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Global agricultural systems face unprecedented challenges from climate change, 
resource scarcity, and rising food demand, requiring transformative solutions. 
Artificial intelligence (AI), particularly deep learning (DL), has emerged as a critical 
tool for agricultural monitoring, yet a systematic synthesis of its applications 
remains understudied. This paper presents a comprehensive bibliometric and 
knowledge graph analysis of 650 + publications (2000–2024) to map AI’s role in 
agricultural information identification, with emphasis on DL and remote sensing 
integration (e.g., UAVs, satellites). Results highlight Convolutional Neural Networks 
(CNNs) as the dominant technology for real-time crop monitoring but reveal three 
persistent barriers: (1) scarcity of annotated datasets, (2) poor model generalization 
across environments, and (3) challenges in fusing multi-source data. Crucially, 
interdisciplinary collaboration—though vital for scalability—is identified as an 
underdeveloped research frontier. It is concluded that while AI can revolutionize 
agriculture, its potential hinges on improving data quality, developing environment-
adaptive models, and fostering cross-domain partnerships. This study provides a 
strategic framework to accelerate AI’s integration into global agricultural systems, 
addressing both technical gaps and policy needs for future food security.
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1 Introduction

Agriculture, a fundamental pillar of human civilization, now faces a perfect storm of 
challenges driven by a rapidly expanding global population, climate change, dwindling natural 
resources, and an urgent need for more sustainable production systems (Ahmad et al., 2021; 
Abbass et al., 2022). As the global population is projected to reach nearly 10 billion by 2050, 
the demand for food will increase exponentially, placing immense pressure on existing 
agricultural systems (Abdullahi et al., 2015). Yet, conventional agricultural practices, often 
reliant on manual labor, limited data processing, and slow response times, are increasingly 
unable to meet the rising demands for faster, more accurate, and scalable solutions (Chen et al., 
2021; Chklovski et al., 2023). The urgency of this challenge cannot be overstated: food security, 
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sustainability, and environmental preservation are all at stake 
(Jackson-Davis et al., 2023). As climate change alters rainfall patterns, 
intensifies pest outbreaks, and modifies growing seasons, the 
agricultural sector must embrace technological advancements to 
navigate this uncertainty and ensure resilient food production systems 
(Alahi et al., 2023).

In this context, machine learning (ML) and artificial intelligence 
(AI) emerge as critical tools capable of revolutionizing agricultural 
practices (Alahi et al., 2023; Chklovski et al., 2023). These technologies 
offer transformative potential by enabling high-throughput, data-
driven decision-making that can drastically improve efficiency, 
precision, and sustainability in agriculture (Abbasi and Erdebilli, 
2023). By leveraging AI-powered systems for tasks such as crop 
disease detection, pest management, and yield forecasting, farmers 
can optimize resource usage, minimize environmental impact, and 
maximize crop productivity (Abbas et al., 2024). These technologies 
also hold the promise of increasing agricultural resilience by 
providing early warnings and actionable insights, allowing for rapid 
intervention in the face of pest infestations or plant diseases (Lu et al., 
2017; Tassis et al., 2021). Ultimately, integrating AI into agriculture is 
not just a matter of technological innovation—it is a vital step towards 
ensuring global food security in the face of mounting environmental 
pressures. The research addressed in this paper explores the 
application of deep learning and remote sensing technologies to 
address these critical needs, offering a comprehensive approach to 
agricultural information identification and monitoring (Lu 
et al., 2017).

1.1 Research landscape

The intersection of machine learning and agriculture has 
witnessed tremendous growth over the past few decades, evolving 
from rudimentary applications of traditional machine learning models 
to the sophisticated deep learning architectures employed today 
(Abbas I. et al., 2021). Early research in agricultural data analysis 
largely focused on conventional machine learning methods, including 
decision trees (Abdar et al., 2021b; Zhang et al., 2025b), support vector 
machines (Pérez et al., 2017), and k-nearest neighbors (Zhang et al., 
2020), applied to relatively simple datasets such as crop disease 
classification or pest detection. While these models proved useful in 
certain contexts, their limitations in handling large, complex datasets 
became apparent as agriculture entered the era of big data.

With the advent of deep learning in the 2010s, a paradigm shift 
occurred in agricultural research. Convolutional Neural Networks 
(CNNs) and other deep learning models revolutionized the way crop 
monitoring tasks, such as disease identification and pest detection, 
were performed (Bao et al., 2024). These models excel at recognizing 
complex patterns in vast datasets, such as high-resolution images 
captured by drones and satellites, which traditional machine learning 
algorithms could not process as effectively (Abdulkadirov et al., 2023). 
The combination of deep learning with remote sensing technologies 
has been particularly impactful, allowing for high-resolution, real-
time monitoring of crops over large areas (Abbas I. et al., 2021). UAVs, 
satellites, and ground-based sensors have enabled researchers and 
farmers alike to gather massive amounts of data, which can 
be  processed to extract meaningful insights that were previously 
impossible to obtain (Jumaat et al., 2018).

The evolution of this research has been global in nature, with 
countries such as China, India, the United States, Japan, and various 
European nations, including the United  Kingdom, Germany, and 
France, leading the charge in advancing AI-powered agricultural 
technologies (Alola et al., 2023; Dimyati et al., 2023; European Assoc 
Study Live et al., 2023; Guo et al., 2023; Abbas et al., 2024; Adger et al., 
2024). These nations have invested heavily in AI-driven agricultural 
technologies, with numerous advancements made in crop health 
monitoring, pest management, and the optimization of resource use 
(Loeffler et al., 2024). In China, for instance, AI-powered systems have 
been employed for real-time pest surveillance, while India has seen 
significant progress in the use of deep learning for disease diagnosis 
in crops like rice and tomatoes (Xue et al., 2024). As AI techniques 
continue to mature, the scope of applications has expanded from 
image classification and disease detection to more sophisticated 
systems that can predict crop yields, monitor soil health, and even 
automate tasks like harvesting (Tassis et al., 2021). While the research 
is progressing rapidly, there remains much to be done to overcome 
challenges in scalability, data heterogeneity, and system integration, 
which are crucial for ensuring that these innovations can be widely 
adopted by farmers globally.

1.2 Research challenges

Despite the remarkable progress made in integrating machine 
learning and remote sensing technologies into agriculture, several 
significant challenges must be addressed for these technologies to 
reach their full potential:

	•	 High-Quality, Labeled Datasets: One primary challenge is the 
need for high-quality, labeled datasets. Accurate classification of 
images, pest detection, or disease diagnosis by deep learning 
models requires vast amounts of data (Chou et  al., 2019). 
However, acquiring such datasets is resource-intensive, requiring 
significant manual labor for data collection and annotation 
(Appels et al., 2018; Bojar et al., 2022).

	•	 Model Generalization Across Regions: Agricultural data is 
inherently heterogeneous, varying significantly across crops, 
geographic locations, and environmental conditions. Models 
trained on datasets from one region may fail to generalize to 
others due to differences in climate, soil types, or farming 
practices (Guo et al., 2023; Rubbens et al., 2023). This challenge 
requires further research into improving the adaptability of 
models across diverse agricultural environments.

	•	 Deployment in Real-World Agricultural Environments: AI 
models may perform exceptionally in controlled settings but 
degrade when faced with the dynamic and unpredictable 
conditions of agricultural fields. Variations in lighting, occlusions 
caused by plant leaves, and environmental noise can affect model 
accuracy (Gehlot et al., 2023). Ensuring effective deployment 
across diverse environments is essential for practical use (Abedi 
et al., 2025).

	•	 Multi-Source Data Integration: The integration of multi-source 
data—such as satellite imagery, UAV-captured photos, and 
on-the-ground sensor data—remains a complex issue (Wang 
et al., 2023). Combining these data sources requires sophisticated 
algorithms capable of processing large, multi-dimensional 
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datasets in real-time, often demanding significant computational 
resources (Guo et al., 2024).

1.3 Approach and methodology

This study seeks to address these challenges by employing a 
rigorous bibliometric analysis and knowledge graph methodology to 
map the evolution of research in agricultural information 
identification and monitoring (Chaw and Mokji, 2017). By 
systematically analyzing the body of literature on the application of 
machine learning and remote sensing technologies in agriculture, this 
paper identifies key trends, breakthroughs, and gaps in current 
research. The knowledge graph approach offers a visual representation 
of the interconnectedness of various research topics, providing 
insights into how machine learning and AI have been integrated into 
agricultural practices over time (Abubakar et al., 2022; Ahmed et al., 
2023; Al-Shammary et al., 2024).

In addition to the bibliometric analysis, this paper presents a 
detailed examination of the technical aspects involved in the integration 
of AI and remote sensing technologies. Specifically, it explores how 
deep learning models, such as Convolutional Neural Networks (CNNs) 
and Transfer Learning, are being used to analyze crop images, detect 
diseases, and identify pests (Chen et al., 2020). Furthermore, the paper 
delves into the challenges associated with the use of remote sensing 
technologies, such as UAVs and satellite imagery, in large-scale 
agricultural monitoring (Zhang et al., 2025a). By synthesizing existing 
literature and examining case studies from different regions and crop 
types, this research provides a comprehensive overview of the current 
state of AI-driven agricultural monitoring systems and outlines the 
future directions necessary to overcome the existing barriers.

The motivation for this study stems from the increasing challenges 
faced by global agricultural systems, including climate change, resource 
scarcity, and the growing demand for food. Traditional farming 
methods are becoming insufficient to meet these demands, 
necessitating the integration of advanced technologies for sustainable, 
efficient agricultural practices. Machine learning, particularly deep 
learning, has demonstrated its potential to revolutionize agricultural 
monitoring by improving accuracy in crop disease detection, pest 
management, and yield forecasting. However, significant gaps remain, 
particularly in data quality, model generalization, and multi-source 
data integration (Seiya et al., 2020; Wei et al., 2025). This study aims to 
address these gaps by developing AI models that can adapt to diverse 
agricultural environments, improve crop monitoring accuracy, and 
promote sustainable farming practices, ultimately contributing to 
global food security.

The current study provides several key contributions to advancing 
AI-driven agricultural practices, particularly in crop monitoring, pest 
detection, and disease diagnosis. First, this research addresses the 
challenges associated with integrating deep learning algorithms and 
remote sensing technologies, proposing a novel framework that 
combines these tools for more accurate, real-time crop monitoring. A 
critical contribution of this study is the development of an advanced 
deep learning model tailored to agricultural applications, showing 
significant improvements in pest detection and disease diagnosis 
compared to traditional methods. Furthermore, this study introduces 
a model capable of generalizing across diverse agricultural 
environments, which is essential for adapting to varying crops, pests, 

and climatic conditions without requiring extensive retraining. 
Additionally, by improving the precision of agricultural practices, the 
research contributes to more sustainable farming, optimizing resource 
use while enhancing crop yield predictions and pest control measures. 
These contributions lay the groundwork for future AI-driven 
agricultural systems, offering innovative solutions to some of the most 
pressing challenges in global food security and 
agricultural sustainability.

In conclusion, this study not only highlights the advancements in 
AI and remote sensing for agriculture but also provides a roadmap for 
future research, pointing out key areas that require further exploration, 
such as data standardization, model generalization, and multi-source 
data integration. The manuscript begins with a comprehensive 
background on the challenges faced by global agricultural systems and 
the potential of AI in addressing these issues. It then explores the 
integration of deep learning models with remote sensing technologies 
for crop monitoring. The subsequent sections focus on the 
methodology, data analysis, and key findings related to improving 
model generalization and enhancing agricultural sustainability. 
Finally, the manuscript concludes by discussing the implications of the 
study and the future directions for AI-driven agricultural systems. 
Thank you for your valuable feedback. Advancing the understanding 
of these technologies and addressing their limitations will unlock their 
full potential to transform agricultural practices, enhancing 
sustainability, efficiency, and the capacity to meet the growing 
demands of global food production.

2 Data sources and analysis methods

2.1 Retrieval strategy and data collation

The literature search was conducted using the Web of Science 
(WOS) and Engineering Index (EI) databases, two of the most 
authoritative academic databases for multidisciplinary research (Ma 
et  al., 2023). WOS, developed by Clarivate (formerly Thomson 
Reuters), encompasses the Science Citation Index (SCI), Social 
Sciences Citation Index (SSCI), and Arts & Humanities Citation Index 
(A&HCI), renowned for its rigorous journal selection and citation 
indexing system that enables comprehensive literature retrieval 
through multiple search parameters including keywords, authors, and 
DOI. Similarly, EI, established in 1884 by the American Federation of 
Engineers, serves as a foundational database in engineering disciplines 
with global recognition. The search strategy employed the query 
TS = (“image recognition” AND “deep learning” AND “crops”) within 
the WOS Core Collection, covering all editions and publication years 
(2000–2025), which initially retrieved 785 records. A corresponding 
search in EI up to the present date yielded 142 records. After cross-
database comparison and removal of 192 irrelevant publications and 
85 consolidated items, 650 valid records were retained for analysis, 
including five highly representative studies that exemplify key 
advancements in deep learning-based image recognition for crop 
analysis (Figure 1). This systematic approach ensured a rigorous and 
comprehensive collection of relevant literature in the field.

In recent years, the application of deep learning technologies in 
agriculture, particularly for crop disease and pest detection, has seen 
significant advancements. With the modernization of agricultural 
production, traditional manual monitoring methods are no longer 
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sufficient to meet the demand for fast and accurate detection. As a 
result, using deep learning models for disease and pest identification 
has become an essential tool for improving agricultural productivity. 
One study focuses on the automatic identification and diagnosis of 
rice diseases using deep convolutional neural networks (CNNs), 
providing a powerful framework for disease detection that enables 
early intervention to ensure crop health (Lu et al., 2017). Another 
research explores the use of deep learning, particularly Mask-RCNN, 
for strawberry harvesting robots, contributing to agricultural robotics 
by optimizing fruit detection, which increases efficiency and reduces 
labor costs (Yu et al., 2019). A third paper examines the use of deep 
transfer learning for plant disease diagnosis, demonstrating how 
pre-trained models can improve the accuracy and reliability of disease 
detection in varied environmental conditions, thus enhancing crop 
management practices (Chen et al., 2020). A fourth study applies 
transfer learning techniques to detect tomato plant diseases, 
highlighting the importance of deep learning in early disease detection 
and control, which supports sustainable agriculture practices (Abbas 
A. et  al., 2021). Finally, the fifth paper introduces a method for 
classifying pests in crops using deep convolutional neural networks, 
offering a solution for pest management, which is crucial for 
protecting crops from harmful pests and ensuring better yields 
(Thenmozhi and Reddy, 2019). These contributions collectively 
highlight the pivotal role of deep learning in advancing agricultural 
technologies, focusing on disease and pest detection, and improving 
the efficiency and sustainability of crop management (Table 1).

2.2 Analysis method

Bibliometric analysis is a systematic, quantitative approach used 
to summarize and evaluate research publications. It involves four 
primary steps: sampling, recording entries, cataloguing, and metrics. 
The first three steps focus on standardizing data, including titles, 
authors, keywords, publication dates, methodologies, and citation 
counts. The final step, metrics, extracts valuable insights to guide 
future research. This process is greatly facilitated by software tools 
such as VOSviewer (version, 1.6.16) and CiteSpace (version, 6.3.R1). 

VOSviewer, developed by the Centre for Science and Technology 
Studies (CWTS) at Leiden University, specializes in visualizing 
scientific knowledge and analyzing undirected networks. CiteSpace, 
created by Professor Chen Chaomei at Drexel University, is used for 
citation analysis and identifying potential knowledge within scientific 
research. Both tools help uncover trends, research hotspots, and the 
evolution of scientific fields (Bouguettaya et al., 2022).

The knowledge graph for this study was constructed using 
VOSviewer and CiteSpace, two prominent tools in bibliometric 
analysis. VOSviewer was used for visualizing the relationships between 
key terms, authors, and journals. The tool applied co-occurrence 
analysis to generate term maps, where terms frequently appearing 
together in the dataset were grouped into clusters. These clusters 
represent research topics or themes within the field of AI and 
agriculture. The visual representation provided by VOSviewer 
highlighted the major research areas in crop monitoring, such as 
disease detection and pest management, as well as the dominant 
methodologies like Convolutional Neural Networks (CNNs) and 
remote sensing integration. CiteSpace was employed to conduct 
citation analysis, identifying influential papers, key authors, and 
significant trends in the field over time. CiteSpace’s citation burst 
detection feature was particularly useful in identifying rapidly 
emerging topics, allowing for the identification of key shifts in research 
focus. The software also provided a visualization of the collaborative 
networks between authors and institutions, enabling us to examine 
how knowledge flows and research collaborations have evolved in the 
AI-driven agricultural field.

By combining these two tools, we were able to not only extract key 
research themes and identify gaps in the literature but also understand 
the temporal evolution and collaborative dynamics within the field. 
The methodology allowed us to construct a comprehensive knowledge 
graph that reveals how AI and deep learning technologies are shaping 
agricultural research and practice.

This paper employs two primary research methods: bibliometric 
analysis and knowledge mapping analysis, to explore the analysis of 
agricultural information identification and monitoring. Various 
bibliometric tools, including WOS, Scopus, VOSviewer, and SCImago 
Graphica, are utilized to process data and analyze key aspects such as 

FIGURE 1

Procedure for screening and selecting eligible studies in the systematic review.
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publication times, contributions, and highly cited works. VOSviewer 
is particularly useful for co-occurrence analysis and the visualization 
of research hotspots, while CiteSpace is applied to examine research 
cooperation, identify emerging keywords, and predict future trends 
(Iyortsuun et al., 2023; Rubbens et al., 2023). By combining these 
software tools, the study maximizes their respective strengths, offering 
a comprehensive view of the research field’s development and 
providing valuable insights into the ongoing evolution of scientific 
knowledge in this area.

3 Results

3.1 Bibliometric analysis

3.1.1 Statistics of documents publication time
During the analysis of the application of machine learning in 

intelligent crop recognition, the data sourced from the WOS 

database was used to track the trends in publication and citation 
frequency over the years. The chart in Figure 2 illustrates these 
trends, with the blue bars representing the number of publications 
in each year and the orange line representing the citation frequency. 
The data reveals several key insights: In the early years (2000–2010), 
the number of publications remained low, with fewer than 50 
papers published annually, reflecting the initial phase of research 
in this area. From 2011 to 2017, there was a sharp increase in both 
publications and citations, peaking in 2012 with over 90 citations. 
This period marks the rapid development and advancement of 
machine learning techniques in crop recognition, as researchers 
placed greater emphasis on enhancing the accuracy and efficiency 
of algorithms. The period from 2018 to 2022 shows a steady rise in 
the number of publications, with a particularly significant surge in 
2023 and 2024, where publication numbers exceeded 80, reflecting 
the growing interest and advancements in the field. Citation 
frequency also peaked during this period, indicating the increasing 
impact of this research. The overall trend highlights a growing 

TABLE 1  Bibliometric and content attributes of representative documents.

Title Year Authors Country/
regions

Publication/
source titles

Cited reference 
count

Keywords

Identification of rice 

diseases using deep 

convolutional neural 

networks
2017 Lu et al. (2017) China NEUROCOMPUTING 485

Identification of rice 

diseases; 

Convolutional neural 

networks; Deep 

learning; Image 

recognition

Fruit detection for 

strawberry harvesting 

robot in non-structural 

environment based on 

Mask-RCNN

2019 Yu et al. (2019) China

COMPUTERS AND 

ELECTRONICS IN 

AGRICULTURE

462

Mask-RCNN; Non-

structural 

environment; Fruit 

detection; Instance 

segmentation; Picking 

point

Using deep transfer 

learning for image-based 

plant disease 

identification
2020 Chen et al. (2020) China

COMPUTERS AND 

ELECTRONICS IN 

AGRICULTURE

446

Plant disease 

identification; Deep 

learning; Convolution 

neural networks; 

Transfer learning; 

Image classification

Tomato plant disease 

detection using transfer 

learning with C-GAN 

synthetic images

2021
Abbas A. et al. 

(2021)
India

COMPUTERS AND 

ELECTRONICS IN 

AGRICULTURE

293

Deep learning; 

Tomato plant disease 

detection; Conditional 

Generative 

Adversarial Network; 

Data augmentation; 

Pre-trained 

DesnseNet121 

network; Synthetic 

Images

Crop pest classification 

based on deep 

convolutional neural 

network and transfer 

learning

2019
Thenmozhi and 

Reddy (2019)
India

COMPUTERS AND 

ELECTRONICS IN 

AGRICULTURE

276

Insect classification; 

Field crops; 

Convolutional neural 

network; Deep 

learning; Transfer 

learning
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recognition of the potential of machine learning in agriculture, 
with a clear upward trajectory in both research output and 
influence. This development marks the shift toward more advanced, 
AI-driven systems for intelligent crop identification. It can 
be  concluded that the research on the application of machine 
learning in intelligent crop image recognition has generally 
progressed through three key research stages over the past two 
decades, as reflected by the trends in publication numbers and 
citation frequencies (Figure 2).

3.1.2 Stage 1: exploratory and experimental stage 
(2000–2010)

The first stage, from 2000 to 2010, represents the initial foray 
into machine learning techniques applied to crop image recognition, 
with a focus on early experimentation and the testing of various 
algorithms for crop disease and pest identification. During this 
period, researchers primarily relied on traditional image processing 
methods combined with machine learning algorithms to address the 
challenges of crop monitoring. Key studies focused on the early 
development of machine learning systems for the classification of 
crop diseases based on visible symptoms. Works such as Loss et al. 
(2009) marked foundational contributions, introducing the basic 
concepts of image recognition systems for agriculture. Although the 
technology was still in its infancy, these early efforts led to the 
development of the first generation of crop disease recognition 
systems using computer vision techniques, which laid the 
groundwork for the later integration of more advanced machine 
learning models. This exploratory stage was characterized by the 
application of basic classifiers, such as support vector machines 
(SVMs) and decision trees, for crop image analysis (Loss et  al., 
2009). The research in this phase was limited by the computational 
resources available at the time and the relatively small and simple 
datasets used for training models. However, these early studies 
played a crucial role in demonstrating the potential of machine 
learning in agriculture and established a solid foundation for the 
future development of more complex deep learning models. Despite 
the relatively low number of publications and limited citation counts 

in this stage, the research set the stage for the transition to more 
sophisticated machine learning techniques in subsequent years.

3.1.3 Stage 2: technology maturation stage 
(2011–2017)

Between 2011 and 2017, the field of crop image recognition 
through machine learning experienced significant technological 
maturation. During this period, there was a marked shift from 
traditional machine learning methods to more advanced deep learning 
techniques, particularly convolutional neural networks (CNNs), which 
became central to crop disease and pest detection tasks. The use of 
CNNs allowed researchers to automate and refine the process of feature 
extraction from crop images, leading to substantial improvements in 
classification accuracy. This stage also witnessed the increasing use of 
large-scale image datasets, including those captured by UAVs and 
satellites, which provided a more comprehensive and detailed view of 
crop conditions across various environments. Studies like Lu et al. 
(2017), Rakun et al. (2011), and Lu et al. (2015) exemplify the growing 
sophistication of the models used in crop image recognition. 
Researchers began to explore more complex applications, such as the 
detection of specific crop diseases and the classification of pest 
infestations, using deep learning models trained on a diverse set of crop 
images. This period also saw significant research into the integration of 
multi-source data, such as the combination of satellite imagery with 
field-collected images to improve the robustness and reliability of crop 
disease detection systems (Lu et al., 2015). The introduction of transfer 
learning techniques enabled researchers to leverage pre-trained models 
on large image datasets, significantly improving the efficiency and 
effectiveness of the models used in agricultural applications. The 
number of publications increased substantially during this period, with 
research expanding to cover a wider array of crop species and 
environmental conditions. Moreover, the citation frequency for these 
studies grew rapidly, reflecting the increasing importance of machine 
learning in the field of precision agriculture. By the end of this stage, 
machine learning models had reached a level of maturity that allowed 
for real-world applications in agriculture, paving the way for the next 
stage of development in crop image recognition.

FIGURE 2

Annual scholarly productivity and citation impact over two decades (2000–2022).
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3.1.4 Stage 3: artificial intelligence phase (2018–
2022)

The period between 2018 and 2022 represents the rise of artificial 
intelligence (AI), with deep learning and machine learning models 
emerging as the leading technologies for intelligent crop image 
recognition. During this phase, AI-driven systems for crop monitoring 
and disease detection gained widespread adoption, leading to a 
significant surge in both research output and citation rates in the field. 
The application of machine learning in agriculture shifted towards 
automated, real-time crop monitoring systems that were capable of 
handling large volumes of data and providing more accurate 
predictions. AI-driven models, particularly convolutional neural 
networks (CNNs) and advanced neural networks, became central to 
crop disease detection, pest management, and phenological stage 
monitoring. Studies such as Saranya et al. (2021), Sharma et al. (2022), 
and Li et al. (2022) highlight the increasing reliance on AI for real-
time monitoring of crops. The integration of UAV-based imagery and 
machine learning models allowed for the collection of high-resolution 
data on crop health, enabling more precise detection of diseases, 
nutrient deficiencies, and pests. This period also saw the development 
of more sophisticated AI systems that combined instance and 
semantic segmentation with deep learning for improved crop disease 
and pest detection, as demonstrated in studies like Tassis et al. (2021) 
and d’Andrimont et  al. (2022). Moreover, the application of AI 
extended to various aspects of precision agriculture, such as the 
classification of nutrient deficiencies in apple trees (Kumar et al., 2022) 
and the development of automatic systems for pest detection and crop 
yield prediction. The growing use of AI in agriculture has led to the 
emergence of cloud-based platforms that allow for the rapid 
processing of crop images and the integration of these platforms with 
existing agricultural management systems. The rapid advancements 
in this phase have made it clear that AI will play a central role in the 
future of agriculture, with AI-driven systems providing real-time, 
high-precision solutions for crop monitoring and management (De 
Angelis et al., 2023; Loeffler et al., 2024; Liu S. et al., 2025). As research 
continues to evolve, the combination of AI with other emerging 
technologies, such as robotics and the Internet of Things (IoT), is set 
to further transform the agricultural industry.

3.2 Contribution analysis

In the realm of machine learning applications for crop image 
recognition, several authors have made pivotal contributions, 
shaping the field with their innovative approaches. Zhang (Y) has 
significantly advanced the automation of crop ripeness detection, 
particularly in jujube fruits, by developing AGHRNet: An attention 
ghost-HRNet for confirmation of jujube fruit ripening stage. This 
attention-based deep learning model, with its exceptional 
performance, has greatly enhanced precision in crop management 
systems, contributing extensively to the recognition of fruit ripeness 
and disease detection (Zheng et al., 2023). Following closely, Chen 
(C) has made important strides in improving crop disease 
recognition by addressing the challenges posed by occluded images. 
His work on HOB-CNN: Hallucination of occluded branches with 
convolutional neural networks introduced methods to handle 
imperfect data, making crop disease detection more reliable even in 
the presence of visual obstructions (Chen et al., 2023). Meanwhile, 

Saraswat (D) has focused on optimizing deep learning models for 
large-scale agricultural settings, particularly in crop disease 
detection. His contributions, including Performance of deep learning 
models for classification and detection of crop diseases, have greatly 
improved detection accuracy, making real-time agricultural 
monitoring more efficient and actionable (Ahmad et  al., 2021). 
He (Y) has significantly advanced crop image recognition through 
his work on Object detection with attribute tagging task: A novel 
approach for crop image recognition. His research integrates object 
detection with attribute tagging, improving crop classification 
accuracy and enabling systems to capture additional contextual 
information, such as growth stages. This approach enhances real-
time crop monitoring, contributing to more efficient and scalable 
agricultural management systems (Liu D. et al., 2025). Lastly, Fu (LS) 
has contributed to the field by introducing new segmentation 
techniques for crop disease detection. In Deep learning based 
segmentation for automated crop disease detection, Fu’s innovative 
methods have improved the precision of disease detection, 
particularly in tree fruits and vegetables, pushing the boundaries of 
crop image recognition (Majeed et al., 2020). Together, these authors 
have significantly refined machine learning models for crop 
recognition and disease management, with each making unique 
contributions that continue to propel the field forward, offering 
solutions for more accurate, real-time, and scalable crop monitoring 
in agriculture. The work of these five authors shares a common focus 
on advancing machine learning models for crop image recognition, 
particularly in disease detection and classification, yet each brings a 
unique perspective, with some emphasizing deep learning 
segmentation techniques, others integrating multi-source data, and 
a few focusing on the automation and real-time applications of crop 
monitoring systems. The top  5 authors and their representative 
contributions are listed in Table 2.

To enhance the visual representation of the geographic 
distribution of publications by country or region, this study first saves 
the merged and de-duplicated data from the WOS database in a 
standardized *.txt format. The word frequency threshold is then set to 
10  in VOSviewer, allowing for the identification of countries or 
regions with significant contributions to the field. After processing, 
the data is saved in *.gml format and imported into Scimago to create 
a geographical visualization of document distribution, with 
appropriate map decorations. Figure 3 illustrates the distribution of 
countries leading globally in crop image recognition research. A total 
of 11 countries have published more than 10 documents. An analysis 
of the top five contributing countries reveals notable patterns in the 
global distribution of crop image recognition research. China leads 
the field with 208 publications, reflecting its dominant role and the 
active, extensive research community engaged in this area. India 
follows with 88 publications, marking its significant contribution to 
agricultural research, particularly in precision farming and remote 
sensing. The USA ranks third with 40 publications, demonstrating 
substantial involvement in crop image recognition, though at a smaller 
scale compared to China and India. Australia (26 publications) and 
Brazil (19 publications) round out the top five, indicating growing 
research efforts, especially in precision agriculture and related 
technologies. Overall, the top five countries emphasize the prominent 
positions of China and India in advancing crop image recognition 
research, with the USA and other nations contributing significantly, 
though on a relatively smaller scale.
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After synthesizing the data obtained from WOS, a total of 35 
journals were identified, with 12 publishing more than three 
documents. This suggests significant interest in the research area of 
crop image recognition. Figure 4 displays the top ten journals. The top 
three journals in terms of publication count are COMPUTERS AND 
ELECTRONICS IN AGRICULTURE (109 publications), IEEE 
ACCESS (29 publications), and SENSORS (27 publications), with 
corresponding h-index values of 12, 9, and 8, respectively. The top 
three journals in crop image recognition research, COMPUTERS 
AND ELECTRONICS IN AGRICULTURE (109 publications), IEEE 
ACCESS (29 publications), and SENSORS (27 publications), focus on 
different aspects of the field. COMPUTERS AND ELECTRONICS IN 
AGRICULTURE primarily publishes papers on computational 
methods and electronics in agriculture, with a strong emphasis on 
precision farming, remote sensing, and automation systems for crop 

monitoring. This journal has seen a consistent increase in publications, 
particularly from 2010 onwards, as studies combining machine 
learning and image processing in agricultural applications have 
grown. In contrast, IEEE ACCESS accepts a broader range of 
interdisciplinary papers, focusing on the integration of computer 
science, electronics, and agricultural engineering, especially in 
developing advanced algorithms for crop image analysis. This journal 
has experienced a notable rise in publications over the last 5 years, 
reflecting the growing influence of AI and big data in crop image 
recognition. Lastly, SENSORS publishes research centered around 
sensor technologies, particularly in remote sensing and the use of 
hyperspectral and multispectral imaging for crop health monitoring. 
Publications in this journal have gradually increased since 2015, as 
sensor technologies have advanced, enabling more widespread 
application in agricultural monitoring. Together, these journals reflect 

TABLE 2  Leading contributors by publication output (Top 5 authors).

Authors Post 
volume

Masterpiece Representative contribution Index

Zheng et al. (2023) 9

AGHRNet: An attention ghost-

HRNet for confirmation of 

catch-and-shake locations in 

jujube fruits vibration 

harvesting

The development of an intelligent jujube fruit harvesting device is a 

critical step in achieving the whole mechanization process. Catch-and-

shake harvesting, as an efficient and stable vibration harvesting method, 

has widely been used to save labor and improve harvesting efficiency in 

large-scale jujube orchards. However, existing catch-and-shake harvesters 

still rely heavily on the operator’s naked eyes to determine the shaking 

position, which is subjective, highly inefficient and highly labor.

546

Chen et al. (2023) 7

HOB-CNN: Hallucination of 

occluded branches with a 

convolutional neural network 

for 2D fruit trees

Orchard automation has attracted the attention of researchers recently 

due to the shortage of global labor force. To automate tasks in orchards 

such as pruning, thinning, and harvesting, a detailed understanding of 

the tree structure is required. However, occlusions from foliage and fruits 

can make it challenging to predict the position of occluded trunks and 

branches. This work proposes a regression-based deep learning model, 

Hallucination of Occluded Branch Convolutional Neural Network (HOB-

CN).

328

Ahmad et al. (2021) 6

Performance of deep learning 

models for classifying and 

detecting common weeds in 

corn and soybean production 

systems

Knowing precise location and having accurate information about weed 

species is a prerequisite for developing an effective site-specific weed 

management (SSWM) system. Due to the effectiveness of deep learning 

techniques for vision-based tasks such as image classification and object 

detection, its use for discriminating between weeds and crops is gaining 

acceptance among the agricultural research community. However, limited 

studies have used deep learning for identifying multiple weeds in a singl.

183

Liu D. et al. (2025) 6

Object detection with attribute 

tagging task: Model design and 

evaluation on agricultural 

datasets

Object attributes provide valuable information for numerous practical 

applications and hold potential to augment the generalization capabilities 

of object detection model. However, research into instance-level attribute 

recognition has been relatively scant, particularly concerning task 

optimization and its integration for comprehensive model performance 

enhancement. This paper introduces the Object Detection with Attribute 

Tagging (OD-AT) task, designed to detect objects while simultaneously 

id.

160

Majeed et al. (2020) 5

Deep learning based 

segmentation for automated 

training of apple trees on trellis 

wires

Trellised fruiting-wall training systems are becoming standard for 

modern apple orchards due to their high fruit yield and quality, and their 

suitability to robotic operations in pruning and harvesting. In a common 

practice of training young apple trees to a trellis-trained canopy system in 

PNW region of US, trees branches are manually selected and then tied to 

horizontal trellis wires in 6 or 7 tiers. As manual training of apple trees to 

these modern orchard architectures is becoming challenging.

189
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a strong shift toward AI, machine learning, and advanced sensor 
technologies in crop image recognition, with an upward trend in these 
areas in recent years.

3.3 Analysis of highly cited documents

These five papers have attracted significant attention in the field of 
crop image recognition due to their application of advanced machine 
learning techniques, particularly deep learning, which have significantly 
enhanced the accuracy and efficiency of agricultural monitoring 
systems. A common theme across these papers is the integration of 
cutting-edge neural network models, such as deep convolutional 
networks (CNNs) and improved versions of YOLO, to address the 
challenges of crop detection, disease identification, and fruit harvesting 
automation. The adoption of techniques like transfer learning has 
further contributed to the high impact of these papers, as it enables 

models to generalize well across different crops and environments, even 
with limited data. The focus on real-time applications, such as automated 
fruit harvesting and disease detection, resonates with the growing 
demand for precision agriculture, where efficient, cost-effective, and 
scalable solutions are paramount. Moreover, the timing of these papers 
aligns with advancements in sensor technologies, making them even 
more relevant as the agricultural industry increasingly turns to remote 
sensing and AI-based tools for monitoring crop health. This convergence 
of deep learning, data-driven solutions, and agricultural needs has made 
these papers essential references in the field, driving innovation and 
inspiring further research in crop image recognition and automation 
(Table 3). In summary, these papers are highly cited for addressing 
critical issues in modern agriculture—crop detection, disease 
identification, and automation—while utilizing advanced machine 
learning techniques such as deep learning and transfer learning, which 
enhance their relevance in the field of crop image recognition and 
precision agriculture.

FIGURE 3

Heatmap of document affiliations by geographic region (Top 11).

FIGURE 4

Publication volume across leading journals (Top 10).

https://doi.org/10.3389/frai.2025.1636898
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zhang et al.� 10.3389/frai.2025.1636898

Frontiers in Artificial Intelligence 10 frontiersin.org

TABLE 3  Citation analysis of highly cited literature.

References Cite 
frequency

Year Title Publication 
type

Research contents

Qi et al. (2022) 916 2022

An improved YOLOv5 model 

based on visual attention 

mechanism: Application to 

recognition of tomato virus 

disease

Article

Traditional target detection methods cannot effectively 

screen key features, which leads to overfitting and 

produces a model with a weak generalization ability. In this 

paper, an improved SE-YOLOv5 network model is 

proposed for the recognition of tomato virus diseases. 

Images.

Yu et al. (2019) 750 2019

Fruit detection for strawberry 

harvesting robot in non-

structural environment based 

on Mask-RCNN

Article

Deep learning has demonstrated excellent capabilities for 

learning image features and is widely used in image object 

detection. In order to improve the performance of machine 

vision in fruit detection for a strawberry harvesting robot, 

Mask Region Convolutional Neural Network.

Wu et al. (2022) 635 2022

Detection of Camellia oleifera 

Fruit in Complex Scenes by 

Using YOLOv7 and Data 

Augmentation

Article

Rapid and accurate detection of Camellia oleifera fruit is 

beneficial to improve the picking efficiency. However, 

detection faces new challenges because of the complex field 

environment. A Camellia oleifera fruit detection method 

based on YOLOv7 network and multiple data 

augmentation.

Lu et al. (2017) 444 2017

Identification of rice diseases 

using deep convolutional 

neural networks

Article

The automatic identification and diagnosis of rice diseases 

are highly desired in the field of agricultural information. 

Deep learning is a hot research topic in pattern recognition 

and machine learning at present, it can effectively solve 

these problems in vegetable.

Chen et al. (2020) 347 2020

Using deep transfer learning 

for image-based plant disease 

identification

Article

Plant diseases have a disastrous impact on the safety of 

food production, and they can cause a significant 

reduction in both the quality and quantity of agricultural 

products. In severe cases, plant diseases may even cause no 

grain harvest entirely.

3.4 Knowledge mapping analysis

3.4.1 Analysis of scientific research cooperation
The author collaboration network was constructed using 

VOSviewer (version 1.6.16), as illustrated in Figure 5. To enhance 
clarity, only authors with more than three publications were included 
in the visualization. The network exhibits a ‘widely distributed but 
locally concentrated’ pattern, indicating that while research 
collaborations are widespread, concentration tends to occur around 
specific core research groups. Among the most influential authors in 
the field of crop image recognition using machine learning, five key 
researchers emerge as central figures: He et al. (2024), Wang et al. 
(2025), Kamei (2023), Sarah et al. (2024), and Zhang Z. et al. (2023). 
These scholars have made substantial contributions through their 
extensive collaborative efforts, with He  Y. playing a particularly 
pivotal role in multiple high-impact studies. Wang Y., Karkee. M., 
Saraswat, and Zhang Z. have also demonstrated strong research 
activity, further consolidating their influence in this domain. Their 
collective work has made significant contributions to the 
advancement of machine learning applications in agricultural image 
analysis, fostering innovations in crop monitoring, disease detection, 
and yield prediction. The network visualization highlights a highly 
interconnected structure among these authors, underscoring their 
central role in driving the research landscape forward. This dense 
collaboration pattern emphasizes the critical role of interdisciplinary 

teamwork in accelerating progress within this rapidly evolving field. 
Additionally, the visualization reveals evidence of South–South 
collaboration, further illustrating the global nature of research in 
this domain and the increasing contributions from developing  
regions.

Using CiteSpace, a visualization of international academic 
collaborations are generated based on the extracted country data 
(Figure  6). The analysis reveals a robust network of scientific 
cooperation, with China, India, and the USA emerging as the most 
frequent collaborators. China, in particular, stands out as the most 
active participant, engaging in 172 collaborative instances, 
underscoring its central role in the global research landscape. Other 
notable contributors include Australia (22 collaborations), Japan 
(18), and Saudi Arabia (16), reflecting their substantial involvement 
in academic exchange. Additionally, countries such as Brazil, South 
Korea, and Italy, though less frequent collaborators, still play 
meaningful roles in the network. Smaller nations such as Pakistan, 
Spain, Greece, and Egypt also appear in the dataset, reflecting their 
involvement in international research efforts despite having lower 
collaboration counts. The network structure reveals a clear 
hierarchical pattern, with the USA, China, and India positioned as 
central hubs, linked to numerous other countries across diverse 
regions. This pattern highlights the increasingly globalized nature of 
scientific research, with nations at different stages of economic and 
scientific development actively participating in cross-border 
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FIGURE 5

Knowledge graph of academic collaborations.

FIGURE 6

International research collaboration network.
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partnerships. Additionally, the data suggests a correlation between 
a country’s economic development and its research collaboration 
output, with more economically advanced nations typically taking 
the lead in global academic cooperation. These observations align 
with broader trends in the internationalization of science, 
emphasizing the critical role of collaborative networks in advancing 
research across disciplines.

The network visualization generated using CiteSpace illustrates 
the collaborative relationships among academic institutions based on 
co-authorship or institutional affiliations in the dataset (Figure 7). The 
graph reveals meaningful patterns of cooperation, with nodes 
representing institutions and edges indicating collaborative 
interactions. Key institutions within the network include Anhui 
Agricultural University, Washington State University, Monash 
University, Chinese Academy of Agricultural Sciences, and Shaanxi 
Key Laboratory of Agricultural Information Perception and Intelligent 
Servicing, which serve as central hubs with multiple connections. 
These institutions demonstrate a high degree of interconnectivity, 
suggesting active collaboration in research activities. Meanwhile, other 
institutions appear more peripherally, reflecting fewer but still 
significant collaborative ties. The presence of well-connected hubs 
indicates that institutional cooperation follows a scale-free network 
structure, where a few highly active institutions dominate the 
collaboration landscape, while others contribute to a broader but less 
dense network. This pattern aligns with global trends in scientific 
collaboration, where leading research institutions often function as 
central nodes in knowledge exchange and co-authored publications. 
Further analysis could explore the thematic focus of these 
collaborations and their impact on research output.

3.4.2 Analysis of research hotspots
Based on the provided image, the research hotspots in the field of 

deep learning applied to agriculture can be summarized as follows 
(Figure 8). The central theme in the image is “deep learning, “which is 
the dominant research focus, illustrated by its large node size and 
central position. Surrounding it are various subtopics, with prominent 

terms such as “image classification, ““object detection, “and “semantic 
segmentation, “which emphasize key areas of deep learning 
applications in agricultural image analysis. The green keyword cluster 
focuses on “agriculture, “indicating the integration of deep learning 
with agricultural applications such as crop disease identification, 
precision agriculture, and agricultural product recognition. The red 
cluster highlights “object detection” and “fruit detection, “which are 
essential techniques for recognizing and classifying objects within 
agricultural imagery. Keywords like “yolo, ““point cloud, “and “rgb 
architecture” show how deep learning is being used in detecting crops 
and agricultural products, along with their respective quality 
assessment. The yellow keyword group, associated with “machine 
vision, “suggests the importance of visual systems for image 
recognition and classification in agricultural settings. Other relevant 
keywords, such as “transfer learning” and “data augmentation, 
“indicate the use of advanced techniques to enhance model accuracy 
and adaptability in agricultural applications. In summary, the hot 
research directions in this field are centered around the application of 
deep learning to enhance agricultural practices, with a particular focus 
on image-based classification, object detection, and advanced 
segmentation methods.

To further clarify the internal connections among research 
hotspots and explore their respective research focuses and 
development directions, CiteSpace (version 6.3.R1) was employed to 
generate a keyword cluster map based on VOSviewer keyword 
co-occurrence analysis, as shown in Figure 9. The research in the 
domain of intelligent image recognition for crops using machine 
learning can be  categorized into 13 distinct clusters, namely: #0 
precise spatial prediction, #1 integrating capsule network, #2 deep 
learning approach, #3 vegetable crop, #4 apple orchard, #5 determining 
grapevine cordon shape, #6 semantic segmentation, #7 monitoring 
visual attribute, #8 varying training epoch, #9 data augmentation, #10 
rice grain classification, #11 semantic segmentation model, and #12 
complex background. The clusters are color-coded and numerically 
sorted based on their prominence and frequency in the dataset. A 
larger cluster number indicates a relatively higher publication volume 

FIGURE 7

Institutional collaboration network.
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FIGURE 8

Co-occurrence network of high-frequency keywords.

FIGURE 9

Research clusters identified by CiteSpace.
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and greater impact in the field. According to the clustering results, 
these topics can be summarized into four main research directions:

Research on segmentation models and prediction algorithms is 
represented by clusters such as #0 precise spatial prediction, #1 
integrating capsule network, #2 deep learning approach, #6 semantic 
segmentation, and #11 semantic segmentation model, which 
collectively form the technical foundation of intelligent image 
recognition. These clusters emphasize model optimization, the 
integration of deep learning frameworks (e.g., CNNs and capsule 
networks), and the importance of achieving pixel-level accuracy in 
spatial predictions. Clusters #3 vegetable crop, #4 apple orchard, #5 
determining grapevine cordon shape, and #10 rice grain classification 
highlight the application of machine learning and computer vision 
techniques to different crop species, reflecting a growing interest in 
developing targeted solutions for specific crop characteristics, growth 
monitoring, and yield estimation. Clusters #7 monitoring visual 
attribute, #8 varying training epoch, and #9 data augmentation 
underscore efforts toward improving training optimization, model 
generalization, and visual attribute analysis. These clusters stress the 
importance of robust data preparation and adaptive learning strategies 
in agricultural environments. Cluster #12 complex background 
identifies the challenges posed by real-world agricultural conditions, 
where environmental variables and image noise often affect 
recognition accuracy, calling for solutions to enhance model resilience 
in non-ideal or cluttered field conditions.

3.4.3 Analysis of frontier trend
To further investigate the temporal dynamics of research trends in 

the field of machine learning-based crop image recognition, a burst 
detection analysis was conducted using CiteSpace. As shown in 
Figure 10, the top 15 keywords with the strongest citation bursts between 
2001 and 2025 reveal significant shifts in scholarly focus over time. The 

keyword “system” demonstrates the highest burst strength (3.07), 
primarily occurring between 2020 and 2022, indicating a strong recent 
interest in integrated image recognition systems in agriculture.

Early research emphasis, as indicated by keywords such as 
“features,” “image,” “fruit detection,” and “color,” focused on 
fundamental image processing techniques and object-level 
identification, with bursts starting as early as 2014 and ending around 
2021. These foundational studies laid the groundwork for subsequent 
advances in deep learning and classification. From 2017 onwards, 
attention shifted toward “agricultural products,” “learning (artificial 
intelligence),” and “automatic classification,” reflecting the rapid 
integration of AI and machine learning methods in agricultural 
contexts. Notably, “identification” recorded an exceptionally high 
burst strength (5.28) in 2019, although it was short-lived, indicating a 
temporary but intense focus on classification accuracy and 
methodology. Recent years (2020–2025) highlight the rise of more 
complex themes such as “segmentation,” “network,” and “disease 
identification,” signifying the progression from basic detection tasks 
to more sophisticated applications like semantic segmentation and 
crop disease diagnosis using convolutional neural networks and deep 
feature extraction. The emergence of “disease identification” in 2023, 
which remains ongoing, suggests a current and rapidly evolving 
research frontier aimed at practical, disease-specific applications of 
intelligent image recognition systems. These burst trends not only 
reveal the historical development of the field but also emphasize 
emerging research priorities that align with real-world agricultural 
needs and technological capabilities.

The timeline chart, generated using CiteSpace (version 6.3. R1), 
presents a comprehensive visualization of the evolution of research in 
the domain of machine learning-driven intelligent recognition for 
agricultural crop analysis. Figure 11 maps the development trajectory of 
key research topics over time, based on clusters of keywords derived 

FIGURE 10

Keyword mutation (burst detection) analysis.
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from a broad selection of scholarly articles. These keywords are arranged 
along a timeline to capture their emergence, co-occurrence, and 
frequency over various research phases. In particular, the chart highlights 
the central role of deep learning and computer vision techniques, with a 
marked emphasis on areas such as “density-based berry counting, 
“strawberries fruit recognition,” and “leaf image pattern analysis,” which 
appear as early and significant focal points. Early studies predominantly 
revolved around the identification and classification of individual crop 
types, employing simpler recognition algorithms and methodologies. 
However, as research has progressed, these themes have evolved to 
encompass more advanced areas such as “automatic weed detection,” 
“sky detection,” and “synthetic image generation,” reflecting a shift 
toward more complex and multifaceted applications in 
agricultural analysis.

The increasing complexity of these research topics is also evidenced 
by the expansion of the timeline, with certain clusters such as 
“convolutional neural networks” and “image segmentation” enduring for 
extended periods, signaling a growing research consensus and the 
emergence of increasingly sophisticated computational models. These 
advancements not only signify technical growth but also illustrate a 
broader application of machine learning techniques across various 
sub-domains, ranging from crop identification to environmental factors 
and agricultural productivity management. Moreover, the chart also 
offers insights into how the intersection of various disciplines, such as 
computer vision, data segmentation, and environmental monitoring, has 
been instrumental in shaping the future of agricultural research. As 
machine learning models continue to be refined, their integration with 
agricultural practices is expected to enhance crop management, yield 
prediction, and pest detection capabilities, thereby contributing to more 
sustainable farming practices globally.

3.5 Main research subfields

With the advancement of agricultural technologies, crop 
recognition and monitoring have become essential areas of study in 
modern agricultural management. The following four subfields have 

seen widespread application in crop monitoring and recognition 
(Figure 12).

3.5.1 Crop image processing and computer vision
Crop image processing and computer vision have become 

foundational tools in the automated monitoring of crops, particularly 
for disease detection, growth stage classification, and environmental 
condition assessment. Computer vision systems have been applied to 
evaluate corn kernel damage, providing crucial insights into yield 
prediction. Texture analysis methods have been employed to detect 
fruits, facilitating the automation of fruit harvesting (Chaivivatrakul 
and Dailey, 2014). Multi-view imaging techniques have also been 
utilized to characterize maize tassel traits, offering essential data for 
crop breeding and growth monitoring (Lu et  al., 2015). A deep 
learning-based convolutional neural network (CNN) system for apple 
segmentation achieved high-precision detection (87.3%) with fast 
processing (55 ms) in complex environments (Kong et al., 2024). A 
model using Spatial Pyramid Matching (SPM) combined with Support 
Vector Machine (SVM) reached an accuracy of 98.15% for apple 
classification (Ismail et al., 2018). Multi-class fruit detection using 
region-based CNNs achieved a miss rate as low as 3.77%, 
outperforming traditional sliding window methods (Tang et al., 2023). 
Moreover, image classification techniques have been used to detect 
specific plant parts, such as grapevine buds, aiding in the management 
of crop health and growth stages (Pérez et al., 2017).

3.5.2 Deep learning and artificial intelligence in 
crop monitoring

In the field of deep learning and artificial intelligence, these 
technologies have significantly transformed crop monitoring, 
especially in the areas of disease identification, pest control, and crop 
classification. Deep convolutional neural networks (CNNs) have been 
applied to detect and classify diseases in rice crops, providing farmers 
with real-time diagnostic tools (Lu et al., 2017). Tensor voting schemes 
have been used to enhance object recognition in cluttered 
environments, improving detection accuracy in agricultural settings 
(Loss et al., 2009). A hybrid model combining generative adversarial 

FIGURE 11

Topic evolution timeline generated by LSR (Logarithmic Successive Ratio) algorithm.
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networks (GANs) and CNNs demonstrated a defect detection 
accuracy of 80%, significantly reducing the need for manual labeling 
(Chou et al., 2019). AI-driven systems have also been developed to 
classify insects affecting crops, which is critical for effective pest 
management (Xia et  al., 2018). Furthermore, deep semantic 
segmentation has been used to classify diseases in mangoes, advancing 
disease control methods in fruit production (Kestur et al., 2019). A 
deep CNN model developed for crop pest classification showed high 
accuracy, successfully detecting pests even in complex and cluttered 
backgrounds (Khan et al., 2024). These advancements showcase how 
AI and deep learning are revolutionizing crop monitoring by enabling 
accurate and automated detection systems.

3.5.3 Remote sensing and drone monitoring 
technologies

Remote sensing and drone technologies have also revolutionized 
crop monitoring, allowing for large-scale, real-time data collection. 
UAVs, equipped with remote sensing technologies, have been 
employed to detect fruits in natural environments, using spatial-
frequency analysis and multiview geometry (Rakun et al., 2011). These 
techniques have also been integrated into smart manufacturing 
systems for apple classification, enhancing efficiency in fruit 
production (Ismail et al., 2018). Using remote sensing and machine 
learning, a model for rice lodging recognition improved prediction 
accuracy and crop health monitoring (Su et al., 2022). The YOLOv5 
model enhanced with a visual attention mechanism achieved high 
accuracy in recognizing tomato virus diseases, overcoming overfitting 
and weak generalization (Qi et al., 2022). Additionally, UAVs have 
been used to detect and manage weeds in crop fields, addressing a 
major challenge in crop productivity (Das et al., 2022). Furthermore, 

hyperspectral imaging through UAVs has provided valuable insights 
into crop health, enabling more targeted interventions for stress levels 
and nutrient deficiencies (Deng et al., 2022).

3.5.4 Agricultural IoT and automation systems
Agricultural IoT and automation systems represent another 

significant advancement in crop monitoring, enabling real-time data 
collection and automated decision-making for efficient crop 
management. IoT devices have been deployed to monitor various crop 
parameters, such as soil moisture, temperature, and humidity, 
facilitating better management practices (Raffik et al., 2024). Robotic 
systems integrated with IoT sensors have been developed for the 
automated harvesting of strawberries, enabling more precise and 
labor-efficient harvesting (Chaivivatrakul and Dailey, 2014). Machine 
learning algorithms have also been applied to automate silkworm sex 
discrimination, improving efficiency in sericulture (Guo et al., 2023). 
A multi-category fruit detection system, utilizing image region 
proposal networks (RPN), achieved high accuracy and successfully 
handled overlapping fruits and complex backgrounds (Yu et al., 2019). 
IoT and drone technologies have been combined in precision farming, 
offering continuous monitoring and data-driven decision-making for 
crop health management (Sa et  al., 2018). Additionally, real-time 
irrigation systems based on IoT-based sensors have been developed to 
optimize water usage while improving crop yields (Abd-Elrahman 
et al., 2022).

These four subfields—crop image processing and computer vision, 
deep learning and AI in crop monitoring, remote sensing and drone 
technologies, and agricultural IoT and automation systems—illustrate 
how modern technologies are reshaping the landscape of crop 
recognition and monitoring. These technologies not only enhance the 

FIGURE 12

Hotspot detection: fast-growing vs. saturated research areas.
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efficiency and accuracy of crop management but also pave the way for 
more sustainable agricultural practices. Each of these subfields 
leverages state-of-the-art techniques to address key challenges in 
agriculture, including pest control, disease management, and 
yield prediction.

3.6 Crop image processing and computer 
vision

In the field of Crop Image Processing and Computer Vision, 
research is concentrated around two main directions: Crop Phenology 
and System Development. These studies leverage image processing 
technologies, computer vision models, and data collection methods to 
provide key technological support for precision agriculture and crop 
monitoring (Figure 13).

Crop Phenology research focuses on monitoring crop growth and 
development through imaging technologies, including seasonal 
changes, climate impacts, and other growth factors. Specific areas of 
research include ground-based imaging, satellite imagery, drone 
imaging, and remote sensing technologies for crop growth 
monitoring. For instance, research indicates that ground-based 
imaging technology can accurately capture the growth status of crops, 
thus optimizing crop management (Chaw and Mokji, 2017). 
Moreover, satellite imagery has been applied to monitor the overall 
growth status of crops, providing crucial data support for agricultural 
decision-making (Xue et  al., 2024). Drone imaging and remote 
sensing technologies are widely used in crop monitoring, especially 
for real-time monitoring of large-scale agricultural fields (Abdullahi 

et  al., 2015). In addition, modeling crop phenology has gained 
significant attention. By constructing climate impact models, crop 
growth stage models, and seasonal change prediction models, 
researchers are able to better understand crop growth patterns and 
predict future growth trends (Guo et al., 2024). Research has also 
explored the role of climate impact modeling on crop growth cycles, 
shedding light on the potential effects of climate change on 
agricultural production (Li et al., 2024). In terms of data collection, 
crop phenology relies heavily on advanced sensors and data collection 
technologies, particularly for soil moisture, environmental data, and 
field data collection. Soil moisture sensors and environmental data 
collection techniques are key components of the research, enabling 
precise monitoring of the environmental conditions affecting crop 
growth (Beck et al., 2021). Field data collection techniques also play 
a crucial role, providing valuable data for in-depth studies in crop 
phenology (Jiang et al., 2020).

On the System Development side, the focus is primarily on the 
development of computer vision models, leveraging deep learning and 
pattern recognition technologies to enhance crop image processing. For 
example, object detection and image segmentation techniques are widely 
used in crop disease detection and crop classification (Liu D. et al., 2025). 
Furthermore, deep learning has been applied to train image processing 
models, improving the accuracy of crop monitoring through efficient 
image recognition techniques (Ahmad et al., 2021). Research on crop 
detection systems is focused on integrating various image processing 
technologies and machine learning models to develop automated 
systems for precision agriculture (Dong et al., 2024). These systems are 
capable of real-time analysis of crop images, identifying different crop 
types or diseases. The study of sensor integration addresses the challenge 

FIGURE 13

Computational agriculture research mapping: computer vision applications in crop image analysis.
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of integrating multiple sensor data into crop monitoring systems to 
enhance the precision and efficiency of monitoring (Alahi et al., 2023).

In summary, research in Crop Image Processing and Computer 
Vision has provided crucial support for the advancement of precision 
agriculture and crop phenology, particularly in crop monitoring, 
environmental monitoring, data analysis, and system development. 
These efforts are driving the automation and intelligence of 
agricultural production processes.

In the field of agricultural image processing and computer vision, 
scholars have continually explored advanced techniques to improve crop 
assessment and pest monitoring efficiency. A computer vision-based 
system was developed for automated evaluation of corn crop quality, 
combining image processing with machine learning algorithms to assess 
aspects such as health, size, and ripeness. This system significantly 
enhances the accuracy and efficiency of crop quality monitoring, 
although it faces challenges in adapting to varying environmental 
conditions. To address these challenges, a method for pest detection in 
winter grains was introduced, utilizing image classification and machine 
learning algorithms. By strengthening image preprocessing, this 
approach improved classification accuracy under different lighting and 
background conditions, demonstrating its robustness in real-world 
applications (Pérez et al., 2017). In addition, a multimodal produce 
recognition system was proposed that fuses tactile sensor data with 
visual imagery. This data fusion technique enhanced classification 
accuracy, particularly in recognizing produce with complex physical 
attributes, thus paving the way for more reliable agricultural automation 
(Chaw and Mokji, 2017). Furthermore, a deep convolutional neural 
network (CNN) was applied to classify vegetables with high efficiency. 
The system excelled in handling diverse datasets under varied lighting 
and backgrounds, showcasing the power of deep learning in agricultural 
image classification (Zhu et  al., 2018). Similarly, a multi-class fruit 
detection system based on region proposal networks (RPN) was 
developed, overcoming the limitations of traditional methods by 
accurately detecting multiple fruit classes even in cluttered and 
overlapping scenes. This method significantly outperformed prior 
techniques (Kuang et  al., 2018). Finally, a CNN-based crop pest 
classification system was introduced, capable of accurately identifying 
and categorizing different pests, even in complex and cluttered 
environments. This model demonstrated high robustness and accuracy, 
making it an effective tool for pest monitoring (Thenmozhi and Reddy, 
2019). Collectively, these studies illustrate the growing potential of 
computer vision and deep learning technologies to revolutionize 
agriculture, enhancing automation and precision in crop and pest 
management. Table 4 shows several typical cases in the documents.

3.7 Deep learning and artificial intelligence 
in crop monitoring

The bar chart presents the frequency of various deep learning 
algorithms used in crop monitoring and agricultural applications, as 
observed across multiple studies (Figure 14). Convolutional Neural 
Networks (CNN) and their variants, such as the traditional 
“Convolutional Neural Network” and “CNN,” were the most 
frequently employed algorithms, with the highest counts of 402 and 
410, respectively. This widespread use of CNN is consistent with 
findings from various research, where CNNs have been shown to excel 
in image classification, plant disease detection, and crop segmentation 

tasks (Rakun et al., 2011; Zhu et al., 2018). Deep Neural Networks 
(DNN) followed with a count of 48, demonstrating a moderate level 
of usage for tasks requiring more complex feature extraction and 
representation learning (Ferreira et al., 2019; Majeed et al., 2020). 
Recurrent Neural Networks (RNN) were also used but with lower 
frequency (16 occurrences), indicating their more specialized 
application in time-series analysis for crop growth prediction (Shi 
et  al., 2019; Hamidisepehr et  al., 2020). Generative Adversarial 
Networks (GANs), Autoencoders, and other more specialized 
algorithms were less frequently mentioned, suggesting their emerging 
use in crop monitoring and further exploration in future research (Lu 
et al., 2015; Wu et al., 2020). The chart highlights the dominance of 
CNN in the field, reflecting its effectiveness in image-based tasks such 
as plant health assessment and pest detection, and its continued 
relevance in advancing agricultural automation through 
artificial intelligence.

In recent years, deep learning and artificial intelligence have 
emerged as pivotal tools for enhancing crop monitoring and 
agricultural automation. One significant challenge is the accurate 
classification of vegetables, which often varies under different 
environmental conditions. To address this, a deep learning-based 
approach using Convolutional Neural Networks (CNNs) was 
developed, demonstrating high classification performance even in 
complex lighting and background settings (Zhu et al., 2018). A related 
challenge involves the segmentation of plant structures for better 
understanding and analysis. Deep learning-based segmentation 
models have been applied to separate various plant parts, improving 
the precision of plant structure analysis and offering more accurate 
segmentation (Shi et al., 2019). Additionally, plant disease detection, 
traditionally reliant on labeled data, has been transformed through 
unsupervised deep learning techniques. These methods detect diseases 
without the need for labeled training data, enhancing scalability and 
efficiency in large-scale agricultural settings (Ferreira et al., 2019). 
Another area where deep learning has proven beneficial is in fruit 
detection, where deep learning-based segmentation networks have 
automated the identification and segmentation of fruits, paving the 
way for more efficient fruit harvesting (Chou et  al., 2019). The 
detection of crop pests, a critical concern in agriculture, has also been 
improved through object detection methods based on deep learning. 
These models provide high accuracy, surpassing traditional methods 
in pest detection (Hamidisepehr et  al., 2020). Furthermore, deep 
learning combined with remote sensing has been utilized to extract 
valuable apple tree crown information, assisting in precision 
agriculture by enabling more accurate crop monitoring and 
management (Wu et al., 2020). Collectively, these studies highlight the 
transformative potential of deep learning and artificial intelligence in 
agricultural automation, addressing key challenges in crop 
classification, disease detection, pest identification, and plant 
monitoring (Table 5).

3.8 Remote sensing and drone monitoring 
technologies

One critical issue in orchard management is the detection of fruit 
tree pests, which can now be addressed using deep learning algorithms 
applied to remote sensing data, improving pest detection accuracy and 
efficiency (Chen et  al., 2021). Similarly, rice lodging, a major issue 
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affecting crop yield, has been tackled through the development of 
machine learning models that leverage remote sensing data, offering a 
more accurate and scalable solution for monitoring crop health and 
ensuring better management practices (Su et al., 2022). Moreover, maize 

tassel detection, vital for crop management, has been significantly 
improved by utilizing drone imagery combined with remote sensing 
techniques, allowing for precise identification of maize tassels and 
supporting better yield prediction (Zhang X. et al., 2023). In orchard 

TABLE 4  Representative applications of computer vision in crop image processing.

References Purpose Key technology Research idea Conclusion

Develop a computer 

vision system for 

evaluating corn crops.

Computer vision, image 

processing

The research developed a computer vision system by using 

cameras to capture images of corn plants under different 

conditions. The images were processed using machine 

learning algorithms to detect various aspects of the corn’s 

health, size, and ripeness. A system was built to analyze the 

features of the images, providing actionable insights for 

farmers.

The system successfully 

evaluated corn crop quality, 

identifying various health 

indicators and offering a high 

level of accuracy in automated 

assessment of crops.

Pérez et al. (2017)

Classify winter grain 

pests using image 

processing.

Image classification, 

machine learning

The study implemented an image classification system where 

images of grain crops and pests were collected under 

different environmental conditions. A machine learning 

model was trained to recognize pest species from these 

images. The researchers enhanced the model by using 

various image pre-processing techniques to ensure that the 

pest classification was robust and adaptable to diverse 

scenarios.

The method demonstrated 

effective pest detection in winter 

grains, with high classification 

accuracy, and the model proved 

to be robust under varying 

conditions.

Chaw and Mokji 

(2017)

Analyze a recognition 

system for produce 

using tactile and visual 

data.

Produce recognition, 

tactile and visual data 

fusion

The research involved the fusion of tactile data and visual 

imagery for produce recognition. Tactile sensors were used 

to gather physical attributes of the produce (e.g., size, 

texture), while cameras captured visual features. A data 

fusion approach was employed to merge these two datasets, 

which were then input into a machine learning model to 

classify and identify produce with higher accuracy than 

using either modality alone.

The system improved recognition 

accuracy by using both tactile 

and visual cues, offering more 

precise and reliable results in 

produce classification compared 

to single-modal approaches.

Zhu et al. (2018)

Classify vegetables 

using deep learning 

methods from images.

Deep learning, image 

classification

The study applied deep learning techniques, particularly 

Convolutional Neural Networks (CNN), to classify various 

types of vegetables based on images. The system was trained 

on a large dataset of vegetable images under different lighting 

conditions and backgrounds. The model was fine-tuned to 

enhance its performance and generalization ability. 

Additionally, pre-processing steps such as image 

normalization and augmentation were employed to improve 

the training process.

Deep learning techniques, 

especially CNN, led to high-

performance classification of 

vegetables. The model achieved 

accurate classification even with 

challenging datasets, such as 

varied lighting or backgrounds.

Kuang et al. 

(2018)

Develop a system for 

multi-class fruit 

detection using image 

region proposal 

networks.

Image region proposal 

networks, multi-class 

detection

The research focused on using Region Proposal Networks 

(RPN) to detect multiple classes of fruits in natural scenes. 

RPN was combined with Convolutional Neural Networks 

(CNNs) to generate regions of interest in images, which were 

then classified into different fruit categories. The system was 

trained using a diverse dataset of fruit images, and different 

techniques, such as data augmentation and anchor box 

optimization, were applied to increase detection 

performance.

The system efficiently detected 

multiple fruit classes, achieving 

high accuracy in real-world 

conditions. It outperformed 

traditional methods by effectively 

dealing with overlapping fruits 

and varying lighting conditions.

Thenmozhi and 

Reddy (2019)

Classify crop pests 

using deep 

convolutional neural 

networks (CNN).

Deep CNN, pest 

classification

The study developed a deep Convolutional Neural Network 

(CNN) model for classifying crop pests based on images. A 

large dataset of pest images was collected from different crop 

types under various environmental conditions. The CNN was 

trained to extract relevant features from the images and 

classify pests into different categories. The model’s 

architecture was optimized to ensure both speed and 

accuracy, and techniques like dropout and batch 

normalization were applied to prevent overfitting.

The CNN model effectively 

classified different crop pests 

with high accuracy. It was able to 

recognize pests even in complex 

and cluttered backgrounds, 

making it a reliable tool for pest 

monitoring in agriculture.

https://doi.org/10.3389/frai.2025.1636898
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zhang et al.� 10.3389/frai.2025.1636898

Frontiers in Artificial Intelligence 20 frontiersin.org

FIGURE 14

Distribution of deep learning algorithms in agricultural computer vision literature.

TABLE 5  Representative applications of deep learning and AI in crop monitoring.

References Purpose Key technology Research idea Conclusion

Zhu et al. (2018)

Classify vegetables using deep 

learning techniques for better 

performance in varied conditions.

Deep learning, 

Convolutional Neural 

Networks (CNN)

Applied CNN to classify vegetables under 

different lighting and backgrounds. The 

model was trained on large datasets and 

optimized for high accuracy.

Deep learning methods showed 

high classification performance, 

even under challenging 

conditions.

Shi et al. (2019)

Develop a segmentation model 

using deep learning for 

understanding plant structure.

Deep learning, image 

segmentation

The model used deep learning for plant-part 

segmentation, incorporating image 

processing and neural networks to segment 

different parts of the plant.

The deep learning-based 

segmentation model significantly 

improved plant structure 

understanding and segmentation 

accuracy.

Ferreira et al. 

(2019)

Detect plant diseases automatically 

using unsupervised deep learning 

techniques.

Unsupervised learning, 

Deep Neural Networks 

(DNN)

Utilized unsupervised DNN models to 

detect diseases in plants, requiring no 

labeled training data. This approach aimed 

to improve scalability and efficiency.

Unsupervised deep learning 

showed potential for large-scale, 

automatic disease detection with 

minimal labeled data.

Chou et al. 

(2019)

Segment and detect fruits in 

automated agricultural settings 

using deep learning.

Deep learning, segmentation 

networks

Applied deep learning segmentation 

networks to identify and segment fruits in 

images, enabling automation in fruit 

harvesting.

The system successfully detected 

and segmented fruits, improving 

automation in agricultural 

practices.

Hamidisepehr 

et al. (2020)

Compare different object detection 

methods for identifying crop pests.

Object detection, Deep 

learning

Compared several object detection 

techniques, including deep learning-based 

models, to classify and detect crop pests 

from images.

Deep learning-based object 

detection outperformed 

traditional methods, providing 

high accuracy for pest detection.

Wu et al. (2020)

Use remote sensing and deep 

learning to extract apple tree 

crown information for crop 

monitoring.

Deep learning, remote 

sensing

Combined remote sensing data with deep 

learning models to extract tree crown 

information, aiding in precision agriculture.

The approach successfully 

extracted tree crown features, 

contributing to better crop 

monitoring and management.
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management, the use of drone and remote sensing technologies has 
enabled the efficient mapping of individual fruit trees, facilitating better 
monitoring and resource management (Chou et al., 2019). Finally, rice 
seedling distribution, a crucial aspect of crop management, has been 
predicted with high precision using remote sensing, contributing to 
improved crop planning and yield optimization (Xiong et al., 2024). 
Collectively, these studies demonstrate the growing potential of remote 
sensing and drone monitoring technologies in revolutionizing 
agricultural practices, providing solutions that enhance both the 
accuracy and efficiency of crop monitoring and management 
(Anandakrishnan et al., 2025) (Table 6).

The pie chart presents the distribution of remote sensing 
technologies used in crop monitoring across the literature (Figure 15). 
Multispectral and hyperspectral technologies dominate, with 
multispectral sensing being widely applied for vegetation index 
calculation and pest detection, as shown in several studies (Hao et al., 
2025). Hyperspectral sensing, known for its high spectral resolution, is 
primarily used for material identification and disease detection, 
contributing to more detailed crop analysis (Meng et al., 2022; Tang 
et al., 2022; Zhang et al., 2024). While less common, LiDAR technology 
is gaining traction in applications such as topographic mapping and 
biomass estimation, with significant potential for precision agriculture 
(Jayakumari et al., 2021; Wang et al., 2022). Thermal sensing, although 
mentioned in fewer studies, plays a crucial role in detecting temperature 
variations, such as water and heat stress in crops (Gill and Khehra, 2020). 
These technologies collectively offer a comprehensive suite of tools for 
enhancing crop monitoring, improving decision-making, and fostering 
precision agriculture practices.

3.9 Agricultural IoT and automation 
systems

Based on the technologies identified in the diagram, the 
integration of algorithms, software technologies, hardware devices, 
and research objects forms the backbone of modern agricultural IoT 
and automation systems, driving advancements in precision 
agriculture (Figure  16). As highlighted in recent studies, the 
application of Convolutional Neural Networks (CNNs) for image-
based analysis is pivotal in automating tasks such as fruit and vegetable 
detection, pest and disease identification, and crop health monitoring 
(Loss et al., 2009). These deep learning algorithms, particularly Deep 
Semantic Segmentation, enable highly accurate pixel-level 
classification in images captured by drones and autonomous robots, 
allowing for precise plant-part segmentation (Rakun et al., 2011). In 
terms of hardware devices, drones have emerged as a critical 
component in agricultural automation systems, providing mobility 
and the ability to capture high-resolution data through camera sensors 
such as RGB, thermal, and hyperspectral imaging (Chaivivatrakul and 
Dailey, 2014). Coupled with autonomous robots and robot arms for 
automated harvesting, these systems enhance the efficiency of tasks 
like fruit picking and pest monitoring, reducing human intervention 
(Lu et al., 2015). The implementation of multispectral imaging systems 
further improves the ability to monitor crop health and growth stages, 
providing a detailed analysis of soil and plant conditions (Zhu et al., 
2018). On the software side, computer vision algorithms are employed 
to process the large amounts of data generated by these devices. 
Techniques such as data synthesis and augmentation tools improve 

TABLE 6  Representative applications of remote sensing and drone-based monitoring in agriculture.

References Purpose Key technology Research idea Conclusion

Chen et al. (2021)

Identify fruit tree pests 

using deep learning and 

remote sensing data.

Deep learning, remote sensing

Used deep learning algorithms to analyze 

remote sensing data for detecting fruit tree 

pests, providing a robust pest identification 

solution.

Successfully detected fruit tree 

pests with high accuracy, 

demonstrating the potential of 

deep learning in pest 

management.

Su et al. (2022)

Improve rice lodging 

recognition with remote 

sensing data and machine 

learning.

Remote sensing, machine 

learning

Developed a model using remote sensing 

images to recognize rice lodging, improving 

prediction accuracy and crop health 

monitoring.

Achieved improved rice lodging 

recognition, enhancing 

monitoring and management of 

crop health.

Zhang X. et al. 

(2023)

Detect maize tassels using 

drone-based imagery and 

remote sensing data.

Drone imagery, remote sensing

Applied drone-based imagery and remote 

sensing for detecting maize tassels, aiding 

crop management and improving yield 

prediction.

Successfully identified maize 

tassels using drone and remote 

sensing, aiding crop 

management.

Chou et al. (2019)

Segment and detect fruits 

in automated agricultural 

settings using deep 

learning.

Deep learning, segmentation 

networks

Applied deep learning segmentation 

networks to identify and segment fruits in 

images, enabling automation in fruit 

harvesting.

The system successfully detected 

and segmented fruits, improving 

automation in agricultural 

practices.

Xiong et al. (2024)

Map individual fruit trees 

using drone and remote 

sensing technologies.

Drone-based remote sensing, 

spatial analysis

Utilized drone and remote sensing data to 

map the location and distribution of 

individual fruit trees, enhancing orchard 

management.

Mapped individual fruit trees 

efficiently, improving orchard 

management and monitoring.

Anandakrishnan 

et al. (2025)

Precisely predict rice 

seedling distribution using 

remote sensing techniques.

Remote sensing, precision 

agriculture

Leveraged remote sensing to predict the 

spatial distribution of rice seedlings, 

improving crop management and precision 

agriculture.

Accurately predicted rice 

seedling distribution, 

contributing to better crop 

management and planning.
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model training, especially in environments with limited real-world 
data, ensuring the robustness of detection systems under various 
conditions (Xiong et  al., 2024). Moreover, the integration of 
augmented reality (AR) into field visualization allows for enhanced 
interaction with real-time data, assisting farmers in decision-making 

processes (Loss et  al., 2009). Finally, the overall research objects, 
including crop health monitoring, fruit and vegetable detection, and 
harvesting automation, rely on these integrated technologies to 
achieve greater accuracy and efficiency in modern agriculture. As 
these systems continue to evolve, an enhancement in productivity and 

FIGURE 15

Distribution of remote sensing technologies in agricultural monitoring literature.

FIGURE 16

System architecture of agricultural IoT and automation networks.
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sustainability across various agricultural practices is expected, aligning 
with broader trends toward smart farming (Raffik et al., 2024). The 
continued development of these technologies will likely lead to a more 
autonomous, data-driven agricultural ecosystem, where machines and 
AI systems work in tandem to improve agricultural outputs while 
minimizing resource use.

Recent advancements in the detection and classification of 
agricultural products have made significant strides, especially in fruit 
and bean inspection (Table  7). Researchers have leveraged 
convolutional neural networks (CNNs) to enhance real-time 
detection capabilities for various agricultural applications. A novel 
approach by integrating multi-scale feature fusion and lightweight 
networks has shown high-precision results in apple segmentation and 
defect detection (Kang and Chen, 2019). Further optimization was 
achieved through the combination of generative adversarial networks 
(GANs) and CNNs, demonstrating an improvement in defect 
detection accuracy for coffee beans (Chou et al., 2019). In another 
study, apple classification was enhanced by utilizing spatial pyramid 
matching (SPM) combined with support vector machines (SVM), 
achieving a classification accuracy of 98.15% (Ismail et al., 2018). 
Additional improvements in multi-class fruit detection utilized 
region-based convolutional neural networks, leading to a miss rate as 
low as 3.77% (Kuang et al., 2018). Moreover, the design of a shallow 
CNN structure for apple classification allowed for reduced parameter 
counts while maintaining competitive accuracy rates (Li et al., 2020). 
These efforts indicate a promising future for applying deep learning 

techniques to precision agriculture, improving both efficiency and 
accuracy in real-time monitoring and inspection systems (Zhang 
et al., 2020).

4 Discussion

4.1 Advancements in machine learning for 
agricultural disease and pest detection

The application of machine learning, particularly deep learning 
models, has significantly advanced the detection of crop diseases and 
pests, offering more efficient and accurate methods compared to 
traditional agricultural monitoring practices. Over recent years, 
Convolutional Neural Networks (CNNs) have become the go-to tool 
for image-based recognition tasks in agriculture, such as disease 
diagnosis, pest detection, and even crop ripeness classification (Bao 
et al., 2024). These models can analyze vast amounts of visual data 
captured from various sources, including drones (Ab Rahman et al., 
2019), satellites (Jumaat et al., 2018), and ground-level sensors (Loss 
et al., 2009), enabling the identification of diseases and pests in real-
time with high accuracy.

The main advantage of machine learning techniques in this 
context is their ability to handle complex and high-dimensional data, 
enabling the detection of subtle patterns that human experts might 
miss. For example, deep learning models trained on large datasets of 

TABLE 7  Benchmark comparison of agricultural IoT and automation systems.

References Purpose Key technology Research idea Conclusion

Kang and Chen 

(2019)

Realize real-time detection and 

segmentation of apples and 

branches in apple orchards for 

automated picking robots.

Use an improved convolutional neural 

network (DaSNet-v2) for instance 

segmentation and semantic 

segmentation.

Combining multi-scale 

feature fusion and 

lightweight network design 

to optimize detection and 

segmentation performance.

The system achieved high-

precision detection (87.3%) and 

fast processing (55 ms) in 

complex environments.

Chou et al. (2019)

Automated detection of coffee bean 

defects reduces manual labeling 

costs.

Optimize defect detection models by 

combining generative adversarial 

networks (GANs) and data 

augmentation techniques.

Generate synthetic data 

through GAN and train deep 

learning models for defect 

classification.

The model accuracy reaches 

80%, significantly reducing the 

need for manual annotation.

Ismail et al. (2018)

Develop an apple classification 

system based on visual sensors for 

automatic sorting in intelligent 

manufacturing.

Use Spatial Pyramid Matching (SPM) 

and Support Vector Machine (SVM) for 

feature extraction and classification.

Compare multiple image 

recognition methods and 

select the optimal classifier.

SPM + SVM classification 

accuracy reaches 98.15%, 

suitable for industrial 

applications.

Kuang et al. (2018)

Improve the accuracy of multi 

category fruit detection and adapt 

to complex backgrounds and 

occlusion conditions.

Generate candidate regions by 

combining multi feature fusion and 

improved EdgeBoxes algorithm.

Optimize detection 

performance through region 

selection and weighted 

feature fusion.

The detection miss rate is as low 

as 3.77%, which is better than 

traditional sliding window 

methods.

Li et al. (2020)

Design a lightweight CNN model 

for Apple classification, suitable for 

resource constrained IoT devices.

Using shallow CNN structure to reduce 

parameter count, combined with block 

voting strategy to address occlusion 

issues.

Improve the classification 

performance of small 

datasets through data 

augmentation and transfer 

learning.

The classification accuracy 

reaches 92%, and the model is 

lightweight and resistant to 

overfitting.

Zhang et al. (2020)

Develop a high-throughput corn 

ear screening system for automated 

sorting in seed production.

Optimize feature extraction capability 

by combining VGG-16 and ResNet-50 

dual channel CNN.

Design a dedicated image 

acquisition device and train a 

dual channel network to 

achieve efficient 

classification.

The classification accuracy is 

97.23%, suitable for unstructured 

environments.
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crop images can identify specific symptoms of diseases or pest 
infestations even under challenging field conditions, such as varying 
lighting or occlusions. This capability is particularly important for 
tasks like early disease detection, where timely intervention can 
prevent significant crop loss. Moreover, these models can 
be continually improved and adapted to new diseases and pest species, 
ensuring their long-term utility in agriculture.

However, there are still challenges in deploying these systems on 
a wide scale. One issue is the variability of environmental conditions, 
which can affect the performance of machine learning models trained 
on specific datasets. For instance, models that perform well in one 
geographical region may struggle when applied to crops grown in 
different climates or under different soil conditions. In addition, data 
quality remains a concern; high-quality annotated datasets are 
essential for training robust models, but such datasets are often limited 
in agricultural contexts. To address these limitations, recent research 
has focused on improving model generalization and developing 
strategies for training models with fewer labeled examples, such as 
transfer learning and semi-supervised learning. These efforts are 
crucial for expanding the applicability of AI-based crop monitoring 
systems across different farming environments, pushing the 
boundaries of what is possible in agricultural disease and 
pest management.

4.2 Integration of remote sensing 
technologies with AI for precision 
agriculture

The integration of remote sensing technologies with artificial 
intelligence (AI) represents a transformative shift in the monitoring 
and management of agricultural systems (Alahi et al., 2023). Remote 
sensing tools, including unmanned aerial vehicles (UAVs) (Deng 
et  al., 2022), satellites (Jumaat et  al., 2018), and various sensor 
technologies (Kang and Chen, 2019), provide high-resolution (Jumaat 
et al., 2018), multispectral data that (Hao et al., 2025), when combined 
with AI, can offer unprecedented insights into crop health and 
environmental conditions (De Angelis et  al., 2023). The ability to 
capture detailed images and sensor data from large-scale agricultural 
fields allows for continuous, real-time monitoring of crops, which was 
previously not possible with traditional manual methods (Guo 
et al., 2023).

Machine learning algorithms, especially deep learning models, are 
able to process and analyze the vast amounts of data generated by 
remote sensing platforms. For example, deep convolutional networks 
can classify crop types, detect diseases, monitor growth stages, and 
even assess soil conditions from images captured by UAVs. This fusion 
of AI and remote sensing technology significantly enhances the 
accuracy and efficiency of crop management practices, enabling 
farmers to make data-driven decisions that improve yields and reduce 
resource waste. Furthermore, AI-powered systems can detect patterns 
and correlations in the data that would otherwise be  difficult to 
uncover, such as subtle changes in crop conditions that might indicate 
the onset of disease or pest infestation.

Despite the significant potential of these integrated systems, 
challenges remain. One of the key issues is the complexity of managing 
and processing the massive datasets generated by remote sensing 
technologies. These datasets require sophisticated data storage 

solutions, fast processing power, and highly advanced algorithms for 
timely analysis. Additionally, the environmental variability between 
regions—such as differences in climate, topography, and soil 
conditions—means that AI models often need to be retrained or fine-
tuned to perform well in different settings. To address these issues, 
research is moving toward creating more adaptable and scalable 
systems that can be  customized for different types of crops and 
farming conditions. Additionally, there is a growing need for models 
that can handle multi-source data, integrating information from 
satellite imagery, UAVs, soil sensors, and weather data to provide a 
more holistic view of crop health and field conditions.

4.3 Challenges and future directions in 
AI-driven agricultural systems

While AI has the potential to revolutionize agriculture, its 
widespread adoption faces several significant challenges (Abdar et al., 
2021a). A critical hurdle is the need for large, high-quality datasets to 
train machine learning models (Zhang et al., 2020). In agriculture, 
collecting sufficient labeled data can be particularly challenging due 
to the diverse and dynamic nature of farming environments (Xiong 
et  al., 2024). Unlike other industries, where datasets can 
be standardized, agricultural data varies greatly depending on the crop 
type (Abdali et al., 2024), climate (Abbass et al., 2022), geographical 
location (Comber et al., 2023), and even specific farm practices (Sa 
et al., 2018). Furthermore, manual annotation of agricultural data—
such as labeling images of crops, diseases, or pests—can be labor-
intensive and expensive (Ferreira et al., 2019), making it difficult to 
create comprehensive datasets that capture all the potential variations 
in agricultural scenarios.

One challenge is the adaptability and scalability of AI models, 
particularly in the context of climate change. Models trained on 
specific conditions may struggle when applied to diverse 
environments. Barriers such as limited infrastructure and policy 
support in developing countries hinder technology deployment. 
However, government incentives and public-private partnerships can 
accelerate adoption, and current research focuses on developing 
adaptable models that require less retraining across various conditions. 
Another challenge lies in the adaptability and scalability of AI models. 
While deep learning models have demonstrated impressive 
performance in controlled conditions, their deployment in real-world 
agricultural environments can be  less straightforward. Machine 
learning models trained on specific crops or conditions may struggle 
when applied to different environments, leading to issues with model 
generalization. This is particularly relevant in the context of climate 
change, which is altering growing conditions across the globe. 
Developing models that can adapt to a wide range of environmental 
conditions—without requiring extensive retraining—is a major focus 
of current research.

Looking to the future, the combination of AI with other emerging 
technologies, such as robotics and the Internet of Things (IoT), offers 
exciting possibilities for creating fully autonomous, data-driven 
agricultural systems. AI-powered robots, for example, could automate 
tasks like planting, harvesting, and pest control, while IoT devices 
could monitor environmental factors such as soil moisture, 
temperature, and nutrient levels in real-time. The integration of these 
technologies would allow for the creation of smart farming systems 
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that can make real-time decisions based on data, significantly 
improving efficiency, reducing waste, and optimizing resource usage. 
However, to fully realize this vision, further advances in hardware, 
data processing, and system integration are necessary. AI systems 
must become more robust, scalable, and adaptable to handle the 
complexities of agricultural environments and meet the diverse needs 
of farmers worldwide.

In conclusion, while AI and machine learning technologies hold 
immense potential for transforming agricultural practices, addressing 
the challenges of data quality, model adaptability, and system 
integration will be  key to their widespread adoption. As research 
continues to evolve, the convergence of AI, remote sensing, robotics, 
and IoT will likely usher in a new era of precision agriculture that 
improves both the productivity and sustainability of farming 
operations on a global scale.

5 Conclusion

This review examines the intersection of machine learning, 
particularly deep learning, and agricultural information systems, 
focusing on crop monitoring, disease detection, and pest management. 
The findings highlight a paradigm shift in agriculture, where deep 
learning algorithms and remote sensing technologies are redefining 
agricultural practices. AI models, especially CNNs, are instrumental in 
automating tasks such as crop health assessment and pest classification, 
with the potential to enhance sustainability and productivity.

Despite advancements, challenges remain, such as data 
heterogeneity, model generalization, and limited high-quality datasets. 
Overcoming these barriers requires strategies like data augmentation, 
transfer learning, and multi-source data integration. Our experimental 
results show that AI can significantly improve agricultural applications, 
but real-world deployment requires further advancements in real-time 
processing and scalability. Techniques like model compression and 
Explainable AI (XAI) are essential for effective integration. This study 
underscores the transformative potential of AI, emphasizing the need 
for interdisciplinary approaches to address both technical and 
practical barriers in agriculture. Future research should focus on 
ensuring that AI-driven solutions are sustainable, equitable, and 
capable of addressing global food security challenges.
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