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Purpose: To develop machine learning (ML) and neural network (NN) models to 
predict glaucoma surgical outcomes, including intraocular pressure (IOP), use of 
ocular antihypertensive medications, and need for additional glaucoma surgery, 
using preoperative electronic health records (EHR) from a large multicenter 
cohort.
Methods: This cohort study included 9,386 patients who underwent glaucoma 
surgery across 10 institutions in the Sight Outcomes Research Collaborative 
(SOURCE). All patients had at least 1 year of follow-up and 2 postoperative visits 
with IOP measurements. Models were trained using preoperative EHR features 
to predict surgical failure, defined as any of the following: IOP remaining above 
80% of preoperative value beyond the immediate postoperative period, increased 
postoperative glaucoma medications, or need for additional glaucoma surgery. 
Model performance was evaluated on two test sets: an internal holdout set from 
sites seen during training and an external holdout set.
Results: Of 13,173 surgeries, 8,743 (66.4%) met failure criteria. The best-
performing model for overall surgical failure prediction was a one-dimensional 
convolutional neural network (1D-CNN) with AUROC of 76.4% and accuracy 
of 71.6% on the internal test set. The top-performing classical ML model was 
random forest (AUROC 76.2%, accuracy 72.1%). Prediction performance was 
highest for IOP-related failure (AUROC 82%), followed by increased medication 
use (80%) and need for an additional surgery (68%). AUROC declined slightly 
(2–4%) on the external test set.
Conclusion: ML and DL models can predict glaucoma outcomes using 
preoperative EHR data. Translational relevance: prediction models may support 
clinical decision-making by identifying glaucoma patients at risk of poor 
postoperative outcomes.
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1 Introduction

Glaucoma is one of the leading causes of blindness worldwide, 
with prevalence projected to increase by over 50% between 2020 and 
2040 (Tham et al., 2014). Patients undergoing glaucoma surgery often 
have the most severe disease, likely with vision loss that is expected to 
worsen unless surgery is performed. However, glaucoma surgical 
outcomes can be highly variable: while surgery can maintain effective 
disease control over extended periods in some patients with one 
surgery, other patients may encounter surgical failure at early stages, 
manifested by inadequate control of intraocular pressure and the need 
for successive interventions (Wagner et  al., 2023). Most previous 
research investigating predictors of surgical success has considered 
relatively few and simple patient features, such as age and history of 
previous surgeries (Hirabayashi et  al., 2020; Pantalon et  al., 2021; 
Wagner et al., 2023). However, each patient has a uniquely complex 
clinical presentation with many factors likely affecting their surgical 
outcome; this complexity poses significant challenges in predicting 
post-surgical outcomes with precision. Whether and how long 
glaucoma surgery is likely to succeed is also likely to depend on the 
type of glaucoma surgery and how this choice interacts with 
patient factors.

Previous research leveraging machine learning and deep learning 
techniques on electronic health records (EHRs) has demonstrated 
significant potential in predicting various glaucoma-related outcomes, 
including the probability of glaucoma patients progressing to require 
surgery and glaucoma surgical outcomes (Jalamangala Shivananjaiah 
et al., 2023; Tao et al., 2023). One earlier study investigated different 
prediction model architectures to forecast the success or failure of 
trabeculectomy surgery at the one-year mark, based on postoperative 
intraocular pressure (IOP) control, within a relatively small sample of 
200 patients (Banna et  al., 2022). More recently, another study 
employed both free-text operative notes and structured EHR data 
from the preoperative and early postoperative periods to predict IOP 
outcomes following trabeculectomy in a larger cohort of 1,326 patients 
(Lin et al., 2024). Finally, our previous study (Barry and Wang, 2024) 
evaluated machine learning algorithms to predict the outcomes of a 
wide variety of glaucoma surgical procedures, including 
trabeculectomy, tube shunts, minimally invasive glaucoma surgeries 
(MIGS), and cyclodestructive procedures by considering composite 
failure criterion (IOP control, medication usage, and need for repeat 
glaucoma surgery). These algorithms outperformed those in prior 
literature, but several limitations remained, chiefly the single-center 
nature of the training and testing set.

The goal of the present study is to build upon our previous work 
by developing and evaluating machine learning and advanced deep 
learning algorithms to predict outcomes of glaucoma surgery in a 
large multicenter electronic health records dataset, the Sight Outcomes 
Research Collaborative (SOURCE) repository.1 SOURCE aggregates 
de-identified EHR from multiple academic eye centers across the 
U. S. and includes detailed structured information on ocular surgeries 
and eye examination findings. We continue to employ a composite 
failure criteria based on intraocular pressure (IOP), glaucoma 
medication usage, and need for further surgeries, to model surgical 

1  sourcecollaborative.org

outcomes with the greatest possible granularity. We  also develop 
models that predict individual failure criteria as well. The large 
multicenter cohort drawn from SOURCE also enables external 
validation of trained models on data from independent sites, 
additional subgroup analyses, and an assessment of the impact of 
model training size on the results.

2 Methods

2.1 Data source and cohort

We identified patients from the SOURCE (Sight Outcomes 
Research Collaborative) electronic health record database who 
underwent glaucoma surgery between 2010 and 2022. The SOURCE 
database collects data from all patients receiving eye care at 
participating academic health systems, from the time each site 
implemented the EHR system up to the present (SOURCE 
Consortium, 2024). This study utilized data from 10 active SOURCE 
sites, with each site contributing between 4 and 12 years of data. 
SOURCE includes detailed patient information, such as demographics, 
diagnoses (based on ICD billing codes), eye examination findings 
from every clinic visit, and data on medications, laser treatments, and 
surgical interventions. While the data in SOURCE is fully 
de-identified, privacy-preserving software (Datavant Inc.) enables 
researchers to track patients longitudinally across different institutions 
while safeguarding patient identities.

The glaucoma procedures considered included trabeculectomy 
and ExPress shunts (CPT codes: 66170, 66172, 66160, 66183), tube 
shunts (66179, 66180), minimally invasive glaucoma surgery (MIGS: 
0191T, 0192T, 66989, 66991, 0253T, 0474T, 0376T, 66174, 66175, 
65820, 65850), and cyclophotocoagulation or ciliary body laser 
procedures (CBL) (66710, 66711, 66720, 66740, 66987, 66988). 
Patients were included if they had at least two postoperative visits with 
intraocular pressure (IOP) measurements in the operated eye and 1 
year of follow-up. This study was approved by the Stanford University 
Institutional Review Board and adhered to the principles of the 
Declaration of Helsinki.

2.2 Outcome definition/prediction target

The primary prediction target was glaucoma surgical outcome 
dichotomized to success/failure, defined as previously described in 
our original single-center study using multiple criteria incorporating 
IOP control, glaucoma medication use, and the need for subsequent 
glaucoma surgery (Barry and Wang, 2024). Briefly, a surgery was 
considered successful if the postoperative IOP was reduced by more 
than 20% from baseline, without an increase in glaucoma medications 
or further glaucoma surgery. The surgery was deemed unsuccessful if 
any of the following occurred: (1) IOP failure, where the IOP was 
above 80% of preoperative levels on two consecutive visits beyond the 
initial 3 months post-surgery; (2) medication failure, where there was 
an increase in the number of glaucoma medication categories, 
including carbonic anhydrase inhibitors, beta blockers, alpha agonists, 
prostaglandins, miotics, oral carbonic anhydrase inhibitors, or rho 
kinase inhibitors; (3) glaucoma surgery failure, defined as the need for 
additional glaucoma surgery or revision within 3 months of the 
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original procedure. A non-successful surgery was considered a failure, 
and vice versa.

As the definition of a successful IOP outcome can vary by patient, 
surgeon, and type of surgery, models were also developed for 
alternative IOP failure thresholds, following the World Glaucoma 
Association Guidelines (Shaarawy et al., 2009): IOP > 12, 15, 18, or 
21 mm Hg at two consecutive postoperative visits and IOP above 80% 
of preoperative IOP at two successive postoperative visits. Thus, 
potential users of such a model may select the failure definition that 
best aligns with their desired level of stringency. Outcomes were 
determined based on EHR data across all sites.

2.3 Feature engineering

The feature engineering process was similar to what was 
previously described for our single-center study (Barry and Wang, 
2024). Input features were extracted from electronic health records 
(EHR), including demographics, past ocular surgeries, diagnoses, 
medications, social history, and clinical exam findings. Categorical 
features were one-hot encoded, and continuous variables were 
standardized (mean = 0, variance = 1). All feature values were 
collected at baseline, from the preoperative period.

Categorical variables included surgery CPT code, race, ethnicity, 
gender, prior diagnoses (ICD codes), preoperative medications, prior 
glaucoma surgeries, concurrent cataract surgery, type of glaucoma 
surgical implant and/or supply used for the operation (e.g., Ahmed, 
Baerveldt, Hydrus, Kahook Dual Blade, etc.), and health-related 
behaviors (e.g., tobacco, alcohol, or drug use). Ocular and systemic 
medications were recorded as Boolean variables, indicating whether 
the patient had been prescribed the medication within 5 years before 
surgery. Variance elimination was performed to retain the 100 features 
with the highest variance each for systemic medications. ICD codes 
were aggregated to two decimal places (e.g., H25.011 became H25.01) 
to reduce the dimensionality of the feature space.

Continuous variables included age, the latest preoperative IOP 
value, visual acuity (VA), central corneal thickness, refraction 
spherical equivalent, and the number of prior ophthalmic surgeries. 
VA was converted to the logarithm of the minimum angle of resolution 
(logMAR). Continuous variables were standardized, missing value 
indicator variables were created and missing values were imputed 
using column means (<7% missingness overall, 0% missingness for 
IOP). A total of 326 input features were used, including 100 features 
each for diagnoses, systemic medications, and 28 for ophthalmic 
medications. To overcome the class imbalance in surgical failure, 
we leveraged scikitlearn’s SMOTE (Synthetic Minority Over-sampling 
Technique) method (Chawla et al., 2002), in which synthetic samples 
of the minority class are artificially generated. We only applied this 
method to the training data of models predicting surgical failure due 
to increased medication and the need for follow-up glaucoma surgery 
as they suffered significant class imbalance.

Data was split for evaluation ensuring that no patient appeared in 
both training and test sets in the case of multiple surgeries, such as 
across both eyes. Data from one site comprising 980 patients and 1,499 
surgeries was held out as an external test set. This external test set was 
drawn from a single clinical site not represented in the training or 
internal test sets, allowing us to assess the model’s ability to generalize 
to previously unseen, out-of-distribution data. The remaining data 

was split between a set used for training and cross-validation (80% of 
surgeries, N = 9,339) and an internal test set (20% of surgeries, 
N = 2,335) meant to evaluate in-distribution performance.

2.4 Modeling approach

All models were trained to predict overall surgical failure and 
specific failure types (IOP, medication, or need for additional surgery). 
We trained several classical machine learning models using scikit-
learn (v1.1.3) (Pedregosa et  al., 2011), including decision trees, 
random forest, XGBoost, penalized logistic regression, multi-layer 
perceptron, k-nearest neighbors, Gaussian naive Bayes, linear 
discriminant analysis, and support vector machines. The 
hyperparameters for these models, outlined in Supplementary Table S1, 
were tuned using grid search and five-fold cross-validation on the 
training set, and the best model was evaluated on the test set. The 
classification threshold was optimized for accuracy. Two deep learning 
architectures were also benchmarked: 1-Dimensional Convolutional 
Neural Networks (1D-CNN) (O’Shea and Nash, 2015; Kiranyaz et al., 
2019) and Attentive Interpretable Tabular Learning (TabNet) (Arik 
and Pfister, 2021). Dropout layers were added to the 1D-CNN model 
to prevent overfitting and hyperparameters such as the learning rate 
and the dimension of hidden layers for 1D-CNN and attention 
mechanism and layer configuration for TabNet were benchmarked 
(Supplementary Table S1). Early stopping was based on validation 
loss, with a patience of 10, and the model with optimal classification 
threshold for accuracy was chosen.

We also investigated the impact of training set size on model 
performance by training our top models on subsets of the N = 9,339 
total training size, with the subset size ranging from N = 100 to 
N = 9,339. For each subset, the results were averaged over 10 replicates: 
for each training set size, 10 different randomly sampled subsets of the 
training population were chosen, and the model was trained on each 
of these subsets and evaluated on the test set, with results averaged 
across these 10 replicates.

2.5 Evaluation

2.5.1 Standard evaluation metrics
All models were assessed using standard classification metrics, 

including accuracy, recall, specificity, precision, negative predictive 
value, and F1 score. Area under the receiver operating curve 
(AUROC) and precision-recall curve (AUPRC) were also evaluated. 
Metrics were computed for both the internal and external test sets. 
Confidence intervals were calculated via clustered bootstrapping 
(Ying et  al., 2022; Huang, 2018) to account for within-patient 
clustering, as some patients underwent multiple surgeries and thus 
contributed multiple observations to the dataset. The AUROC and 
accuracy of the two best-performing models were then evaluated on 
subsets of the population based on surgery type, race, ethnicity, age, 
and intraocular pressure. We also evaluated model calibration using 
Brier scores and calibration curves.

2.5.2 Explainability
We used SHapley Additive exPlanations (SHAP) (Lundberg and 

Lee, 2017) to interpret feature importance, as previously described 
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(Barry and Wang, 2024). SHAP values quantify both the magnitude 
and directionality of each feature’s marginal contribution to a model’s 
prediction. This technique computes the Shapley values for each 
feature, a concept originally used in game theory to measure the 
contribution of each player in a cooperative game. Importantly, use of 
SHAP is not aimed at identifying novel risk factors or causal 
relationships, but rather to serve as a sanity check of model behavior. 
In our study, the SHAP TreeExplainer (Lundberg, 2024) was applied 
to the random forest model, the best-performing non-deep learning 
model, allowing us to identify the most influential features driving the 
predictions. SHAP values were computed for both the internal and 
external test set. In addition, to get an understanding of the most 
important features for each model, permutation importance was 
quantified by shuffling individual features and measuring the 
ΔAUROC, following the statistical framework described by Altmann 
et al. (2010).

3 Results

3.1 Population characteristics

A total of 9,386 patients who underwent 13,173 glaucoma 
surgeries were included in the overall cohort, including 980 patients 
and 1,499 operations from one site which was held out as an external 
test set. The overall surgical success rate was 33.6% (N = 4,430), while 
66.4% (N = 8,743) met the composite failure criteria (Figure  1). 
Among the three individual failure criteria, IOP failure was the most 
common (N = 7,691 [88.0%]). Failure due to the need for an additional 
glaucoma surgery or revision was reported in 2453 (28.1%) cases of 
surgical failure, and 1,420 (16.2%) procedures failed due to medication 
failure, where the patient requires more classes of ocular 
antihypertensive medication after surgery than before. Failure rates 
varied by procedure type: tube shunt (54.3%, 1854/3414), 
trabeculectomy (62.3%, 2124/3410), cyclophotocoagulation (69.1%, 
1722/2492), and MIGS (78.9%, 3043/3857). Failure rates for the 
alternative IOP success criteria (IOP reduction of 20% or IOP ≤ 12, 

15, 18, or 21 mm Hg) ranged from 36.5 to 63.0% for internal and 36.4 
to 66.1% for external test set and are shown in Supplementary Table S2.

Table 1 summarizes the population characteristics. The mean age 
was 65.6 years (SD = 16.6), with 51.3% of the cohort being female 
(N = 4,812). The majority were White (54.1%, N = 5,074) or Black 
(22.2%, N = 2083). Preoperative intraocular pressure (IOP) averaged 
22.5 mmHg (SD = 10.0), and the mean LogMAR visual acuity was 
0.80 (SD = 1.1), roughly equivalent to 20/90 Snellen acuity. The 
spherical equivalent was −1.16 D (SD = 3.5). Preoperatively, 34.1% of 
patients had used latanoprost, 25.8% brimonidine, and 21.5% 
dorzolamide-timolol. Demographic distributions varied across 
institutions. For example, in the external test site, Asian (30.4%) and 
Hispanic (16.8%) patients were represented at higher proportions 
than in the internal training cohort (6.5% Asian, 7.0% Hispanic). 
Conversely, Black (5.2%) and White (35.0%) patients were 
proportionally less represented in the external cohort compared with 
the internal set (24.2% Black, 56.3% White). These differences reflect 
the demographic heterogeneity of patients across SOURCE sites.

3.2 Machine learning and deep learning 
model results

We trained a series of machine learning and deep learning models 
to predict glaucoma surgical failure. Figure  2 depicts the receiver 
operating characteristic curves for models evaluated on the internal 
and external test sets; precision-recall curves are displayed in 
Supplementary Figure 1. Table 2 shows the classification performance 
metrics. The model with the highest AUROC on the internal test set 
was 1D-CNN (0.764, 95% CI 0.748–0.778), followed by random forest 
which also scored the highest accuracy and F1 score (AUROC = 0.762, 
accuracy = 0.721, F1 = 0.806). The remainder of the models’ AUROC 
ranged between 0.637–0.761. The random forest model demonstrated 
superior generalizability, achieving the highest performance in the 
external test set with AUROC = 0.744. The majority of the models 
exhibited a slight decrease in performance upon external evaluation, 
with a loss of approximately 0.03–0.04 in AUROC from the internal 
to the external test set. Calibration curves and Brier scores are shown 
in Supplementary Figure  2 and indicate that models were well-
calibrated relative to their AUROC performance.

Figure  3 shows the AUROC scores of the models for each 
individual surgical failure criterion, by IOP, glaucoma medication 
usage, or need for follow-up glaucoma surgery. 
Supplementary Figure  3 also depicts model accuracy for each 
individual failure criterion. Logistic regression achieved the best 
performance for failure based on IOP (AUROC = 0.823) whereas 
random forest outperformed other models to predict medication 
failure (AUROC = 0.797) and failure due to an additional glaucoma 
surgery (AUROC = 0.684). Additional model classification 
performance metrics including recall, precision, F1, and others for 
predicting individual failure criteria are detailed in 
Supplementary Tables S3–S5. Results for overall surgical failure, 
based on alternative IOP thresholds, are provided in 
Supplementary Table S6, with AUROC values ranging from 0.652 to 
0.722 for overall failure with evaluation on the internal test set, and 
0.590 to 0.649 for evaluation on the external test set.

Supplementary Table S7 presents an evaluation of the two best-
performing models (1D-CNN and random forest) on subsets of the 

FIGURE 1

Causes of glaucoma surgical failure. The Venn diagram illustrates the 
number of surgeries that failed based on three distinct criteria types: 
(1) IOP failure, defined as a postoperative reduction of <20% 
compared to preoperative levels; (2) Medication failure, where more 
classes of glaucoma medications are needed post-surgery than 
pre-surgery; and (3) Surgical failure, requiring additional glaucoma 
surgery or revision of the original procedure within three months.
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population based on surgery type, race, ethnicity, age, and intraocular 
pressure. The two models demonstrated stable performance across 
different population categories, with subgroup AUROC variability 
often under 5%.

3.3 Impact of training set size on model 
performance

Figure 4 presents the performance of the 1D-CNN and random 
forest models, trained on varying dataset sizes. Results show the 
impact of increasing training set size, from N  = 100 to the full 
N = 9,339 training cohort. The random forest algorithm demonstrated 
remarkable efficacy in learning from small datasets (e.g., 
AUROC = 0.68 on the internal test set for N = 100 vs. 0.57 for 
1D-CNN). However, the 1D-CNN algorithm quickly attained parity 
with the random forest algorithm as the scale of the training data 
expanded, outperforming the random forest model on internal test 
AUROC for a training set of >6,000 training points. On the external 

test set, random forest always outperformed 1D-CNN at all training 
set sizes.

3.4 Explainability

To evaluate feature importance in predicting surgical outcomes, 
Shapley values were calculated using the random forest model, the 
best-performing structured model for overall failure prediction, on 
both the internal and external test set (Figure 5). The goal of the 
explainability analysis is not to identify novel risk factors, for which a 
traditional statistical inference model is better suited. Instead, 
explainability analyses seek to understand the features the model relies 
on and determine whether they seem justifiable or not. Features with 
higher absolute Shapley values had a greater impact on predictions: 
positive values indicated an association with failure, and negative 
values indicated surgical success. Clinically relevant features such as 
IOP, visual acuity, spherical equivalent, concurrent cataract extraction, 
and surgery type were among the top 20 most important features, 

TABLE 1  Population characteristics.

Total
N surgeries = 13,173
N patients = 9,386

Train/internal test set
N surgeries = 11,674
N patients = 8,407

External test set
N surgeries = 1,499
N patients = 980

Mean Std Mean Std Mean Std

Age 65.6 16.6 65.5 16.7 66.7 15.5

Preoperative clinical characteristics

IOP (mmHg) 22.5 10.0 22.7 10.0 21.1 9.3

Central Corneal Thickness 

(μm)

552.8 63.8 552.4 63.0 555.0 68.8

Refraction (D) −1.16 3.5 −1.08 3.4 −1.77 4.2

LogMAR VA 0.80 1.1 0.81 1.1 0.79 1.0

Demographics N % N % N %

Gender, Female 4,812 51.3% 4,350 51.7% 463 47.2%

Race, Asian 843 9.0% 545 6.5% 298 30.4%

Race, Black 2083 22.2% 2033 24.2% 51 5.2%

Race, White 5,074 54.1% 4,731 56.3% 343 35.0%

Race, Unknown 167 1.8% 155 1.8% 12 1.2%

Race, Other 1,219 13.0% 943 11.2% 276 28.2%

Ethnicity, Hispanic 751 8.0% 586 7.0% 165 16.8%

Ethnicity, Non-Hispanic 8,459 90.1% 7,659 91.1% 801 81.7%

Ethnicity, Unknown 176 1.9% 162 1.9% 14 1.4%

Pre-operative 
medication use

N % N % N %

Latanoprost 3,203 34.1% 2,705 32.2% 498 50.8%

Brimonidine 2,418 25.8% 1997 23.8% 422 43.1%

Dorzolamide/Timolol 2017 21.5% 1751 20.8% 266 27.1%

Timolol 1,424 15.2% 1,111 13.2% 313 31.9%

Acetazolamide 1,094 11.7% 871 10.4% 223 22.9%

Dorzolamide 1,211 12.9% 1,012 12.0% 199 20.3%

Std, Standard Deviation; LogMAR, Logarithm of the Minimum Angle of Resolution; IOP, Intraocular Pressure.
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demonstrating that the model relies on a variety of reasonable clinical 
parameters. Additionally, we note that 17 of the top 20 most important 
features were shared across internal and external test set Shapley 
values, indicating notable cross-site stability. Supplementary Table 8 
reports each model’s top five features via permutation importance. 
Notably, IOP was the most important feature for all of the 11 models 
tested, and relevant clinical features such as surgery type, concurrent 
cataract extraction, age and spherical equivalent were very often part 
of the top 5.

4 Discussion

In this study, we used a large multicenter repository of electronic 
health records to develop algorithms predicting outcomes of glaucoma 
surgery. Our novel dataset included diverse types of filtering and 
minimally invasive glaucoma surgeries and predicted outcomes 
encompassing a wide range of criteria including intraocular pressure 
range, use of glaucoma medications, and the necessity for additional 
glaucoma surgeries. This approach offers unique flexibility in model 
application for future clinical decision support systems. The large 
multicenter cohort also enabled the unique and important ability to 
evaluate the models’ generalizability by reserving data from one site 
as an external test set. The highest-performing model for predicting 
overall surgical failure was a 1D-CNN architecture, while the random 
forest emerged as the top-performing classical machine-learning 
algorithm. Using only preoperative structured EHR data available in 
a real-world clinical context, several algorithms achieved an area 
under the receiver operating characteristic (AUROC) curve exceeding 
0.75 for predicting overall composite surgical outcomes, with 
prediction of individual outcomes (IOP, glaucoma medication usage, 

need for reoperation) sometimes exceeding AUROC of 0.8. Although 
these AUROC results may not yet be sufficient for clinical application, 
they remain highly promising. First, they represent a significant 
advancement in the field, as this level of performance has never been 
reported before on such a large dataset - especially with an external 
holdout set. Second, the task itself is inherently difficult: predicting the 
future success of a surgery is a challenge beyond standard diagnosis 
or classification tasks; human baseline performance in predicting 
future glaucoma outcomes is low (Hu and Wang, 2022). Given the 
modest performance differences between CNNs and simpler 
approaches, the choice of model in practice may hinge more on 
interpretability and ease of implementation, with models such as 
logistic regression and random forests offering clearer insights for 
clinicians, while CNNs may prove advantageous as data volume and 
heterogeneity increase.

Our models predicting outcomes of glaucoma surgery were based 
on an exceptionally large and diverse set of glaucoma surgeries from 
multiple centers across the US. Prior studies that have developed 
prediction algorithms for glaucoma surgeries were generally limited 
to only trabeculectomies (Banna et al., 2022), included postoperative 
data in the prediction model (Lin et al., 2024), and/or were limited to 
smaller single-center cohorts (Banna et  al., 2022; Lin et  al., 2024; 
Wang et al., 2022a). In contrast, our models, using only preoperative 
data in the SOURCE repository, outperformed previous approaches 
in predicting the outcomes of many types of glaucoma surgeries, 
including filtering surgeries, minimally invasive glaucoma surgeries 
(MIGS), and ciliary body destructive procedures. Additionally, our 
approach was unique in developing models capable of predicting 
multiple types of surgical failure, including several thresholds for 
defining intraocular pressure (IOP) success. Since defining glaucoma 
surgical success can vary across the type of surgery and individual 

FIGURE 2

Receiver operating characteristic (ROC) on the internal and external test sets for models predicting overall glaucoma surgical failure. The figures depict 
the performance of various machine learning and deep learning models in predicting overall glaucoma surgical failure using the internal and external 
held-out test sets. The legend specifies the model type and the area under the curve (AUC) for each. The models included are Decision Tree, Gradient 
Boosting, K-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression, MLP (Multilayer Perceptron), Gaussian Naïve Bayes, Random Forest, 
SVM (Support Vector Machine), TabNet and 1D-CNN (1-Dimensional Convolutional Neural Network).
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TABLE 2  Model performance for prediction of overall glaucoma surgical failure.

Internal test set

Model AUROC 
(95% CI)

Accuracy 
(95% CI)

F1 (95% 
CI)

Sensitivity 
(recall) (95% 

CI)

Specificity 
(95% CI)

PPV (precision) 
(95% CI)

NPV 
(95% CI)

1D-CNN 0.764 (0.748–

0.778)

0.716 (0.701–0.733) 0.794 (0.780–

0.807)

0.814 (0.801–0.832) 0.517 (0.487–0.542) 0.773 (0.753–0.790) 0.581 (0.555–

0.611)

Random Forest 0.762 (0.746–

0.775)

0.721 (0.703–0.733) 0.806 (0.790–

0.816)

0.863 (0.847–0.877) 0.432 (0.405–0.456) 0.754 (0.737–0.767) 0.610 (0.582–

0.638)

Logistic 

Regression

0.761 (0.744–

0.775)

0.711 (0.695–0.724) 0.786 (0.772–

0.797)

0.795 (0.780–0.811) 0.541 (0.518–0.562) 0.778 (0.761–0.791) 0.568 (0.538–

0.588)

Multi-Layer 

Perceptron

0.760 (0.743–

0.773)

0.709 (0.695–0.722) 0.786 (0.773–

0.796)

0.797 (0.784–0.813) 0.529 (0.504–0.552) 0.774 (0.759–0.788) 0.566 (0.540–

0.592)

SVM 0.758 (0.741–

0.769)

0.705 (0.686–0.718) 0.779 (0.764–

0.790)

0.779 (0.760–0.796) 0.553 (0.525–0.575) 0.778 (0.761–0.793) 0.554 (0.525–

0.575)

LDA 0.750 (0.735–

0.763)

0.709 (0.695–0.723) 0.797 (0.786–

0.808)

0.859 (0.847–0.871) 0.406 (0.381–0.431) 0.745 (0.730–0.758) 0.588 (0.556–

0.616)

Gradient 

Boosting

0.749 (0.734–

0.764)

0.701 (0.684–0.712) 0.773 (0.756–

0.783)

0.760 (0.739–0.773) 0.579 (0.558–0.605) 0.785 (0.768–0.799) 0.546 (0.520–

0.566)

Decision Tree 0.703 (0.682–

0.717)

0.681 (0.665–0.696) 0.762 (0.746–

0.775)

0.761 (0.744–0.778) 0.526 (0.500–0.550) 0.764 (0.745–0.778) 0.522 (0.497–

0.542)

KNN 0.691 (0.672–

0.708)

0.685 (0.672–0.705) 0.785 (0.775–

0.800)

0.859 (0.848–0.873) 0.336 (0.309–0.361) 0.722 (0.708–0.739) 0.541 (0.509–

0.585)

Tab Net 0.660 (0.638–

0.676)

0.633 (0.612–0.650) 0.722 (0.703–

0.736)

0.711 (0.687–0.731) 0.475 (0.442–0.507) 0.733 (0.708–0.747) 0.448 (0.423–

0.478)

Gaussian Naïve 

Bayes

0.637 (0.615–

0.659)

0.476 (0.464–0.494) 0.431 (0.406–

0.450)

0.296 (0.274–0.312) 0.846 (0.824–0.866) 0.794 (0.766–0.819) 0.373 (0.358–

0.393)

External test set

Model AUROC 
(95% CI)

Accuracy 
(95% CI)

F1 (95% 
CI)

Sensitivity 
(recall) (95% 

CI)

Specificity 
(95% CI)

PPV (precision) 
(95% CI)

NPV 
(95% CI)

1D-CNN 0.730 (0.714–

0.751)

0.709 (0.692–0.726) 0.796 (0.782–

0.809)

0.796 (0.774–0.810) 0.498 (0.461–0.535) 0.797 (0.779–0.815) 0.498 (0.455–

0.530)

Random Forest 0.744 (0.727–

0.765)

0.736 (0.722–0.751) 0.826 (0.816–

0.836)

0.881 (0.868–0.895) 0.384 (0.347–0.413) 0.779 (0.763–0.791) 0.565 (0.517–

0.605)

Logistic 

Regression

0.721 (0.699–

0.742)

0.716 (0.700–0.734) 0.802 (0.789–

0.815)

0.809 (0.793–0.824) 0.484 (0.452–0.528) 0.795 (0.779–0.813) 0.510 (0.467–

0.538)

Multi-Layer 

Perceptron

0.717 (0.696–

0.739)

0.688 (0.673–0.709) 0.783 (0.771–

0.798)

0.791 (0.773–0.817) 0.430 (0.391–0.476) 0.775 (0.761–0.792) 0.458 (0.418–

0.504)

SVM 0.711 (0.691–

0.733)

0.697 (0.681–0.733) 0.784 (0.770–

0.794)

0.771 (0.748–0.787) 0.514 (0.483–0.546) 0.796 (0.779–0.811) 0.478 (0.442–

0.505)

LDA 0.695 (0.678–

0.720)

0.709 (0.691–0.724) 0.807 (0.793–

0.817)

0.856 (0.837–0.871) 0.341 (0.309–0.379) 0.763 (0.747–0.778) 0.492 (0.453–

0.532)

Gradient 

Boosting

0.699 (0.679–

0.720)

0.670 (0.653–0.688) 0.756 (0.741–

0.772)

0.718 (0.695–0.739) 0.557 (0.524–0.590) 0.799 (0.781–0.813) 0.445 (0.411–

0.472)

Decision Tree 0.680 (0.661–

0.703)

0.703 (0.690–0.720) 0.792 (0.781–

0.804)

0.793 (0.778–0.813) 0.482 (0.447–0.520) 0.790 (0.773–0.808) 0.489 (0.449–

0.522)

KNN 0.653 (0.637–

0.673)

0.689 (0.675–0.704) 0.798 (0.787–

0.810)

0.867 (0.853–0.882) 0.251 (0.220–0.285) 0.740 (0.725–0.757) 0.434 (0.388–

0.474)

(Continued)
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TABLE 2  (Continued)

External test set

Model AUROC 
(95% CI)

Accuracy 
(95% CI)

F1 (95% 
CI)

Sensitivity 
(recall) (95% 

CI)

Specificity 
(95% CI)

PPV (precision) 
(95% CI)

NPV 
(95% CI)

Tab Net 0.636 (0.610–

0.660)

0.640 (0.623–0.657) 0.743 (0.731–

0.759)

0.732 (0.718–0.761) 0.412 (0.370–0.444) 0.754 (0.738–0.772) 0.385 (0.351–

0.417)

Gaussian Naïve 

Bayes

0.591 (0.565–

0.623)

0.473 (0.453–0.500) 0.486 (0.461–

0.520)

0.353 (0.326–0.385) 0.769 (0.742–0.800) 0.791 (0.771–0.815) 0.326 (0.303–

0.345)

CI, Confidence Interval; AUROC, Area Under the Receiver Operator Curve; SVM, Support Vector Machine; LDA, Linear Discriminant Analysis; KNN, K-Nearest Neighbors; TabNet, 
Attentive Interpretable Tabular Learning; CNN, Convolutional Neural Network; PPV, Positive Predictive Value; NPV, Negative Predictive Value. Boldface indicates the best value per column 
within each dataset (internal/external).

FIGURE 3

AUROC on the internal and external test sets for models predicting overall surgical failure and specific failure criteria. The bars illustrate the test set 
AUROC for each model based on individual failure criteria, utilizing the optimal set of hyperparameters. Error bars indicate the 95% confidence 
intervals. The models included are Dec. Tree (Decision Tree), XGBoost (Gradient Boosting), KNN (K-Nearest Neighbors), LDA (Linear Discriminant 
Analysis), Log. Reg. (Logistic Regression), MLP (Multilayer Perceptron), NB (Gaussian Naïve Bayes), RF (Random Forest), SVM (Support Vector Machine), 
TabNet and 1D-CNN (1-Dimensional Convolutional Neural Network).

FIGURE 4

AUROC for random forest and 1D-CNN (1-Dimensional Convolutional Neural Network) evaluated on the internal and external test set as a function of 
the training set size. For each abscissa N, the two models were trained with a subset of N points from the training set and evaluated on both test sets.
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patient factors, such a flexible approach may ultimately be needed to 
maximize the clinical usefulness of predictions. Our primary analysis 
reports results using a strict IOP success definition - postoperative 
IOP reduction of > 20%, yielding a relatively low success rate of 33.6% 
in our cohort. To accommodate a range of definitions of surgical 
success, we also modeled success as >20% reduction or postoperative 
IOP < 21 mmHg, for which the success rate was 63.0% on the internal 
and 66.1% on the external test set - more in line with typical clinical 
expectations. Even with the increased complexity of our prediction 
framework, our 1D-CNN model outperformed prior models 
developed in related studies (which achieved AUROCs in the 0.70–
0.75 range) (Banna et al., 2022; Lin et al., 2024; Wang et al., 2022a) 
reaching an AUROC of 0.764, and on par with our top model from 
our previous single-center study (Barry and Wang, 2024).

Another unique advantage of the SOURCE repository is that with 
a large multicenter cohort, subgroup analyses and external site 
validation could be  performed. Overall, our models scored an 
AUROC approximately 3% lower on the external test set compared to 
the internal test set for overall surgical failure prediction; with most 
models demonstrating an AUROC above 0.7 on a completely new site 
and distribution. The ability for EHR algorithms to generalize across 
sites is rarely able to be demonstrated, but this result is similar to our 
previously reported generalizability results on a different EHR 
algorithm in SOURCE predicting glaucoma patients’ progression to 
surgery, where algorithms also exhibited a 2–3% drop in performance 
on external validation (Wang et al., 2023). Despite being highly diverse 
in location and patient population, SOURCE sites do share the same 
underlying EHR system and are all academic centers, which may 
enhance the generalizability of algorithms across sites. The size of the 
SOURCE dataset  also enabled us to evaluate our top-performing 
models on population subgroups based on surgery type, race, 
ethnicity, IOP, and age for both the internal and external test sets. 
Some performance variability was observed across categories of age 

and IOP as these were features that highly influence outcome 
prediction, but in general our models appeared to have reasonably 
similar performance across race/ethnic groups. However, 
demographic differences across SOURCE sites may still affect model 
calibration and transportability, underscoring the importance of 
testing algorithms across diverse populations. This aspect is a key 
component for the deployment of real-world clinical decision tools 
since fairness and bias in artificial intelligence remain key topics of 
discussion and progress (Ravindranath et al., 2025).

In addition to generalizability across sites and subgroups, 
explainability analyses may also increase user confidence in model 
predictions by identifying the most significant factors contributing to 
model predictions. Our explainability analysis revealed that 
preoperative intraocular pressure (IOP), visual acuity, age, and type of 
surgery were among the key predictive features. Reassuringly, 
explainability analyses demonstrated relatively stable feature 
importance when evaluated across sites and model architectures, 
indicating that models were relying upon similar features to predict 
the outcome. These findings provide reassurance that the model relies 
upon clinically important factors, several of which have previously 
been associated with outcomes of trabeculectomy and other glaucoma 
surgeries (Landers et al., 2012; Edmunds et al., 2004; Fontana et al., 
2006; Chiu et al., 2022; Issa de Fendi et al., 2016). It is important to 
note that explainability analyses are not meant to identify novel risk 
predictors for outcomes, for which traditional statistical analyses are 
better suited. Caution must accompany the impulse to extend 
explainability studies beyond model “sanity checking,” as these are not 
designed to provide causal insights or clinically meaningful 
conclusions. Rather, understanding which features may contribute to 
predictions is one method of establishing model trustworthiness.

Several limitations of our study are inherent to the use of EHR and 
SOURCE data. For example, some patients may have undergone 
previous ophthalmic surgeries not captured in our electronic health 

FIGURE 5

Most important features for model prediction using Shapley analysis. This figure illustrates the Shapley values for the top 20 features deemed most 
significant in predicting surgical outcomes, based on the best-performing classical machine learning model (random forest). Each dot represents an 
individual from the cohort, with features listed vertically on the Y-axis and ranked by their importance in the predictive model. The X-axis reflects each 
feature’s impact on the model’s predictions: values near 0 indicate minimal impact, while values further left or right signify negative or positive effects, 
respectively. The color of each dot indicates the actual value of that feature for the corresponding individual data point (blue represents low feature 
values and red represents high feature values).
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records (EHR) if they were referred from a site outside of 
SOURCE. Similarly, some patients may have sought follow-up care or 
surgeries at external facilities. Potential inaccuracies in coding or 
medication records, particularly in cases where patients were verbally 
instructed by their physician to discontinue medications without a 
corresponding update in the EHR could also affect our model training 
(Hersh et  al., 2013). Limitations in medication records may 
be mitigated by the fact that new medication prescriptions typically 
require electronic orders, which are captured in the EHR. In light of 
these limitations, a surgery was considered to meet failure criteria if 
postoperative glaucoma medication use exceeded preoperative levels 
at any point, which may represent a conservative estimate of surgical 
success. Additionally, because preoperative features, such as prior 
medication plans, diagnoses, surgeries, and ophthalmic constants, 
were summarized in the feature engineering process, the temporal 
nature of the preoperative data was not well-represented. Future 
research could explore the development of new model architectures 
capable of incorporating the temporal aspects of EHR data to capture 
the evolution of patients’ conditions over time. This task remains a 
challenge in the field, as patient histories are highly variable and 
irregularly sampled, making harmonized sequence modeling difficult. 
Lastly, our analysis was limited to structured data and did not 
incorporate image or text data, as SOURCE is currently working 
toward including these additional modalities, which are not yet 
available in most patients. There is considerable potential to enhance 
the predictive accuracy of these models by including imaging data, 
such as optical coherence tomography, fundus photography, or visual 
field results. Multi-institutional data sharing of these modalities of 
data in a standardized manner is an ongoing challenge in our field, but 
holds great promise for enhancing the development of prediction 
algorithms in ophthalmology. Incorporating free-text clinical notes 
using advanced NLP techniques, such as transformer models or long 
short-term memory (LSTM) architectures (Vaswani et  al., 2017; 
Hochreiter and Schmidhuber, 1997) could be a promising direction, 
as several previous studies have demonstrated the significant 
predictive power of these approaches in ophthalmic tasks (Wang et al., 
2022b; Hu and Wang, 2022; Peissig et al., 2012). Information from 
free-text operative notes could provide more granular information 
about surgical technique which is otherwise unavailable. Finally, these 
models were trained and evaluated on retrospective observational 
data, as is common practice for developing initial models. Future 
validation studies should incorporate a prospective, real-time “silent” 
EHR deployment to measure calibration drift, workflow fit and 
decision impact before any clinician-facing use. Once models are 
validated prospectively, deployment of models into a clinical decision 
support tool is likely to be  a further challenge, particularly as 
institutions have varied IT infrastructures. However, a potential 
clinical decision support tool design might include ingestion of patient 
EHR data upon physician request in the EHR front-end, and display 
for the physician the success probabilities for different types of 
glaucoma surgeries.

5 Conclusion

In conclusion, we developed machine and deep learning models to 
predict glaucoma surgery outcomes in a large multi-institutional cohort 
using preoperative electronic health records data. We  showed that 

1D-CNN and random forest were the best-performing algorithms for 
predicting overall surgery failure. We assessed our models on an external 
test set and subgroups of the population, demonstrating performance 
consistency of our algorithms across different populations. Future 
research to improve prediction performance may explore the inclusion of 
text and imaging data into a multimodal glaucoma surgery prediction 
model, especially as these modalities become more widely available and 
shared across institutions. Such algorithms predicting glaucoma surgical 
outcomes may one day form the basis of future clinical applications to aid 
glaucoma surgeons in personalizing treatment choices for patients.
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