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Arabic speech recognition model 
using Baidu’s deep and cluster 
learning 

Fawaz S. Al-Anzi* and Bibin Shalini Sundaram Thankaleela 

Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University, 
Kuwait 

This study involves extracting the spectrum from the Arabic raw, unlabeled 
audio signal and producing Mel-frequency cepstral coefficients (MFCCs). The 
clustering algorithm groups the retrieved MFCCs with analogous features. The 
K-means clustering technique played a crucial role in our research, enabling the 
unsupervised categorization of unlabeled Arabic audio data. Employing K-means 
on the extracted MFCC features allowed us to classify acoustically similar 
segments into distinct groups without prior knowledge of their characteristics. 
This initial phase was crucial for understanding the inherent diversity in our 
diverse sampled dataset. Dynamic Time Warping (DTW) and Euclidean Distance 
are utilized for illustration. Classification algorithms such as Decision Tree, 
eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Random 
Forest are used to classify the various classes obtained based on clustering. This 
study also demonstrates the efficacy of Mozilla’s Deep Speech framework for 
Arabic speech recognition. The core component of deep speech is its neural 
network architecture, which consists of multiple layers of Recurrent Neural 
Networks (RNNs). It strives to comprehend the intricate patterns and interactions 
between spoken sounds and their corresponding textual representations. The 
clustered labeled Arabic audio dataset, along with transcripts and Arabic 
Alphabets, is used as input to Baidu’s Deep Speech model for training and testing 
purposes. PyCharm, in conjunction with Python 3.6, is used to build a Dockerfile. 
Creating, editing, and managing Dockerfiles within PyCharm’s IDE is simplified by 
its functionality and integrated environment. Deep speech provides an eminent 
Arabic speech recognition quality with reduced loss, word error rate (WER), 
and character error rate (CER). Baidu’s Deep Speech intends to achieve high 
performance in both end-to-end and isolated speech recognition with good 
precision and a low word rate and character error rate in a reasonable amount of 
time. The suggested strategy yielded a loss of 276.147, a word error rate of 0.3720, 
and a character error rate of 0.0568. This technique increases the accuracy of 
Arabic automatic speech recognition (ASR). 
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1 Introduction 

Speech acts as a gateway in communicating our ideas through different vocal sounds 
and is a powerful tool that shapes our world. e study of speech signals and the techniques 
used to process them is known as speech processing. Modern automatic speech recognition 
(ASR) systems replace the conventional human–machine interface in various commercial 
applications. rough the application of linguistics and computer science, ASR systems 
can interpret spoken words and translate them into text. is enables voice-activated 
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device interaction, message dictation, and generation of transcripts 
from recordings. Recent developments in articial intelligence 
(AI), particularly natural language processing (NLP), have focused 
on using AI applications for ASR. Researchers have investigated 
morphological analysis, resource building, and machine translation 
for the Arabic language. Speech and language disorders are a 
side effect of many diseases, and devices like the Servox Digital 
Electro-Larynx (EL) can generate quasi-clear voices for people 
with disorders (Mohammed Ameen and Abdulrahman Kadhim, 
2023). e respiratory, phonatory, and articulatory end organs 
are all involved in the intricate neurological process of speech 
(Musikic et al., 2025). Acoustic media and background noise can 
disrupt and interfere with speech communication. Vocalization 
system damage can affect the efficiency of voice recognition 
and voice clarity (Liu et al., 2025). ASR is useful in many 
domains, including the development of accessible applications to 
transforming human–machine communication. Speech recognition 
automatically identies and translates a person’s spoken words based 
on the data available in a speech waveform and its historical data 
feed. e evolution of deep learning has changed the ASR landscape 
in conjunction with Recurrent Neural Network (RNNs), deep neural 
networks (DNNs), and convolutional neural networks (CNNs). 
Deep neural networks are multilayered articial intelligence that 
learns from data. ey are inspired by the structure of the human 
brain, and these layers enable them to handle challenging issues. 
Deep neural networks, which have been trained on enormous 
datasets, modify their internal connections to identify patterns and 
carry out tasks such as speech translation and image recognition. 
e ability of CNNs to extract intricate patterns from audio 
input has been inspiring. Baidu’s Deep Voice enhances voice 
recognition precision in noisy situations, as well as in far-eld and 
reverberant conditions (Ahmed and Ghabayen, 2017; Masterson, 
2015). MFCCs effectively decipher sound content in speech and 
audio processing. e MEL scale considers how our ears interpret 
pitch and frequencies with similar sounds. Applications such as 
speech recognition systems can interpret speech data by evaluating 
MFCCs. A clustering algorithm is a specic set of instructions 
that tells a computer how to automatically group data points into 
clusters. e study addresses the issue of unlabeled Arabic audio 
data by applying an unsupervised clustering algorithm to analyze 
and structure the corpus, uncovering acoustic patterns, speaker 
variabilities, and environmental conditions. ese insights inform 
effective data handling strategies and the training of Arabic Deep 
Speech ASR models. ese algorithms are used in unsupervised 
learning, where the data does not have predened labels. ere are 
many clustering algorithms, but one of the popular popular ones 
is K-means. Algorithms such as Hierarchical clustering, Mean shi 
clustering, Gaussian mixture model, Affinity propagation, and K-
means clustering are widely available to group different patterns of 
MFCCs (Al-Anzi and Shalini, 2024). 

e primary objective of this study is to develop an ASR 
system that automatically transcribes spoken utterances into a 
textual format. Our approach utilized a database consisting of 
Arabic audio recordings, which encompassed news broadcasts, 
public speeches, and various general recordings of individuals. e 
primary objective of our study is to extract the Mel-frequency 
coefficients necessary for ASR from the unlabeled Arabic audio 

dataset. We employed a clustering approach, with the clusters 
organized according to the KNN algorithm to label the collected 
MFCCs. e retrieved MFCCs are categorized according to their 
auditory characteristics. We have utilized Baidu’s Deep Speech 
model to transcribe spoken language into text. e input given 
to the model is our clustered Arabic audio dataset along with its 
transcribe and alphabet. We also assessed the word error rate (WER) 
and character error rate (CER) of the transcribed results from the 
audio datasets. We have labeled the clustered dataset using a speech 
recognition pretrained model from the klaam library, categorizing 
it as Modern Standard Arabic (MSA), Egyptian Arabic (EGY), 
and Gulf Arabic (GLF) based on dialects. We have trained the 
model using different machine learning algorithms to categorize the 
dialects and assess accuracy, loss, and evaluation metrics for the 
clustered results. 

e subsequent sections of the article are structured as 
follows: A concise literature overview encompassing ASR, diverse 
languages and accents in ASR, end-to-end speech processing, and 
the deep learning architectures that facilitate speech recognition, 
concluding with a clearly dened research gap, along with the 
methodologies and materials. Includes fundamental architecture, 
data collection, data analysis, MFCC analysis, clustering of MFCC 
characteristics, classication, performance evaluation, ndings, 
debates, conclusion, and future scope. 

2 Literature review 

e study by Ahmed and Ghabayen (2017) proposes three 
methods to improve Arabic automatic speech recognition. ey are 
listed in the following order: utilizing a Decision Tree to generate 
alternative pronunciations, modifying a native acoustic model with 
a different native model, and text processing to improve the language 
model. By employing these methods, the word error rate was 
reduced. e methodology of the paper showed how deep speech 
recognition models can integrate over time with long, adjustable 
windows (Ahmed and Ghabayen, 2017). 

2.1 Automatic speech recognition 

In the study by Keshishian et al. (2021), ASR aims to 
enable computers to identify and interpret human speech as 
accurately as possible. Many techniques can be used to implement 
speech recognition models. e author utilized one of the newest 
techniques for speech recognition, which employs neural networks 
with deep learning. An overview of the research conducted on 
Arabic voice recognition is given in the paper by Wlgihab et al. 
It also sheds some light on the facilities and toolkits available for 
Arabic voice recognition system development (Algihab et al., 2019). 
A vast array of products has been developed that efficiently leverage 
ASR to enable communication between humans and machines by 
Karpagavalli and Chandra et al. Speech recognition applications 
exhibit reduced performance in the presence of reverberation or 
minimal background noise (Karpagavalli and Chandra, 2016). Both 
acoustic and text transcriptions are used during the entire training 
process of ASR neural network systems. 
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e study by Belinkov et al. compares phonemes and 
graphemes along with different articulatory properties to evaluate 
the representation quality across a range of classication tasks. 
e study analyzes three datasets and two languages, Arabic and 
English, and demonstrates how consistently different features are 
represented across deep neural network covers (Belinkov et al., 
2019). e purpose of the study by Abdul et al. is to discuss 
the applications of the MFCC as well as certain problems with 
its calculation and how they affect the model’s performance 
(Abdul and Al-Talabani, 2022). An enhanced Mel-frequency 
cepstral coefficients (MFCC) feature for unsupervised marine 
target clustering is presented in the research. It exhibits a high 
success rate for multitarget or depth-target clustering as well as 
strong anti-interference capabilities (Yang and Zhou, 2018). e 
Short-Time Fan-Chirp Transform (FChT), a novel technique 
for time-frequency analysis of speech signals, is presented in 
this study (Képesi and Weruaga, 2006). It enhances spectral and 
time-frequency representation, making it appropriate for ltering 
applications. Taking contextual considerations into account, this 
method examines speech processing to quantify controllable 
speech features across a variety of talker populations, noise levels, 
competing speakers, and the channel through which it is conveyed 
(Pitton et al., 1996). 

e study by Abushariah et al. gave a framework for designing 
a speaker-independent automatic Arabic speech recognition system 
using a phonetically rich speech corpus. e system uses Carnegie 
Mellon University’s Sphinx tools and Cambridge HTK tools and uses 
three-emitting state Hidden Markov Models for tri-phone-based 
acoustic models. e system achieved word recognition accuracy of 
92.67 and 93.88% for similar speakers with different sentences, and 
a Word Error Rate of 11.27 and 10.07% with and without diacritical 
marks (Abushariah et al., 2012). A simple word decomposition 
algorithm presented by Afy et al. requires a text corpus and affix 
list, improving WER by 10% in Iraqi Arabic ASR. e algorithm 
also reduces WER by 13% relative (Afy et al., 2006). e research 
presented by Ali Ahamed et al. shows a novel methodology for 
assessing ASR in languages lacking a standardized orthographic 
system. e authors solicited ve distinct users to transcribe speech 
segments, subsequently integrating the alignments from numerous 
references and presenting a revised WER. e ndings indicated an 
average WER of 71.4 and 80.1%, respectively. 

2.2 Different languages, ascent speech 
recognition 

To build high-performing recognizers for two radically different 
languages, such as Mandarin and English, the authors Amodei et al. 
looked into a variety of network topologies and found a few helpful 
techniques, such as look-ahead convolution for unidirectional 
models, and enhanced numerical optimization using SortaGrad and 
Batch Normalization (Amodei et al., 2016). In the study by Nahid 
et al., they investigated the capacity of the DeepSpeech network to 
recognize unique Bengali speech samples. Recurrent Long Short-
Term Memory (LSTM) layers form the foundation of this network, 
which models internal phoneme representations. At the bottom, 

convolutional layers are added, which removes the requirement to 
assume anything about internal phoneme alignment. e model 
was trained using a connectionist temporal classication (CTC) loss 
task, and the transcript was generated by casting a beam search 
decoder. On the Bengali real number speech dataset, the developed 
method produced a lower word error rate and a character error rate 
(Nahid et al., 2019). 

In the study by Priyank Dubey (2023), they discussed that the 
transcription of spoken speech can be extracted from the waveform 
using ASR. Mozilla Deep Speech is among the most recent, 
according to Baidu’s Deep Speech research report. rough end-
to-end deep learning, the state-of-the-art deep voice recognition 
system was developed. A properly optimized RNN is used with 
several Graphical Processing Units (GPUs). Its generalizability to 
other English accents is limited because American English accents 
make up the majority of the datasets used in this training. In this 
study, researchers used the most recent Deep Voice model, Deep 
Speech-0.9.3, to create an Indian-English speech recognition system 
from beginning to end for dialects. In the study by Xu et al. (2020), 
the focus of the research was on a real-time German speech-to-
text system that was constructed using numerous German language 
datasets. Researchers in this study optimized DeepSpeech for 
teaching a current German speech-to-text prototype by combining 
multiple German datasets. Moreover, they achieved strong WER 
rates. e model discussed in the study by Ai-Zaro et al. produces 
the WER/PER of 3.11 and 6.18% (Al-Zaro et al., 2025). 

Literature (Iakushkin et al., 2018) explains how a voice 
recognition system for the Russian language is made using 
DeepSpeech. e foundation was the Mozilla Corporation’s 
DeepSpeech English implementation, which is available as 
open-source soware. e system was trained in a containerized 
environment using Docker technology. A dataset of Russian literary 
audio recordings made available on voxforge.com was used, and the 
best WER was 18%. A study by Messaoudi et al. (2021) proposes an 
end-to-end method for building Tunisian language communication 
systems based on deep learning. e paired text-speech dataset in 
the Tunisian dialect created for this proposal is called “TunSpeech.” 
Furthermore, the current Modern Standard Arabic (MSA) speech 
data were combined with dialectal Tunisian speech data to lower 
the Out-of-Vocabulary rate. 

2.3 End-to-end speech processing 

Research (Kim et al., 2017) offers a novel end-to-end speech 
recognition method that leverages a hybrid CTC-attention model 
within a multitask learning framework to boost resilience and 
accelerate convergence, thereby reducing the alignment issue. An 
experiment using the WSJ and CHiME-4 tasks demonstrates its 
superiority over the CTC and attention-based encoder-decoder 
baselines, yielding 5.4–14.6% relative improvements in CER. e 
study by Agarwal and Zesch (2020) utilizes a shared task on 
SwissText/KONVENS for a speech-to-text system. A neural network 
is trained end to end, using Mozilla DeepSpeech as its foundation. 
Data augmentation, post-processing, and transfer learning from 
standard English and German were utilized. e WER generated by 
the system is 58.9%. 
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2.4 Speech recognition using deep learning 

In the study by Nedal Turab (2014), a neural network technique 
was used to address phoneme recognition. Gaussian low-pass 
ltering produced improved voice signal quality and reduced noise, 
which was then used to train a neural network for system training. 
Study (Alrumiah and Al-Shargabi, 2023) tackles the important task 
of identifying classic Arabic speech for the 1.9 billion Muslims 
who recite the Quran. It proposes a model based on Deep Neural 
Networks (DNNs). With a 19.43% word error rate and a 3.51% 
character error rate, RNN-CTC outperformed the other models 
following its training on a 100-h dataset of Quran recordings. CNN 
was used to further reduce the word error rate. Paper (Alsayadi 
et al., 2021) presents Arabic diacritical mark-based ASR systems. 
To create a trustworthy and accurate Arabic ASR, a study by 
Alsayadi et al. looks at the application of cutting-edge end-to-
end deep learning techniques. e acoustic characteristics used in 
these methods are the log Mel-Scale Filter Bank energies and the 
Mel-frequency cepstral coefficients. Enhancing discretized Arabic 
ASR is possible with CNN-LSTM and a new CTC-based ASR. 
When it comes to Arabic voice recognition, CNN-LSTM with a 
consideration basis outperforms both traditional ASR and the Joint 
CTC-attention ASR context (Alsayadi et al., 2021). e research by 
Ullah et al. utilized Arabic image datasets that have been gathered, 
consisting of 2,000 Arabic digit records and 900 Arabic phrase 
records from 24 native speakers. VGG-19 is a deep convolutional 
neural network with 19 weight layers and is used in this study to 
extract visual characteristics. Two different approaches, namely, the 
batch-normalized VGG-19 base model and the standard VGG-19 
base model, are presented in the study. e test dataset produces 
the accuracy of 93% digit and phrase recognition, 97% phrase 
recognition, and 94%-digit acknowledgment rates (Ullah et al., 
2022). 

Nagamine et al. analyze a sigmoid DNN trained for a phoneme 
recognition task to characterize different aspects of the non-linear 
changes that occur in hidden layers. e more separable phone 
instances are handled by deeper layers of the network through a 
non-linear feature space transformation. e study describes how a 
deep neural network model learns by transforming the feature space 
in a non-uniform way through repeated non-linear transformations 
(Nagamine et al., 2016). In the study by Hori et al. (2018), researchers 
investigate the impact of word-based RNN philological mockups 
language models (RNN-LMs) on end-to-end ASR performance. It 
includes a novel word-based RNN-LM which allows decoding with 
only word-based. Low WER is achieved by the proposed model 
for the WSJ Eval’92 test set. In the study by Dendani et al. (2020), 
the representational characteristics of a DNN trained for phoneme 
recognition were described. In the rst hidden layer, node selectivity 
to specic articulation styles and locations appeared, and in the 
deeper layers, this selectivity became more pronounced. In the study 
by Dendani et al. (2020), ASR is implemented using a Deep Auto 
Encoder (DAE). e results showed that the enhanced speech’s 
accuracy was about 3.17 times better than the accuracy estimated 
before. Recent models and algorithms, such as Mozilla Deep Speech, 
have been developed, but their generalizability is limited due to their 
use of American–English accent datasets (Priyank Dubey, 2023). 
e study by Srivathshan et al. proposes a hybrid Active Noise 

Cancellation (ANC) system that combines Secondary-Path Filtered 
Active Noise Control (SF-ANC) and a Fuzzy Adaptive Neuro-
Fuzzy Inference System (FxANFIS) to improve noise reduction 
performance (Srivathshan et al., 2025). 

2.5 Research gap 

We haven’t found any specic results from my more targeted 
searches for studies that directly combine Baidu’s Deep Speech 
with cluster learning for Arabic speech recognition. Research on 
combining Baidu’s Deep Speech and cluster learning for Arabic 
speech recognition has not yielded specic results, suggesting a lack 
of extensive exploration. However, studies using Deep Speech and 
cluster learning techniques have revealed challenges like language 
complexity and data limitations. is supports the hypothesis 
that this specic combination may not yet have been thoroughly 
investigated by researchers. 

3 Methods and materials 

e unlabeled Arabic audio dataset, along with the alphabet, 
is applied in the proposed work. e auditory data are converted 
and then hooked onto a sequence of probabilities spanning the 
characters in the alphabet. Second, this sequence of possibilities 
gives rise to a cast of characters. e rst and second steps are 
made possible by a Deep Neural Network and an n-gram language 
model, respectively. e n-gram language model is trained on a 
text corpus, and the neural network is trained on corresponding 
text transcripts and audio les. To predict text from speech and 
prior text, respectively, both the language model and the neural 
model receive training. Generating (MFCC, Analog to Digital 
Conversion, Framing, Windowing, Discrete Fourier Transform 
conversion, Mel-Filter Banks Wrapping Frequency, Converting Mel 
Filter Banks to Log, Executing Discrete Cosine Transform, the 
Resultant MFCC Acoustic Model generation, Language Model 
creation, and Decoding algorithm with deep speech are the 
fundamental techniques employed in this system. ey are all 
converted to a WAV setup and given a monaural aural canal with 
a sampling rate of 16,000 Hz and a depth of 16 bits for each value to 
allow our deep speech pipeline to read all audio clips. 

Our unlabeled Arabic audio dataset was subjected to a clustering 
technique and was mainly used in the pre-processing and data 
interpretation phases. Since our original dataset was completely 
unlabeled, we used clustering to characterize acoustic diversity, 
which involves identifying distinct acoustic groups. e results 
obtained are manually tested against the transcribed text data. 
e clustering algorithm enables us to nd hidden structures 
in the data by grouping the MFCC features. e MFCCs are 
derived from the available Arabic Audio datasets, which are further 
clustered based on their similar features using clustering algorithms. 
Machine learning algorithms are further introduced to classify 
the clusters. e combination of MFCC extraction, clustering, 
and classication provides an effective framework for extracting 
insightful information from Arabic speech data. Speech analysis 
tasks are a good t for MFCCs because they capture the aspects of 
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FIGURE 1 

Methodology diagram with clustering and Baidu’s deep speech. 

speech that are perceptible to humans. ASR allows voice-activated 
computer communication for individuals with physical disabilities. 
Mozilla’s Deep Speech is one of the well-known ASR systems 
widely accepted and has shown remarkable progress in multiple 
languages, including Arabic. Baidu’s Deep Speech framework is 
an open-source ASR system that converts spoken words into 
written language. is speech-to-text technology uses deep learning 
algorithms to translate spoken language into written text. Acoustic 
models, language, speech coherence, and performance evaluation 
are a few components of speech recognition models. 

3.1 Methodology 

Figure 1 depicts a detailed pipeline for processing Arabic audio 
data, incorporating both unsupervised and supervised machine 
learning methods alongside a deep learning model for transcription. 
e method commences with an Arabic Audio Corpus, which is 
subsequently input into a dataset preparation phase. MFCCs are 
recovered from this dataset, functioning as resilient acoustic 
characteristics. e characteristics subsequently undergo 
Clustering, wherein an unsupervised algorithm, presumably K-
means, categorizes the audio segments according to their acoustic 
similarities. e speech recognition pretrained model by the klaam 
library labeled the clustered output as MSA, EGY, and GLF. e 
efficacy of the classication models is evaluated by metrics such as 
Precision, Recall, and F1-Score, with distinct results highlighting 
an emphasis on dialectal performance. e result of this clustering 
phase initiates a Training/Testing phase for traditional machine 
learning models, such as Decision Trees, XGBoost, Random Forest, 
and KNN, employed for a Classication task, presumably aimed 
at categorizing audio segments based on insights derived from the 
clustering. e classication outcomes, combined with the “Arabic 
Alphabets” input, facilitate the generation of labeled data, which 
is thereaer divided into 70% for training, 15% for testing, and 
15% for validation. ese annotated data are essential for training 
Baidu’s DeepSpeech model, the fundamental element responsible 

for the Text Transcribe job, which converts Arabic audio into text. 
is integrated architecture exemplies a multifaceted strategy 
for Arabic speech processing, amalgamating feature engineering, 
unsupervised learning, conventional classication, and deep 
learning to provide a holistic solution. 

3.2 Architecture of the speech recognition 
system 

Figure 2 shows the architecture of the Speech Recognition 
System. Deep neural networks are used in speech recognition to 
translate spoken words into written text. To extract signicant 
acoustic properties, the spoken utterances are rst preprocessed. 
e following steps correspond to the preprocessing, feature 
extraction phases, decoder, and model creation. e preprocessing 
block performs various operations on the speech signal, such as 
noise reduction and silence removal. Aer the noise reduction, 
the background noise gets removed. ere will not be any 
background noise in the spoken signal aer the preprocessing 
phase. Scaling the voice signal to a standard magnitude is known 
as normalization. e speech stream is divided into shorter 
segments through framing, and these segments typically last 
20–30 ms. 

e process of extracting information from each voice signal 
frame is known as feature extraction. e acoustic properties 
of the voice signal are represented by these features. ese 
characteristics are then applied to a series of models: an audio 
model forecasts the phoneme sequence, and a dialectal prototypical 
model uses the analysis of the previous word to predict the 
next. A decoder transforms the sequence into a string of words, 
enabling accurate speech-to-text conversion. is process uses a 
pronunciation dictionary to ensure accurate translation and proper 
word pronunciation. e retrieved features in the acoustic model, 
a statistical model, represent a set of phonemes. e language 
model is a numerical model that forecasts the next verse in a 
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FIGURE 2 

Architecture of the speech recognition system. 

series based on the verses that have already been spoken. e 
decoder needs to convert the sequence of phonemes from the 
acoustic model into a word order. e last block in the diagram 
represents the word sequences that have been transcribed. A 
string of words represents spoken speech. Because DNNs can 
identify complex patterns in data, they are well-suited for voice 
recognition tasks. 

3.2.1 Probability theory for speech recognition 
An ASR system’s main objective is to infer the acoustic 

input O in Equation 1, the most likely discrete symbol 
sequence among all valid sequences in the language L 
(Rabiner and Juang, 1993). 

O = o1, o2, o3 . . . .ot (1) 

e symbol sequence to be recognized is N, given in Equation 2: 

N = n1, n2, n3 . . . .nn (2) 

e fundamental ASR system goal and the probability are given 
in Equations 3, 4. 

W = argmaxP (W/O) (3) 

P(W/O) = 
P (O/W) 

P (O) 
P(W) (4) 

3.3 Data collection 

e Arabic audio dataset is our in-house dataset, which contains 
4,071 audio samples from various elds, such as security and 
justice, Economy, Education, Health, Technology, and Sports. Each 
heading of data is subdivided into three levels of datasets, such 
as rst, second, and third sets. Deep speech requires mono-
channel audio les in WAV format with a sampling rate of 16 kHz 
and an encoding of 2 bytes per sample for all WAV les, so 
ensuring consistency in audio quality and format. is collection 
is categorized by speech type, comprising 733 spontaneous voice 
les and 588 read speech les, providing a varied representation 
of natural and controlled verbal expressions. e text linked to 
these audio recordings has an average length of 93.0 characters, 
reecting a moderate complexity and vocabulary range within the 
collection. Ten to twenty-second passes are available between each 
voice sample. e more closely we match this, the longer or shorter 
the model will be. e alphabet.txt le contains a transcription 
of every character from the given voice clip. From the audio 
voice clip, all punctuation has been removed, including quotation 
marks, dashes, and other marks. ree sets of data were separated: 
test, validation, and training. Diacritical marks are used to show 
proper pronunciation or to provide phonetic guidance because the 
standard Arabic script does not provide enough information about 
pronunciation. Since deep speech operates at the character level, the 
inclusion of these representations inuenced the generation of the 
acoustic model. Prediction possibilities rise based on the number 
of letters. 
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FIGURE 3 

Raw and spectrogram of wave signals. 

3.4 Data analysis 

We have used a sample rate of 1,600 Hz for each audio data. e 
encoding of each wave le is 2 bytes per sample. Likely, spontaneous 
speech is used for our analysis. e number of spontaneous speech 
les is 733, and the number of speech les read is 588. e total 
number of training les is 1,321. e average text length is 93.0. 

3.4.1 Silence removal 
Figure 3 shows the signal aer noise removal analysis of an 

Arabic signal. Arabic audio signals must be stripped of silent or low-
energy segments by identifying and removing them. e advantages 
of silence removal include speech analysis for cleared content and 
improved speech clarity. 

3.4.2 Time and frequency analysis of speech 
e basic frequency of the vocal cords, which determines 

whether a voice is perceived as high or low, is referred to as 
pitch. Rapid alterations in the speech signals linked to consonants 
and other non-voiced sounds are known as transient features. 
e time-frequency distribution of the signal is mentioned as the 
frequency spectrum of the audio signal. e specic characteristics 
of the spectrum will depend on the speaker’s voice, the content 
of the speech, and the recording conditions. Analyzing spectra 
gains valuable insights into the acoustic properties of speech signals 

and is helpful for speech recognition, speaker identication, and 
language understanding. 

3.5 Sampling 

Digitalizing the continuous sound wave is necessary for audio 
signal sampling. We have digitized the sound wave for Arabic audio. 
To achieve this, the parameters of the sampling rate should be 
established to determine the frequency of signal measurement. We 
have used a sampling rate of 44.1 kHz and a bit depth of 16 bits 
for our Arabic speech for sampling one lengthy audio wave. e 
overall sampling rate is 16 kHz. Figure 4 shows the sampling frame 
of the audio signal. Spectra used horizontal and vertical axes to 
visually represent the energy distribution across time and frequency, 
respectively. e power of each combination is indicated by the 
intensity of the color. Common observations include darker areas, 
which are associated with high energy, and lighter areas, oen linked 
to unvoiced sounds. 

3.5.1 Discrete Fourier Transform 
e windowed speech signal is subjected to DFT, which yields 

the signal’s phase and magnitude representation. e Fast Fourier 
Transform (FFT) algorithm transforms time domain analysis to 
frequency domain analysis Figure 5 shows the FFT spectrum of 
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FIGURE 4 

Sampling frame of an audio signal. 

FIGURE 5 

FFT recordings of wave. 

an audio signal and the distribution of the energy that occurs at 
different frequencies for each segment. Dominant frequencies are 
those that indicate prominent tones, such as formants and pitch. e 
spectral content is used to reveal the presence of various frequency 
components. e sampling frequency of 1,600 Hz provides basic 
frequency analysis. 

3.5.2 MFCC feature extractions 
e process of extracting MFCC features is essential for 

comprehending speech content, which involves triangular lters. 
Standard FFTs linearly analyze frequencies of sound, but human 

hearing operates on a Mel scale. e output of the FFT is passed 
through triangle-shaped lters. We can capture the portions of 
the spectrum most pertinent to human hearing by adding the 
contributions of each lter, each of which focuses on a particular 
frequency range. e MFCC is the result of this Mel-focused 
representation. Filters are arranged logarithmically, except above 
1,000 Hz, and are equally distributed. e equation used to compute 
Mel frequency is given in Equation 5 (Gupta et al., 2013). 

Mel 
(
f
) = 1127In 

( 

1+ 
f 

700 

) 

(5) 
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FIGURE 6 

MFCC feature extraction. 

FIGURE 7 

Mel spectrogram. 

e changes in the speech from frame to frame can be calculated 
with the rst and second MFCC coefficients. Figure 6 shows the 
block diagram of MFCC feature Extraction. 

e audio signal is divided into frames. Windowing and FFT 
are applied to convert it to the frequency domain. Mel-scale 
ltering is used in accordance with human auditory perception 

and logarithmic compression. e discrete Cosine Transform is 
used to reduce dimensionality, and the resulting MFCCs can 
provide speaker independence, robustness against noise, and can 
be processed efficiently. ey also capture the fundamental spectral 
characteristics of speech. Figure 7 shows the Mel power spectrum of 
the Arabic audio dataset. 
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TABLE 1 MFCC statistics. 

Mean Standard deviation Maximum Minimum 

−52.965 8.573 −19.167 −88.341 

3.5.3 MFCC statistics 
e mean, standard deviation, maximum, and minimum values 

are represented in Table 1. e mean reveals the average emphasis 
on the frequency band within the speech. e speech data’s 
standard deviation is a measure of its variability. e maximum 
and minimum values help in locating anomalies or errors made 
during the MFCC extraction process. A Discrete Cosine Transform 
is applied to each MEL lter band to extract MFCCs from the 
Mel spectrum. 

Figure 8 shows the correlation heat map of the different 
Mel frequency coefficients. e degree of similarity between 
different MFCCs is shown by their correlation. e various 
MFCC features are represented by the rows and columns in the 
heatmap. e correlation between the features that correspond 
to the row and column is represented by the color of each cell. 
When two features have a positive correlation, that is, when 
they tend to rise or fall together, they are colored red. When 
two features are negatively correlated, one tends to increase 
while the other decreases, as indicated by blue. When the 
two features are uncorrelated, the color white is used. Every 
value on the heatmap’s diagonal is 1.0, indicating that every 
feature has a perfect correlation with every other feature. Higher 
values indicate stronger correlations. e values of the diagonal 
range from −1.0 to 1.0. MFCC captures the spectral envelope 
of audio signals based on the relative prominence of different 
frequency bands. 

4 Clustering and classification 

MFCC features are clustered together using a clustering 
algorithm. As the labels are unknown to us, supervised learning is 
not a solution to the problem. An unsupervised learning method 
called K-means clustering will be used for grouping into clusters. 
e clustering divides data points into a xed number of groups 
(K) based on their similarity. e rst K data points are chosen at 
random to serve as the initial cluster centers. e nearest center 
is determined by averaging these assigned points. Repeating this 
process until the centers stabilize produces groups in which the 
data points are unique from those in other clusters and similar to 
each other within each cluster. Clustering is done based on the 
Euclidean distance in the MFCC feature space between data points. 
ree clusters are applied to MFCC features. e clustered data 
are scaled with a silhouette score. Figure 9 shows the three groups 
of clusters formed from MFCC correlation features. A silhouette 
score of 0.6918 was obtained in the clustering. e silhouette score 
is the metric used to assess the quality of clustering algorithms. 
It evaluates how well data points are assigned to their clusters. 
Scores range from −1 to 1, with values closer to 1 indicating 
improved clustering. 

FIGURE 8 

Correlation heat map. 

FIGURE 9 

Clustering of MFCC features. 

4.1 Grid search 

In machine learning, grid search is a technique used 
to determine a model’s optimal settings, also known as 
hyperparameters. Each hyperparameter has a specic range, 
and the model is trained using all possible combinations from the 
different ranges. e performance of each combination is assessed, 
and the best combination is selected as an ideal set. Grid search CV 
nds the optimal solution based on the selected metric. 

4.2 Classification 

For multiclass classication tasks, the support vector machine 
classier is used. A hyperparameter tuning method called grid 
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search is used to maximize the performance of the SVM model. 
“Linear” and “rbf ” for kernel and (Mohammed Ameen and 
Abdulrahman Kadhim, 2023; Belinkov et al., 2019) for C are the 
possible values that are explored for the two hyperparameters, 
“kernel” and “C.” e training data are tted to the SVM model 
that performs the best. Confusion matrix and classication report 
metrics are used in performance evaluation. 

5 Baidu’s deep speech 

e state-of-the-art speech recognition system known as Deep 
Speech was developed using Baidu’s end-to-end ASR architecture. 
A massive amount of speech data is trained using multiple GPUs 
and an RNN. Baidu’s Deep Speech can learn directly from a 
large set of data, so it does not require speech adaptation or 
noise ltering. Deep RNN training will be based on supervised 
learning. From voice samples, mel-frequency cepstral coefficients 
are extracted, and transcription is output directly. A full voice 
recognition system powered by deep learning and its structure. 
e system generates a matrix of character probabilities, which 
shows that it gives each character in the alphabet a chance at each 
period step, indicating the likelihood that that particular character 
will match the audio. Furthermore, the Connectionist Temporal 
Classication (CTC) loss function increases the probability of 
accurate transcription. TensorFlow uses Baidu’s Deep Speech 
Architecture to implement Mozilla Deep Speech, enabling the 
creation of prototypes for any dialect. It is simpler to operate 
and performs better in noisy environments than other traditional 
systems. is system’s main advantage is that it outperforms 
traditional speech recognition systems, capable of handling speaker 
oscillation, echo, and background noise. From audio les, a time 
series spectrogram is produced, with each time slice representing 
a vector of audio characteristics. ree of the ve unseen layers 
that comprise the RNN that powers the Deep Speech model are 
non-recurrent. Figure 10 shows the architecture of Baidu’s Deep 
Speech system. 

5.1 Acoustic model and language model 

e acoustic archetypal generates a likelihood distribution over 
the characters of the alphabet in response to audio. e acoustic 
model takes up the majority of the training time. Typically, three 
steps are involved in the feature extraction process. e acoustic 
front end, also known as speech analysis, is the initial phase. It 
creates raw features by performing a type of temporal analysis of the 
signal’s spectrum. e acoustic model’s task is to use the sequence-
to-sequence Deep Speech algorithm to identify which acoustic 
signals correspond to which specic letters. e language model 
helps translate these probabilities into comprehensible language 
words, followed by extensive labeled voice training on a large volume 
of data. e most important things to consider are the data that 
are rarely or never present in our training sets. We combine our 
system with one of these n-gram language models since they are 
readily trained from large unlabeled text datasets. Language models 
are typically trained by minimizing confusion on training data and 
by observing word sequences in text corpora that contain millions 

of word tokens. A variety of toolkits, including SRILM, KENLM, 
and open-game toolkits, are used to generate language models. It is 
necessary to train the linguistic model and the audio model with the 
same alphabet. alphabet.txt is the glue that holds the linguistic model 
and the acoustic model together. e neural network utilized in the 
acoustic model was trained on a corpus of voice and transcripts, 
which was created with TensorFlow. An n-gram model trained with 
KENLM is the morphological ideal, and the training data are a 
corpus of text. As inputs are fed into the network for a reference 
window of size k, the ith unit in a convolutional layer l at a timestamp 
t delivers M(l,i), as shown in Equation 6, which represents the 
architecture of a deep RNN using Arabic data. 

M(l,i) = σ 
( 
ω(l,i) · Ml−1 

t−k : t+k 

) 
(6) 

Here, M(0) denotes the input, and it contains 13 units. σ (.) is the 
activation function as in Equation 7, and the hidden fully connected 
layers use a Rectied Linear Unit (ReLU) activation function. We 
always constrain the output of a convolution unit to up to 5 (Wu 
et al., 2024). 

σ (x) = min (max (0, x) , 5) (7) 

At any timestamp t, the units at layer l of the recurrent 
bidirectional LSTM take updates from both past and future 
timestamps, as shown in Equations 8, 9. 

→ 

Ml 
t = tanh 

( 

ω l · M + 
→ 

Ul · 
→ 

Ml 
t−1 + bl 

) 

(8) 

← 

Ml 
t = tanh 

( 

ω l · M + 
← 

Ul · 
← 

Ml 
t+1 + bl 

) 

(9) 

where ωl is the input hidden weight matrix and Ul is a recurrent 
weight matrix. e sum of forward and backward directional 
states yields an “informed state” (hl), which is shaped by the 
prior transitional probabilities of the phonemes. e activation 
function tanh(.) acts like a squashing function, as shown in 
Equation 10 (Morais, 2025). 

tan h (x) = 
ex − ex 

ex + ex (10) 

e processed cepstral coefficients ow through the recurrent 
layers, and each upper layer receives this processed information 
from its immediate lower layer, which is given in Equation 11. 

Ml 
t = f 

( 
ω l · Ml−1 

t + bl
) 

(11) 

e output is a somax layer that gives a probability distribution 
over phonemes, shown in Equation 12. 

P 
( 
ok 
t = k/x 

) 
= 

eω L 
k ·hL−1 

t 

ieω L 
k ·hL−1 

t 
(12) 

e value of the output unit at any timestamp t will indicate 
the probability of the corresponding phoneme n as predicted by 
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FIGURE 10 

Baidu’s Deep speech structure. 

FIGURE 11 

Sample TF-IDF vectorizer data. 

the network. e network is then trained using the CTC loss 
function, and the parameters of the network are updated using the 
backpropagation through time (BPTT) algorithm. en 32-bit beam 
search decoder is used to construct the output from the phoneme 
distribution. e Term Frequency Inverse Document Frequency 
(TF-IDF) vectorizer is a useful tool for translating Arabic text data 
into numerical vectors. When analyzing text at the character level, 
it considers individual characters, pairs of characters, and triplets 
of characters. is is an important step for the Arabic script. It 
learns the vocabulary and term importance from the data and 
then creates TF-IDF vectors for each document. Based on the 
frequency of each term in the document and rarity across the 
dataset, these vectors indicate the relative importance of each term. 
en, among other NLP tasks, these vectors can be used to train 
machine learning models for document classication, hidden topic 
identication, and document similarity comparison. e two main 
tasks completed by the vectorizer are stemming/lemmatizing Arabic 
text and normalizing it. e sample data are shown in Figure 11. 

To calculate the probability of each sentence, the function counts 
the number of sentences (n-grams) that have been viewed so far, 
divides that count by the total number of sentences, and increases 
the count for each sentence. is is a basic method to determine 

the word or words that will appear next in a given sequence and 
to calculate the probability that a sentence will appear again based 
on how frequently it appears in the dataset. It separates Arabic 
text data into words, cleans it up, and calculates the probability 
that different word combinations (n-grams) will occur together. A 
sample prediction is shown in Figure 12. 

5.2 Augmentation and hyperparameter 
setup 

5.2.1 Baidu’s deep speech hyperparameters 
e majority of the hyperparameters in the preconguration 

for Mozilla Deep Speech remained unchanged. Nonetheless, the 
batch size was slightly modied in consideration of the machine’s 
capabilities and the amount of training data. Furthermore, Deep 
Speech offers the ability to create checkpoints, allowing training to 
be resumed in the event of an error using the checkpoints. Either 
we create a checkpoint directory and store the training checkpoints 
there, or we freight the Deep Speech frontier directory containing 
the training checkpoints. Prediction accuracy is calculated using 
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FIGURE 12 

Sample n-gram prediction. 

the loss. As the loss decreases, the difference between the neural 
network’s predictions and the actual known values becomes smaller. 
When there is no reduction in loss, the parameter indicates how 
many training epochs should be considered as a plateau. 

• Hyperparameter optimization: Optuna is a framework 
utilized for hyperparameter optimization. It specically 
adjusts lm_alpha, which is a language model weight, and 
lm_beta is a word insertion bonus. To reduce the WER 
and CER on a designated test set, it systematically assesses 
several combinations of these parameters, dynamically 
reinitializing the TensorFlow graph for each iteration and 
relaying intermediate performance metrics to Optuna, 
which subsequently directs the search intelligently and 
eliminates unpromising trials to enhance efficiency. e model 
ascertains whether to optimize for WER or CER according 
to the loaded scorer’s mode and offers a denitive entry 
point for users to commence this essential post-training 
optimization procedure, yielding the optimal parameters and 
their associated performance. 

• Reduce plateau: If training does not result in a decrease in loss 
over time, it is said to have plateaued. It is possible to break 
through the plateau and keep reducing losses by adjusting the 
learning rate and other parameters. 

• Early stopping: If training does not eventually reduce loss, an 
early termination is an option. 

• Dropout: When training produces a model with poor 
generalization, it is referred to as overtting and has an 
impact on the model’s generalizability. A method called 
“dropout” enhances the generalizability of the model by 
arbitrarily eliminating nodes from the neural network to 
lessen overtting. 

• Steps and Epochs: A training set’s entire cycle is referred to as 
an epoch. Batch size affects how much memory is required for 
processing. Fieen epochs and a batch size of four are employed 
for this optimization. 

• Train–test split: e training loop efficiently manages 
data loading, preprocessing, and augmentation, while 
enabling multi-GPU training by distributing computations 
across “towers” to average gradients for faster updates. Key 
components, including adaptive learning rate reduction during 

TABLE 2 Hyperparameters of grid search. 

Scores Decision 
tree 

XGBoost KNN Random 
forest 

Mean t time 0.0135 0.0317 0.0234 0.0293 

Standard t time 0.0007 0.0009 0.0020 0.0009 

Mean score time 0.0037 0.0112 0.0030 0.0101 

Standard score 
time 

1.2655 4.6037 7.41052 1.0215 

Mean test score 0.9973 0.9886 0.9980 0.9900 

Standard test 
score 

0.0020 0.0028 0.0019 0.0027 

Rank test score 2.000 3.000 1.000 3.000 

performance plateaus, early stopping to prevent overtting, 
and thorough checkpointing, which entails retaining the 
best-performing model on a validation set, are integrated to 
ensure rapid and effective model development. is provides 
functionalities for autonomous evaluation of models on 
test datasets and the creation of efficient inference graphs, 
representing a complete solution for DeepSpeech model 
training and deployment. We have utilized 70% of the audio 
data for training 15% for testing, and 15% for validation. 

5.2.2 Machine learning hyperparameters 
Table 2 shows that the grid search method uses different values 

of hyperparameters in each run. e rst run uses the C values of 
73, 79, 50, and 52, while the second run uses the C values of 19, 81, 
72, and 89. e t and score time are mentioned in Table 2. 

5.2.3 Computational environment 
All experimental methods were performed on a MacBook Pro, 

specically congured with a 1.4 GHz Quad-Core Intel Core i5 
processor. e system employed Intel Iris Plus Graphics 645 for 
graphics processing, featuring 1,536 MB of memory. e device 
was equipped with 8 GB of 2,133 MHz LPDDR3 RAM and ran 
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FIGURE 13 

Confusion matrix, decision tree, and XGBoost. 

FIGURE 14 

Confusion matrix KNN and Random Forest. 

macOS Sequoia version 15.5. e dataset and computational outputs 
were stored on a 250.69 GB Macintosh HD, with 112.16 GB of 
space available during the experimental phase. is conguration 
facilitated the computational framework for all data processing, 
model training, and evaluation activities conducted in this research. 

6 Results and discussions 

6.1 Confusion matrix 

Confusion matrices are specially used to visualize a model’s 
performance in classication problems. ey display the frequency 

of errors, such as false positives and false negatives, as well as the 
proportion of correctly classied data points, such as true positives 
and true negatives. e model predicts 1,145 actual instances of class 
1 correctly and 55 actual instances of class 2, and 86 out of 87 actual 
instances of class 3. Figures 13, 14 show the confusion matrices. 

6.2 Classification report 

Both the confusion matrix and classication report indicate that 
the model achieved excellent performance with perfect accuracy, 
precision, recall, and F1-score for each class. Table 3 shows the 
classication report. 
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TABLE 3 Classification report. 

Classifiers Class Precision Recall F1-score Support 

Decision tree 0 1.00 0.99 0.99 99 

1 1.00 1.00 1.00 1134 

2 1.00 1.00 1.00 54 

XGBoost 0 0.99 0.98 0.98 99 

1 1.0 1.0 1.0 1126 

2 1.00 0.98 0.99 62 

KNN 0 0.95 0.87 0.91 95 

1 0.98 1.00 0.99 1137 

2 1.00 0.76 0.87 55 

Random Forest 0 0.88 0.90 0.89 78 

1 0.99 0.99 0.99 1153 

2 0.98 0.95 0.96 56 

FIGURE 15 

Learning curve for decision tree and XGBoost. 

FIGURE 16 

Learning curves for KNN and random forest. 
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FIGURE 17 

Precision–recall curve for XGBoost. 

FIGURE 18 

Test and validation loss vs. epochs and word and character error rate vs. epochs. 

6.3 Learning curve 

e learning curve shows the x-axis with values between 500 
and 2,500 labeled as training data size, shown in Figure 15. e 
model accuracy y-axis has a range of 0.95 to 1.0. Two lines 
are displayed, one green for validation accuracy and one blue 
for training accuracy. As the size of the training data increases, 
the validation accuracy also increases, indicating that data are 
being trained well and validated. e learning curves for the 
decision tree, XGboost, KNN, and Random Forest are shown in 
Figures 15, 16. 

TABLE 4 Model performance analysis. 

Epoch Test 
loss 

Validation 
loss 

Word 
error rate 

Character 
error rate 

3 1,017.0 1021.4 1.0000 0.59118 

12 300.00 324.70 0.7815 0.1920 

19 223.27 286.77 0.6982 0.1643 

22 160.01 266.72 0.6170 0.1437 

25 132.86 259.57 0.6160 0.1432 

31 128.33 257.66 0.6037 0.1387 
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TABLE 5 Model performance analysis—best model. 

Epoch Best 
WER 

Best 
CER 

Loss at best 
WER/CER 

Arabic text English text 

12 0.4687 0.1060 110.289 عَقدََ مَجلِسُ الوُزَرَاءِ اجِتِمَاعُھُ الأ سُب وُعِيّ فِي قِصَرِ یف  السّ ِ
بِرِئ اَسَةِ سُمُوِّ رَئِیس ِ مَجلِس ِ یخ الشّ ِ یخ الشّ ِ ناَصِر د  المحَمَّ
حَیثُ ت تدََاوَلَ الوُزَرَاءُ مَجمُوعَةٍ مِن المِلفَ َّاتِ ة الھَامَّ  كَشَفَ
عَنھَا وَزِیرِ الدَّولةَ لِشُؤُونِ مَجلِس ِ الالوُزَرَاء  رَوضَانِ
وض َ ان الر َّ

e Cabinet held its weekly meeting at Seif Palace 
under the chairmanship of His Highness the Prime 
Minister Sheikh Nasser Al-Mohammed, where the 
ministers deliberated a set of important les revealed 
by Minister of State for Cabinet Affairs Roudhan 
Al-Roudhan 

19 0.3720 0.0568 276.147 ت جَدُرُ الإِشَارَةُ إلِىَ أنََّ الیمََن ی شَھَدُ إِضرَاب اَتٍ مُنذُ أ شَھُر  بعَدَ
المُظَاھَرَاتِ وَالمَسِیرَاتِ المُؤَیِّدَةِ لِلنِّظَامِ الحَاكِم  عَلِيّوَِتِلكَ
المُعاَرَضَةِ ل ھَ وَالَّتِي تطَُالِبُ بِإ سِقاَطِھ فِیمَا یتَلَقَ َّى ئِیس  الرَّ
عَبدالله صَالِح العِلاَجَ فِي المَملكََةِ السَّع وُدِیَّة السَّع وُدِیَّة  عَقِبَ
ھُجُومٍ عَلىَ الق صَرِ ئ اَسِيّ الرّ ِ فِي وَقتٍ سَابِقٍ مِن ھَذَا  الشَّھر

Yemen has been witnessing strikes for months aer 
demonstrations and marches in support of the ruling 
regime and those opposing it, demanding its ouster, 
while President Ali Abdullah Saleh is receiving 
treatment in Saudi Arabia following an attack on the 
presidential palace earlier this month. 

6.4 Precision–recall curve 

e graphical tool called a precision–recall curve (PRC) is 
used to assess how well the classication model performs in 
multiclass problems, as shown in Figure 17. PRCs offer insight 
into the tradeoff between precision and recall in contrast with the 
receiver operating characteristic area under the curve (ROC AUC), 
which concentrates on binary classication. e ROC AUC score 
is obtained as 0.99928. e WER is the percentage of words that 
the system incorrectly recognizes, and the CER is the percentage of 
characters that the system recognizes incorrectly. is shows that the 
speaker’s ability to speak correctly has improved, as has the speech 
recognition system’s ability to recognize their speech. e graph 
also shows that the WER continuously outperforms the CER. is 
is because the speech recognition system nds it easier to identify 
individual characters. 

Figure 18 shows the test and validation loss vs. various epochs 
and the word and character error rate vs. epochs of the system’s 
WER and CER plotted against time. e WER is the percentage 
of words that the system incorrectly predicts, and the CER is 
the percentage of characters that the system incorrectly predicts 
(Baghdasaryan, 2022). e graph shows that both the WER and 
CER show a decrease over time, suggesting that the system’s 
speech recognition performance is improving. In contrast, the WER 
constantly exceeds the CER. e reason for this is that individual 
characters are recognized by the algorithm more readily than entire 
words. e graph also shows how the WER and CER start to plateau 
aer a certain number of epochs. e graph shows that the voice 
recognition system is training effectively. e system’s increasing 
efficiency is demonstrated by the decrease in WER and CER over 
time. e word error rate is the most popular metric for ASR. 

WER = 
Sw + Dw + Iw 

Nw 
(13) 

When a word in the reference sequence is transcribed as a 
different word, it is called a substitute word (Sw). When a word is 
completely absent from the automatic transcription, it is referred 
to as a deleted word (Dw). e number of words inserted is Iw. 
is means the word’s appearance in the transcription has no 
correspondent in the reference word sequence. As it lacks the upper 
bound, the word error rate only indicates whether one system 

is superior to another. For this reason, a character error rate 
is used. 

CER = 
s+ d+ i 

N 
(14) 

Table 4 describes the entire model analysis. e size and 
complexity of the exercise data, along with the system’s design, 
will determine the ideal number of epochs for training a speech 
recognition system. 

Table 5 illustrates the best model analysis and the corresponding 
transcribed Arabic text. 

6.5 Discussion 

Upon examining the performance of diverse ASR models, 
some signicant themes and insights arise concerning their efficacy 
across various languages and architectural methodologies. e 
data reveals a wide range of WERs, from an exceptional 0.720% 
for the suggested Arabic DeepSpeech model to a maximum 
of 58.87% for Kazakh utilizing Kaldi. Recent improvements in 
deep learning models, especially Transformer-based architectures 
such as XLSR-Wav2Vec 2.0 for Turkish, exhibit markedly lower 
word error rates (0.23%) compared to previous or toolkit-
based methodologies. DeepSpeech is a widely utilized model for 
several languages (Bengali, Russian, German, Tunisian, Arabic), 
although its efficacy uctuates, indicating a signicant impact of 
linguistic attributes and dataset quality. e incorporation of various 
languages, including Arabic, Bengali, German, Hindi, Kazakh, 
Russian, Tunisian, and Turkish, emphasizes the international 
endeavor in ASR development while revealing persistent challenges 
in attaining universal high performance, particularly for languages 
characterized by intricate phonetics or scarce resources. e efficacy 
of the built Baidu’s Deep Speech model was meticulously assessed 
using an independent test dataset in our proposed work. is 
dataset, completely omitted from the model’s training and validation 
phases, functioned as a vital assessment of the model’s capacity 
to generalize to novel, previously unencountered data. Our results 
indicate that the model attained a WER of 0.3720 and a CER of 
0.0568 during training and 0.19 WER and 0.02 CER during the 
testing phase. 
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TABLE 6 Comparison table with previous works. 

Reference Year Model Language WER 

Kazakh speech and recognition methods (Karabaliyev and 
Kolesnikova, 2024) 

2024 Kaldi 
Mozilla DeepSpeech 
Google Speech-to-Text API 

Kazakh speech 56.87% 
55.36% 
52.97% 

End-to-end Bengali speech recognition (Nahid et al., 2019) 2019 Bidirectional LSTM Bengali speech 8.20% 

Russian-language speech recognition (Iakushkin et al., 2018) 2018 DeepSpeech Russian speech 18% 

German speech recognition (Xu et al., 2020) 2020 DeepSpeech German speech 12.3% 

German end-to-end speech recognition (Agarwal and Zesch, 2019) 2019 DeepSpeech German speech 15.1% 

Tunisian dialectal end-to-end speech recognition (Messaoudi et al., 
2021) 

2021 DeepSpeech Tunisian speech 24.4% 

Hindi speech recognition (Kumar et al., 2012) 2012 HTK Hindi speech 12.99% 

Transformer-based Turkish automatic speech recognition (Tasar et al., 
2024) 

2024 XLSR-Wav2Vec 2.0 Turkish Speech 2.3% 

Arabic phonic transcription (Elmahdy et al., 2011) 2011 ACA Arabic 19% 

Arabic autoencoder speech recognition (Mohammed Ameen and 
Abdulrahman Kadhim, 2023) 

2023 Deep learning models Arabic 4% 

Convolutional neural networks to facilitate the continuous recognition 
of Arabic speech (Sayed et al., 2024) 

2024 CNN-LSTM Arabic 3.63% 

Arabic speaker-independent continuous automatic speech recognition 
(Abushariah et al., 2012) 

2012 Hidden Markov models Arabic 11.27% 

Proposed study Baidu’s Deep Speech Arabic Speech 3.7% 

e unsupervised clustering of MFCC features, together with 
traditional machine learning classication, could be applied to 
enhance speaker diarization, acoustic scene categorization, or, 
importantly, Arabic dialect identication from various audio 
sources. is feature is essential for augmenting customer service 
analytics, expanding accessibility tools, facilitating more efficient 
content ltering, and enriching language learning systems. 
Furthermore, the framework’s proven effectiveness with unlabeled 
data provides a means for creating ASR solutions for additional low-
resource languages or specialized elds that lack comprehensive 
annotated corpora, thus expanding its inuence within the 
speech technology sector. Table 6 shows the comparison with 
previous studies. 

7 Conclusion 

In this study, we examined the effectiveness of using clustering 
and classication techniques in conjunction with MEL frequency 
extraction for Arabic audio data processing. is study also 
briefs on the effectiveness of Baidu’s Deep Speech in Automatic 
speech recognition of the Arabic dataset. Our results demonstrate 
that MFCCs efficiently capture important features, facilitating 
the successful clustering of audio segments using K-means or 
hierarchical clustering algorithms. Additionally, we obtained a low 
loss of 128.33 for the training dataset and a validation loss of 
257.66 by using Baidu’s Deep Speech. e WER for the reference 
is 0.19, indicating that 19% of the words were misidentied. 2% 
of the characters in the reference were misidentied, according 
to the CER of 0.02 in the testing phase. e evaluation’s ndings 

are encouraging. e model has a respectable level of accuracy 
regarding Arabic speech recognition. 

7.1 Future studies 

Future studies might investigate applying the existing methods 
to other widely used Arabic dialects. Potential applications such 
as assistive technologies for the hearing-impaired, voice-enabled 
services in Arabic-speaking regions, and integration with NLP 
pipelines are possible. is would entail developing acoustic models 
tailored to a particular dialect or investigating transfer learning 
strategies to modify the current model to accommodate new 
dialectal data. Also, predicting the next word and character from 
Arabic text for audio-impaired individuals can be possible from the 
transcribed data. 
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