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Purpose: To develop machine learning (ML) and neural network (NN) models to
predict glaucoma surgical outcomes, including intraocular pressure (IOP), use of
ocular antihypertensive medications, and need for additional glaucoma surgery,
using preoperative electronic health records (EHR) from a large multicenter
cohort.

Methods: This cohort study included 9,386 patients who underwent glaucoma
surgery across 10 institutions in the Sight Outcomes Research Collaborative
(SOURCE). All patients had at least 1 year of follow-up and 2 postoperative visits
with IOP measurements. Models were trained using preoperative EHR features
to predict surgical failure, defined as any of the following: IOP remaining above
80% of preoperative value beyond the immediate postoperative period, increased
postoperative glaucoma medications, or need for additional glaucoma surgery.
Model performance was evaluated on two test sets: an internal holdout set from
sites seen during training and an external holdout set.

Results: Of 13,173 surgeries, 8,743 (66.4%) met failure criteria. The best-
performing model for overall surgical failure prediction was a one-dimensional
convolutional neural network (1D-CNN) with AUROC of 76.4% and accuracy
of 71.6% on the internal test set. The top-performing classical ML model was
random forest (AUROC 76.2%, accuracy 72.1%). Prediction performance was
highest for IOP-related failure (AUROC 82%), followed by increased medication
use (80%) and need for an additional surgery (68%). AUROC declined slightly
(2-4%) on the external test set.

Conclusion: ML and DL models can predict glaucoma outcomes using
preoperative EHR data. Translational relevance: prediction models may support
clinical decision-making by identifying glaucoma patients at risk of poor
postoperative outcomes.

KEYWORDS

glaucoma, surgical outcome prediction, machine learning, deep learning, electronic
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1 Introduction

Glaucoma is one of the leading causes of blindness worldwide,
with prevalence projected to increase by over 50% between 2020 and
2040 (Tham et al.,, 2014). Patients undergoing glaucoma surgery often
have the most severe disease, likely with vision loss that is expected to
worsen unless surgery is performed. However, glaucoma surgical
outcomes can be highly variable: while surgery can maintain effective
disease control over extended periods in some patients with one
surgery, other patients may encounter surgical failure at early stages,
manifested by inadequate control of intraocular pressure and the need
for successive interventions (Wagner et al., 2023). Most previous
research investigating predictors of surgical success has considered
relatively few and simple patient features, such as age and history of
previous surgeries (Hirabayashi et al., 2020; Pantalon et al., 2021;
Wagner et al., 2023). However, each patient has a uniquely complex
clinical presentation with many factors likely affecting their surgical
outcome; this complexity poses significant challenges in predicting
post-surgical outcomes with precision. Whether and how long
glaucoma surgery is likely to succeed is also likely to depend on the
type of glaucoma surgery and how this choice interacts with
patient factors.

Previous research leveraging machine learning and deep learning
techniques on electronic health records (EHRs) has demonstrated
significant potential in predicting various glaucoma-related outcomes,
including the probability of glaucoma patients progressing to require
surgery and glaucoma surgical outcomes (Jalamangala Shivananjaiah
etal., 2023; Tao et al,, 2023). One earlier study investigated different
prediction model architectures to forecast the success or failure of
trabeculectomy surgery at the one-year mark, based on postoperative
intraocular pressure (IOP) control, within a relatively small sample of
200 patients (Banna et al., 2022). More recently, another study
employed both free-text operative notes and structured EHR data
from the preoperative and early postoperative periods to predict IOP
outcomes following trabeculectomy in a larger cohort of 1,326 patients
(Lin et al., 2024). Finally, our previous study (Barry and Wang, 2024)
evaluated machine learning algorithms to predict the outcomes of a
wide variety of glaucoma surgical procedures, including
trabeculectomy, tube shunts, minimally invasive glaucoma surgeries
(MIGS), and cyclodestructive procedures by considering composite
failure criterion (IOP control, medication usage, and need for repeat
glaucoma surgery). These algorithms outperformed those in prior
literature, but several limitations remained, chiefly the single-center
nature of the training and testing set.

The goal of the present study is to build upon our previous work
by developing and evaluating machine learning and advanced deep
learning algorithms to predict outcomes of glaucoma surgery in a
large multicenter electronic health records dataset, the Sight Outcomes
Research Collaborative (SOURCE) repository.! SOURCE aggregates
de-identified EHR from multiple academic eye centers across the
U. S. and includes detailed structured information on ocular surgeries
and eye examination findings. We continue to employ a composite
failure criteria based on intraocular pressure (IOP), glaucoma
medication usage, and need for further surgeries, to model surgical
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outcomes with the greatest possible granularity. We also develop
models that predict individual failure criteria as well. The large
multicenter cohort drawn from SOURCE also enables external
validation of trained models on data from independent sites,
additional subgroup analyses, and an assessment of the impact of
model training size on the results.

2 Methods
2.1 Data source and cohort

We identified patients from the SOURCE (Sight Outcomes
Research Collaborative) electronic health record database who
underwent glaucoma surgery between 2010 and 2022. The SOURCE
database collects data from all patients receiving eye care at
participating academic health systems, from the time each site
implemented the EHR system up to the present (SOURCE
Consortium, 2024). This study utilized data from 10 active SOURCE
sites, with each site contributing between 4 and 12 years of data.
SOURCE includes detailed patient information, such as demographics,
diagnoses (based on ICD billing codes), eye examination findings
from every clinic visit, and data on medications, laser treatments, and
surgical interventions. While the data in SOURCE is fully
de-identified, privacy-preserving software (Datavant Inc.) enables
researchers to track patients longitudinally across different institutions
while safeguarding patient identities.

The glaucoma procedures considered included trabeculectomy
and ExPress shunts (CPT codes: 66170, 66172, 66160, 66183), tube
shunts (66179, 66180), minimally invasive glaucoma surgery (MIGS:
0191T, 0192T, 66989, 66991, 0253T, 0474T, 0376T, 66174, 66175,
65820, 65850), and cyclophotocoagulation or ciliary body laser
procedures (CBL) (66710, 66711, 66720, 66740, 66987, 66988).
Patients were included if they had at least two postoperative visits with
intraocular pressure (IOP) measurements in the operated eye and 1
year of follow-up. This study was approved by the Stanford University
Institutional Review Board and adhered to the principles of the
Declaration of Helsinki.

2.2 Outcome definition/prediction target

The primary prediction target was glaucoma surgical outcome
dichotomized to success/failure, defined as previously described in
our original single-center study using multiple criteria incorporating
IOP control, glaucoma medication use, and the need for subsequent
glaucoma surgery (Barry and Wang, 2024). Briefly, a surgery was
considered successful if the postoperative IOP was reduced by more
than 20% from baseline, without an increase in glaucoma medications
or further glaucoma surgery. The surgery was deemed unsuccessful if
any of the following occurred: (1) IOP failure, where the IOP was
above 80% of preoperative levels on two consecutive visits beyond the
initial 3 months post-surgery; (2) medication failure, where there was
an increase in the number of glaucoma medication categories,
including carbonic anhydrase inhibitors, beta blockers, alpha agonists,
prostaglandins, miotics, oral carbonic anhydrase inhibitors, or rho
kinase inhibitors; (3) glaucoma surgery failure, defined as the need for
additional glaucoma surgery or revision within 3 months of the
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original procedure. A non-successful surgery was considered a failure,
and vice versa.

As the definition of a successful IOP outcome can vary by patient,
surgeon, and type of surgery, models were also developed for
alternative IOP failure thresholds, following the World Glaucoma
Association Guidelines (Shaarawy et al., 2009): IOP > 12, 15, 18, or
21 mm Hg at two consecutive postoperative visits and IOP above 80%
of preoperative IOP at two successive postoperative visits. Thus,
potential users of such a model may select the failure definition that
best aligns with their desired level of stringency. Outcomes were
determined based on EHR data across all sites.

2.3 Feature engineering

The feature engineering process was similar to what was
previously described for our single-center study (Barry and Wang,
2024). Input features were extracted from electronic health records
(EHR), including demographics, past ocular surgeries, diagnoses,
medications, social history, and clinical exam findings. Categorical
features were one-hot encoded, and continuous variables were
standardized (mean =0, variance =1). All feature values were
collected at baseline, from the preoperative period.

Categorical variables included surgery CPT code, race, ethnicity,
gender, prior diagnoses (ICD codes), preoperative medications, prior
glaucoma surgeries, concurrent cataract surgery, type of glaucoma
surgical implant and/or supply used for the operation (e.g., Ahmed,
Baerveldt, Hydrus, Kahook Dual Blade, etc.), and health-related
behaviors (e.g., tobacco, alcohol, or drug use). Ocular and systemic
medications were recorded as Boolean variables, indicating whether
the patient had been prescribed the medication within 5 years before
surgery. Variance elimination was performed to retain the 100 features
with the highest variance each for systemic medications. ICD codes
were aggregated to two decimal places (e.g., H25.011 became H25.01)
to reduce the dimensionality of the feature space.

Continuous variables included age, the latest preoperative IOP
value, visual acuity (VA), central corneal thickness, refraction
spherical equivalent, and the number of prior ophthalmic surgeries.
VA was converted to the logarithm of the minimum angle of resolution
(logMAR). Continuous variables were standardized, missing value
indicator variables were created and missing values were imputed
using column means (<7% missingness overall, 0% missingness for
IOP). A total of 326 input features were used, including 100 features
each for diagnoses, systemic medications, and 28 for ophthalmic
medications. To overcome the class imbalance in surgical failure,
we leveraged scikitlearn’s SMOTE (Synthetic Minority Over-sampling
Technique) method (Chawla et al., 2002), in which synthetic samples
of the minority class are artificially generated. We only applied this
method to the training data of models predicting surgical failure due
to increased medication and the need for follow-up glaucoma surgery
as they suffered significant class imbalance.

Data was split for evaluation ensuring that no patient appeared in
both training and test sets in the case of multiple surgeries, such as
across both eyes. Data from one site comprising 980 patients and 1,499
surgeries was held out as an external test set. This external test set was
drawn from a single clinical site not represented in the training or
internal test sets, allowing us to assess the model’s ability to generalize
to previously unseen, out-of-distribution data. The remaining data

Frontiers in Artificial Intelligence

10.3389/frai.2025.1636410

was split between a set used for training and cross-validation (80% of
surgeries, N =9,339) and an internal test set (20% of surgeries,
N =2,335) meant to evaluate in-distribution performance.

2.4 Modeling approach

All models were trained to predict overall surgical failure and
specific failure types (IOP, medication, or need for additional surgery).
We trained several classical machine learning models using scikit-
learn (v1.1.3) (Pedregosa et al., 2011), including decision trees,
random forest, XGBoost, penalized logistic regression, multi-layer
perceptron, k-nearest neighbors, Gaussian naive Bayes, linear
discriminant analysis, and support vector machines. The
hyperparameters for these models, outlined in Supplementary Table S1,
were tuned using grid search and five-fold cross-validation on the
training set, and the best model was evaluated on the test set. The
classification threshold was optimized for accuracy. Two deep learning
architectures were also benchmarked: 1-Dimensional Convolutional
Neural Networks (1D-CNN) (O’Shea and Nash, 2015; Kiranyaz et al.,
2019) and Attentive Interpretable Tabular Learning (TabNet) (Arik
and Pfister, 2021). Dropout layers were added to the 1D-CNN model
to prevent overfitting and hyperparameters such as the learning rate
and the dimension of hidden layers for 1D-CNN and attention
mechanism and layer configuration for TabNet were benchmarked
(Supplementary Table S1). Early stopping was based on validation
loss, with a patience of 10, and the model with optimal classification
threshold for accuracy was chosen.

We also investigated the impact of training set size on model
performance by training our top models on subsets of the N = 9,339
total training size, with the subset size ranging from N =100 to
N =9,339. For each subset, the results were averaged over 10 replicates:
for each training set size, 10 different randomly sampled subsets of the
training population were chosen, and the model was trained on each
of these subsets and evaluated on the test set, with results averaged
across these 10 replicates.

2.5 Evaluation

2.5.1 Standard evaluation metrics

All models were assessed using standard classification metrics,
including accuracy, recall, specificity, precision, negative predictive
value, and F1 score. Area under the receiver operating curve
(AUROC) and precision-recall curve (AUPRC) were also evaluated.
Metrics were computed for both the internal and external test sets.
Confidence intervals were calculated via clustered bootstrapping
(Ying et al, 2022; Huang, 2018) to account for within-patient
clustering, as some patients underwent multiple surgeries and thus
contributed multiple observations to the dataset. The AUROC and
accuracy of the two best-performing models were then evaluated on
subsets of the population based on surgery type, race, ethnicity, age,
and intraocular pressure. We also evaluated model calibration using
Brier scores and calibration curves.

2.5.2 Explainability
We used SHapley Additive exPlanations (SHAP) (Lundberg and
Lee, 2017) to interpret feature importance, as previously described
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(Barry and Wang, 2024). SHAP values quantify both the magnitude
and directionality of each feature’s marginal contribution to a model’s
prediction. This technique computes the Shapley values for each
feature, a concept originally used in game theory to measure the
contribution of each player in a cooperative game. Importantly, use of
SHAP is not aimed at identifying novel risk factors or causal
relationships, but rather to serve as a sanity check of model behavior.
In our study, the SHAP TreeExplainer (Lundberg, 2024) was applied
to the random forest model, the best-performing non-deep learning
model, allowing us to identify the most influential features driving the
predictions. SHAP values were computed for both the internal and
external test set. In addition, to get an understanding of the most
important features for each model, permutation importance was
quantified by shuffling individual features and measuring the
AAUROC, following the statistical framework described by Altmann
etal. (2010).

3 Results
3.1 Population characteristics

A total of 9,386 patients who underwent 13,173 glaucoma
surgeries were included in the overall cohort, including 980 patients
and 1,499 operations from one site which was held out as an external
test set. The overall surgical success rate was 33.6% (N = 4,430), while
66.4% (N =8,743) met the composite failure criteria (Figure 1).
Among the three individual failure criteria, IOP failure was the most
common (N = 7,691 [88.0%]). Failure due to the need for an additional
glaucoma surgery or revision was reported in 2453 (28.1%) cases of
surgical failure, and 1,420 (16.2%) procedures failed due to medication
failure, where the patient requires more classes of ocular
antihypertensive medication after surgery than before. Failure rates
varied by procedure type: tube shunt (54.3%, 1854/3414),
trabeculectomy (62.3%, 2124/3410), cyclophotocoagulation (69.1%,
1722/2492), and MIGS (78.9%, 3043/3857). Failure rates for the
alternative IOP success criteria (IOP reduction of 20% or IOP < 12,

Postoperative |IOP
out of range
Need for additional
glaucoma surgery

5244
694 1385

274

788
258

Need for increased
glaucoma medication

FIGURE 1

Causes of glaucoma surgical failure. The Venn diagram illustrates the
number of surgeries that failed based on three distinct criteria types:
(1) IOP failure, defined as a postoperative reduction of <20%
compared to preoperative levels; (2) Medication failure, where more
classes of glaucoma medications are needed post-surgery than
pre-surgery; and (3) Surgical failure, requiring additional glaucoma
surgery or revision of the original procedure within three months.
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15, 18, or 21 mm Hg) ranged from 36.5 to 63.0% for internal and 36.4
t0 66.1% for external test set and are shown in Supplementary Table S2.

Table 1 summarizes the population characteristics. The mean age
was 65.6 years (SD = 16.6), with 51.3% of the cohort being female
(N =4,812). The majority were White (54.1%, N = 5,074) or Black
(22.2%, N = 2083). Preoperative intraocular pressure (IOP) averaged
22.5 mmHg (SD = 10.0), and the mean LogMAR visual acuity was
0.80 (SD = 1.1), roughly equivalent to 20/90 Snellen acuity. The
spherical equivalent was —1.16 D (SD = 3.5). Preoperatively, 34.1% of
patients had used latanoprost, 25.8% brimonidine, and 21.5%
dorzolamide-timolol. Demographic distributions varied across
institutions. For example, in the external test site, Asian (30.4%) and
Hispanic (16.8%) patients were represented at higher proportions
than in the internal training cohort (6.5% Asian, 7.0% Hispanic).
Conversely, Black (5.2%) and White (35.0%) patients were
proportionally less represented in the external cohort compared with
the internal set (24.2% Black, 56.3% White). These differences reflect
the demographic heterogeneity of patients across SOURCE sites.

3.2 Machine learning and deep learning
model results

We trained a series of machine learning and deep learning models
to predict glaucoma surgical failure. Figure 2 depicts the receiver
operating characteristic curves for models evaluated on the internal
and external test sets; precision-recall curves are displayed in
Supplementary Figure 1. Table 2 shows the classification performance
metrics. The model with the highest AUROC on the internal test set
was 1D-CNN (0.764, 95% CI 0.748-0.778), followed by random forest
which also scored the highest accuracy and F1 score (AUROC = 0.762,
accuracy = 0.721, F1 = 0.806). The remainder of the models’ AUROC
ranged between 0.637-0.761. The random forest model demonstrated
superior generalizability, achieving the highest performance in the
external test set with AUROC = 0.744. The majority of the models
exhibited a slight decrease in performance upon external evaluation,
with a loss of approximately 0.03-0.04 in AUROC from the internal
to the external test set. Calibration curves and Brier scores are shown
in Supplementary Figure 2 and indicate that models were well-
calibrated relative to their AUROC performance.

Figure 3 shows the AUROC scores of the models for each
individual surgical failure criterion, by IOP, glaucoma medication
usage, or need for follow-up glaucoma  surgery.
Supplementary Figure 3 also depicts model accuracy for each
individual failure criterion. Logistic regression achieved the best
performance for failure based on IOP (AUROC = 0.823) whereas
random forest outperformed other models to predict medication
failure (AUROC = 0.797) and failure due to an additional glaucoma
surgery (AUROC =0.684). Additional
performance metrics including recall, precision, F1, and others for
detailed  in
Supplementary Tables S3-S5. Results for overall surgical failure,
IOP thresholds, are

Supplementary Table S6, with AUROC values ranging from 0.652 to

model classification

predicting individual failure criteria are

based on alternative provided in
0.722 for overall failure with evaluation on the internal test set, and
0.590 to 0.649 for evaluation on the external test set.

Supplementary Table S7 presents an evaluation of the two best-

performing models (1D-CNN and random forest) on subsets of the
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TABLE 1 Population characteristics.

N surgeries = 13,173

N patients = 9,386

Train/internal test set

N surgeries = 11,674
N patients = 8,407

10.3389/frai.2025.1636410

External test set
N surgeries = 1,499
N patients = 980

Mean Std Mean Std Mean Std
Age 65.6 16.6 65.5 16.7 66.7 155
Preoperative clinical characteristics
IOP (mmHg) 225 10.0 22.7 10.0 21.1 9.3
Central Corneal Thickness 552.8 63.8 552.4 63.0 555.0 68.8
(pm)
Refraction (D) -1.16 35 —1.08 34 -1.77 4.2
LogMAR VA 0.80 1.1 0.81 1.1 0.79 1.0
Demographics N % N % N %
Gender, Female 4,812 51.3% 4,350 51.7% 463 47.2%
Race, Asian 843 9.0% 545 6.5% 298 30.4%
Race, Black 2083 22.2% 2033 24.2% 51 5.2%
Race, White 5,074 54.1% 4,731 56.3% 343 35.0%
Race, Unknown 167 1.8% 155 1.8% 12 1.2%
Race, Other 1,219 13.0% 943 11.2% 276 28.2%
Ethnicity, Hispanic 751 8.0% 586 7.0% 165 16.8%
Ethnicity, Non-Hispanic 8,459 90.1% 7,659 91.1% 801 81.7%
Ethnicity, Unknown 176 1.9% 162 1.9% 14 1.4%
Pre-operative
medication use
Latanoprost 3,203 34.1% 2,705 32.2% 498 50.8%
Brimonidine 2,418 25.8% 1997 23.8% 422 43.1%
Dorzolamide/Timolol 2017 21.5% 1751 20.8% 266 27.1%
Timolol 1,424 15.2% 1,111 13.2% 313 31.9%
Acetazolamide 1,094 11.7% 871 10.4% 223 22.9%
Dorzolamide 1,211 12.9% 1,012 12.0% 199 20.3%

Std, Standard Deviation; LogMAR, Logarithm of the Minimum Angle of Resolution; IOP, Intraocular Pressure.

population based on surgery type, race, ethnicity, age, and intraocular
pressure. The two models demonstrated stable performance across
different population categories, with subgroup AUROC variability
often under 5%.

3.3 Impact of training set size on model
performance

Figure 4 presents the performance of the 1D-CNN and random
forest models, trained on varying dataset sizes. Results show the
impact of increasing training set size, from N =100 to the full
N =9,339 training cohort. The random forest algorithm demonstrated
remarkable efficacy in learning from small datasets (e.g.,
AUROC = 0.68 on the internal test set for N=100 vs. 0.57 for
1D-CNN). However, the 1D-CNN algorithm quickly attained parity
with the random forest algorithm as the scale of the training data
expanded, outperforming the random forest model on internal test
AUROC for a training set of >6,000 training points. On the external

Frontiers in Artificial Intelligence

test set, random forest always outperformed 1D-CNN at all training
set sizes.

3.4 Explainability

To evaluate feature importance in predicting surgical outcomes,
Shapley values were calculated using the random forest model, the
best-performing structured model for overall failure prediction, on
both the internal and external test set (Figure 5). The goal of the
explainability analysis is not to identify novel risk factors, for which a
traditional statistical inference model is better suited. Instead,
explainability analyses seek to understand the features the model relies
on and determine whether they seem justifiable or not. Features with
higher absolute Shapley values had a greater impact on predictions:
positive values indicated an association with failure, and negative
values indicated surgical success. Clinically relevant features such as
IOP, visual acuity, spherical equivalent, concurrent cataract extraction,
and surgery type were among the top 20 most important features,
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Receiver operating characteristic (ROC) on the internal and external test sets for models predicting overall glaucoma surgical failure. The figures depict
the performance of various machine learning and deep learning models in predicting overall glaucoma surgical failure using the internal and external
held-out test sets. The legend specifies the model type and the area under the curve (AUC) for each. The models included are Decision Tree, Gradient
Boosting, K-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression, MLP (Multilayer Perceptron), Gaussian Naive Bayes, Random Forest,
SVM (Support Vector Machine), TabNet and 1D-CNN (1-Dimensional Convolutional Neural Network).

demonstrating that the model relies on a variety of reasonable clinical
parameters. Additionally, we note that 17 of the top 20 most important
features were shared across internal and external test set Shapley
values, indicating notable cross-site stability. Supplementary Table 8
reports each model’s top five features via permutation importance.
Notably, IOP was the most important feature for all of the 11 models
tested, and relevant clinical features such as surgery type, concurrent
cataract extraction, age and spherical equivalent were very often part
of the top 5.

4 Discussion

In this study, we used a large multicenter repository of electronic
health records to develop algorithms predicting outcomes of glaucoma
surgery. Our novel dataset included diverse types of filtering and
minimally invasive glaucoma surgeries and predicted outcomes
encompassing a wide range of criteria including intraocular pressure
range, use of glaucoma medications, and the necessity for additional
glaucoma surgeries. This approach offers unique flexibility in model
application for future clinical decision support systems. The large
multicenter cohort also enabled the unique and important ability to
evaluate the models’ generalizability by reserving data from one site
as an external test set. The highest-performing model for predicting
overall surgical failure was a 1D-CNN architecture, while the random
forest emerged as the top-performing classical machine-learning
algorithm. Using only preoperative structured EHR data available in
a real-world clinical context, several algorithms achieved an area
under the receiver operating characteristic (AUROC) curve exceeding
0.75 for predicting overall composite surgical outcomes, with
prediction of individual outcomes (IOP, glaucoma medication usage,
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need for reoperation) sometimes exceeding AUROC of 0.8. Although
these AUROC results may not yet be sufficient for clinical application,
they remain highly promising. First, they represent a significant
advancement in the field, as this level of performance has never been
reported before on such a large dataset - especially with an external
holdout set. Second, the task itself is inherently difficult: predicting the
future success of a surgery is a challenge beyond standard diagnosis
or classification tasks; human baseline performance in predicting
future glaucoma outcomes is low (Hu and Wang, 2022). Given the
modest performance differences between CNNs and simpler
approaches, the choice of model in practice may hinge more on
interpretability and ease of implementation, with models such as
logistic regression and random forests offering clearer insights for
clinicians, while CNNs may prove advantageous as data volume and
heterogeneity increase.

Our models predicting outcomes of glaucoma surgery were based
on an exceptionally large and diverse set of glaucoma surgeries from
multiple centers across the US. Prior studies that have developed
prediction algorithms for glaucoma surgeries were generally limited
to only trabeculectomies (Banna et al., 2022), included postoperative
data in the prediction model (Lin et al., 2024), and/or were limited to
smaller single-center cohorts (Banna et al., 2022; Lin et al., 2024;
Wang et al., 2022a). In contrast, our models, using only preoperative
data in the SOURCE repository, outperformed previous approaches
in predicting the outcomes of many types of glaucoma surgeries,
including filtering surgeries, minimally invasive glaucoma surgeries
(MIGS), and ciliary body destructive procedures. Additionally, our
approach was unique in developing models capable of predicting
multiple types of surgical failure, including several thresholds for
defining intraocular pressure (IOP) success. Since defining glaucoma
surgical success can vary across the type of surgery and individual
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TABLE 2 Model performance for prediction of overall glaucoma surgical failure.

Internal test set

Model AUROC Accuracy F1(95% Sensitivity Specificity PPV (precision) NPV

(95% Cl) (95% Cl) Cl) (recall) (95% (95% Cl) (95% Cl) (95% Cl)

Cl)

ID-CNN 0.764 (0.748- | 0.716 (0.701-0.733) = 0.794(0.780- | 0.814 (0.801-0.832)  0.517 (0.487-0.542) 0.773 (0.753-0.790) | 0.581 (0.555—
0.778) 0.807) 0.611)

Random Forest 0.762 (0.746-  0.721(0.703-0.733) = 0.806 (0.790- | 0.863 (0.847-0.877) | 0.432 (0.405-0.456) 0.754 (0.737-0.767) | 0.610 (0.582-
0.775) 0.816) 0.638)

Logistic 0.761 (0.744-  0.711 (0.695-0.724) = 0.786 (0.772— | 0.795(0.780-0.811) | 0.541 (0.518-0.562) 0.778 (0.761-0.791)  0.568 (0.538—
Regression 0.775) 0.797) 0.588)

Multi-Layer 0.760 (0.743-  0.709 (0.695-0.722) = 0.786 (0.773— | 0.797 (0.784-0.813) | 0.529 (0.504-0.552) 0.774 (0.759-0.788)  0.566 (0.540—
Perceptron 0.773) 0.796) 0.592)

SVM 0.758 (0.741-  0.705 (0.686-0.718) = 0.779 (0.764- | 0.779 (0.760-0.796) | 0.553 (0.525-0.575) 0.778 (0.761-0.793)  0.554 (0.525-
0.769) 0.790) 0.575)

LDA 0.750 (0.735- 0709 (0.695-0.723) = 0.797 (0.786- = 0.859 (0.847-0.871) 0.406 (0.381-0.431) 0.745 (0.730-0.758) | 0.588 (0.556—
0.763) 0.808) 0.616)

Gradient 0.749 (0.734-  0.701 (0.684-0.712) = 0.773(0.756- | 0.760 (0.739-0.773) | 0.579 (0.558-0.605) 0.785 (0.768-0.799)  0.546 (0.520—
Boosting 0.764) 0.783) 0.566)

Decision Tree 0.703 (0.682-  0.681 (0.665-0.696) = 0.762 (0.746- | 0.761 (0.744-0.778) | 0.526 (0.500-0.550) 0.764 (0.745-0.778)  0.522 (0.497-
0.717) 0.775) 0.542)

KNN 0.691 (0.672-  0.685 (0.672-0.705) = 0.785 (0.775- = 0.859 (0.848-0.873)  0.336 (0.309-0.361) 0.722 (0.708-0.739) | 0.541 (0.509—
0.708) 0.800) 0.585)

Tab Net 0.660 (0.638- | 0.633 (0.612-0.650) = 0.722(0.703— | 0.711(0.687-0.731) | 0.475 (0.442-0.507) 0.733(0.708-0.747)  0.448 (0.423-
0.676) 0.736) 0.478)

Gaussian Naive 0.637 (0.615-  0.476 (0.464-0.494) = 0.431 (0.406- | 0.296 (0.274-0.312)  0.846 (0.824-0.866) | 0.794 (0.766-0.819)  0.373 (0.358-
Bayes 0.659) 0.450) 0.393)

External test set

Model AUROC Accuracy F1(95% Sensitivity Specificity PPV (precision) NPV

(95% CI) (95% Cl) Cl) (recall) (95% (95% CI) (95% Cl) (95% Cl)

Cl)

1D-CNN 0.730 (0.714- 0.709 (0.692-0.726) 0.796 (0.782- 0.796 (0.774-0.810) 0.498 (0.461-0.535) 0.797 (0.779-0.815) 0.498 (0.455-
0.751) 0.809) 0.530)

Random Forest 0.744 (0.727- 0.736 (0.722-0.751) | 0.826 (0.816— 0.881 (0.868-0.895) 0.384 (0.347-0.413) 0.779 (0.763-0.791) 0.565 (0.517-
0.765) 0.836) 0.605)

Logistic 0.721 (0.699- 0.716 (0.700-0.734) 0.802 (0.789- 0.809 (0.793-0.824) 0.484 (0.452-0.528) 0.795 (0.779-0.813) 0.510 (0.467-
Regression 0.742) 0.815) 0.538)

Multi-Layer 0.717 (0.696~ 0.688 (0.673-0.709) 0.783 (0.771- 0.791 (0.773-0.817) 0.430 (0.391-0.476) 0.775 (0.761-0.792) 0.458 (0.418-
Perceptron 0.739) 0.798) 0.504)

SVM 0.711 (0.691- 0.697 (0.681-0.733) 0.784 (0.770- 0.771 (0.748-0.787) 0.514 (0.483-0.546) 0.796 (0.779-0.811) 0.478 (0.442—
0.733) 0.794) 0.505)

LDA 0.695 (0.678- 0.709 (0.691-0.724) 0.807 (0.793- 0.856 (0.837-0.871) 0.341 (0.309-0.379) 0.763 (0.747-0.778) 0.492 (0.453-
0.720) 0.817) 0.532)

Gradient 0.699 (0.679- 0.670 (0.653-0.688) 0.756 (0.741- 0.718 (0.695-0.739) 0.557 (0.524-0.590) 0.799 (0.781-0.813) 0.445 (0.411-
Boosting 0.720) 0.772) 0.472)

Decision Tree 0.680 (0.661— 0.703 (0.690-0.720) | 0.792 (0.781— | 0.793 (0.778-0.813) | 0.482 (0.447-0.520) | 0.790 (0.773-0.808) | 0.489 (0.449—
0.703) 0.804) 0.522)

KNN 0.653 (0.637- 0.689 (0.675-0.704) 0.798 (0.787- 0.867 (0.853-0.882) 0.251 (0.220-0.285) 0.740 (0.725-0.757) 0.434 (0.388-
0.673) 0.810) 0.474)

(Continued)
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TABLE 2 (Continued)

10.3389/frai.2025.1636410

External test set
Model AUROC Accuracy F1(95% Sensitivity Specificity PPV (precision) NPV
(95% Cl) (95% Cl) Cl) (recall) (95% (95% Cl) (95% Cl) (95% Cl)
Cl)

Tab Net 0.636 (0.610- | 0.640 (0.623-0.657) = 0.743(0.731-  0.732(0.718-0.761)  0.412(0.370-0.444) | 0.754 (0.738-0.772) | 0.385(0.351-
0.660) 0.759) 0.417)

Gaussian Naive 0591 (0.565- | 0.473 (0.453-0.500) = 0.486 (0.461- = 0.353(0.326-0.385)  0.769 (0.742-0.800)  0.791 (0.771-0.815)  0.326 (0.303-

Bayes 0.623) 0.520) 0.345)

within each dataset (internal/external).

CI, Confidence Interval; AUROC, Area Under the Receiver Operator Curve; SVM, Support Vector Machine; LDA, Linear Discriminant Analysis; KNN, K-Nearest Neighbors; TabNet,
Attentive Interpretable Tabular Learning; CNN, Convolutional Neural Network; PPV, Positive Predictive Value; NPV, Negative Predictive Value. Boldface indicates the best value per column

Top Model AUROC per Failure Type — Internal Test Set

Top Model AUROC per Failure Type — External Test Set
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FIGURE 3
AUROC on the internal and external test sets for models predicting overall surgical failure and specific failure criteria. The bars illustrate the test set
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intervals. The models included are Dec. Tree (Decision Tree), XGBoost (Gradient Boosting), KNN (K-Nearest Neighbors), LDA (Linear Discriminant
Analysis), Log. Reg. (Logistic Regression), MLP (Multilayer Perceptron), NB (Gaussian Naive Bayes), RF (Random Forest), SVM (Support Vector Machine),

TabNet and 1D-CNN (1-Dimensional Convolutional Neural Network).
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patient factors, such a flexible approach may ultimately be needed to
maximize the clinical usefulness of predictions. Our primary analysis
reports results using a strict IOP success definition - postoperative
IOP reduction of > 20%, yielding a relatively low success rate of 33.6%
in our cohort. To accommodate a range of definitions of surgical
success, we also modeled success as >20% reduction or postoperative
IOP < 21 mmHg, for which the success rate was 63.0% on the internal
and 66.1% on the external test set - more in line with typical clinical
expectations. Even with the increased complexity of our prediction
framework, our 1D-CNN model outperformed prior models
developed in related studies (which achieved AUROC: in the 0.70-
0.75 range) (Banna et al., 2022; Lin et al., 2024; Wang et al., 2022a)
reaching an AUROC of 0.764, and on par with our top model from
our previous single-center study (Barry and Wang, 2024).

Another unique advantage of the SOURCE repository is that with
a large multicenter cohort, subgroup analyses and external site
validation could be performed. Overall, our models scored an
AUROC approximately 3% lower on the external test set compared to
the internal test set for overall surgical failure prediction; with most
models demonstrating an AUROC above 0.7 on a completely new site
and distribution. The ability for EHR algorithms to generalize across
sites is rarely able to be demonstrated, but this result is similar to our
previously reported generalizability results on a different EHR
algorithm in SOURCE predicting glaucoma patients’ progression to
surgery, where algorithms also exhibited a 2-3% drop in performance
on external validation (Wang et al., 2023). Despite being highly diverse
in location and patient population, SOURCE sites do share the same
underlying EHR system and are all academic centers, which may
enhance the generalizability of algorithms across sites. The size of the
SOURCE dataset also enabled us to evaluate our top-performing
models on population subgroups based on surgery type, race,
ethnicity, IOP, and age for both the internal and external test sets.
Some performance variability was observed across categories of age

Frontiers in Artificial Intelligence

and IOP as these were features that highly influence outcome
prediction, but in general our models appeared to have reasonably
similar performance across race/ethnic groups. However,
demographic differences across SOURCE sites may still affect model
calibration and transportability, underscoring the importance of
testing algorithms across diverse populations. This aspect is a key
component for the deployment of real-world clinical decision tools
since fairness and bias in artificial intelligence remain key topics of
discussion and progress (Ravindranath et al., 2025).

In addition to generalizability across sites and subgroups,
explainability analyses may also increase user confidence in model
predictions by identifying the most significant factors contributing to
model predictions. Our explainability analysis revealed that
preoperative intraocular pressure (IOP), visual acuity, age, and type of
surgery were among the key predictive features. Reassuringly,
explainability analyses demonstrated relatively stable feature
importance when evaluated across sites and model architectures,
indicating that models were relying upon similar features to predict
the outcome. These findings provide reassurance that the model relies
upon clinically important factors, several of which have previously
been associated with outcomes of trabeculectomy and other glaucoma
surgeries (Landers et al., 2012; Edmunds et al., 2004; Fontana et al.,
2006; Chiu et al., 2022; Issa de Fendi et al., 2016). It is important to
note that explainability analyses are not meant to identify novel risk
predictors for outcomes, for which traditional statistical analyses are
better suited. Caution must accompany the impulse to extend
explainability studies beyond model “sanity checking,” as these are not
designed to provide causal insights or clinically meaningful
conclusions. Rather, understanding which features may contribute to
predictions is one method of establishing model trustworthiness.

Several limitations of our study are inherent to the use of EHR and
SOURCE data. For example, some patients may have undergone

previous ophthalmic surgeries not captured in our electronic health
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records (EHR) if they were referred from a site outside of
SOURCE. Similarly, some patients may have sought follow-up care or
surgeries at external facilities. Potential inaccuracies in coding or
medication records, particularly in cases where patients were verbally
instructed by their physician to discontinue medications without a
corresponding update in the EHR could also affect our model training
(Hersh et al, 2013). Limitations in medication records may
be mitigated by the fact that new medication prescriptions typically
require electronic orders, which are captured in the EHR. In light of
these limitations, a surgery was considered to meet failure criteria if
postoperative glaucoma medication use exceeded preoperative levels
at any point, which may represent a conservative estimate of surgical
success. Additionally, because preoperative features, such as prior
medication plans, diagnoses, surgeries, and ophthalmic constants,
were summarized in the feature engineering process, the temporal
nature of the preoperative data was not well-represented. Future
research could explore the development of new model architectures
capable of incorporating the temporal aspects of EHR data to capture
the evolution of patients’ conditions over time. This task remains a
challenge in the field, as patient histories are highly variable and
irregularly sampled, making harmonized sequence modeling difficult.
Lastly, our analysis was limited to structured data and did not
incorporate image or text data, as SOURCE is currently working
toward including these additional modalities, which are not yet
available in most patients. There is considerable potential to enhance
the predictive accuracy of these models by including imaging data,
such as optical coherence tomography, fundus photography, or visual
field results. Multi-institutional data sharing of these modalities of
data in a standardized manner is an ongoing challenge in our field, but
holds great promise for enhancing the development of prediction
algorithms in ophthalmology. Incorporating free-text clinical notes
using advanced NLP techniques, such as transformer models or long
short-term memory (LSTM) architectures (Vaswani et al., 2017;
Hochreiter and Schmidhuber, 1997) could be a promising direction,
as several previous studies have demonstrated the significant
predictive power of these approaches in ophthalmic tasks (Wang et al.,
2022b; Hu and Wang, 2022; Peissig et al., 2012). Information from
free-text operative notes could provide more granular information
about surgical technique which is otherwise unavailable. Finally, these
models were trained and evaluated on retrospective observational
data, as is common practice for developing initial models. Future
validation studies should incorporate a prospective, real-time “silent”
EHR deployment to measure calibration drift, workflow fit and
decision impact before any clinician-facing use. Once models are
validated prospectively, deployment of models into a clinical decision
support tool is likely to be a further challenge, particularly as
institutions have varied IT infrastructures. However, a potential
clinical decision support tool design might include ingestion of patient
EHR data upon physician request in the EHR front-end, and display
for the physician the success probabilities for different types of
glaucoma surgeries.

5 Conclusion

In conclusion, we developed machine and deep learning models to
predict glaucoma surgery outcomes in a large multi-institutional cohort
using preoperative electronic health records data. We showed that
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1D-CNN and random forest were the best-performing algorithms for
predicting overall surgery failure. We assessed our models on an external
test set and subgroups of the population, demonstrating performance
consistency of our algorithms across different populations. Future
research to improve prediction performance may explore the inclusion of
text and imaging data into a multimodal glaucoma surgery prediction
model, especially as these modalities become more widely available and
shared across institutions. Such algorithms predicting glaucoma surgical
outcomes may one day form the basis of future clinical applications to aid
glaucoma surgeons in personalizing treatment choices for patients.
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