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Background: Many deceased donor kidneys go unused despite growing demand 
for transplantation. Early identification of organs at high risk of nonuse can 
facilitate effective allocation interventions, ensuring these organs are offered 
to patients who could potentially benefit from them. While several machine 
learning models have been developed to predict nonuse risk, the complexity of 
these models compromises their practical implementation.

Methods: We propose simplified, implementable nonuse risk prediction models 
that combine the Kidney Donor Risk Index (KDRI) with a small set of variables 
selected through machine learning or transplantation expert input. Our approach 
also account for Organ Procurement Organization (OPO) level factors affecting 
kidney disposition.

Results: The proposed models demonstrate competitive performance 
compared to more complex models that involve a large number of variables 
while maintaining interpretability and ease of use.

Conclusion: Our models provide accurate, interpretable risk predictions and 
highlight key drivers of kidney nonuse, including variation across OPOs. These 
findings can inform the design of effective organ allocation interventions, 
increasing the likelihood of transplantation for hard-to-place kidneys.
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1 Introduction

Kidney transplantation is the gold standard treatment for patients with end-stage renal 
disease. Nearly 80% of kidneys are recovered from deceased donors, however a significant 
challenge remains: almost 90,000 U.S. patients stay on the waiting list, while one out of every 
four donated kidneys that are recovered for transplantation go unused (Cooper et al., 2019; 
Lentine et al., 2022; Li et al., 2021). Perceived organ quality plays a crucial role in this alarming 
nonuse rate, as does the intricacies of appropriately matching available organs with suitable 
recipients (Mohan et al., 2018). To alleviate such significant discrepancies, mechanisms to 
expeditiously match donated organs at higher risk of nonuse with patients who may potentially 
benefit from receiving them emerge as a pressing need (Schold et al., 2019; Stratta, 2022).
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In current practice, to increase the utilization and expedite the 
placement of “hard-to-place” kidneys, organ procurement 
organizations (OPOs) can deviate from the match-run process and 
extend out-of-sequence offers to transplant centers. The prevalence of 
such offers has recently increased, in part due to the latest updates in 
the kidney allocation system, which inadvertently created delays 
in  local kidney placements (Adler et  al., 2021). The lack of 
transparency and consistency in these discretionary practices has also 
raised public concerns; a recent New York Times article underscored 
how such ad hoc decisions can erode trust in the system (Rosenthal 
et al., 2025). Without defined guidelines, allocation exceptions may 
amplify the existing inequalities in organ access (Hanaway et al., 2020; 
Lynch and Patzer, 2019). Thus, the main motivation of this study 
pertains to enabling equitable and transparent allocation decisions by 
predicting kidneys that require additional effort or interventions for 
successful placement.

The Kidney Accelerated Placement (KAP) initiative, launched in 
July 2019, aimed at identifying hard-to-place kidneys and channeling 
them to transplant centers with a history of accepting such organs 
(Cooper et al., 2019; Schold and Segev, 2012). However, the KAP 
project failed to increase organ utilization due to: (i) a vague definition 
of “hard-to-place” kidneys, and (ii) delayed acceleration of placement 
for such kidneys until they had been rejected by multiple local and 
regional transplant programs (Noreen et  al., 2022). Our study 
addresses these two shortcomings by proposing machine learning 
models that can accurately identify kidneys at high risk of nonuse 
either before the beginning of the match run process or during its early 
stages, enabling timely interventions.

The Kidney Donor Risk Index (KDRI) and Kidney Donor Profile 
Index (KDPI) serve as mainstays for clinicians and transplant 
decision-makers for evaluating kidney quality and predicting post-
transplant longevity, both of which subsequently impact the likelihood 

of offer acceptance (Noreen et  al., 2022; Organ Procurement and 
Transplantation Network, 2020). KDRI quantifies relative graft failure 
risk, and KDPI maps KDRI onto a cumulative percentile scale. 
Although originally developed to predict post-transplant outcomes, 
these indices have also been used by policymakers as proxies for 
assessing nonuse risk when designing interventions to reduce organ 
nonuse rates (Dahmen et  al., 2019; Organ Procurement and 
Transplantation Network, 2021). The KAP project, for example, 
leveraged minimum 80% KDPI (slightly deviating from the 
conventional 85% threshold) as a primary criterion for triggering 
accelerated placement interventions (Organ Procurement and 
Transplantation Network, 2021). However, using KDPI alone for 
predicting non-utilization is fallible since KDPI was not designed for 
this purpose. As illustrated in Figure 1, many kidneys with high KDPI 
find recipients, while a significant portion with KDPI < 85% 
go unused.

We propose implementable and intuitive machine learning 
models to predict the risk of kidney nonuse during the match run. 
Rather than disregarding KDRI, a widely adopted and clinically 
trusted metric, our simplified risk models leverage its established 
acceptance, repurposing it for accurate nonuse prediction by 
combining it with a limited number of additional variables. Our 
findings demonstrate that this integration significantly improves 
predictive accuracy and interpretability, aligning closely with 
current transplant practices. Additionally, we  develop 
comprehensive risk models as benchmarks, deliberately excluding 
KDRI to avoid potential inherent biases or limitations associated 
with this metric, and incorporating all relevant variables without 
constraints. Our computational experiments highlight the 
competitive performance of our proposed simplified models, 
identifying key donor- and OPO-level factors that influence the 
utilization of hard-to-place organs. These proposed models hold 

FIGURE 1

Percentage of deceased donor kidneys recovered for transplantation between 2016 and 2021 that are not utilized (light gray) or transplanted (dark 
gray) with respect to KDPI.
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promise for improving kidney utilization rates by enabling timely, 
targeted placement interventions.

The remainder of this paper is organized as follows: Section 2 
reviews the related work. Section 3 describes the dataset and modeling 
methodology. Section 4 presents the experimental results. Section 5 
discusses key findings, limitations, and ethical considerations, and 
Section 6 concludes the paper.

2 Related work

Previous research on kidney nonuse has primarily relied on 
predictive modeling methods, leveraging donor and organ 
characteristics to anticipate the likelihood of organ nonuse. Early 
foundational studies introduced logistic regression models to estimate 
nonuse probabilities. Massie et al. (2010) developed the Probability of 
Nonuse or Delay (PODD), which predicted whether kidneys would 
either remain unused or experience extended cold ischemia time. 
Building upon this, Marrero et  al. (2017) presented a logistic 
regression model that achieved improved predictive performance 
compared to the KDPI, demonstrating the potential of predictive 
analytics to improve organ allocation decisions. Zhou et al. (2019) 
further showed that directing high-PODD kidneys to transplant 
centers more inclined to accept them could significantly improve their 
utilization. A complementary study Cohen et al. (2018) identified 
non-quality-related factors, such as procurement timing (weekends, 
holidays) and local waiting list characteristics, as critical variables 
influencing kidney acceptance.

More recently, researchers have increasingly employed advanced 
machine learning (ML) and natural language processing methods to 
improve nonuse predictions. Sageshima et  al. (2024) effectively 
combined structured donor data with unstructured donor narratives 
to identify kidneys at higher non-utilization risk. Similarly, Barah and 
Mehrotra (2021) developed random forest and gradient boosting 
models leveraging detailed donor information available at the 
match-run onset, achieving strong predictive outcomes. However, 
despite their accuracy, these advanced ML models are often regarded 
as “black-box” methods; limited in interpretability due to their 
complexity and reliance on numerous input variables (Linardatos 
et al., 2021; Rudin, 2019). Moreover, they did not include KDRI, a 
metric widely employed by clinicians and policymakers to assess 
organ quality.

A critical limitation across much of the existing literature is the 
exclusive focus on donor and organ-level predictors, while neglecting 
broader system-level influences, notably the critical role of OPOs. 
Recent evidence highlights significant variability among OPOs in 
procurement practices and performance, with direct implications for 
organ utilization (Concepcion et al., 2023; Doby et al., 2022). Ignoring 
OPO-specific characteristics may lead to models missing important 
determinants of kidney nonuse and, consequently, diminish 
their applicability.

Our study contributes to existing literature in the following 
distinct ways. First, addressing the interpretability gap of previous 
ML-based approaches, we  develop simplified predictive models 
utilizing a minimal and carefully selected subset of clinically 
relevant variables. This approach promotes transparency and 
clinical practicality, facilitating direct application by decision-
makers. Second, rather than disregarding established metrics like 

KDRI, we  leverage its clinical acceptance, integrating and 
repurposing it within our predictive framework. This strategy 
improves both the accuracy and usability of nonuse risk assessment 
while aligning closely with existing clinical practices. Finally, 
we explicitly integrate OPO-level characteristics by clustering OPOs 
based on their kidney utilization performance. By doing so, 
we move beyond purely donor-centric views, acknowledging and 
modeling critical system-level factors that influence kidney 
utilization outcomes.

3 Materials and methods

3.1 Data

Our data set, provided by the United Network for Organ Sharing, 
includes records from 61,320 deceased donors, between January 2016 
and September 2021, who had at least one kidney recovered for 
transplantation. Each record contains 530 variables, encompassing 
donor demographic characteristics, physical properties, and relevant 
medical information, such as laboratory values and comorbidities. 
Furthermore, we obtained Potential Transplant Recipient (PTR) data 
for the same time period, which captures all kidney offers made to 
patients on the US waiting list. The PTR data logs the match run 
creation time for each donor, which was used to determine ischemia 
time. We removed 110 donors missing a match run creation time from 
the analysis.

We identified an initial list of variables linked to kidney nonuse in 
the literature (Barah and Mehrotra, 2021; Marrero et al., 2017; Massie 
et al., 2010). This list was further augmented by kidney transplant 
experts on our team, leading to 36 variables included in our analysis 
(Table 1). These variables were used to generate an observation vector 
for each kidney, where each kidney from the same donor was treated 
as a separate observation (Supplementary Figure A1).

3.2 Variable creation

We created additional variables using some of the 36 variables. 
Specifically, we  computed Cold Ischemia Time (CIT) and Warm 
Ischemia Time (WIT) for each kidney, since prolonged CIT and WIT 
adversely affect graft function (Debout et al., 2015; Kamińska et al., 
2016), and transplant centers carefully evaluate these metrics when 
responding to kidney offers. For kidneys from Donation after Cardiac 
Death (DCD) donors, we  calculated the WIT as the difference 
between agonal time and the clamp time. We calculated the CIT at the 
first match run creation (referred to as CIT onset) as the gap between 
the clamp time and the first match run creation time. CIT onset was 
set to zero if the clamp time is after the first match run creation.

En-bloc kidney transplantation is a procedure where two small 
kidneys from a donor weighing less than 18 kg are transplanted into 
one recipient (Organ Procurement and Transplantation Network, 
2023). Dual (or 2-for-1) kidney transplantation involves transplanting 
both kidneys from a donor weighing at least 18 kg, which are 
individually less suitable for transplantation (Organ Procurement and 
Transplantation Network, 2023). To account for the disparities 
between the nonuse risk of en-bloc and dual kidneys, we created two 
indicator variables, namely isEnbloc and isDual.
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TABLE 1 The results of the univariate analysis (N = 117,747 kidneys).

Variable name Category Mean/percent Odds ratio 95% CI

Age (year) 40.48 1.07 1.07, 1.07

Height (cm) 169.33 1.00 0.99, 1.00

BMI (kg/m2) 28.37 1.03 1.03, 1.04

Creatinine (mg/dL) 1.43 1.39 1.38, 1.40

Warm Ischemia Time (h) 0.01 2.30 2.00, 2.65

Initial Cold Ischemia Time (h) 0.23 1.06 1.05, 1.07

KDRI 1.35 16.50 15.90, 17.10

Ethnicity Other 68.83%

Asian 2.52% 1.14 1.04, 1.25

African American 14.40% 1.23 1.18, 1.28

Hispanic 14.25% 0.80 0.76, 0.83

Blood type O 47.75%

AB 3.42% 1.32 1.23, 1.42

B 11.65% 1.05 1.00, 1.10

A 37.18% 1.04 1.01, 1.08

Cause of death Other 3.17%

CVA/Stroke 25.44% 1.86 1.71, 2.02

Anoxia 43.82% 0.89 0.82, 0.97

Trauma 27.57% 0.47 0.43, 0.51

OPO clusters Cluster 1 43.76%

Cluster 2 24.67% 0.83 0.80, 0.86

Cluster 3 6.14% 0.72 0.67, 0.77

Cluster 4 24.33% 1.34 1.30, 1.39

Cluster 5 1.10% 0.83 0.72, 0.96

Diabetes status Yes [>0 Years] 10.66% 4.63 4.45, 4.81

Yes [>5 Years] 5.24% 5.78 5.49, 6.09

Yes [>10 Years] 3.19% 6.47 6.05, 6.92

Glomerulosclerosis >5 20.44% 8.13 7.87, 8.39

>10 11.96% 12.10 11.60, 12.50

>15 7.89% 18.00 17.10, 18.90

>20 5.41% 26.30 24.60, 28.20

Interstitial fibrosis level Absent 68.65%

Minimal 14.77% 2.84 2.73, 2.95

Advanced 16.58% 7.53 7.26, 7.80

Vascular changes level Absent 74.15%

Minimal 10.57% 2.66 2.55, 2.78

Advanced 15.28% 6.18 5.97, 6.40

Biopsy indicator No 44.93%

Yes 55.07% 6.48 6.24, 6.74

Gender Male 61.12%

Female 38.88% 1.35 1.31, 1.39

Dual kidney No 97.95%

Yes 1.04% 2.72 2.42, 3.05

Enbloc kidney No 98.99%

Yes 1.01% 0.77 0.65, 0.89

(Continued)
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We applied the k-means clustering algorithm (Hartigan and Wong, 
1979; Jadlowiec et al., 2023) to categorize OPOs based on two distinct 
features: (i) the overall percentage of kidneys recovered by each OPO 
that were successfully transplanted, and (ii) the transplantation 
percentage specifically among kidneys with KDPI ≥ 85%. To select an 
appropriate number of clusters, we  constructed an elbow plot 
illustrating average within-cluster Euclidean distances across a range 
of potential cluster numbers (k values from 2 to 40). Although the 
elbow plot (Supplementary Figure A2) suggested k = 10 as a potential 
optimal solution, we  selected k  = 5 to achieve a suitable balance 
between meaningful cluster differentiation and statistical robustness, 

considering the relatively small number of OPOs. The resulting OPO 
clusters were then incorporated into our predictive models as 
categorical indicator variables, enabling us to systematically evaluate 
the influence of OPO-level behaviors on kidney utilization outcomes.

3.3 Missing data imputation and data 
exclusion

Our data included variables with unspecified categories or 
categories that were deemed inconsequential to kidney disposition 

TABLE 1 (Continued)

Variable name Category Mean/percent Odds ratio 95% CI

DCD donor No 76.47%

Yes 23.53% 1.21 1.17, 1.25

History of cancer No 96.97%

Yes 3.03% 2.68 2.50, 2.87

History of smoking No 78.67%

Yes 21.33% 2.11 2.04, 2.18

History of hypertension No 67.06%

Yes 32.94% 4.35 4.22, 4.48

History of myocardial infraction No 95.86%

Yes 4.14% 3.16 2.98, 3.35

History of cocaine No 77.43%

Yes 22.57% 0.86 0.83, 0.89

History of I.V. drug No 86.95%

Yes 13.05% 0.77 0.73, 0.80

History of other drugs No 51.93%

Yes 48.07% 0.63 0.61, 0.65

Insulin No 64.34%

Yes 35.66% 1.23 1.20, 1.27

CMV status Negative 38.37%

Positive 61.63% 1.23 1.19, 1.26

HBV core antibody status Negative 95.17%

Positive 4.83% 2.39 2.26, 2.53

Risk for blood-borne disease transmission No 75.14%

Yes 24.86% 0.76 0.73, 0.79

Protein in urine No 48.45%

Yes 51.55% 1.45 1.41, 1.49

HCV NAT results Negative 94.57%

Positive 5.43% 1.75 1.65, 1.84

Arginine vasopressin with 24 h pre-clamp No 41.06%

Yes 58.94% 0.59 0.57, 0.61

Coronary angiogram No 78.79%

Yes 21.21% 0.52 0.52, 0.57

Pump No 60.88%

Yes 39.12% 0.86 0.83, 0.88

For continuous variables, the mean value is reported. For binary and categorical variables, the percentage of kidneys in each category is reported. The highlighted categories are used as the 
reference group when calculating the odds ratio for non-utilization.
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(e.g., the distinction between blood types A, A1, and A2). 
We  consolidated those categories (see Supplementary Table A1). 
We further processed the data by replacing creatinine values above 20 
with 20 for six kidneys; by computing missing BMI values using 
available donor weight and height; and by imputing missing WIT and 
CIT onset. After these steps, 1,406 kidneys (1.2%) with missing data 
were excluded from the analysis.

Both CIT onset and WIT were calculated and imputed at the 
donor level. Among 14,516 DCD donors, 358 (about 2.5%) had 
missing WIT, which were imputed using the median of the observed 
WIT values (0.383). For non-DCD donors, WIT was set to 0. Out of 
61,210 donors, 19 had missing CIT onset (~0.03%), which were 
imputed using the median of the observed CIT onset values (0). 
Although we  did not perform multiple imputation or formal 
sensitivity analyses due to low missingness of WIT and CIT, more 
robust imputation techniques may reduce bias and improve model 
generalizability in datasets with higher missingness.

We excluded two kidneys with more than 24 h WIT as outliers to 
avoid bias in our results. Furthermore, kidneys that were not used for 
reasons unrelated to their characteristics were excluded. In particular, 
we excluded kidneys with nonuse reasons “not as described” (0.05% 
of kidneys, 60 kidneys), or “recipient determined to be unsuitable in 
the operating room” (0.06% of kidneys, 76 kidneys). Lastly, categories 
with less than 20 observations were removed, as detailed in 
Supplementary Table A1.

3.4 Model development for kidney nonuse 
risk prediction

We initially considered a broad set of candidate models, including 
logistic regression (with and without splines), decision trees, naïve 
Bayes, support vector machines (SVMs), random forests, and 
generalized additive models (GAMs). Our goal was to identify 
models that would jointly satisfy: (i) strong predictive performance, 
(ii) interpretability for clinical implementation, (iii) support for 
flexible variable selection and co-design integration, and (iv) 
established usage and acceptance in health services research and 
clinical practice. After evaluating the performance of the initial 
models, we  chose logistic regression (a parametric model) and 
random forest (a non-parametric model) as our final modeling 
approaches. Logistic regression was chosen for its simplicity, 
widespread usage in medical literature and clinical interpretability 
offering coefficient-based insights into variable effects. To account for 
non-linear relationships in logistic regression, we used linear splines 
for continuous variables (see Supplementary Table A2). The random 
forest model leverages an ensemble of decision trees to capture 
complex interactions and improve accuracy. It was selected for its 
superior out-of-sample predictive performance, resilience to 
overfitting, and robustness to noisy features and non-linear 
interactions. Using these two models, we developed two classes of 
nonuse risk prediction frameworks:

Simplified Risk Models: These models use KDRI alongside a 
minimal set of variables, streamlining the risk assessment. For random 
forest (RF) models, initial training was done using all of the original 
variables (i.e., variables included in the UNOS data and created 

variables explained in Section 2.2) and KDRI. We then identified the 
top five, seven, and nine variables based on permutation importance. 
Models were then re-trained with these variables and KDRI. For 
logistic regression (LR) models, we  included both the original and 
spline variables and compared the coefficients of normalized variables 
to identify the top ones.

Comprehensive Risk Models: Serving as a benchmark, these 
models excluded KDRI to avoid any implied, intrinsic biases or 
shortcomings of this metric. The RF model used all of the original 
variables, while the LR model used both the original and spline 
variables. The efficacy of simplified and comprehensive risk models 
was compared. Additionally, we evaluated the performance of our 
models against a benchmark nonuse risk prediction model that uses 
only KDRI, directly correlating it with nonuse risk, which we refer to 
as KDRI alone.

We performed five-fold stratified cross-validation and evaluated 
performance using the receiver operating characteristic (ROC) and 
the precision-recall (PR) curves. The area under the ROC curve 
(AUROC) measures the model’s ability to distinguish between 
transplanted and unused kidneys. Precision and recall are critical 
metrics for prediction performance. Precision is equivalent to 
Positive Predictive Value (PPV); representing the ratio of correctly 
predicted unused kidneys to the total number of kidneys predicted 
as unused. Recall is equivalent to sensitivity; representing the ratio of 
correctly predicted unused kidneys to the actual number of unused 
kidneys. As there is a trade-off between precision and recall, the 
proposed models can achieve higher recall, at the expense of more 
false positives (i.e., transplanted kidneys predicted as unused) by 
lowering the prediction threshold. We plotted the PR curve for each 
model to visualize this trade-off and calculated the area under the PR 
curve (AUPRC).

3.5 Prediction scenarios

We developed models to predict kidney nonuse early in the 
allocation process. While the majority of variables considered in our 
analysis are available pre-match-run, biopsy-related variables like 
glomerulosclerosis, interstitial fibrosis, and vascular change usually 
become available later in the match run. The role of these variables in 
the kidney offer response decisions can be paramount (Mohan et al., 
2018), and more than half of the recovered kidneys undergo biopsy 
during the match run (Lentine et al., 2019). To support real-world use, 
we created models both with and without biopsy-related variables. In 
practice, decision-makers can pivot to the model with biopsy-related 
variables once biopsy data become available.

3.6 Co-design of nonuse risk prediction 
models

Machine learning models often prioritize variables based on 
statistical patterns that may not reflect clinical relevance, especially 
when training data is not fully representative of the broader population 
(Park et al., 2023). To address this, we conducted a co-design process 
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with kidney transplant experts to enhance model interpretability and 
clinical utility. The co-design process involved a methodical evaluation 
and potential substitution of variables within our models. Clinicians 
reviewed the set of variables determined by the machine learning 
algorithms. They recommended removing variables they deemed less 
relevant in kidney utilization. They also recommended a set of 
variables to be considered in our models for assessing the kidney 
nonuse risk. We  evaluated these variables for their statistical 
contributions to the prediction performance. The co-design process 
harmonized the variables selected by machine learning models with 
the variables deemed important by the clinical experts. This approach 
aimed to foster greater acceptance and usability of the 
proposed models.

4 Results

4.1 Study population and variable analysis

Supplementary Figure A1 outlines the data preparation 
process. Starting with 119,334 procured kidneys from 61,210 
donors, we implemented four exclusion criteria removing 1,587 
kidneys (1.33%). The final dataset consisted of 94,057 transplanted 
kidneys (79.9%) and 23,690 unused kidneys (20.1%). Figure  2 
demonstrates the k-means clustering of the 58 OPOs into five 
groups based on the transplantation percentage of all kidneys and 
the transplantation percentage of hard-to-place (KDPI ≥ 85%) 
kidneys they recovered.

Univariate analysis results (i.e., single factor analysis for nonuse) 
are displayed in Table 1. All variables exhibited statistically significant 
odds ratios for non-utilization. For instance, all else equal, with each 
hourly increment in WIT and CIT onset, we expect to see a 130 and 

6% increase in the odds of nonuse as indicated by their odds ratios of 
2.30 and 1.06, respectively.

4.2 Model prediction performance

Supplementary Figure A3 presents the ROC and PR curves. The 
models that use KDRI and nine additional variables (simplified risk 
models) matched the performance of models trained on the entire 
variable set (comprehensive risk models). Figure  3 shows the 
performance of the models in the same plot for comparison. The RF 
model has the best performance, followed by the LR model-both 
exhibiting clearly superior performance compared to using KDRI 
alone. Supplementary Figures A4, A5 show the impact of biopsy 
results on model performance: the performance of the LR model 
markedly improves whereas the performance of the RF model remains 
comparable. Supplementary Table A3 reports the number of false 
positives avoided by the proposed models compared to using KDRI 
alone. For example, the RF model can precisely predict and potentially 
increase the transplantation likelihood of nearly 12,000 unused 
kidneys at a recall (sensitivity) level of 0.5. Concurrently, this model 
would prevent the misclassification of over 5,500 transplanted kidneys 
compared to using KDRI alone, mitigating thousands of needless 
interventions. The efficacy of the proposed prediction models becomes 
increasingly evident at higher recall levels.

4.3 Selected variables

In the rest of this manuscript, we  focus on the random forest 
model that includes KDRI and nine additional variables since it 
outperforms the other models, and denote the model without the 

FIGURE 2

Impact of OPO centers on the disposition of hard-to-place kidneys. Categorizing OPO centers into five clusters to account for their impact.
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biopsy information as the baseline model. Table 2 lists the model 
variables in for both prediction scenarios, with and without biopsy 
data, ordered by permutation importance. Creatinine, age, BMI, 
history of smoking, and height are chosen in both scenarios. In the 
model with biopsy information, glomerulosclerosis, interstitial 
fibrosis, and the biopsy indicator replaced the history of hypertension, 
coronary angiogram, and DCD indicator that were selected among the 
top 10 variables in the model without biopsy information.

4.4 The role of OPOs in kidney disposition

The clustering analysis in Figure 3 highlights differences in kidney 
disposition performance among OPOs. Correspondingly, OPO cluster 
indicators show significant unadjusted odds ratios for nonuse in 
Table 1. This result might be due to the difference in the percentage of 
hard-to-place kidneys procured by OPOs in each cluster. To further 
assess the impact of OPO cluster variables, we computed their odds 
ratios for nonuse by adjusting for the nonuse risk predicted by the 
model without biopsy-related variables. Supplementary Table A4 

presents these adjusted odds ratios using cluster 1 as the reference. 
Except for cluster 5, which has fewer observations than other clusters, 
all other clusters yielded significant risk-adjusted odds ratios for 
nonuse. For example, kidneys from OPOs in cluster 3 are significantly 
less likely, while those in cluster 4 are more likely, to go unused 
compared to an equivalent kidney from cluster 1 with similar 
projected nonuse risk.

4.5 Factors increasing transplantation 
likelihood of high nonuse risk kidneys

In this section, we  analyze factors associated with increased 
transplantation likelihood among hard-to-place kidneys to inform 
potential interventions. A kidney was defined as hard-to-place if its 
predicted nonuse risk exceeded 0.75; a threshold that identified a 
similar number of unused kidneys as the KDPI 85% benchmark. 
Specifically, of the 12,916 kidneys identified as hard-to-place, 10,845 
(84%) were not used, while 2,071 (16%) were transplanted. 
We perform a univariate analysis among hard-to-place kidneys by 
adjusting for the nonuse risk. The results of this analysis are presented 
in Table  3, spotlighting factors that are associated with a higher 
transplantation likelihood of hard-to-place kidneys.

4.6 Results of the co-design experiment

Kidney transplant experts on our team identified three baseline 
model variables, history of smoking, coronary angiogram, and height, 
as less clinically relevant, and proposed six potential alternatives to 
replace them: OPO cluster, history of diabetes, cause of death, insulin 
use, protein in urine, and pump use. Similarly, for the model with 
biopsy information, eight potential variables were suggested (OPO 
clusters, history of diabetes, cause of death, insulin, protein in urine, 
pump, history of hypertension, and DCD indicator) to replace the two 
that were deemed less relevant (history of smoking and height).

We evaluated all combinations of these substitutions (20 
alternatives, six choose three) for the baseline model and 28 
alternatives (8 choose 2) for the model with biopsy data, and selected 

TABLE 2 Variable selected by proposed simplified risk models when 
excluding and including biopsy-related variables.

Baseline model Model with biopsy 
information

KDRI KDRI

Creatinine Creatinine

Age Age

History of Hypertension Glomerulosclerosis

Arginine Biopsy Performed

BMI BMI

History of Smoking Interstitial Fibrosis

DCD History of Smoking

Coronary Angiogram Height

Height Arginine

Variables that are commonly selected in both scenarios are given in bold.

FIGURE 3

The ROC (left) and PR (right) curves for the simplified models incorporating KDRI and nine additional (non-biopsy-related) variables. The area under the 
curve of each model is reported in the legend.
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the configurations with the highest AUROC and AUPRC. Table 4 lists 
the final variables selected in these models. The expert-guided 
modifications did not compromise the predictive performance of our 
models; the AUC values remained comparable, and even increased 
slightly, for both the baseline model (0.905 versus 0.904 for AUROC 
and 0.767 versus 0.765 for AUPRC) and the model with biopsy 
information (0.905 versus 0.906 for AUROC and 0.771 versus 0.771 
for AUPRC).

Table 5 reports stratified 5-fold cross-validation results for both 
models given in Table 4. This evaluation approach allows us to assess 
prediction performance using unseen data partitions. Our dataset 
from the OPTN captures every deceased kidney donor and every 
organ offer in the United States and therefore spans all donor service 
areas, OPOs, allocation practices, and seasons. That breadth reduces 
spectrum bias and makes the development sample far more diverse 
than the typical “single-center development/separate-center 
validation” set-up. Furthermore, we  designed our models to 
be parsimonious and composed of clinically interpretable variables, 
improving their adaptability across different settings.

To assess the generalizability of the models, Table 5 presents the 
results of external validation experiments using a holdout test set. 

Specifically, we randomly select 10 out of 58 OPOs to serve as the 
external test group and exclude all kidneys from these OPOs during 
model training. We then train RF models using the variables listed in 
Table 4 on kidneys from the remaining 48 OPOs and evaluate model 
performance on the holdout kidneys from the 10 excluded OPOs. This 
process is repeated 10 times, each with a different random selection of 
test OPOs. Table 5 reports the average and standard deviation (in 
parentheses) of the performance metrics across these 10 iterations.

The baseline model without biopsy information shows slightly 
better in-sample cross-validation performance. The performances of 
both models drop in out-of-sample validation tests. However, the 
model incorporating biopsy information demonstrates superior 
generalizability, achieving higher out-of-sample validation 
performance. This suggests that including biopsy data may enhance 
the model’s ability to perform reliably in real-world clinical settings, 
where generalizability to new cases is critical.

5 Discussion

Our study proposes kidney nonuse risk prediction models 
consisting of KDRI and nine additional variables. By achieving a 
balance between simplicity and performance, these models address a 
crucial gap in the organ allocation system; the need for easy-to-use yet 
accurate kidney nonuse prediction models. The proposed models can 
provide transparent and interpretable decision support to initiate 
interventions and manage allocation exceptions within the match-run 
system, increasing the transplantation likelihood of hard-to-place 
kidneys. Our simplified models significantly outperform using KDRI 
alone in predicting kidney nonuse risk, and exhibit performances on 
a par with substantially larger models with more variables.

While biopsy results are often considered critical for assessing 
kidney quality, our findings indicate that incorporating biopsy 
information does not substantially enhance the performance of the RF 
models. This suggests that RF models are robust to the absence of 
biopsy data and can offer reliable predictions even when such 
information is unavailable; an important feature in time-sensitive 
allocation decisions. This challenges conventional assumptions in the 
literature that biopsy data are indispensable for predicting nonuse 
(Husain et al., 2022; Mohan et al., 2018). In contrast, biopsy variables 

TABLE 3 Top significant factors that are associated with increased transplantation likelihood for hard-to-place kidneys.

Variable name Adjusted odds Percentage of 
transplanted hard-to-

place

Percentage of 
transplanted hard-to-

place

Ratio for transplant 95% CI Kidneys when the 
variable value is YES

Kidneys when the 
variable value is NO/

Baseline

Enbloc kidney 5.88 1.76, 22.67 63% 16%

Dual kidney 5.31 3.98, 7.07 52% 16%

OPO cluster3 (Baseline: OPO 

cluster 1)

2.04 1.65, 2.51 28% 16%

Pump 2.01 1.82, 2.21 23% 12%

OPO cluster2 (Baseline: OPO 

cluster 1)

1.13 1.00, 1.28 19% 15%

The odds ratio is adjusted for the nonuse risk.

TABLE 4 Variables of the random forest nonuse risk prediction model 
after the co-design.

Baseline model Model with biopsy 
information

KDRI KDRI

Creatinine Creatinine

Age Age

History of Hypertension Glomerulosclerosis

Arginine Biopsy Performed

BMI BMI

DCD Interstitial Fibrosis

OPO Cluster Arginine

Cause of Death OPO Cluster

Pump Pump

Variables that are added to the model during the co-design process are in bold.
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such as glomerulosclerosis and interstitial fibrosis significantly 
improve the performance of the LR models, reinforcing the idea that 
the utility of biopsy data may be model-specific.

In addition to KDRI, terminal creatinine level, age, BMI, and use 
of arginine vasopressin within 24 h pre-cross clamp are significant 
predictors of kidney nonuse risk. If biopsy is performed, our models 
also utilize variables such as interstitial fibrosis and glomerulosclerosis, 
aligning well with previous studies that emphasized the role of 
glomerulosclerosis in kidney non-utilization (Kasiske et  al., 2014; 
Reese et al., 2021). If the biopsy results are not available, then the 
models utilize variables such as the DCD indicator and history of 
hypertension. It is worth noting that some of the variables used in our 
models, such as age, creatinine, and history of hypertension are also 
considered in KDRI calculation. The predictive performance gap 
between the proposed models and using KDRI alone emphasizes the 
importance of recalibrating KDRI for nonuse risk prediction.

Our prediction results reveal the significance of OPO-related 
factors in the utilization of hard-to-place kidneys. By clustering OPOs 
based on their performance in placing both all kidneys and high-
KDPI kidneys, we  identified a subset of OPOs that consistently 
outperformed others in placing hard-to-place organs. The adjusted 
odds ratios in our analysis confirm that, even after controlling for 
kidney-level predicted nonuse risk, OPO cluster membership remains 
a significant predictor of utilization. The inclusion of OPO-related 
factors in our risk prediction models is not just a technical innovation 
but a call to action for the transplantation community to analyze and 
disseminate the successful strategies of high-performing OPOs, 
thereby elevating overall practice standards and to encourage other 
OPOs to adopt similar, effective approaches in organ recovery and 
allocation. For example, the literature documents major disparities in 
making out-of-sequence kidney offers to accelerate the placement of 
hard-to-place kidneys (King et  al., 2022). Our models can help 
mitigate such disparities by providing guidance to OPOs for 
identifying hard-to-place kidneys that can be intervened for better 
utilization and for standardizing interventions to enhance 
transparency and equitability.

The results of the model co-design approach confirm that data-
driven machine learning methods and clinical expertise are not 
mutually exclusive but complementary. By incorporating the insights 
of transplant experts into the model development process, we have 
created models that not only have high prediction performance but 
also align well with real-world clinical judgments, enhancing the 
medical relevance of our results. In particular, three variables that are 
deemed less relevant to kidney utilization, the history of smoking, 

coronary angiogram, and height (when considered in addition to 
BMI), are replaced with OPO cluster, cause of death, and pump 
indicator variables through the co-design process.

After identifying hard-to-place kidneys in our data using the 
proposed prediction models, we explored characteristics associated 
with an increased transplantation likelihood under the current 
allocation system. These insights can inform the development of both 
operational and system-level interventions. Operational interventions 
that are identified in our analysis include pumping kidneys, which can 
help maintain graft function (Bathini et al., 2013), and presenting dual 
offers, which can increase the chances of acceptance (Tanriover et al., 
2014). System-level interventions require strategic changes at the 
policy or organizational level and often involve a longer-term 
approach. Such interventions identified in our analysis include 
identifying and promoting the best organ recovery and allocation 
practices across OPOs or the integration of an effective nonuse risk 
prediction framework into the national allocation system.

Our study is not without limitations. Our dataset, spanning 2016–
2021, may not fully capture the impact of recent policy changes post-
March 2021. Recent trends, such as the increasing acceptance of 
hepatitis C-positive kidneys due to treatment advances (Buchanan-
Peart et al., 2023), highlight the need for periodic model retraining or 
recalibration. While our OPO clustering approach captures 
meaningful variation across OPO groups, clustering based on organ 
utilization performance may conflate regional variations in organ 
availability, listing practices, or patient demographics with OPO-level 
behaviors, potentially overstating their influence. Moreover, 
transportation infrastructure differences (e.g., rural vs. urban OPOs, 
proximity to transplant centers, availability of commercial flights) and 
differences in transplant center organ acceptance practices across 
regions may confound the OPO behavior effects. These factors should 
be considered when incorporating the influence of OPO behavior on 
kidney nonuse in future research.

For our logistic regression models, we did not conduct a formal 
multicollinearity analysis such as computing variance inflation factors, 
as they were intentionally designed to include a small, non-redundant 
set of variables to mitigate collinearity concerns from the outset. 
We primarily assessed feature importance based on the magnitude of 
standardized coefficients, which allows for a meaningful comparison 
across variables with different scales. Additionally, clinical 
interpretability and relevance guided our final variable selection, 
particularly during the co-design phase with transplant experts. 
Multicollinearity analysis should be  performed, particularly for 
automated feature selection based on logistic regression in expanded 

TABLE 5 In-sample cross-validation and external validation results of the baseline RF model and the RF model with biopsy information with variables 
presented in Table 4.

Performance metrics In-sample cross-validation External validation

Baseline model Model with biopsy 
information

Baseline model Model with biopsy 
information

Accuracy 0.8929 0.8860 0.8374 (0.0062) 0.8597 (0.0054)

Precision 0.7580 0.7537 0.6614 (0.0214) 0.7223 (0.0229)

Recall 0.6870 0.6439 0.4258 (0.0519) 0.4696 (0.0400)

F1 Score 0.7207 0.6945 0.5157 (0.0366) 0.5680 (0.0308)

AUROC 0.9036 0.9059 0.8349 (0.0075) 0.8565 (0.0096)

AUPRC 0.7653 0.7714 0.6082 (0.0277) 0.6703 (0.0280)
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models. Our final computational results are based on the RF model 
that includes KDRI and nine additional variables since it achieves the 
best performance. Random forest models are inherently robust to 
multicollinearity because they rely on an ensemble of decision trees, 
each built on a random subset of features. This randomness reduces 
the dominance of correlated predictors and spreads importance across 
them, preventing overfitting to any single redundant variable. As a 
result, random forests maintain predictive accuracy even when strong 
correlations exist among input variables.

The application of nonuse risk prediction models must strike a 
balance between improving kidney utilization and safeguarding 
recipient outcomes. Incorporating lower-quality kidneys into the 
transplant pool requires careful clinical judgment to minimize the risk 
of post-transplant complications. Importantly, our models are not 
intended to make organ acceptance decisions. These decisions should 
remain the responsibility of transplant clinicians, made in 
collaboration with patients and guided by individual clinical 
circumstances and preferences to uphold recipient welfare.

Finally, like all predictive tools, the proposed models are subject 
to misclassification. Kidneys incorrectly flagged as likely to be unused 
may undergo unnecessary interventions, while those falsely assumed 
likely to be accepted may miss needed support. These risks highlight 
the importance of using predictive models as decision support tools 
to augment, not replace, clinical judgment. Operationalizing these 
models would require close collaboration with transplant centers, 
OPOs, and policymakers. One potential pathway is to integrate them 
into existing OPO workflows as early screening tools for identifying 
kidneys at high risk of nonuse that may benefit from proactive 
interventions. Embedding the models within platforms like 
DonorNet, along with clear interpretability and clinician feedback 
loops, could improve transparency and foster trust among users.

6 Conclusion

We develop interpretable, simplified models that accurately 
predict the nonuse risk of deceased donor kidneys and support timely, 
data-driven allocation interventions that can alleviate the alarming 
rates of kidney nonuse. Despite using a small number of variables, 
including KDRI and features informed by machine learning and 
clinical co-design, these models achieve performance comparable to 
that of more complex alternatives. Their integration into the organ 
allocation process could improve organ utilization and reduce 
disparities in access to transplantation. Future work should validate 
these models with updated datasets, assess the impact of recent policy 
changes, and explore their real-world implementation.
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