0 0.0 ± 0.0

15: basic deduction 27.2± 20.1 3.6± 8.1 47.0± 1.7 3.6± 10.3 0.1± 0.1 0.0± 0.0 0.0 ± 0.0

16: basic induction 53.6± 1.9 53.3± 1.2 53.3± 1.3 53.0± 1.3 52.6± 1.6 49.1± 0.9 38.8 ± 11.1

17: positional reasoning 32.4± 8 8.8± 3.8 34.8± 4.1 12.4± 5.9 4.8± 4.8 4.2± 0.9 0.6 ± 1.1

18: size reasoning 4.2± 1.8 1.3± 0.9 5.0± 1.4 1.6± 1.1 0.4± 0.4 0.4± 0.2 0.0 ± 0.0

19: path finding 64.6± 37.4 70.4± 6.1 90.9± 1.1 30.8± 24.2 0.0± 0.0 0.0± 0.0 0.4± 0.8

20: agents motivation 0.0± 0.1 0.0± 0.0 1.3± 0.4 0.0± 0.0 0.1± 0.1 0.0± 0.0 0.0 ± 0.0

Mean WER: 16.7± 7.6 9.7± 2.6 27.3± 0.8 6.4± 2.5 3.2± 0.5 2.9± 0.0 2.2 ± 0.5

Failed Tasks (>5%): 11.2± 5.4 5.0± 1.2 17.1± 1.0 4.1± 1.6 1.4± 0.5 1.4± 0.4 1.0 ± 0.0

The bold values indicate the best performance in the comparison experiments.

et al., 2016), LSTM (Hochreiter and Schmidhuber, 1997),

SDNC (Rae et al., 2016), BrsDNC (Franke et al., 2018), and other

models on the bAbI question-and-answer task. Additionally, we

evaluated the MT-DNC-DI model (a variant of our MT-DNC

model without the memory transformation mechanism, where

“DI” stands for Direct Independence) to assess the impact of the

memory transformation algorithm on model performance. The

MT-DNC-DI model employs independent memory modules, with

separate regions for workingmemory and long-termmemory, both

of which receive input directly from the controller layer. Table 1

shows the average word error rate (WER) of different models under

different initialized parameters.

According to the experimental results, the MT-DNC model

achieves a lower average error rate (2.2% mean WER) compared

to other models, particularly the representative BrsDNC model,

which demonstrates superior performance with a mean WER of

3.2% on the 20 bAbI sub-tasks under joint training. Specifically,

for the 14th, 15th, and 18th sub-tasks, all other methods produce

errors, while our method achieves an error rate of 0%. For

the 16th and 17th sub-tasks, our method significantly reduces

the error rate by 13.8% and 4.2%, respectively, compared to

the BrsDNC model. Additionally, we counted the number of

failed tasks (those with more than 5% errors) across the 20 sub-

tasks, as shown in the last row of Table 1. Our method has

only one failed task and outperforms other methods, significantly

surpassing the DNC (with 11 failed tasks) and LSTM (with 17 failed

tasks) models.

Figure 2 illustrates the loss trends of different models during

validation (Figure 2A) and training (Figure 2B) processes. As

shown, the MT-DNC model demonstrates lower loss, higher

performance, and faster convergence compared to the DNC and

BrsDNC models. Furthermore, the variance of the learning curves

in Figures 2A, B indicates that our method is more stable, with

minimal fluctuations, while the BrsDNC model exhibits significant

instability and fluctuating learning processes. Overall, our MT-

DNC model improves convergence speed and performance while

maintaining superior stability.

4.4 Ablation study

To further analyze the validity of our proposed model, we

conducted a series of ablation experiments. The main innovation

of our model lies in the introduction of long-term memory and

the memory transformation algorithm. In the MT-DNC model,

the long-term memory module receives input from the working

memory module through the memory transformation algorithm.

To verify the effectiveness of the memory transformation

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

(A) (B)

FIGURE 2

Validation loss (A) and training loss (B) of DNC, BrsDNC, MT-DNC-DI and MT-DNC. The horizontal axis represents the number of Epochs and the

vertical axis represents the change of loss.

FIGURE 3

Mean Word Error Rate of MT-DNC-32, MT-DNC-64, MT-DNC-128,

MT-DNC-256, MT-DNC-512, BrsDNC. The horizontal coordinate

represents the number of Epochs and the vertical coordinate

represents the changing of Mean Word Error Rate.

mechanism, we compared the performance of MT-DNC and

MT-DNC-DI. In the MT-DNC-DI model, the long-term memory

module receives input directly from the controller layer (with

different parameters from the working memory module). From

Table 1 and Figure 2, we observe that MT-DNC achieves superior

performance compared to MT-DNC-DI, both in terms of WER on

each sub-task and in terms of average WER. Additionally, the MT-

DNC-DI model performs better and exhibits lower loss compared

to DNC, BrsDNC, and other models, indicating that the long-term

memory itself contributes positively to model performance,

while the memory transformation mechanism further

enhances it.

We also analyzed the effect of storage space in long-

term memory and working memory on the experimental

results. Figure 3 illustrates the changes in mean WER during

the learning process at different memory space sizes. We

compared these results with the changes in mean WER of

the BrsDNC model (black line in Figure 3). The experimental

results reveal that when the memory space is too small (e.g.,

32 or 64), the performance of the model is negatively affected.

Our model achieves comparable performance to the BrsDNC

model under very small memory spaces (32 and 64), despite

the BrsDNC model using a larger memory space of 128.

However, our MT-DNC model significantly outperforms the

BrsDNC model at memory space lengths of 128 and 256.

Furthermore, we found that excessive memory space (e.g., 512)

does not improve performance and instead leads to performance

degradation. Overall, our model is robust and adaptable to different

memory space lengths, but overly small or overly large memory

spaces negatively impact performance compared to the most

appropriate length.

5 Conclusion

In this paper, inspired by the memory transformation

mechanism of the human brain, we propose the MT-DNC model,

a coordinated framework with two memory modules: working

memory and long-term memory. By establishing a connection

between the working memory and the long-term memory, this

model alleviates some of the challenges faced by DNCs. Specifically,

as the amount of information in the memory region increases,

the effectiveness of information retrieval and training efficiency

improve, significantly impacting the model’s convergence rate and

final performance.

Nonetheless, several promising directions remain for

future research. In particular, integrating the MT-DNC

architecture with Transformer-based models is a key area of

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

ongoing exploration. This hybrid approach aims to combine

the structured, interpretable memory dynamics of MT-

DNC with the powerful parallel processing capabilities of

Transformers. By leveraging Transformer’s inherent parallelism,

the integrated model is expected to overcome the current

limitations of sequential memory operations in DNC-based

architectures, thereby improving computational efficiency

and scalability.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/Brain-Cog-Lab/MTDNC.

Author contributions

YL: Conceptualization, Writing – review & editing,

Methodology, Formal analysis, Writing – original draft. YW:

Funding acquisition, Writing – original draft, Resources,

Supervision, Validation, Writing – review & editing. HF:

Validation, Conceptualization, Writing – review & editing,

Writing – original draft, Methodology. FZ: Supervision, Writing

– review & editing, Methodology, Writing – original draft,

Conceptualization. YZ: Conceptualization, Funding acquisition,

Project administration, Resources, Writing – review & editing,

Supervision.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

in part by the Beijing Major Science and Technology Project under

Contract No. Z241100001324005.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.
L., et al. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
doi: 10.48550/arXiv.2303.08774

Atkinson, R. C., and Shiffrin, R. M. (1968). Human memory: a
proposed system and its control processes. Psychol. Learn. Motiv. 2, 89–195.
doi: 10.1016/S0079-7421(08)60422-3

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C. (2016). Using
fast weights to attend to the recent past. Adv. Neural Inf. Process. Syst. 29.
doi: 10.48550/arXiv.1610.06258

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450. doi: 10.48550/arXiv.1607.06450

Baddeley, A. (2007). Working Memory, Thought, and Action. Oxford: Oxford
University Press. doi: 10.1093/acprof:oso/9780198528012.001.0001

Chan, A., Ma, L., Juefei-Xu, F., Xie, X., Liu, Y., and Ong, Y. S. (2018). Metamorphic
relation based adversarial attacks on differentiable neural computer. arXiv preprint
arXiv:1809.02444. doi: 10.48550/arXiv.1809.02444

Csordás, R., and Schmidhuber, J. (2019). “Improving differentiable neural
computers through memory masking, de-allocation, and link distribution
sharpness control,” in International Conference on Learning Representations (ICLR)
(OpenReview.net).

Diamond, A. (2013). Executive functions. Annu. Rev. Psychol. 64:135.
doi: 10.1146/annurev-psych-113011-143750

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A.,
et al. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783.
doi: 10.48550/arXiv.2407.21783

Franke, J., Niehues, J., and Waibel, A. (2018). Robust and scalable differentiable
neural computer for question answering. arXiv preprint arXiv:1807.02658.
doi: 10.18653/v1/W18-2606

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a Bayesian approximation:
representing model uncertainty in deep learning,” in Proceedings of the 33rd ICML
(New York, NY: PMLR), 1050–1059.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv
preprint arXiv:1410.5401. doi: 10.48550/arXiv.1410.5401

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-
Barwińska, A., et al. (2016). Hybrid computing using a neural network
with dynamic external memory. Nature 538, 471–476. doi: 10.1038/nature
20101

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M.
(2017). Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.
doi: 10.1016/j.neuron.2017.06.011

Henaff, M., Weston, J., Szlam, A., Bordes, A., and LeCun, Y. (2016). Tracking
the world state with recurrent entity networks. arXiv preprint arXiv:1612.03969.
doi: 10.48550/arXiv.1612.03969

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hsin, C. (2016). Implementation and Optimization of Differentiable Neural
Computers. Technical Report.

Ji, D., and Wilson, M. A. (2007). Coordinated memory replay in the visual cortex
and hippocampus during sleep. Nat. Neurosci. 10, 100–107. doi: 10.1038/nn1825

Kingma, D. P., and Ba, J. L. (2014). Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D., Smith, L.
M., et al. (2017). Engrams and circuits crucial for systems consolidation of a memory.
Science 356, 73–78. doi: 10.1126/science.aam6808

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-
normalizing neural networks. Adv. Neural Inf. Process. Syst. 30.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://github.com/Brain-Cog-Lab/MTDNC
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.48550/arXiv.1610.06258
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1093/acprof:oso/9780198528012.001.0001
https://doi.org/10.48550/arXiv.1809.02444
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/W18-2606
https://doi.org/10.48550/arXiv.1410.5401
https://doi.org/10.1038/nature20101
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.48550/arXiv.1612.03969
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nn1825
https://doi.org/10.1126/science.aam6808
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., et al. (2016).
“Ask me anything: dynamic memory networks for natural language processing,” in
International Conference on Machine Learning (PMLR), 1378–1387.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).
Building machines that learn and think like people. Behav. Brain Sci. 40:e253.
doi: 10.1017/S0140525X16001837

Le, H., Tran, T., and Venkatesh, S. (2019). Learning to remember more with less
memorization. arXiv preprint arXiv:1901.01347. doi: 10.48550/arXiv.1901.01347

Le, H., Tran, T., and Venkatesh, S. (2020). “Self-attentive associative memory,” in
International Conference on Machine Learning (PMLR), 5682–5691.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lee, A. K., and Wilson, M. A. (2002). Memory of sequential experience
in the hippocampus during slow wave sleep. Neuron 36, 1183–1194.
doi: 10.1016/S0896-6273(02)01096-6

Marshall, L., and Born, J. (2007). The contribution of sleep to
hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450.
doi: 10.1016/j.tics.2007.09.001

Rae, J., Hunt, J. J., Danihelka, I., Harley, T., Senior, A. W., Wayne, G., et al. (2016).
Scaling memory-augmented neural networks with sparse reads and writes. Adv. Neural
Inf. Process. Syst. 29.

Rasekh, M. S., and Safi-Esfahani, F. (2020). EDNC: evolving differentiable neural
computers. Neurocomputing 412, 514–542. doi: 10.1016/j.neucom.2020.06.018

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T.
(2016). “Meta-learning with memory-augmented neural networks,” in International
Conference on Machine Learning (PMLR), 1842–1850.

Seo, M., Min, S., Farhadi, A., and Hajishirzi, H. (2016). Query-
reduction networks for question answering. arXiv preprint arXiv:1606.04582.
doi: 10.48550/arXiv.1606.04582

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958.

Tao, Q., Xu, P., Li, M., and Lu, W. (2021). Machine learning for perovskite
materials design and discovery. NPJ Comput. Mater. 7, 1–18. doi: 10.1038/s41524-021-
00495-8

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al.
(2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288. doi: 10.48550/arXiv.2307.09288

Weston, J., Bordes, A., Chopra, S., Rush, A. M., VanMerriënboer, B., Joulin, A., et al.
(2015). Towards AI-complete question answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698. doi: 10.48550/arXiv.1502.05698

Winocur, G., Moscovitch, M., and Bontempi, B. (2010). Memory formation and
long-term retention in humans and animals: convergence towards a transformation
account of hippocampal-neocortical interactions. Neuropsychologia 48, 2339–2356.
doi: 10.1016/j.neuropsychologia.2010.04.016

Xiong, C., Merity, S., and Socher, R. (2016). “Dynamic memory networks for visual
and textual question answering,” in International Conference on Machine Learning
(PMLR), 2397–2406.

Zaremba, W., and Sutskever, I. (2015). Reinforcement learning neural turing
machines-revised. arXiv preprint arXiv:1505.00521. doi: 10.48550/arXiv.1505.00521

Zhao, Z., Chen, W., Wu, X., Chen, P. C., and Liu, J. (2017). LSTM network: a deep
learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11, 68–75.
doi: 10.1049/iet-its.2016.0208

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.48550/arXiv.1901.01347
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0896-6273(02)01096-6
https://doi.org/10.1016/j.tics.2007.09.001
https://doi.org/10.1016/j.neucom.2020.06.018
https://doi.org/10.48550/arXiv.1606.04582
https://doi.org/10.1038/s41524-021-00495-8
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.1502.05698
https://doi.org/10.1016/j.neuropsychologia.2010.04.016
https://doi.org/10.48550/arXiv.1505.00521
https://doi.org/10.1049/iet-its.2016.0208
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liang et al. 10.3389/frai.2025.1635932

Appendix A

Detailed Derivation of the Memory State
Dimension (St)

The dimension St = (2R+6)W+6+4R is obtained by explicitly

partitioning the output of the controller into signals required by the

MT-DNC memory module operations. Below is the intuitive and

step-by-step derivation aligned with the source code:

1. Working and Long-termMemoryWriting Signals

• Write keys for working and long-term memory: Each with

dimensionW, totaling 2W.

• Write strengths (scalars) for both memories: 2 signals, each

dimension 1, totaling 2.

• Erase vectors for both memories: Each with dimensionW,

totaling 2W.

• Write vectors for both memories: Each with dimensionW,

totaling 2W.

• Allocation gates (scalars) for both memories: 2 signals,

dimension 1 each, totaling 2.

• Write gates (scalars) for both memories: 2 signals,

dimension 1 each, totaling 2.

Subtotal: 6W + 6

2. Reading Signals (with multiple read heads R)

• Read keys for working and long-term memories: Each

memory has R heads, each head dimension W, totaling

2RW.

• Read strengths for working and long-term memories: Each

memory has R read heads, each head a scalar, totaling 2R.

• Free gates for working and long-term memories: Each

memory has R read heads, each a scalar, totaling 2R.

Subtotal: 2RW + 4R

3. Combine All Components

St = (6W + 6)+ (2RW + 4R) = (2R+ 6)W + 6+ 4R

This derivation matches precisely the dimensional partitioning

provided in the implementation code as follows:

write_keys: [W]

write_keys_sec: [W] # 2W

write_strengths: [1]

write_strengths_sec: [1] # 2

erase_vector: [W]

erase_vector_sec: [W] # 2W

write_vector: [W]

write_vector_sec: [W] # 2W

alloc_gates: [1]

alloc_gates_sec: [1] # 2

write_gates: [1]

write_gates_sec: [1] # 2

Total so far: 6W + 6

read_keys: [R x W]

read_keys_sec: [R x W] # 2RW

read_strengths: [R]

read_strengths_sec: [R] # 2R

free_gates: [R]

free_gates_sec: [R] # 2R

Total addition: 2RW + 4R

Final total: (2R + 6)W + 6 + 4R

Each component is explicitly represented and corresponds

exactly to the signals used by the memory operation algorithms

(writing, erasing, reading, gating), facilitating clear understanding

and precise reproducibility of the MT-DNC architecture.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1635932
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	A brain-inspired memory transformation based differentiable neural computer for reasoning-based question answering
	1 Introduction
	2 Related work
	3 Method
	3.1 Controller layer
	3.2 Memory layer
	3.2.1 Working memory module
	3.2.2 Memory transformation mechanism

	3.3 Linear layer

	4 Experiments
	4.1 The bAbI task
	4.2 Training details
	4.3 Experimental results
	4.4 Ablation study

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References
	Appendix A
	Detailed Derivation of the Memory State Dimension (St)

	Figure1:
	Figure2:
	Figure3:

