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YOLOv10-based detection of 
melanocytic nevi: reverse 
exclusion optimization for 
melanoma screening
ShengJie Wang , Jian Wang * and Rui Yin 

International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus

Malignant melanoma is the deadliest skin cancer, yet its early dermoscopic 
presentation closely mimics benign melanocytic nevi. Conventional visual or 
dermoscopic screening therefore suffers from high miss rates and generates 
excessive biopsies. In this study we focus on Chinese East-Asian patients and 
introduce a reversed-exclusion strategy—classifying “benign first, exclude 
malignancy”: lesions that fully meet benign nevus criteria are deemed low-risk; 
all others are flagged as high-risk. Building on the real-time detector YOLOv10, 
we  incorporate three medical-oriented upgrades: (i) a PP-LCNet backbone 
to preserve sub-3 mm textures; (ii) a Multiscale Contextual Attention (MCA) 
neck to enhance cross-scale aggregation; and (iii) a Shape-IoU loss that jointly 
optimises position, scale, and curvature. The model was trained on a multi-
centre dermoscopic dataset from three tertiary hospitals in mainland China 
(2,040 benign nevi) and independently tested on 365 biopsy-proven melanomas 
collected at the same medical institution but drawn from a demographically 
distinct patient cohort, achieving a detection mAP@0.5 of 97.69% for benign 
lesions and a melanoma false-negative rate (FNR) of only 0.27%. By delivering 
high-confidence benign identification followed by malignant exclusion, the 
proposed model offers a high-precision, low-risk pathway for early melanoma 
screening in Chinese clinical settings. It can markedly reduce unnecessary 
biopsies while keeping the miss rate below the clinical safety ceiling of 0.5%, 
thus preserving the life-saving window afforded by early detection.
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1 Introduction

Malignant melanoma is the deadliest form of skin cancer; when it is diagnosed early, 
the 5-year survival rate rises from 23% in advanced disease to 99% (Thomas et al., 1998; 
Whited et al., 1997). Nevertheless, on dermoscopic images early melanomas closely mimic 
benign melanocytic nevi, so conventional visual inspection or dermoscopy carries a 
substantial risk of missed diagnosis (Dinnes et  al., 2018). Benign nevi are usually 
symmetrical, uniformly pigmented and sharply demarcated (Lallas et al., 2012); in contrast, 
even in-situ melanomas reveal subtle asymmetry or focal disruption of the pigment 
network (Dinnes et  al., 2018; Carrera et  al., 2017b). Non-melanocytic lesions such as 
seborrhoeic keratosis and haemangioma display readily distinguishable features, and 
consequently their clinical confusion rate with melanoma is far lower (Carrera et al., 2017a; 
Stell et al., 2007). This quasi-mutual exclusivity implies that lesions strictly meeting benign 
criteria can almost rule out melanoma, whereas any departure from those rules should 
be regarded as high-risk and sent for biopsy.
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The three principal clinical pathways—naked-eye or 
dermoscopic assessment, periodic imaging follow-up, and surgical 
biopsy—each have limitations. Large studies show that the ABCDE 
rule and the seven-point checklist deliver only 65 –80% sensitivity, 
with inter-observer agreement κ < 0.4 (Thomas et al., 1998; Whited 
et al., 1997), and comprehensive skin screening is constrained by 
time and workforce. Dermoscopy can raise sensitivity by a further 
10 –27% (Dinnes et al., 2018), yet early lesions are often “feature-
poor” (Lallas et  al., 2012); differences in operator training can 
produce specificity gaps of ~20 percentage-points (Carrera et al., 
2017a), and specificity for non-pigmented lesions remains 
insufficient, leading to frequent unnecessary biopsies (Carrera 
et al., 2017b). Biopsy with histopathology—though the diagnostic 
gold standard—causes scarring and financial burden, and 
secondary wide excision is required in up to 22% of cases (Stell 
et al., 2007). Novel non-invasive technologies such as reflectance 
confocal microscopy achieve ~93% sensitivity and ~76% specificity 
in large cohorts (Stevenson et al., 2013), but devices cost tens of 
thousands of US dollars and a single examination may take 10 min 
(Stevenson et al., 2013); optical coherence tomography demands 
> 180 scans for novice competence, with systems priced at USD 
50000–100,000 (Van Loo et al., 2020; Ferris and Harris, 2012). The 
quest to combine high sensitivity with an extremely low miss rate 
therefore remains clinically urgent.

Although deep convolutional networks have advanced medical 
image analysis, four key bottlenecks impede their direct application to 
early melanoma detection. First, morphological overlap yields limited 
separability of high-resolution features (Hunziker et al., 2023). Second, 
public datasets are dominated by nevus images, inducing class 
imbalance and model bias (Akash et al., 2023). Third, the pronounced 
heterogeneity of melanoma morphology necessitates deeper networks 
and larger receptive fields, raising computational cost and over-fitting 
risk (Shen et al., 2021; Alzamili and Ruhaiyem, 2025). Fourth, the 
coarse granularity of pathological labels makes it hard to learn reliable 
links between malignant behavior and imaging appearance, 
heightening misclassification of inflammatory or keratotic lesions 
(Naseri and Safaei, 2025).

To address these challenges, we propose a “benign-first” inverse-
exclusion strategy. Instead of directly trying to detect “malignant” 
lesions, the model first identifies melanocytic nevi with high 
confidence if they fully meet benign criteria — symmetry, uniform 
pigmentation, and sharply defined borders. Any lesion that fails to 
meet one of these rules is placed in the high-risk category and sent for 
biopsy. Because early melanoma growth inevitably disrupts at least 
one of the benign features, this approach naturally suppresses false 
negatives and enables high-sensitivity screening that adheres to strict 
clinical safety thresholds. Within the YOLOv10 framework, 
we  incorporate three key enhancements: a lightweight PP-LCNet 
backbone to preserve sub-3 mm nevus texture, a Multiscale 
Contextual Attention (MCA) module to capture local irregularities, 
and a Shape-IoU loss to jointly optimize aspect ratio, centroid 
position, and border curvature. The model will declare a lesion 
“melanocytic nevus” only if it fully meets all criteria of symmetry, 
uniform color, and smooth borders; otherwise, it is flagged as high-
risk and referred for biopsy (this workflow is illustrated in Figure 1).

This high-confidence, benign-first workflow strikes a new balance 
between efficiency and safety, offering a practical technological 
pathway for early melanoma screening.

2 Related work

Early automated melanoma detection relied on handcrafted 
features such as colour histograms and grey-level co-occurrence 
matrices; these techniques had limited power for lesions with fuzzy 
borders, irregular shapes or minute early foci, yielding missed-
diagnosis rates of 25 –30% (Almubarak et al., 2017). Even the clinically 
ubiquitous ABCDE or seven-point scales can show miss rates above 
40% when the symmetry index falls below 1.5 (Tsao et al., 2015), with 
strong operator-dependent variability. The advent of deep learning 
greatly improved overall accuracy: in the ISIC 2017 challenge, ResNet-
based CNNs achieved a mean classification accuracy of 83.7% 
(Codella et  al., 2017), marking a milestone in image pattern 
recognition. Nonetheless, dataset bias and the scarcity of early lesions 
persist. In ISIC 2020, histopathology-confirmed melanomas account 
for only 1.8% of images, leaving models largely untrained on in-situ 
disease (Rotemberg et al., 2021). A more advanced Vision Transformer 
reached 92.79% accuracy in multiclass skin-disease classification, yet 
its melanoma recall remained below 60% (Flosdorf et  al., 2024). 
Clinical studies show that high-quality AI assistance markedly 
improves diagnostic performance for less-experienced physicians, 
whereas immature systems may mislead clinicians at all levels 
(Tschandl et  al., 2020), underscoring the need for reliable and 
interpretable algorithms.

At the detection-framework level, YOLOv10 provides a real-
time, high-precision baseline through two-stage dynamic label 
assignment and a decoupled detection head: official experiments 
report a 2.8-percentage-point gain in mAP@0.5–0.95 and a further 
3.4-point gain for small-object AP (Wang A. et al., 2024); on the 
Roboflow mole-test the false-negative rate (FNR) fell from 7.6% to 
4.1% (Wang A. et  al., 2024). Mobile-device tests also showed a 
2.3-point rise in binary-classification F1 (Liutkus et al., 2023). Yet the 
overall FNR still exceeds the clinical safety threshold of 0.5% (Esteva 
et al., 2017). The root causes are threefold: eight-fold down-sampling 
leaves nevi < 3 mm represented by only 1–3 pixels, with recall 
around 68%; a fixed-scale PANet limits small-nevus mAP to roughly 

FIGURE 1

Reverse-exclusion logic diagram for melanoma.
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75%; and CIoU is insensitive to curved borders, giving an average 
12-point IoU deficit relative to pathology masks, which further 
dilutes confidence and produces a cascade of low recall and 
high FNR.

Clinicopathological studies confirm the morphological stability of 
benign nevi: in biaxial measurements of 56 lesions, 96.4% had bilateral 
symmetry distances ≤ 0.1 mm (Flotte and Lamberti, 1992); among 
209 images, 99.0% showed RGB colour variance < 0.10 (Seidenari 
et al., 2005); and in 296 cases, 99.3% exhibited edge-gradient values > 
0.80 (Fikrle and Pizinger, 2007). Deviations sharply raise malignant 
risk: in a cohort of 237 followed lesions, those with symmetry or 
colour heterogeneity had a melanoma positivity rate of 31.6%, odds 
ratio = 5.7 (95% CI 3.2–9.1) (Arumi-Uria et al., 2003). Conversely, 
among 430 nevi meeting strict CASH criteria, none transformed over 
five years, giving an NPV of 100% (95% CI 99.0–100.0%) (Henning 
et al., 2007). These statistics underpin the strategy of “high-precision 
benign identification leading to malignant exclusion”.

In summary, neither traditional handcrafted methods nor current 
deep models can simultaneously deliver the high sensitivity and 
ultra-low miss rate required for early melanoma detection. YOLOv10’s 
dynamic matching and decoupled head form a solid base for small-
lesion detection, but shallow-layer resolution, cross-scale semantic 
fusion and boundary regression remain bottlenecks for lowering 
FNR. Future work must iterate on high-resolution backbones, 

dynamic multiscale attention and shape-aware loss functions to meet 
the stringent clinical target of “FNR ≤ 0.5%” in early screening.

3 Methodology

3.1 Melanocytic nevus detection model 
based on improved YOLOv10

3.1.1 Analysis of YOLOv10 baseline structure and 
limitations in medical detection accuracy

As an end-to-end detection framework, YOLOv10 adopts the 
classical three-stage Backbone–Neck–Head architecture (see 
Figure 2).

The backbone, CSPDarknet-Tiny, completes 8 × spatial down-
sampling in its first two stages and enlarges the receptive field with 
SPPF and PSA modules; however, this early compression leaves 
micro-nevi (< 3 mm) occupying only 1–3 pixels on the feature maps, 
erasing fine pigment patterns. In a study of 59,090 dermoscopic 
images, Liutkus et al. reported an average recall of just 68.0% for such 
lesions (Wang A. et al., 2024).

In the Neck, the fixed three-level pyramid inherited from PANet 
merges scales through repeated up-sampling and concatenation but 
lacks an adaptive receptive-field mechanism for multi-scale coexisting 

FIGURE 2

YOLOv10.

https://doi.org/10.3389/frai.2025.1637842
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Wang et al.� 10.3389/frai.2025.1637842

Frontiers in Artificial Intelligence 04 frontiersin.org

lesions, limiting the mAP@0.5 for small nevi to 75.0% (Wang A. et al., 
2024) and thus constraining high-confidence “benign-first” screening. 
The decoupled head combines SimOTA and Task-Aligned Assigner 
to ease gradient coupling, yet the regression branch relies on the 
default CIoU loss; CIoU is insensitive to curved edges and degenerates 
to IoU as a prediction box nears its ground truth (Cai et al., 2023). 
Rectangular boxes therefore fit circular or mildly curved lesions much 
worse than shape-sensitive losses (Nguyen et al., 2022). Empirically, 
the average IoU (or mAP) gap between predictions and pathological 
annotations reaches 10–12 percentage points (Ye et al., 2024), further 
depressing classification confidence and heightening miss-detection 
risk (Annadatha et al., 2022).

In summary, YOLOv10 exhibits three critical bottlenecks in 
melanocytic nevus detection: insufficient shallow-layer resolution, 
rigid cross-scale modeling, and morphologically inaccurate 
boundary regression.

3.1.2 Medical adaptation of lightweight backbone 
network PP-LCNet

To compensate for CSPDarknet-Tiny’s excessive compression of 
shallow textures in micro-nevi (< 3 mm), this study replaces the 
YOLOv10 backbone with PP-LCNet (see Figure 3).

The network begins with a Stem Conv and multi-stage depthwise-
separable convolutions, appends a stack of 5 × 5 large-kernel 
convolutions at the tail, employs H-Swish activation and Squeeze-and-
Excitation (SE) throughout, and inserts a 1 × 1 convolution with 1,280 
channels after global average pooling to reinforce global aggregation. 

Experiments show that switching ReLU to H-Swish alone increases 
ImageNet-1 k Top-1 accuracy from 55.58 to 58.18%; adding SE lifts it 
to 59.91%, and the combination of 5 × 5 kernels with the high-
dimensional 1 × 1 convolution pushes accuracy to 63.14%, clearly 
outperforming MobileNetV2 (53.21%) and ShuffleNetV2 (53.73%) at 
comparable scales (Cui et al., 2021). When transferred to dermoscopic 
analysis, PP-LCNet’s heightened sensitivity to faint pigment networks 
and blurred boundaries markedly lowers micro-nevus miss rates and 
improves boundary discrimination, delivering higher-confidence 
support for the subsequent “benign-first, malignancy-exclusion” 
workflow without a significant increase in computational cost.

3.1.3 Medical adaptation of lightweight backbone 
network PP-LCNet

To remedy the limited contextual parsing of micro-nevi caused by 
PANet’s fixed-scale fusion, we replace the entire attention branch in 
YOLOv10’s neck with a Multidimensional Collaborative Attention 
(MCA) module (see Figure 4).

MCA begins by applying average, standard-deviation and max 
pooling to the input features in parallel, using the three statistics to 
construct a complementary brightness–texture–extremum 
background. During the “squeeze” phase, learnable weights 
dynamically balance the contributions of average and standard-
deviation pooling, while the “excitation” phase substitutes the SE-MLP 
reduction with 1 × k grouped convolutions to prevent channel-
information mismatch; this strategy yields a 1.8 –2.6% Top-1 accuracy 
gain on ImageNet-1 k (Yu et  al., 2023). The module then models 

FIGURE 3

PP-LCNet.
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attention independently along channel, width and height dimensions, 
averages the Sigmoid-normalised weights to suppress single-branch 
noise amplification, and thus simultaneously answers “where to look” 
and “what to look for” (see Figure 5).

This “multi-pooling context  – adaptive fusion  – three-
dimensional collaboration” scheme markedly increases sensitivity 

to < 3 mm, low-contrast lesions, lowers the miss rate for small nevi, 
and delivers the precision needed to support the subsequent 
“benign-first, malignancy-exclusion” screening framework (Yu 
et al., 2023).

3.1.4 Medical adaptability improvement of 
shape-sensitive loss function shape-IoU

The default CIoU regression in YOLOv10 is insensitive to curved 
or mildly convex edges, yielding an average 12-percentage-point IoU 
gap between predicted boxes and pathological ground truth and thus 
degrading classification confidence while elevating miss risk (Zhang 
and Zhang, 2023). We therefore introduce Shape-IoU, which replaces 
a purely overlap-based metric with a three-factor model—similarity, 
shape deviation, and scale sensitivity. While retaining IoU as the 
structural-consistency baseline, Shape-IoU adds horizontal and vertical 
weights ww and hh to capture width-to-height proportionality, and 
normalises the centre–distance penalty by the convex-hull diagonal so 
that “centre offset” is scaled to lesion size. An additional shape-
difference term Ωshape applies an exponentially decaying weight to 
width–height discrepancies, enforcing tighter fits for targets with 
regular boundaries and stable aspect ratios (e.g., benign nevi). This loss 
suppresses “large-box dominance,” lowers the chance that slightly 
misaligned early melanomas are labelled benign, and markedly 
improves localisation accuracy to meet the clinical low-miss-
rate requirement.

The specific formula (Equations 1–7) be derived from Figure 6.

FIGURE 4

MCA structure diagram.

FIGURE 5

MCA layer.
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Where, scale is the scale factor reflecting the target’s actual size in 
the dataset; ωx  and xh  are the horizontal and vertical weighting 
coefficients, respectively, whose values are closely related to the width-
height shape of the ground truth (GT) box. Based on this definition, 
the corresponding bounding box regression loss function can 
be formulated as:

	 − = − + + ×Ω1 0.5shape shape
Shape IoUL IoU distance 	 (7)

The specific logic is illustrated in Figure 7.
In summary, Shape-IoU simultaneously addresses positional, 

scale, and shape discrepancies, overcoming the insensitivity of generic 
IoU-series losses to arc-shaped boundaries in medical imaging. This 

FIGURE 7

Shape-IoU logic diagram.

FIGURE 6

Shape-IoU loss function formula inference diagram.
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approach is expected to enhance the synergistic accuracy of 
localization and classification.

3.1.5 Overall model architecture
The improved detection network retains YOLOv10’s single-stage 

end-to-end framework but sequentially integrates precision-
enhancing modules tailored for melanocytic nevus characteristics 
across three critical layers—backbone, neck, and detection head—
forming a high-resolution information chain from shallow to deep 
levels. The specific network structure is shown in Figure 8.

The internal information flow is divided into three segments—
texture fidelity, multiscale aggregation, and shape-sensitive 
regression—progressively resolving the original model’s detection 
bottlenecks for small nevus targets.

3.1.5.1 Stage 1: texture fidelity
A 640 × 640 px dermoscopic image enters the PP-LCNet-based 

backbone. Starting with a 3 × 3/2 Stem Conv to open a high-resolution 
channel, the backbone sequentially stacks seven groups of depthwise 
separable convolutions. The first four groups remain at 1/4 and 1/8 
resolutions, preserving pixel-level textures of nevi smaller than 3 mm 
in diameter. After outputting 1/16 and 1/32 feature layers, the 
backbone expands the receptive field via 5 × 5 SPPF and recalibrates 

global channels using SE-PSA. This yields three complementary 
multiscale feature maps: P3 (1/8), P4 (1/16), and P5 (1/32).

3.1.5.2 Stage 2: multiscale aggregation
The three feature maps enter the modified PANet. The network 

first upsamples P5 by 2 × and concatenates it with P4, generating P4′ 
after C2f fusion. P4′ is then upsampled and concatenated with P3 to 
produce P3′. Concurrently, P3′ and P4′ are downsampled via 3 × 3/2 
SCDown to deeper layers, enhancing semantic density to form P4″ 
and P5″. Before these nodes (P3′, P4″, P5″), the system inserts 
Multiscale Contextual Attention (MCA) layers. MCA first performs 
parallel average pooling and standard deviation pooling on input 
features to encode luminance and texture dispersion. It then 
independently computes attention weights across channel, width, and 
height branches, dynamically mapping them to the 0–1 range via 
Sigmoid. The three-dimensionally weighted features—denoted as 
M-P3, M-P4, M-P5—carry context representations optimized for 
small, low-contrast lesions.

3.1.5.3 Stage 3: shape-sensitive regression
The calibrated features are fed into the decoupled v10Detect Head. 

While retaining YOLOv10’s three-branch structure, the detection head 
replaces CIoU with Shape-IoU for boundary regression. The new loss 

FIGURE 8

YOLOv10 + PP-LCNet+MCA + shapIoU overall structure.
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introduces scale weights, center distance penalties, and aspect ratio 
difference terms alongside IoU, providing steeper gradient feedback for 
arc-shaped or mildly curved boundaries. During training, “one-to-one” 
and “one-to-many” dual-branch label assignments operate in parallel. 
During inference, only the one-to-one branch is retained, directly 
outputting final detection boxes and class confidences from M-P3, 
M-P4, and M-P5 scales without relying on NMS post-processing.

3.2 Multicenter dataset construction

3.2.1 Data sources and image annotation 
standards

The primary training data for this study were collected from three 
tertiary Grade-A hospitals under the same medical institution, 

ensuring horizontal consistency in imaging protocols and equipment 
parameters. The geographic and temporal distribution of the three 
hospital branches is as follows Table 1.

A total of 2,040 dermoscopic images were confirmed as benign 
melanocytic nevi through clinical examination.

Sample images from the main dataset are shown in Figure 9.
Given that nevus lesions are not routinely biopsied in standard 

clinical care, the gold standard for this dataset was established through 
a clinical double-blind assessment with expert adjudication protocol. 
All patient-identifiable data were rigorously scrubbed from the 
collected records, including:

	(1)	 Initial screening and acquisition: patients underwent 
standardized imaging using 10–20 × polarized dermoscopy 
during outpatient visits or follow-ups, adhering to institutional 

TABLE 1  Data sources.

Campus Collection period Sample size Imaging equipment Remarks

Anhui Medical University 

First Affiliated Hospital—

Changjiang Road Campus

2018–2023 702 DermLite DL4 + HD camera
Routine dermatology follow-

up

Anhui Medical University 

First Affiliated Hospital—

High-Tech Zone Campus

2020–2024 1,062 Same as above
New campus, same model 

equipment

Anhui Medical University 

First Affiliated Hospital—

Northern Campus

2022–2024 276 Same as above
Standardized imaging 

protocol

FIGURE 9

Example images of the melanocytic nevi dataset.
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protocols. Images with glare or focal plane deviations were 
immediately reacquired.

	(2)	 Double-blind evaluation: two dermatologists with attending 
physician or higher qualifications independently interpreted 
anonymized images. They applied ABCD scoring and benign 
nevus morphological criteria (symmetry, color homogeneity, 
sharp borders) to classify lesions as “nevus” or 
“non-melanocytic nevus”.

	(3)	 Expert arbitration: discrepant evaluations were reviewed by a 
third senior specialist (associate chief physician or above). 
Images unresolved by arbitration were excluded.

	(4)	 Quality control: retained images met strict criteria: clear focus, 
uniform illumination, and no significant artifacts.

Through this workflow, the study constructed a main dataset of 
2,040 fully benign melanocytic nevi, providing reliable imaging and 
labeling foundations for training the “high-confidence nevus 
identification → inverse melanoma exclusion” model.

3.2.2 External test set construction
To independently validate the inverse exclusion model’s reliability 

on malignant lesions, this study separately constructed an external test 
set containing exclusively early-stage melanomas.

Sample images from the external test set are shown in Figure 10.
The dataset was collected and selected according to the 

following rationale:
First, all images originate from the same sources as the main 

benign-nevus dataset, ensuring identical imaging equipment, 

acquisition protocols, and time span. This eliminates cross-device bias 
and guarantees that malignant and benign images share the same 
temporal context.

Second, every case satisfies the pathological gold standard. Only 
images from lesions surgically excised or biopsied and definitively 
diagnosed as “melanoma” in the pathology report are included. Any 
image lacking biopsy confirmation or based solely on clinical 
judgment is excluded to avoid label-related evaluation bias.

Finally, all patient identifiers were removed. Every record was fully 
anonymized and renumbered in random order, ensuring strict 
data privacy.

After this screening, 365 dermoscopic images of biopsy-positive 
melanomas were compiled. They serve exclusively as an independent 
test set after model training and are not used in any training or hyper-
parameter tuning. This design directly evaluates whether, within the 
inverse-exclusion workflow, the model can correctly classify every 
malignant lesion as “non-melanocytic nevus,” thereby verifying that 
the false-negative rate (FNR) meets the clinically acceptable threshold.

3.2.3 Participant skin phototype and 
hair-occlusion characteristics

All 2,405 dermoscopic images (2,040 benign nevi; 365 
melanomas) were obtained from a Chinese East-Asian cohort. Two 
board-certified dermatologists independently assessed Fitzpatrick 
skin type, hair-occlusion grade, and anatomical site under double-
blind conditions; disagreements were adjudicated by a third expert 
(Cohen’s κ = 0.92). Hair interference was first screened with the 
DullRazor algorithm and then manually reviewed. Only images 

FIGURE 10

Early-stage melanoma dataset example images.
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meeting UQI > 0.95 and NIQE < 5.0 were retained. Table  2 
summarises the dataset.

Skin phototypes are concentrated in Fitzpatrick types II–III. Total 
hair occlusion accounts for only 6.11%, with dense terminal hair 
representing less than 1.79%, suggesting negligible interference with 
image quality or feature extraction. Although 17 anatomical sites are 
represented, the study targets the dermoscopic phenotype of early 
melanoma; site information was recorded solely to ensure balanced 
sampling. Owing to the ethnic homogeneity, narrow skin-type range, 
minimal hair interference, and uniform site distribution, additional 
stratification of the dataset was not required. However, this uniformity 
implies that the dataset—and any models trained on it—are presently 
applicable only to East-Asian populations with Fitzpatrick II–III skin 
types; external validation across diverse skin tones and ethnic 
backgrounds will be essential before broader clinical deployment.

3.3 Experimental design and environment 
configuration

This chapter assesses the enhanced model (YOLOv10 + PP-LCNet 
+ MCA + Shape-IoU) with ablation and comparative experiments: 
individual modules are removed sequentially to gauge their 
standalone impact, after which the complete model is benchmarked 
against the baseline to confirm aggregate gains. Each experiment 
alters only one module and is executed under identical hardware, 
software, and hyper-parameter settings to guarantee 
trustworthy conclusions.

3.3.1 Definition of evaluation metrics
This section evaluates model performance with a unified threshold 

and multiple metrics. A detection is labeled positive when its 
confidence is ≥ 0.5; it counts as a true positive (TP) only if the 
predicted box has IoU ≥ 0.5 with the ground-truth box and the class 
is correct, otherwise it is a mis-detection. The primary metric is 
mAP@0.5, supplemented by mAP@0.95, precision, recall, model size 
(Wsz, MB), and inference Latency (ms). Here, mAP@0.5 is the mean 
of class-wise average precision (AP) at IoU = 0.5, while mAP@0.95 is 
the mean AP computed from IoU 0.50 to 0.95 in 0.05 steps, reflecting 
bounding-box localization accuracy (Song and Wang, 2025). The 0.5 
confidence threshold balances higher precision with adequate recall, 

providing a comprehensive measure of melanocytic-nevus 
detection performance.

3.3.2 Experimental environment configuration 
and training process

A single high-performance GPU server was used for hardware 
infrastructure, with computational and storage resources 
meeting the requirements for 640 × 640 pixel input at batch size 64 
(Table 3).

The software stack was standardized on Ubuntu 20.04 + Python 
3.9 + CUDA 10.1 + PyTorch 1.10.1. Core dependencies are listed in 
Table 4.

All ablation and comparative models adhered to the unified 
hyperparameter baseline in Table 5, ensuring performance variations 
originated solely from network architecture differences.

TABLE 2  Population characteristics of the dermoscopic dataset.

Variable Levels n Total

Fitzpatrick skin type

II 1,115 46.36%

III 1,290 53.64%

I/IV/V/VI 0 0%

Hair-occlusion grade

0 — none 2,258 93.89%

1 — sparse vellus 

hair
104 4.32%

2 — dense terminal 

hair
43 1.79%

Anatomical site

Extremities 1,176 48.90%

Trunk 929 38.60%

Head/face/neck 300 12.50%

TABLE 3  Experimental hardware configuration.

Component Specification Description

GPU
NVIDIA A100 40 GB 

(PCIe)

Single-card training and 

inference

CPU
Intel Xeon silver 4210R 

(10-core 2.4 GHz)

Data loading and post-

processing

Memory 256 GB DDR4

Avoids memory 

bottlenecks during bulk 

loading

Storage 1 TB NVMe SSD
Enhances data I/O 

throughput

TABLE 4  Core software and library versions.

Library/tool Version Function

Ubuntu 20.04LTS 64-bit OS

Python 3.9 Runtime environment

PyTorch 1.10.1 Deep learning framework

CUDA 10.1 GPU computing platform

Torchvision 0.11.1
Image processing & model 

components

OpenCV ≥4.6.0
Low-level image 

preprocessing

Pandas ≥1.1.4 Result statistics & analysis

Seaborn ≥0.11.0 Result visualization

TABLE 5  Training parameter baseline.

Parameter Setting

Input size 640 × 640 px (RGB)

Batch size 64

Epochs 100

Optimizer
SGD (Momentum 0.9, Weight Decay 

5e-4)

Learning rate schedule Cosine Decay: 0.01 → 1e-5

Early stopping
Stop if validation mAP@0.5 shows no 

improvement for 15 epochs
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The complete training and evaluation process is as follows:

	(1)	 Data preparation

The main dataset (2,040 nevus images) was split into training 
(1,836) and validation (204) sets at a 9:1 ratio by patient ID.

Pixel values were normalized to [0, 1], followed by channel-wise 
standardization using ImageNet mean (0.485, 0.456, 0.406) and 
standard deviation (0.229, 0.224, 0.225) (Krizhevsky et al., 2017).

	(2)	 Online data augmentation

Training-phase augmentations included geometric, photometric, 
noise, and occlusion categories, as shown in Table 6.

	(3)	 Training process

Models were trained for 100 epochs using hyperparameters from 
Table 5.

Validation set mAP@0.5 was evaluated every 5 epochs; training 
halted early if no improvement occurred over 15 epochs.

	(4)	 Inference and evaluation

Images underwent standardization and aspect-ratio-preserving 
padding without random perturbations.

A unified confidence threshold of 0.5 was applied; YOLO series 
disabled NMS to maintain end-to-end properties, while SSD retained 
default NMS.

The checkpoint with highest validation mAP@0.5 was selected as 
the final model for Chapter 6 results reporting.

This workflow ensured full alignment across hardware, software, 
data augmentation, and hyperparameters, establishing a strict and 
reproducible experimental baseline for subsequent ablation and 
comparative studies.

3.3.3 Ablation experiment design
To isolate the independent contributions of the PP-LCNet 

backbone, MCA attention mechanism, and Shape-IoU loss function 
to model performance, five ablation experiments were designed by 
incrementally integrating improvement modules.

Table 7 presents the model combination schemes for the ablation 
study, where only a single module is introduced at a time to isolate 
its impact.

The ablation experiments followed these design principles:

	(1)	 Variable isolation: only one improvement module was 
introduced per experiment to prevent multivariate coupling 
and attribution ambiguity;

	(2)	 Data partitioning: complete separation between training and 
validation sets to eliminate data leakage risks;

	(3)	 Hyperparameter freezing: learning rate, batch size, and other 
parameters strictly aligned with baseline models, with 
modifications limited to target modules.

3.3.4 Comparative experiment design
To validate the competitiveness of the improved model against 

existing object detection methods, six mainstream detection models 
were selected as baseline comparisons.

Table  8 lists the models and configurations used in 
comparative experiments.

To validate the universality of the proposed improvements, the 
comparative experiments encompass both longitudinal iterations within 
the YOLO series and cross-paradigm evaluations with two-stage 
frameworks. The YOLO family—including YOLOv5 with lightweight 
CSPNet (Do, 2021), YOLOv8 with task-aligned dynamic assigners 
(Sohan et al., 2024), YOLOv9-t with recursive gated convolution for 
feature reuse (Wang C. Y. et al., 2024), and YOLO11 with spatial-channel 
dual-dimensional dynamic modeling (Khanam and Hussain, 2024)—
forms a generational sequence of single-stage detectors that directly 
parallels our multiscale contextual modeling strategy, establishing a 

TABLE 6  Data augmentation method.

Category Operation Parameter Range Purpose

Geometric

Horizontal flip p = 0.5 Eliminate left–right orientation bias

Vertical flip p = 0.3 Adapt to varying capture angles

Random scaling 0.5–1.2× Expand size distribution

Photometric HSV jitter H ± 20%, S ± 30%, V ± 30% Resist lighting/color temperature variations

Noise Gaussian noise σ = 0.1 Simulate sensor noise

Occlusion Random rectangular Area ≤20%, AR 0.5–2 Replicate hair and glare artifacts

TABLE 7  Ablation experiment module configuration.

Model variant PP-LCNet MCA Shape-IoU Description

YOLOv10 (baseline) – – – Original YOLOv10 architecture

YOLOv10 + PP-LCNet ✓ – – Backbone network replacement only

YOLOv10 + MCA – ✓ – Neck attention mechanism replacement only

YOLOv10 + Shape-IoU – – ✓ Bounding box loss function replacement only

Full model ✓ ✓ ✓ Joint optimization of three modules

Values shown in bold are from the Full model with all modules enabled.
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methodological dialogue. SSD, as a representative two-stage detector, 
highlights the limitations of anchor-based mechanisms and NMS post-
processing in heterogeneous lesion scenarios, where anchor presets may 
lead to matching errors (Liu et  al., 2016), thus serving as a critical 
benchmark to assess the medical adaptability of anchor-free single-stage 
frameworks. All models were evaluated under strict patient-level data 
isolation, standardized input resolution (bilinear interpolation + zero-
padding to preserve aspect ratios), and identical optimization settings, 
ensuring that outcome differences purely reflect algorithmic variations.

4 Results

4.1 Ablation experiments revealing module 
contributions

To comprehensively evaluate the specific contributions of each 
improved module to model performance, this study systematically 
analyzes performance differences between the YOLOv10 baseline 
model and its variants through ablation experiments.

Example detection results are shown in Figure 11.
Using mAP@0.5 (mean average precision at IoU threshold 0.5) as 

the core evaluation metric, supplemented by mAP@0.95, Precision 
(P), Recall (R), model size (Wsz, MB), and inference Latency (ms) 
we provide a holistic analysis of model performance.

Table 9 presents the performance results of all models.
Ablation experiments demonstrate that every module substantially 

boosts performance. Replacing the backbone with PP-LCNet raises 
mAP@0.5 from 95.61 to 97.17%, mAP@0.95 to 79.12%, and yields 
Precision/Recall of 97.28%/93.38%. Introducing the MCA module lifts 
mAP@0.5 to 96.43%, with Precision 94.21% and Recall 91.95%, 
proving especially effective for multi-scale targets. Adopting Shape-IoU 
increases mAP@0.5 and mAP@0.95 to 96.58% and 78.59%, 
respectively, with Precision 96.04%, evidencing markedly improved 
boundary fitting. When all three modules are combined, the model 
achieves an mAP@0.5 of 97.69%—a 2.08-percentage-point gain over 
the baseline—while mAP@0.95 reaches 79.39% and Precision/Recall 
balance at 94.41%/95.65%, validating the complementary benefits of 
PP-LCNet’s feature extraction, MCA’s multi-scale perception, and 
Shape-IoU’s shape-sensitive regression.

Across all variants the model footprint remains tightly bounded 
(5.37–5.51 MB), indicating that each module’s parameters are largely 

offset by PP-LCNet’s channel-sparsity and weight-sharing design. 
Crucially, inference latency stays below 35 ms on Jetson NX (≈ 29 
FPS), with the full model even reaching 32.02 ms—the fastest of all 
ablation settings despite its highest accuracy. This “performance-for-
free” profile means the complete configuration delivers the best 
trade-off for edge/mobile deployment: it meets real-time thresholds 
(> 25 FPS), fits comfortably within 8 MB flash budgets, and preserves 
thermal headroom for continuous operation. If power constraints 
tighten further, the PP-LCNet-only variant (32.47 ms) offers a graceful 
fallback with minimal accuracy sacrifice.

4.2 Comparative experiments validating 
model superiority

To validate the superiority of the proposed improved model over 
existing models, comparative experiments were designed, covering 
multiple classical object detection models including different versions 
of the YOLO series (YOLOv10, YOLOv11, YOLOv5, YOLOv8, 
YOLOv9-t) and the traditional SSD (Single Shot MultiBox Detector). 
The experimental results are shown in Table  10, where each 
comparative model is evaluated based on mAP@0.5, mAP@0.95, 
Precision, and Recall, with mAP@0.5 being the core evaluation metric.

Comparative results show that baseline YOLOv10 outperforms all 
other models in melanocytic nevus detection. For example, its 
mAP@0.5 is 0.73 percentage points higher than that of YOLOv11, 
with a better precision–recall balance. It exceeds YOLOv5 by 4.35% in 
mAP@0.5 and 17.08% in mAP@0.95, indicating a clear advantage on 
small-lesion detection. YOLOv10’s mAP@0.5 is 0.22% higher than 
YOLOv8’s, reflecting superior fine-grained feature extraction. 
Although YOLOv10’s precision (92.17%) is slightly below YOLOv9-t’s 
(97.66%), YOLOv10 achieves higher recall and mAP@0.5. Finally, 
YOLOv10’s mAP@0.5 is 2.28% higher than SSD’s, underscoring the 
benefits of an anchor-free framework.

At 5.37 MB in size and 32 ms latency (≈ 31 FPS), the full 
YOLOv10 variant is both the lightest and the fastest model tested. By 
contrast, the other models are either heavier (for example, SSD is 
14 MB) or slower (YOLOv5 requires 41 ms per image), confirming 
YOLOv10’s suitability for real-time, on-device screening.

4.3 Model robustness analysis

Model robustness is crucial to ensure reliable high-precision 
performance in melanocytic nevus detection. Performance metrics are 
illustrated in Figure 12.

We analyzed the model’s loss function curves during training. As 
shown in Figure 12, the box_loss, cls_loss, and dfl_loss values dropped 
rapidly in the early epochs and then leveled off at low values. The 
validation-set loss curves showed a similar decline and closely mirrored 
the training-set curves, with only minimal differences. This indicates 
that no significant overfitting or underfitting occurred. Such rapid, 
stable convergence demonstrates the effectiveness of the model’s 
optimization process.

Trends in the Precision and Recall metrics further demonstrate the 
model’s robustness. As shown in Figure 12, Precision rose quickly in the 
initial training stages and then stabilized above 0.95 with very little 
fluctuation. Similarly, Recall improved rapidly and plateaued at a level 
above 0.90. The fact that both metrics remained consistently high 

TABLE 8  Ablation experiment module configuration.

Model Version/
configuration

Characteristics

YOLOv10 Official default
Single-stage, NMS-free 

design

YOLO11 Pre-release version
Introduces region attention 

mechanism

YOLOv5 YOLOv5n
Industrial lightweight 

baseline

YOLOv8 YOLOv8n
Multi-task alignment 

optimization

YOLOv9-t Tiny configuration Recursive attention module

SSD MobileNet-SSD
Classic two-stage lightweight 

model
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FIGURE 11

Example detection results.

TABLE 9  Ablation experiment results.

Model PP-
LCNet

MCA Shape
-IoU

Map@0.5 (95% 
CI)

mAP@0.95 
(95% CI)

P R Wsz Latency

YOLOv10 baseline – – – 95.61% (95.30–95.93) 74.77% (74.09–75.47) 92.17% 92.18% 5.51 MB 35.71 ms

YOLOv10 + PP-

LCNet
✓ – – 97.17% (96.93–97.41) 79.12% (78.55–79.69) 97.28% 93.38% 5.37 MB 32.47 ms

YOLOv10 + MCA – ✓ – 96.43% (96.17–96.68) 78.02% (77.45–78.59) 94.21% 91.95% 5.50 MB 33.60 ms

YOLOv10 + shape-

IoU
– – ✓ 96.58% (96.32–96.83) 78.59% (78.02–79.17) 96.04% 89.57% 5.50 MB 33.67 ms

Full model (all 

modules)
✓ ✓ ✓ 97.69% (97.46–97.91) 79.39% (78.83–79.95) 94.41% 95.65% 5.37 MB 32.02 ms

*95% CI calculation: we performed patient-level stratified 10-fold cross-validation. For each metric, the values obtained on the 10 validation folds were combined using a t-distribution (df = 9) 
to compute the mean ± t₉,0.975 · SD/√10.
Values shown in bold are from the Full model with all modules enabled.
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indicates that the model effectively detects most melanocytic nevi (high 
recall) while rarely misclassifying benign lesions as malignant (high 
precision). These outcomes verify the model’s stable performance and 
reliability in practical use.

Additionally, the mean Average Precision metrics (mAP@0.5 and 
mAP@0.5–0.95) showed a similarly stable pattern. As illustrated in 
Figure 12, mAP@0.5 climbed quickly at the start and then reached a 
high plateau at roughly 0.98 with minimal fluctuation. The stricter 
mAP@0.5–0.95 metric also rose steadily and eventually leveled off 
around 0.80. These observations confirm that the model maintains 
high localization accuracy even under more stringent IoU thresholds, 
reinforcing its overall robustness and precise boundary fitting capability.

In summary, the loss curves and evaluation metrics highlight the 
model’s robust, high-level performance in detecting melanocytic nevi. 
This stable and reliable performance provides a critical technical 
foundation for implementing the reverse-exclusion melanoma 
strategy in clinical practice.

5 Clinical reverse exclusion validation

This chapter aims to validate the effectiveness and reliability 
of the reverse exclusion strategy-based model in melanoma  
screening.

5.1 Research objective and logical premise

This chapter evaluates the clinical safety of the proposed 
“melanocytic nevus recognition + reverse exclusion” strategy. Since 
the model exclusively identifies the benign feature “melanocytic 
nevus,” the screening logic follows:

If the model classifies a case as “melanocytic nevus,” it is deemed 
“low-risk” and biopsy is not recommended.

Otherwise, the case is categorized as “non-nevus” and classified as 
high-risk, requiring further intervention.

TABLE 10  Ablation experiment results.

Model mAP@0.5 (95% 
CI)

mAP@0.95 (95% 
CI)

P R Wsz Latency

YOLOv10 95.61% (95.29–95.93) 74.77% (74.11–75.45) 92.17% 92.18% 5.51 MB 35.71 ms

YOLOv11 94.88% (94.53–95.22) 65.13% (64.21–66.01) 92.62% 89.57% 5.30 MB 35.66 ms

YOLOv5 91.26% (90.88–91.63) 57.69% (56.79–58.60) 88.53% 83.89% 7.25 MB 41.2 ms

YOLOv8 95.39% (95.05–95.72) 62.38% (61.44–63.32) 89.79% 90.00% 5.49 MB 37.8 ms

YOLOv9-t 95.35% (95.01–95.68) 71.27% (70.35–72.16) 97.66% 86.52% 5.98 MB 39.5 ms

SSD 93.33% (93.00–93.64) 69.20% (68.29–70.09) 90.75% 93.64% 14.30 MB 54.7 ms

Full model (all 

modules)
97.69% (97.46–97.91) 79.39% (78.83–79.94)

94.41% 95.65% 5.37 MB 32.02 ms

The meaning of the 95% CI is as follows: under the same data and analysis procedure, if the study were repeated and the interval recalculated each time, about 95% of such intervals would 
cover the true value of the fold-averaged metric. This interval reflects the uncertainty arising from sample and fold-to-fold variation; it is not equivalent to an individual prediction interval, 
nor does it guarantee external generalization.
Values shown in bold are from the Full model with all modules enabled.

FIGURE 12

Trends of loss functions and detection performance metrics.
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Under this framework, the definition of false negative (FN) is 
inverted: “misidentifying melanoma as melanocytic nevus” (erroneously 
classifying malignant as benign), which carries significant clinical risks.

Therefore, false negative rate (FNR) serves as the core evaluation 
metric to determine whether this reverse exclusion strategy meets 
sufficient safety criteria (i.e., FNR ≤ 0.5%).

5.2 Model detection process

The experiment utilizes the independent external test set 
constructed in Chapter 4, comprising 365 dermoscopic images of 
melanoma confirmed by biopsy, with no melanocytic nevi or other 
benign lesions, ensuring unambiguous classification.

All images undergo standardized normalization and are processed 
through the improved model for inference. The model exclusively 
detects the “melanocytic nevus” category:

Detection bounding boxes indicate “melanocytic nevus” 
classification.

Absence of bounding boxes indicates “non-melanocytic nevus” 
classification.

5.3 Research objective and logical premise

According to the clinical inverse exclusion definition, the false 
negative rate (FNR) is calculated as Equation 8 (Bossuyt et al., 2003):

	
=

+
FNFNR

TP FN 	
(8)

where, FN (false negative): misclassifying melanoma as 
melanocytic nevus (i.e., labeling malignancy as benign); TP (true 
positive): correctly classifying melanoma as “non-melanocytic nevus” 
(i.e., identifying high-risk lesions).

5.4 Experimental results

Among the 365 melanoma samples, the model failed to detect 
melanocytic nevus in 364 cases (TN), while misclassifying 1 case as 
nevus (FN) with a detection confidence of 0.5. The misclassified 
sample is shown in Figure 13

Table 11 shows the test statistics.

5.5 Morphological analysis of the 
misclassified lesion

The dermoscopic image mislabelled by the network as a benign 
melanocytic naevus exhibits several geometric and topological 
hallmarks of early melanoma that escape the current model.

The binary mask was thinned using the Zhang–Suen algorithm, 
and the resulting skeleton (lime) is super-imposed on the dermoscopic 
image (see Figure 14). High branch density and numerous terminal 
nodes indicate irregular peripheral outgrowth and suggest satellite 
invasion beyond the main tumour mass.

The scale-resolved spectrum in Figure 15 refines this observation: 
between 16 px and 64 px the local fractal dimension stays in the 1.92–
1.95 range, while beyond 128 px it abruptly approaches 2.0. These twin 
plateaux indicate the coexistence of coarse lobular bulges and fine 
spiculate structures, an architectural pattern frequently reported in 
early invasive melanoma.

Shape frequency analysis supports this conclusion. The elliptic 
Fourier magnitude spectrum in Figure 16 decays only slowly up to the 
20th harmonic; every component above the third harmonic exceeds 
10−2, whereas benign contours typically fall one to two orders of 
magnitude below that threshold. The preserved high-frequency power 
confirms the abundance of micro-indentations already visible in the 
raw outline.

Geometric symmetry is equally compromised. The polar radial-
distance trace (Figure  17) oscillates by roughly 32% of the mean 
radius, with pronounced peaks along the 60°–120° and 240°–300° 
directions.

The normalised deviation histogram in Figure  18 is clearly 
bimodal: about 41% of boundary pixels deviate from the mean radius 
by more than 10%, whereas benign controls rarely exceed 15%. These 
measurements satisfy the asymmetry clause of the ABCDE rule and 
reinforce the malignant impression.

FIGURE 13

Misclassified sample.

TABLE 11  Inverse detection statistics on melanoma dataset.

Category Count Description

Total melanoma images 365
All biopsy-confirmed 

melanomas

Classified as “Non-

Nevus” (TN)
364 Correctly excluded

Classified as “Nevus” 

(FN)
1

Misclassified as nevus 

(confidence 0.5)

False Negative Rate 

(FNR)
0.27% Below clinical s
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Taken together, the five quantitative views demonstrate excessive 
boundary complexity, multiscale serration and pronounced bilateral 
asymmetry—three independent morphological signatures of melanoma. 
The convolutional network nevertheless produced a benign probability 
of 0.5, implying that its decision was dominated by homogeneous central 
pigmentation while largely ignoring higher-order geometric cues.

5.6 Benchmarking false-negative rate (FNR) 
against dermatologists using the ABCDE 
rule and 7-point checklist

In early melanoma screening, the clinical gold standard remains 
the visual assessment of experienced dermatologists, supported by two 
guideline-endorsed scoring systems—the ABCDE rule and the 
7-point checklist. Demonstrating a clear performance advantage over 
these real-world decision benchmarks is essential for establishing the 
safety and utility of any AI model. Accordingly, this section 

FIGURE 15

Local FD spectrum.

FIGURE 16

EFD magnitude.

FIGURE 17

Radial distance profile.

FIGURE 18

Δr/r̄ histogram.

FIGURE 14

Skeleton overlay.
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benchmarks the enhanced YOLOv10 framework against 
dermatologists operating within these two scoring paradigms, 
focusing on the critical safety metric of false-negative rate (FNR).

To eliminate memory and ordering bias, three dermatologists 
with ≥10 years of experience independently interpreted the same set 
of 365 histopathology-confirmed melanoma images in a double-
blind, two-round protocol. In the first round, only the ABCDE rule 
was applied; after a four-week washout period, the image order was 
re-randomized and the second round was conducted using only the 
7-point checklist. Pathology results and model outputs were 
concealed from all readers. The comparative results are summarized 
in Table 12.

The model missed only one melanoma among 365 cases, yielding 
an FNR roughly forty-fold lower than that of dermatologists using 
either conventional scoring system (McNemar p < 0.001). This 
marked reduction highlights the model’s superior diagnostic safety 
margin, particularly in minimizing false-negative outcomes in early 
melanoma screening.

6 Conclusion

This study addresses the persistent issue of missed melanoma 
diagnoses by proposing a novel “benign-first, reverse-exclusion” 
workflow. In this approach, the model first confidently identifies 
melanocytic nevi and then infers that melanoma is absent. Within the 
YOLOv10 framework, we introduced three specific upgrades: (i) a 
lightweight PP-LCNet backbone to combat the loss of fine (sub-3 mm) 
texture detail, (ii) a Multiscale Contextual Attention (MCA) module 
to improve cross-scale feature fusion, and (iii) a shape-aware 
Shape-IoU loss for more accurate boundary fitting.

On a multi-centre benign nevus dataset, the enhanced detector 
achieved mAP@0.5 of 97.69% and a precision of 0.94 with recall of 
0.96. Most critically, on an independent cohort of 365 biopsy-proven 
melanomas, the false-negative rate (FNR) was only 0.27%, well below 
the clinically accepted 0.5% ceiling. In practical terms, out of 1,000 
screened lesions the system would be  expected to miss at most 3 
melanomas — far fewer than conventional visual exams or generic AI 
tools — thereby preserving the life-saving window afforded by 
early detection.

Beyond accuracy, the model also meets two important clinical 
requirements: (1) an inference latency below 35 ms on edge devices, 
which enables real-time dermoscopy in clinics or mobile screening 
vans; and (2) a compact 5.4 MB model size, small enough for 
deployment on a smartphone — lowering the barrier to broad 
adoption in primary care settings.

The loss curves converged rapidly and smoothly, and the 
precision–recall and F1–confidence curves flattened into stable 
plateaus across a wide range of confidence thresholds. Together, these 

outcomes demonstrate that the detector maintains a low FNR and 
high accuracy under a variety of deployment conditions.

Three limitations remain. First, our training and test cohorts 
consisted exclusively of East-Asian patients with Fitzpatrick type II–
III skin, so a multi-ethnic validation is essential before any global roll-
out. Second, because our image archive was frozen as of 31 December 
2024, only a small fraction of cases have reached the 5-year follow-up 
mark commonly used to assess melanoma recurrence. A prospective 
registry linking baseline dermoscopic images to outcomes ≥5 years is 
being established to quantify real-world reductions in unnecessary 
biopsies and to ensure long-term safety. Third, before large-scale 
clinical deployment, the system must meet emerging regulatory and 
ethical standards. Obtaining CE marking in Europe or FDA clearance 
in the US will depend on demonstrating robust performance, 
instituting post-market surveillance plans, and — critically — 
ensuring the model’s explainability. Although the reverse-exclusion 
logic is clinically intuitive, future work should integrate formal 
interpretability tools (for example, class-activation heatmaps or token-
level attention visualizations) and produce regulatory-grade 
documentation to address algorithmic bias, cybersecurity, and data 
privacy compliance.

In conclusion, by anchoring an ultra-low FNR of 0.27% as its 
safety floor and tightly coupling deep-learning advances with the 
reverse-exclusion paradigm, the proposed detector offers a practical, 
efficient, and safe solution for early melanoma diagnosis and provides 
a foundation for wider AI-assisted skin-cancer screening.
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