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With the adoption of machine learning models in various practical domains,
there is a growing need for evaluating and increasing model robustness.
Hyperdimensional computing (HDC) is a neurosymbolic computational
paradigm that represents symbols as high dimensional vectors and symbolic
operations as vector operations, seamlessly interfacing between neuro- and
symbolic components of a model. However, there is a notable gap in HDC
research regarding the robustness of HDC models to input perturbations. This
study presents a novel theoretical framework tailored to evaluate the robustness
of hyperdimensional classifiers against perturbations in the input space. In
particular, our proposed measure of robustness gives a theoretical upper bound
for the magnitude of noise a model can tolerate without changing its prediction
for any given data point. We also propose a method to enhance the robustness
of the model based on our proposed measure of robustness. Our approach
introduces several methods to calculate model robustness as a function of
the specific dataset and type of hyperdimensional encoding used. The results
show that the average robustness of HDC models increases under the proposed
optimization scheme while maintaining accuracy by varying the variance of the
Gaussian distribution used to encode hypervectors. The practical effectiveness
of our proposed measure of robustness is also demonstrated.

KEYWORDS

hyperdimensional computing, vector symbolic architectures, robustness, adversarial
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1 Introduction

With the adoption of machine learning models in various practical domains, there is
a growing need for methods that evaluate and increase model robustness, as models may
be susceptible to noise, whether in the model representation or in the model input, due to
various reasons such as adversarial attacks or a noisy environment or hardware. For this
reason, there has been a plethora of empirical and theoretical studies on the robustness of
deep learning models (Cisse et al., 2017; Wong and Kolter, 2018a; Raghunathan et al., 2018;
Cohen et al., 2019; Wong and Kolter, 2018b; Zhang et al., 2019).

However, deep learning methods remain difficult to interpret and have difficulty
performing symbolic reasoning. Neurosymbolic methods address these gaps by integrating
neural networks with a symbolic component. Hyperdimensional computing (HDC)
has emerged as a promising neurosymbolic computational paradigm, capable of both
machine learning and cognitive reasoning tasks. In HDC, symbols are represented as
high-dimensional vectors called hypervectors. Symbolic operations thus correspond to
vector operations such as bundling and binding. The vector representation of symbols in
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HDC provides a natural interface with deep networks. As
summarized in Figure I, HDC encodes data as hypervectors
(Figure 1A) and manipulates them with symbolic operations such
as bundling and binding (Figure 1B), yielding models that are
robust and interpretable (Figure 1C).

HDC has been successfully applied to a variety of machine
learning tasks, including classification and regression, and has
shown to have performance comparable to neural networks on
simple tasks while achieving higher noise tolerance to perturbations
in model representations, higher transparency, lower power
consumption, and intrinsic one- or few-shot learning capabilities
(Kleyko et al., 2023; Kymn et al., 2024; Herndndez-Cano et al., 2021;
Poduval etal., 2022; Yeung et al., 2025). Despite the success of HDC
in machine learning tasks, most work in applying HDC to machine
learning has focused on model performance in terms of accuracy
metrics. While there have been theoretical studies on the robustness
of HDC models to noise in hyperdimensional space (Thomas et al.,
2022), there is a lack of theoretical work on that in the input space.

This study aims to fill this gap by providing theoretically
supported robustness measures in HDC classifiers. In particular, in
this work, we focus on the robustness of a model to perturbations
on the input space. To this end, we use a Lipschitz-based approach
to derive robustness estimates for HDC classifiers. Our work
provides a first-of-its-kind theoretical framework for evaluating
model robustness to input perturbations in HDC and a novel
method for learning encodings that are more robust. Our results
demonstrate that our method can be used effectively to derive
robustness estimates for HDC classifiers and that our method for
learning more robust encodings can improve the robustness of
these models. This study makes several key contributions: (1) We
propose a first-of-its-kind method that characterizes theoretical
per-point robustness for HDC classifiers based on Lipschitz
continuity; (2) We introduce two methods for estimating the
Lipschitz constant, with one that gives more liberal estimates and
another that gives more conservative estimates; (3) We provide a
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general framework for learning a robust encoding based on the
estimates of robustness we have derived.

2 Related work

In the deep neural network (DNN) literature, there is a body of
work that explores the kind of robustness we are concerned with in
this study, i.e., the robustness of classifiers to input perturbations
from an adversarial perspective (Cisse et al., 2017; Wong and
Kolter, 2018a; Raghunathan et al., 2018; Cohen et al., 2019; Wong
and Kolter, 2018b; Zhang et al., 2019). In particular, multiple studies
have explored the certified robustness of classifiers, which provides
theoretical estimates for the robustness of DNNs to norm-bounded
perturbations in the input. Cisse et al. (2017) give an upper bound
for the generalization bound on the loss function that accounts for
adversarial examples with perturbations up to a given magnitude in
terms of the Lipschitz constant of the neural network and proposes
Parseval regularization, which constrains the Lipschitz constant of
each hidden layer to be less than one, to increase the robustness of
the DNN.

In the HDC literature,
investigating the robustness of HDC models to perturbations in

there have been more studies

some parts of the model representation (Thomas et al., 2022;
Zhang et al., 2021; Rahimi et al., 2016; Matsui et al., 2023). Zhang
et al. (2021) explore the robustness of HDC models to errors
in associative memory by injecting errors into class hypervector
representations and measuring the degradation of model accuracy.
Thomas et al. (2022) give HDC a theoretical treatment and explore
the robustness of HDC models to perturbations in hyperspace for
decoding and learning tasks but do not provide a treatment for
perturbations in the input space.

To the best of our knowledge, our work is the first of its
kind to investigate the theoretical robustness of HDC classifiers
to perturbations in the input space. At a high level, it is inspired
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HDC encodes data and symbols as hypervectors (A) which can be manipulated using vector operations in a symbolic manner (B), providing

robustness and interpretability (C).
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by works in certified defenses in DNNs but is explicitly catered to
HDC, using HDC theory in the analysis.

3 Background

HDC, also known as vector symbolic architecture, is a
computing framework based on properties of high dimensional
vectors. The fundamental unit in HDC is a high dimensional
vector, also called a hypervector. A hypervector H lives in some
hyperspace H, e.g., RP for D large, and, together with some
operations in hyperspace, form an algebra over vectors. Generally,
there are two types of hypervectors: (1) base hypervectors,
which are generated stochastically, e.g, H ~ N(0,I); and
(2) composite hypervectors, which are created by combining
hypervectors using a variety of operations. These hypervectors
can be compared via a similarity operation 8(#;,7H;). In this
work, we are mainly concerned with the inner product as a
similarity measure. Generally, basic hypervectors are generated to
be mutually dissimilar; i.e., quasi-orthogonal.

The three main operations in HDC, namely, bundling, binding,
and permutation, can be characterized by how it affects the
similarity of hypervectors. Bundling, denoted as +, is typically
implemented as element-wise addition. If # = H; + H», then
both H; and H, are similar to . From a cognitive perspective,
it can be interpreted as memorization. Binding, denoted as ,
is typically implemented as element-wise multiplication. If H =
Hi * Hy, then H is dissimilar to both H; and #,. Binding also
has the important property of similarity preservation in the sense
that for some hypervector V, §(V % Hi,V * Hz) = 8(Hi, Ha).
From a cognitive perspective, it can be interpreted as association.
Permutation, denoted as p, is typically implemented as a rotation of
vector elements. Generally, §(o(#), ) =~ 0. Permutation is usually
used to encode order in sequences.

It is important to note that the description above of
HDC is general; there are various specific realizations of HDC
with the above properties. The HDC framework gives several
benefits, including robustness to noise in hyperspace, transparency,
and parallelization.

3.1 Hyperdimensional learning

In this subsection, we discuss learning in HDC, focusing on
classification. To adapt HDC to the task of learning from some
dataset D C U, where U is the input space, we must define an
encoding ¢ : U — H that preserves some notion of similarity in
the input space. Thus, given some input x,y € U, ¢(x),d(y) are
their corresponding hypervector, and ¢(x) is similar to ¢(y) if and
only if x is similar to y.

Suppose our dataset D consists of m classes Cy, Cy, ..., Ciys
where C; = {xgi),xg), ...,xg\i,z} for 1 < i < m. Based on these
classes, We can define a class hypervector ¢(C;)* for 1 < i < m.
A simple way to form a class hypervector is to simply bundle all
hypervectors corresponding to elements in the class; i.e., ¢(C;) =
> xec, @(x) for 1 < i < m. There are various other ways of forming

1 Note that we are overloading our notation here, as C; ¢ U.
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class hypervectors which have the general form of a weighted sum
¢(Ci) = ZkN’zl )/k(i)¢(x](:)), where yk(i) € Rforalll < k < Nj, for all
1<i<m.

Given some g € U that we wish to classify, we compare
the similarity between its corresponding hypervector ¢(q) and
all class hypervectors ¢(C1),#(Cz),....»(Cp). The class whose
corresponding class hypervector has the highest similarity to ¢(g)
is designated as the predicted class for q. Thus, the encoding
scheme ¢, dataset D, method of aggregating class hypervectors,
and similarity measure (-, -), together define a classification model
based on HDC.

4 Estimating hyperdimensional
robustness

4.1 Preliminary concepts and definitions

Before we discuss the robustness of such models, we first
introduce the Random Fourier Feature (RFF) Rahimi and Recht
(2007) encoding ¢ which is generally useful in the context of
learning in HDC as it is an approximation of kernel methods.
The RFF encoding is a map ¢ :R" — CP, with P(x) = eMx,
where each row M;. ~ p for some distribution p. As noted in
the supplements, HDC is a general computation framework with
various implementations. In this case, the resulting hypervectors
mapped to by the RFF encoding operate under the Fourier
Holographic Reduced Representation (FHRR) model of HDC, as
FHRR base hypervectors are of the form ¢ where 0 is a column
vector such that 6; ~ p. Thus, using the language of HDC defined
in the supplements, assuming each entry M;; ~ p, we may also
represent the mapping as ¢(x) = H]' * H5* * ... x Hy", where
H; = e™:i is an FHRR base hypervector and M. ; is the i-th column
of M. The similarity measure we use is the real component of the
inner product defined on CP which we denote as (Pp(x), p(y)) =
9{[¢(x)T¢(y)*], where ¢(y)* is the complex conjugate of ¢(y).
Rahimi and Recht (2007) show, following from Bochner’s theorem,
that (¢(x), ¢(y))/D ~ k(x — y), where k is a shift-invariant kernel
that is the Fourier transform of distribution p.

Next, before presenting our methods of estimating a model’s
robustness, we must precisely define what it means.

Definition 1 ((€, g)-Robustness). A classifier f is (€, q)-robust if
f(@ = f(q + o) for all ® such that ||| < €. Alternatively, to

denote the dependence of € on g, we write ;.

Note that our definition of (€, q)-robustness is given with
respect to some choice of norm || - .

The concept of (¢, g)-robustness is a notion of robustness that
is per data point. It is easy to see that €, is the shortest distance from
q to a decision boundary of f in the norm of choice. However, there
are several practical considerations we have to make:

1. For even input spaces of moderately high dimensions,
computing €, is in general infeasible.

2. In practice, we do not care about the robustness of a model for
a single data point. Instead, we care about the robustness of a
model for a dataset.

frontiersin.org
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To address point 1, we will estimate ¢; using tractable
methods. As we shall see in later subsections, there are various
ways of estimating €, that have various levels of complexity and
conservativeness. To address point 2, during the evaluation of our
methods, rather than considering €; on a point-by-point basis, we
will instead consider E,p[ex], where D is the dataset distribution.

In the following subsections, for simplicity, we will consider the
binary classification case, although it is easy to extend our results to
multi-class classification.

4.2 Linear approximation approach

Suppose we have two classes C; and C,. We denote their
corresponding class hypervectors as ¢(C;) and ¢(C,), respectively.
Suppose we use the inner product as our similarity measure.
Let f be the corresponding classifier; ie., f(x) = 1 if
(#(C1), p(x)) = (p(Ca), @(x)) and f(x) = 2 otherwise. We define
the following function:

r(x) = (¢(C1) — d(C2), 9 (x)). (1)

It is evident that (x) = 0 corresponds to the decision boundary
of f. Thus, a simple way of estimating the distance of some input q
to the decision boundary is to take the linear approximation of r at
q and compute its distance to zero. That is,

r(q) + Vr(q)Tx =0. 2)
Rearranging terms, we get
r(q) = —Vr(q)"x. 3)

Taking absolute values and applying the Cauchy-Schwarz
inequality, we get

Ir(q)| = IVr(@)"x| < IVr(@)lllxl. (4)
Thus, we get the estimate

o~ [r(q)
vl

. (5)

There are various issues with this approach. First, there is no
guarantee that the resulting €; computed this way satisfies the
conditions for (¢, g)-robustness. Second, if q is close to some point
in C; U G, this estimate of ¢; is quite likely to be a drastic
overestimate as the gradient at those points tends to be close to zero.
In this sense, it is a liberal estimate. So, this estimate is only useful
for ¢’s close to the decision boundary, which is not very useful.

4.3 Lipschitz-based approach

For some applications, it is important to have a strong
theoretical estimate for (¢, g)-robustness. The approaches explored
in this subsection can achieve this in the ideal case. Central to these
approaches is the concept of Lipschitz continuity.

Frontiersin Artificial Intelligence
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Definition 2 (Lipschitz continuity). A function f:X — Y is
Lipschitz continuous if there is some L > 0 such that |f(x) —
fWly < Llx — ylix, where || - |Ix and || - [ly are distance
measures for X and Y, respectively. The smallest such L is called
the Lipschitz constant.

Thus, if a function is Lipschitz continuous, there is a bound on
how fast it can change. If we are able to find some L for the function
r defined in Equation 1, we can get an estimate for €q that satisfies
(€, @)-robustness. This is formalized by the following proposition.

Proposition 1. If L satisfies the Lipschtiz condition for r, then f is
(€, q)-robust for € = |r(q)|/L.

Proof. Suppose L satisfies the Lipschtiz condition for r. Let g be
some input query and @ some noise added to ¢, with [w| <
€. Then,

Ir(q + w) — (@)l < Lol < |r(g)l. (6)

Suppose f is not (e, g)-robust. Then, there is some w with
[wll2 < € such that r(q + w) > 0and r(gq) < 0 or r(qg + ) < 0 and
r(q) = 0. It follows that

Ir(q + w) = r(g)l > Ir(q), 7
which is a contradiction, thus proving our proposition.

Thus, with this result, our goal now is to find some L
satisfying the Lipschitz condition for r to estimate €;. Assuming r is
differentiable, there is a basic result for finding L that follows from
the Mean Value Theorem:

Proposition 2. If r is differentiable, then L = sup, ||[Vr(x)]| is its
Lipschitz constant.

Taking L = sup, ||Vr(x)|| is the best we can do, in the sense
that it gives us the largest possible estimate for ¢; = [r(q)|/L that
is (€4, q)-robust using our Lipschitz-based approach. This gives us
the estimate

[7(q)]

—_—. 8
sup, [[Vr(x)]| ®

g~

Unfortunately, in practice, solving for the global maximum of
IVr(x)| is intractable. The best we can do is to solve for local
maxima. Thus, the estimate of €q we obtain in this way does not
guarantee (€4, )-robustness, but it at least should not give drastic
overestimates as in Equation 5. In this way, Equation 8 is a more
conservative estimate.

4.4 Conservative Lipschitz-based approach

For this approach, we derive an expression for L that can
be more easily computed via an easier optimization problem
compared to the previous L = sup, ||Vr(x)|. The result is given
in the following proposition:

Proposition 3. L = «al|¢(C) — ¢(Cy)|lg satisfies the Lipschitz
condition for r, where « satisfies the Lipschitz condition for the
encoding ¢. || - ||y refers to the norm defined by the inner

product (-, ).
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Proof. For any inputs x, y,

[r(x) — (] H(C1) — ¢(Ca), p(x) — d())]
lx—yll llx = ¥l
_ 1o(C) = o(C)ul¢x) = oDl
- llx =yl
< al¢(Cr) — p(C)lln

This gives us the estimate

o~ [r(g)]
T allp(Cr) — p(C)lln

)

Now, we have delegated the problem to computing some o
that satisfies the Lipschitz condition for ¢. Note that Proposition
2 implies that r is scalar-valued, which is not the case for ¢. Thus,
we cannot use it to compute «. Instead, we will compute « on a
case-by-case basis for each encoding ¢.

We show how one can find « for any shift-invariant encoding
where encoded hypervectors are of constant length; ie., any
encoding ¢ where (¢(x1),¢(y1)) = (P(x2),p(2)) if x1 — y1 =
X3 — y2 and ||¢(x)||[g = K for some K, for all x.

Proposition 4. Suppose ¢ is shift-invariant and ||¢(x)||gz = K for
some K, for all x. Then, o satisfies the Lipschitz condition for
¢, where

o = sup V2 = (0,60

x llxI

Proof. We want to find some « such that
lo(x) —oWllu < allx —yl. (10)

Note that

160 — 0l = v/ (6G) — b0 6Gx) — $0))
= JI6@IE + 1901 - 2(6 (), o)
= 2K — (6, ).

By shift invariance, we have

V2K — ($(), 9(0)) _

[l B

So, it is clear that

VAR = (9, 6(0)
a = sup

x flxl
satisfies the Lipschitz condition.

Compared to the optimization problem in the previous
subsection given in Proposition 2, which depends on both
the encoding and the dataset, the optimization problem here
depends only on the encoding. For shift-invariant encodings where
(¢(x), $(0)) is approximately symmetric about the origin, it follows
that the global maximum if it exists, should be close to the origin.
This fact indicates that this optimization problem is an easier one.
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While one generally cannot guarantee convergence to the
global maximum, it is likely that an optimization scheme can get
rather close. Thus, the resulting approximation of ¢, given in
Equation 9, loosely speaking, is close to (€4, g)-robust. Of course,
while we get this stronger estimate compared to the approximation
in Equation 8, this estimate is comparatively more conservative.

5 Learning a robust hyperdimensional
encoding

We discuss how the results of the previous section can be
used to learn a robust encoding. An encoding ¢ generally depends
on some set of parameters M sampled from a distribution p. An
example of this is the RFF encoding ¢(x) = ¢, where each row
M;j ~p.

Thus, we can characterize a family of encodings by
parameterizing the encoding itself ¢ as well as the distribution
po from which random samples M are drawn. We denote such
dependencies via the notation ¢,(-;n,M). We also denote
this dependence in €; by writing €,4(n, M). Let €(n, M) be the
average estimated robustness eq(n,M) over the dataset, i.e.,
E.~plex(n, M)]. Thus, our goal is to find parameters n*,0*
such that

*

n*,0* :argm%xIEway [e(n, M)]. (11)
X
To compute the gradient V, Epr~p, [€(n, M)], we can simply do
a Monte-Carlo estimate:

Vo En~p, (€1, M)] = Epr~p, [Vy €@, M)]. (12)

We make a simplifying assumption that M ~ py is equivalent
to M = fy(Z), where Z ~ N(0, I). This gives us the gradient

VoEzno,n €, fo(2))] = Eznwo,1y [ Vo€, fo(2))]. (13)

6 Results

We apply our theoretical results above to both synthetic and
real datasets. In the synthetic case, we compare the per point
robustness €, to the actual distance to the decision boundary
and show that our Lipschitz methods satisfy (e, q)-robustness.
In the real case, we apply our methodology for kernel learning
and demonstrate that the average robustness increases under our
optimization scheme. We also test the effectiveness of average
robustness € as a measure of robustness by plotting the degradation
in accuracy of the HDC models with different levels of average
robustness when noise of increasing magnitude is added to
data points.

6.1 Results on synthetic dataset
We test our theoretical results for both one- and two-

dimensional synthetic datasets. Each dataset consists of two

frontiersin.org
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(a) Synthetic 1D dataset with two classes generated by sampling from Gaussian distributions. (b) Synthetic 2D dataset with two classes generated by
sampling from Gaussian distributions. Top row: class samples are drawn from Gaussian distributions with low overlap. Bottom row: class samples are
drawn from Gaussian distributions with higher overlap, leading to data that is not linearly separable.

classes, each of which is generated via sampling from a
Gaussian distribution.

Figure 2 visualizes (Figure 2a) 1D and (Figure 2b) 2D synthetic
datasets alongside the decision function 7(x), the decision regions,
as well as the real and estimated robustness values; i.e., distance
to the decision boundary. In the 1D case, this is visualized as
the height of the plotted functions, and in the 2D case, as the
radii of the circles. As can be seen, method 1 of computing
€; does mnot give a good estimate of robustness as it tends
drastically overestimate the distance to the decision boundary.
Both Lipschitz-based methods give estimates that are generally
less than the actual distance to the decision boundary, satisfying
(€, g)-robustness. In addition, we see that method 2 gives a
better estimate in the sense that it is closer to the actual
distance to the decision boundary, which corroborates with our
theory above.

6.2 Results on visual data

We use a binary classification version of MNIST where the
dataset contains images of numbers 1 and 2. To encode each data
point in the dataset, we use an RFF encoding with dimension
10,000, with random parameters M ~ N(0, o I). Under our kernel
learning framework, this can be expressed as M = f;(Z) =
N(0,I). Using the methodology described
in the section above, we optimize o to maximize the average

oZ where Z ~

robustness. Figure 3D shows that the average robustness increases
over the number of iterations of the optimization process. We
do this for both methods 2 and 3 of computing robustness
described above.

At each iteration in the optimization process, we get a measure
of average robustness based on methods 2 or 3. In addition, we
compute the corresponding train and test accuracy of the model at
that point. We visualize this in Figure 3A, which plots the tradeoft
between train and test accuracy and robustness computed using
methods 2 and 3. The train accuracy clearly falls as robustness
increases. However, increasing robustness increases test accuracy
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up to a certain point, which then decreases as in the case of
train accuracy. Thus, we may think of robustness as a kind
of regularization.

For models of different levels of average robustness, we plot
its degradation in train and test accuracy as we add increasing
magnitudes of noise to the data in the input space. We visualize
the results in Figures 3B, C. As average robustness increases, the
degradation in train accuracy decreases more slowly as noise of
increasing magnitude is added to the input space. In the case
of test accuracy, while there is no clear trend as in the case of
train accuracy, we do see that there is greater variance in accuracy
across different magnitudes of noise for models with lower average
robustness, while the quality is nearly constant for the model with
the highest robustness.

7 Discussion

7.1 Extending beyond the RFF encoding

While we have illustrated our method of computing robustness
estimates using HDC classifiers using the RFF encoding, our
method extends to all HDC encoders that are Lipschitz-continuous.
This result is highlighted in Proposition 3, which delegates the
estimation of the robustness to estimating the Lipschitz constant
of the HDC encoder of choice. It is important to note that this
result requires the HDC encoder to be Lipschitz-continuous, which
is a rather loose assumption, applying not only to differentiable
encoders but also to non-differentiable ones. We outlined a method
to estimate the Lipschitz constant for shift-invariant encoders (e.g.,
RFF) in Proposition 4 as a specific example, but it is possible
to derive similar results for other HDC schemes, such as binary
splatter codes (BSCs) (Kanerva, 1997), multiply add permute
(MAP) (Gayler, 1998), matrix binding of additive terms (MBAT)
(Gallant and Okaywe, 2015), and generalized holographic reduced
representations (GHRRs) (Yeung et al., 2024). Investigating ways
to estimate the Lipschitz constant for such encoders will be left for
future work.
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7.2 Quantized setting and
neuro-vector-symbolic pipelines

As HDC is commonly considered within a quantized setting
due to its plethora of hardware applications, we discuss a direction
in which to extend our method to this particular setting. As noted
above, our derived robustness estimate depends on the encoder’s
Lipschitz-continuity. In the quantized setting (e.g., using BSC or
MAP schemes), core symbolic operations (e.g., XOR binding and
fixed permutations) are Hamming isometries, so the dominant
contribution to the Lipschitz constant comes from the encoder
and any subsequent quantizer, which we can model ase = g o f,
where f maps inputs to a continuous hypervector and g performs
quantization. When f is Lg-Lipschitz and g is non-expansive
(deterministically or in expectation) under Hamming distance, one
obtains a usable bound L, < L4Ly, allowing our analysis to carry
over naturally to this setting.

This decomposition aligns with established “translation”
pipelines that move signals from neural or symbolic spaces
into hypervector space. In particular, Mitrokhin et al. (2020)
map learned embeddings to binary hypervectors and classify via
binding/bundling, while Sutor et al. (2022) (HD-Glue) convert
penultimate-layer signals from heterogeneous neural networks into
hypervectors and aggregate them. Both follow a similar structural
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pattern of e = g o f: a continuous feature extractor (f) followed by
a mapping to a discrete symbolic representation (q).

This approach also highlights a possible way of extending
our method to translate to a neuro-vector-symbolic pipeline.
While our theoretical results in this work are restricted to
classifiers that operate entirely within the hypervector space
(i.e., purely HDC-based), extending our results to guarantees to
neuro-vector-symbolic pipelines that prepend a neural embedding
requires accounting for the neural component’s Lipschitz constant.
Writing h o g with g a neural embedding and h a
continuous HDC encoder gives us L, < L4L;L, so finding
the Lipschitz constant of the resulting encoder reduces to
bounding L, in addition to L and L,. Practical methods for
controlling or estimating L, are well studied (e.g., operator-
norm bounds and spectral constraints at the layer level,
orthogonal/Parseval parameterizations, and related Lipschitz-
controlled architectures) and can be composed to produce
conservative global bounds.

8 Conclusion

In summary, this study presents a first-of-its-kind theoretical
framework for evaluating the robustness of hyperdimensional
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classifiers based on Lipschitz continuity, which can then be used as
an optimization objective for learning more robust encodings. Our
experimental results demonstrate the effectiveness of our approach.
We believe our work can lead to the development of more robust
and reliable hyperdimensional computing models and pave the way
for further research in this area.
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