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Introduction: Supervised machine learning classifiers sometimes face

challenges related to the performance, accuracy, or overfitting.

Methods: This paper introduces the Artificial Liver Classifier (ALC), a novel

supervised learning model inspired by the human liver’s detoxification function.

The ALC is characterized by its simplicity, speed, capability to reduce overfitting,

and e�ectiveness in addressing multi-class classification problems through

straightforward mathematical operations. To optimize the ALC’s parameters, an

improved FOX optimization algorithm (IFOX) is employed during training.

Results: We evaluate the proposed ALC on five benchmark datasets: Iris

Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST. The results

demonstrate competitive performance, with ALC achieving up to 100% accuracy

on the Iris dataset–surpassing logistic regression, multilayer perceptron, and

support vector machine–and 99.12% accuracy on the Breast Cancer dataset,

outperforming XGBoost and logistic regression. Across all datasets, ALC

consistently shows smaller generalization gaps and lower loss values compared

to conventional classifiers.

Discussion: These findings highlight the potential of biologically inspiredmodels

to develop e�cient machine learning classifiers and open new avenues for

innovation in the field.

KEYWORDS

artificial liver classifier (ALC), artificial intelligence, classification, intelligent systems,

machine learning, optimization

1 Introduction

Artificial intelligence (AI) has many branches according to the tasks to be performed,

with machine learning (ML) being one of the most well-known branches that has

gained prominence alongside the development of computer science. It focuses on

developing systems and algorithms that automatically learn from data without explicit

programming (Kolides et al., 2023; Dwivedi et al., 2021; Khudhair et al., 2024c). However,

two main types of ML are categorized according to the problem to be solved: supervised

learning and unsupervised learning. Supervised learning relies on having pre-labeled input

data (denoted X) and the desired output (denoted y). This type of learning aims to

understand the hidden relationship between inputs and outputs to predict new outcomes

based on unseen (new) input data (Jiang et al., 2020; Beam and Zupancic, 2022; Zhao

et al., 2024). On the other hand, unsupervised learning uses input data that is not pre-

labeled (does not contain output y). Instead, an unsupervised learning model is applied

to discover patterns and hidden relationships in the data autonomously based on the

input data only (Watson, 2023; Molnar et al., 2020). Furthermore, there are other types

of ML such as reinforcement learning (RL), which interact directly with the problem’s

environment to build policies that guide decision-making based on rewards and penalties
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obtained through trial and error (Gao and Schweidtmann, 2024;

Mutar and Jawad, 2023; Kumar et al., 2023; Khudhair et al., 2024b).

In the early stages of AI, researchers focused on building

systems (with minimal intelligence) capable of performing specific

tasks using fixed rules (conditional and logical operations). As

the field evolved, scientists realized that intelligent systems needed

methods to learn from data, rather than relying on rigid rule-

based methods with minimal capabilities (Grzybowski et al., 2024;

Jabber et al., 2023). As a result, supervised learning algorithms,

specifically classifiers, emerged as tools for learning systems to

make predictions or decisions based on the available experiences.

However, one of the most preeminent algorithms in supervised

learning is artificial neural network (ANN), inspired by the

fundamental concept of neurons in the human brain and how they

are interconnected (Palanivinayagam et al., 2023). These networks

are based on the concept of neurons, which are basic units in the

brain that communicate with each other to perform processes such

as thinking and learning (Schmidgall et al., 2024). The algorithm

simulates the functions of brain cells by proposing multiple layers

of artificial neurons (an input layer and an output layer). These

neurons interact with each other using weights assigned to each

connection, and the role of the algorithm is to optimize these

weights to minimize the error resulting from interactions with

the input data, thereby producing accurate outputs (Jumaah et al.,

2024). Moreover, an older algorithm inspired by mathematics is

the logistic regression (LR), which aims to find a perfect line that

best fits the data points, minimizing the error between actual and

predicted labels. These methods were used in statistical analyses

before being adopted in ML (Jumin et al., 2020). The complexity

of linear operations increased, leading to more sophisticated

methods, such as support vector machine (SVM), where the

main idea is to create clear boundaries between different data

classes by maximizing the margin between them (Quan and

Pu, 2022). Comprehensively, most of ML classifiers have drawn

their inspirations from mathematical operations or nature (e.g.,

simulating the functioning of human brain cells) to create robust

systems (classifiers) for solving complex problems. Current ML

classifiers face multiple challenges related to performance, accuracy

or loss, overfitting, and handling data with complex and non-linear

patterns (Tufail et al., 2023; Khudhair et al., 2024a).

In this context, this paper proposes a new classifier called

artificial liver classifier (ALC), inspired by the human liver’s

biological functions. Specifically, it draws on the detoxification

function, highlighting its ability to process toxins and convert

them into removable forms. Additionally, improvements have been

made to FOX optimization algorithm (FOX), a state-of-the-art

optimization algorithm, to enhance its performance and ensure

compatibility with the proposed ALC. The research aims to bridge

the gap in current ML’s algorithms by combining the simplicity

of mathematical design with solid performance by simulating

the detoxification function in the human liver. Furthermore, the

proposed classifier aims to improve classification performance

by processing data dynamically, simulating the human liver’s

adaptive ability, enabling its application in fields requiring high-

precision solutions and flexibility in dealing with different data

patterns. The main challenge lies in transforming the liver’s

detoxification function into a simplified mathematical model that

effectively incorporates properties such as repetition, interaction,

and adaptation to the data (Tan et al., 2024). By comparing

the proposed classifier with established ML classifiers, the study

expects to improve the performance of ML, including increased

computation speed, better handling of overfitting problems, and

avoidance of excessive computational complexity. Additionally,

this paper introduces a new concept for drawing inspiration

from biological systems, opening up extensive opportunities for

researchers to develop mathematical models based on other

biological functions of the liver, such as filtering blood or amino

acid regulation (Ishibashi et al., 2009). Moreover, it represents

a starting point for interdisciplinary applications combining

biology, mathematics, and AI, enhancing our understanding of

incorporating natural processes into ML techniques to create

efficient, reliable, and intelligent systems.

The proposed ALC has been evaluated using a variety of

commonly used ML datasets, including Wine, Breast Cancer

Wisconsin, Iris Flower, MNIST, and Voice Gender (Hoffmann

et al., 2019), which are explained in detail in Section 4.1. This

diversity in the datasets ensures extensive coverage of different

data types, including text, images, and audio, and enables handling

binary and multi-class classification problems (Seliya et al., 2021;

Parimala andMuneeswari , 2023; Sidumo et al., 2022). The purpose

of using these datasets is to conduct comprehensive tests to

assess the performance of the proposed ALC and compare it with

the established classifiers. The originality and contributions that

distinguish this research are as follows:

1. Introducing a new classifier inspired by the liver’s biological

functions, specifically detoxification, highlighting new

possibilities in designing effective classification algorithms

based on biological behavior.

2. Enhancing the FOX to improve its performance, address

existing limitations, and ensure better compatibility with the

proposed ALC.

3. Relying on simple mathematical models that simulate the

liver’s biological interactions, ensuring a balance between design

simplicity and high performance.

4. Opening new avenues for researchers to draw inspiration from

human organ functions, such as the liver, and simulate them

in computational ways to contribute innovative solutions for

real-world challenges.

5. Testing the proposed ALC on diverse datasets demonstrates

its effectiveness through experimental results and comparisons

with established classifiers.

This paper is structured as follows: Section 2 reviews the

literature that has attempted to address classification issues across

various data types. Section 3 provides an analytical overview of the

human liver, focusing on detoxification function and the study’s

motivation. Section 4 present the used materials and the proposed

methodology, including the improvement of classifier design and

FOX training algorithm. Sections 5,6 cover the presentation and

analysis of results, including comparisons with previous works.

Finally, the study concludes with findings, recommendations,

limitations, and future research directions in Section 7.

2 Related works

This section reviews the standard algorithms used in ML

classification, with their practical applications across various
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datasets highlighted (Sarker, 2021). Additionally, recent studies in

the field are discussed to identify existing challenges and to shed

light on research gaps requiring further attention (Azevedo et al.,

2024). Accordingly, the extent to which the proposed classifier

can offer practical solutions to these gaps and contribute to the

future advancement of the field will be investigated. However,

Xiao et al. utilized 12 standard ML classifiers on the MNIST

dataset, demonstrating its suitability as a benchmark for evaluating

the proposed ALC. Their results identified the Support Vector

Classifier (SVC) with a polynomial kernel (C = 100) as the

best-performing model, achieving an accuracy of 0.978 (Xiao

et al., 2017). This comparable result poses a challenge for the

proposed ALC to surpass. Furthermore, the study (Cohen et al.,

2017) employed online pseudo-inverse update method (OPIUM)

to classify the MNIST dataset, achieving an accuracy of 0.9590.

However, the author noted that these results do not represent

cutting-edge methods but rather serve as an instructive baseline

and a means of validating the dataset. This makes it feasible to

compare the performance of the proposed ALC against OPIUM,

as surpassing this baseline would demonstrate an improvement

over existing methods. On the other hand, in a comparative study

by Cortez et al., three classifiers—SVM, multiple regression (MR),

and ANN—were evaluated on the Wine dataset. The SVM model

demonstrated superior performance, achieving accuracies of 0.8900

for red wine and 0.8600 for white wine, outperforming the other

methods with an average accuracy of 0.8790 (Cortez et al., 2009).

Hence, the findings of Cortez et al. serve as a foundation for further

advancements in ML applications, providing a basis for evaluating

the proposed ALC.

Another study utilized a recursive recurrent neural network

(RRNN) on Breast Cancer Wisconsin dataset. The results

demonstrated that the proposed model achieved an accuracy of

0.9950 (Rajeswari and Sakthi Priya, 2025). Despite its outstanding

performance, the computational demands of RRNN require

substantial resources, which may limit their applicability in

resource-constrained environments. Moreover, the study (Fan

et al., 2024) presents a new classification model called CS3W-

IFLMC. This model incorporates intuitionistic fuzzy (IF) and cost-

sensitive three-way decisions (CS3WD) approaches, contributing

to improved classification accuracy and reduced costs associated

with incorrect decisions. The proposed model has been evaluated

using 12 benchmark datasets, demonstrating superior performance

compared to large margin distribution machine (LDM), FSVM,

and SVM. However, the study remains limited in scope, as it

focuses solely on binary classification tasks and does not extend to

multi-class classification problems (Fan et al., 2024). Furthermore,

in another study, the researchers examined gender classification

(male or female) based on voice data using multi-layer perceptron

(MLP). The findings showed that the MLP model outperformed

several other methods, including LR, classification and regression

tree (CART), random forest (RF), and SVM. The MLP achieved

a classification accuracy of 0.9675. This study concluded that

the proposed model demonstrates strong discriminative power

between genders, which enhances its applicability in auditory data

classification tasks (Buyukyilmaz and Cibikdiken, 2016).

The reviewed literature, highlights significant advancements

in classification models, primarily focusing on improving

performance and addressing computational challenges. However,

several limitations and research gaps remain. One major issue

is the reliance on computationally intensive methods, which

can hinder applicability in resource-constrained environments.

The absence of practical hyperparameter tuning or reduction

mechanisms may also contribute to overfitting and computational

inefficiencies. These limitations underscore the need for a new

classifier to address such challenges. Hence, the proposed ALC

should emphasize simplicity in design to ensure faster training

time with lower cost.

3 Detoxification in liver and
motivation

The liver, as illustrated in Figure 1, is the largest internal

organ in the human body and is vital in numerous complex

physiological processes. It is located in the right upper quadrant of

the abdominal cavity and consists of two primary lobes, the right

and left, surrounded by a thin membrane known as the hepatic

capsule (Moradi et al., 2020). Internally, the liver is composed

of microscopic units called hepatic lobules. These hexagonal

structures contain hepatic cells organized around a central vein.

The lobules are permeated by a network of hepatic sinusoids,

which are small channels through which blood flows, facilitating

the exchange of oxygen and nutrients between the blood and

hepatic cells (Kennedy et al., 2021). Furthermore, the liver receives

blood from two sources, each contributing different functions. The

oxygenated blood enters via the hepatic artery from the aorta,

meeting the liver’s energy demands. While, the portal vein delivers

nutrient-rich and toxin-rich blood from the gastrointestinal tract

and spleen (Schlegel et al., 2023). The blood from both sources

mixes in the hepatic sinusoids, allowing the hepatic cells to perform

metabolic and regulatory functions efficiently (Gibert-Ramos et al.,

2021).

However, detoxification is one of the most important liver’s

functions, which removes toxins from the bloodstream (Donati

et al., 2020). Detoxification occurs in two phases. In the phase I,

hepatic enzymes known as cytochrome P450 chemically modify

toxins through oxidation and reduction reactions, altering their

structures to make them more reactive (Guengerich, 2020). In

the phase II, the modified compounds are conjugated with water-

soluble molecules such as sulfates or glucuronic acid, making them

easier to excrete (Sun and Schanze, 2022). Finally, the toxins are

either excreted via bile into the digestive tract or removed from the

bloodstream by the kidneys (Zhang et al., 2020).

The complex biochemical system of the liver has inspired us

to develop a new ML classifier known as ALC, modeled after

the liver’s detoxification mechanisms. The design of the proposed

ALC was guided by an in-depth understanding of the liver’s

two primary detoxification phases—Cytochrome P450 enzymes

and Conjugation pathways—where toxins are transformed into

excretable compounds. The proposed ALC classify feature

vectors effectively with minimum training time by simulating

these phases using simple ML and optimization methods. This

innovation marks a significant step forward, demonstrating

how biological systems can inspire advanced computational

models. It particularly encourages researchers in computer
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FIGURE 1

Structural and functional organization of the liver: hepatic lobule and blood flow pathways, concept inspired by Nikmaneshi et al. (2020).

science to explore biological processes for developing intelligent

ML models.

4 Materials and methods

This section presents the standard datasets employed for

evaluating the proposed ALC in the conducted experiments.

Additionally, the architecture of the proposed ALC is provided,

including mathematical equations, algorithms, and flowcharts.

Furthermore, the section elaborates on the FOX, which serves

as the learning algorithm for the proposed ALC, highlighting its

improvements.

4.1 Materials

The following datasets are widely used by ML researchers to

evaluate their work, making these benchmark datasets suitable

for this paper. The MNIST dataset comprises 70,000 grayscale

images of handwritten digits (0–9), each of size 28 × 28 pixels.

It is widely used for multi-class classification tasks due to its

diversity and large size (Elizabeth Rani et al., 2022). To utilize

the MNIST dataset with the proposed ALC, each image was

preprocessed by flattening it to a vector of 784 dimensions. Each

pixel was normalized, with its value transformed to have zero

mean and unit variance to ensure consistent scaling. This was

then followed by the use of linear discriminant analysis (LDA)

to project or reduce the data into a low-dimensional space.

Hence, LDA reduces each image to a nine-dimensional feature

vector to effectively capture the most discriminative features while

also reducing computational requirements (Lasalvia et al., 2022).

Additionally, the Iris dataset, a small-scale collection containing

150 instances across three classes with four features per instance,

was included in the proposed ALC evaluation (Goyal et al., 2021;

Oladejo et al., 2024; Kumar et al., 2024). The Breast Cancer

Wisconsin dataset, a binary dataset containing 569 samples with

30 features each, was employed to assess the proposed ALC’s

performance on high-dimensional data (Alshayeji et al., 2022;

Rajeswari and Sakthi Priya, 2025). Furthermore, the Wine dataset,

consisting of 178 samples across three classes with 13 features per

instance, was selected for its multi-class nature (Oladejo et al.,

2024; Waheed and Humaidi, 2023). Finally, the Voice Gender

dataset was employed to ensure feature diversity. This dataset
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comprises 3,168 samples, each defined by 21 acoustic features,

aimed at distinguishing gender (male or female) by leveraging

unique vocal characteristics (Buyukyilmaz and Cibikdiken, 2016).

These datasets collectively provided a diverse range of classification

challenges, enabling a comprehensive evaluation of the proposed

ALC’s performance.

4.2 Methods

This section begins with a detailed introduction to the

architecture of the proposed ALC. Moreover, it delves into

the improvements made to the FOX as a learning algorithm,

highlighting its key modifications.

4.2.1 Artificial liver classifier
As explained earlier in Section 3, the detoxification process

involves the liver’s ability to process toxins. Oxygenated blood

enters the liver via the hepatic artery, while nutrient-rich blood

flows through the portal vein. These sources mix within the hepatic

sinusoids, enabling hepatic cells to perform essential functions,

including a detoxification function that comprises two phases.

In order to model the detoxification process in the liver,

a biologically inspired computational model was chosen to be

implemented, where every mathematical operation is merely

treated as a simplistic representation of various knownmechanisms

regarding hepatic detoxification (Donati et al., 2020). The major

biochemical steps taken by hepatocytes in the elimination process

are considered to include detoxification in two phases: oxidation

(Phase I), which is carried out by specialized enzymes and cofactors,

and conjugation (Phase II), which is also supported by specific

enzymes and cofactors (Sun and Schanze, 2022; Guengerich,

2020). In this formulation, these steps are coordinated by being

transformed into operations in matrices. A set of molecular input

toxins is first linearly overlaid by a cofactor matrix C to model

the oxidation action of cytochrome P450, followed by being passed

through a non-linear activation grid to model metabolite selection

at a threshold. The second transformation is modeled in the form

of conjugation through the interaction of vitamins, and this is

subsequently normalized through the use of softmax to represent

the classification of detoxified products. Although these operations

are not intended to accurately reproduce the actual biochemical

kinetics, they are carefully selected so that the structural and

functional analogies are preserved—allowing the multi-staged,

enzyme-driven, and spatially distributed nature of detoxification

to be reproduced within a mathematically consistent and learnable

system.

Phase I: toxins are chemically modified to become more

reactive. This phase is mathematically simulated by the following

equation:

Aji =
1

n

n
∑

k=1

(Xjk · Cki)+
1

fp

f
∑

k=1

p
∑

l=1

Ckl (1)

where Aji is the matrix of reactive toxins, X is the input toxins

matrix and n is the number of inputs. The C is initialized

Input: toxins, number of features, number of

lobules p, number of outputs, detoxification

cycles, and detoxification power.

Output: predicted classes.

1: Initialize cofactor matrix C and vitamin matrix

V randomly.

2: Initialize the IFOX training algorithm. ⊲ See

Algorithm 2

3: Optimize C and V using IFOX over defined cycles.

4: Compute reactive toxins. ⊲ using Equation 1

5: Activate reactive toxins. ⊲ Phase I, using

Equation 2

6: Perform conjugation to make toxins less harmful.

⊲ Phase II, using Equation 3

7: Normalize outputs to obtain predicted classes. ⊲

Elimination, using Equation 4

8: return predicted classes ŷ.

Algorithm 1. Artificial liver classifier (ALC).

randomly within the range [−1, 1] and has dimensions (f , p), where

f corresponds to the number of features in the input feature

vector, and p is the number of lobules. The term 1
fp

∑f

k=1

∑p

l=1
Ckl

represents the mean of all elements in the cofactor matrix C that

used to balance the reaction.

A human liver has a very large number of microscopic

functional unit called lobules which are estimated to be of around

100,000 (Krebs et al., 2007). In our model the parameter p is

an abstraction of a range of choice in lobular diversity, and the

columns of the cofactor matrix C implement the various simulated

lobular processing units. This structure allows introducing a spatial

heterogeneity and an enzymatic variation, which can be witnessed

in hepatic tissue, as part of the model. Although the biological

premise of p can be that of a number of lobules, direct insertion

of a figure like p = 100, 000 in computation would be inefficient

and also inconvenient because it has a high dimensionality and

costs more computations. Thus, we introduce a practical range

f ≤ p < 100, 000. This will ensure there is diversity, and that every

input feature interacts with a number of simulated lobules ensuring

the model is computationally straightforward. The parameter p in

this range may be chosen by empirical methods of hyperparameter

tuning, a compromise between the richness of the representation,

and efficiency. It follows that the range is not arbitrary, but rather

biological based on biological modeling under constrains. However,

the reactive toxins (A) must be activated to enhance their reactivity

before progressing to phase II. This activation involves eliminating

all negative values, effectively transforming them to zero while

retaining only the positive values. This process is mathematically

expressed by the following equation:

A′ = max(0,A) (2)

where A′ is the activated toxins matrix. However, Equation 2 uses

ReLU activation to imitate the biological selectivity that occurs in

Phase I detoxification in which only reactive (positive) products

pass to the next stage. This selection eliminates the non-reactive
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FIGURE 2

Architecture illustrating Phase I and Phase II reactions simulated by the proposed ALC, designed to mimic liver detoxification pathways.

outputs keeps the computational efficiency and provides the non-

linearity necessary in the downstream processing.

Phase II: involves the conjugation ofmodified compounds from

phase I with water-soluble molecules to make them excretable.

This phase reduces the toxicity of compounds and facilitates their

elimination from the body. this phase can be mathematically

modeled using Equation 1, but with key differences. Instead of

toxins, the matrix A′ is used as input, representing the modified

compounds (activated toxins) generated in phase I. Additionally, a

matrix referred to as the vitamin matrix V is employed in place of

the cofactor matrix C. This matrix is initialized randomly within

the range [−1, 1] and has dimensions (p, n).

Bji =
1

n

n
∑

k=1

(Ajk · Vki)+
1

pn

p
∑

k=1

n
∑

l=1

Vkl (3)

where Bji represents the conjugated compounds and
1
pn

∑p

k=1

∑n
l=1 Vkl represents the mean of all elements in the

vitamin matrix V .

Lastly, when the reactions in Phase I and Phase II are

finished, detoxification is then complete. The outcome is some

less dangerous and water-soluble wastes that can be removed by

means of bile, urine, stool, etc. The softmax activation function

is used as a model of the elimination process: not only does it

allow formulating a probabilistic output for each of the classes,

but also captures the selective and competitive characteristic of

biological excretion (Bridle, 1990; Arora et al., 2020; Maharjan

et al., 2020). Many detoxified compounds simultaneously compete

to be eliminated in the liver depending on issues such as solvency,

the availability of transporters as well as priorities at the cellular

level. Softmax reflects this behavior by placing higher probabilities

on those compounds that are most dominant, or easily excreted,

and thereby simulates the preferential clearance mechanism of

the body.

B′i =
eBi

∑n
j=1 e

Bj
(4)

where B′i represents the normalized probability for output class i.

The Algorithm 1 and Figure 2 describes the architecture of

the proposed ALC. First, the cofactor and vitamin matrices are

initialized randomly, where these matrices are defined based on the

dimensions corresponding to the number of features (f ), number

of lobules (p), and number of output classes (n). Next, the IFOX,

as presented in Algorithm 2, is configured, specifying the number

of detoxification cycles (maximum number of training epochs) and

detoxification power (maximum number of fox agents). The IFOX

then optimizes the cofactor and vitamin matrices by minimizing

the reaction error (i.e., loss). Finally, the optimized cofactor and

vitamin matrices, resulting from this process, are subsequently

used together with the toxin inputs (feature vectors) to predict the

output classes.

Furthermore, the flowchart visualized the proposed ALC

is presented in Figure 3. Additionally, the source code for

the implementation of the proposed ALC can be accessed at

the following repository: https://github.com/mwdx93/alc, which

includes the main ALC implementation, training scripts, and

example datasets.
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4.2.2 Training algorithm
The FOX, developed by Mohammed and Rashid in 2022,

mimics the hunting behavior of red foxes by incorporating physics-

based principles. These include prey detection based on sound and

distance, agent’s jumping during the attack governed by gravity,

and direction, as well as additional computations such as timing

and walking (Mohammed and Rashid, 2022; Jumaah et al., 2024).

These features make FOX a competitive optimization algorithm,

outperformed several methods such as particle swarm optimization

(PSO) and fitness dependent optimizer (FDO). The FOX is works

as follows: Initially, the ground is covered with snow, requiring

the fox agent to search randomly for its prey. During this random

search, the fox agent uses the Doppler effect to detect and gradually

approach the source of the sound. This process takes time and

enables the fox agent to estimate the prey’s location by calculating

the distance. Once the prey’s position is determined, the fox agent

computes the required jump to catch it. Additionally, the search

process is facilitated through controlled random walks, ensuring

the fox agent progresses toward the prey while maintaining

an element of randomness. The FOX balances exploitation and

exploration phases statically, with a 50% probability for each (Aula

and Rashid, 2025). Thus, the FOX operates as follows:

1. Computing the distance Di of sound travel using the best

position and random time:

Di =
BestPosition

Ti
× Ti (5)

Where Ti is a random time in [0, 1] and i is the fox agent.

2. Determining the distance between the fox agent and its prey:

DFi = 0.5× Di (6)

3. Computing the jump Ji by multiplying half of the gravity

acceleration constant with half squared mean of the time:

Ji = 0.5× 9.81× 0.5× (

n
∑

0

Ti)
2 (7)

4. Updating the fox agent’s position based on a directional

equation, either northward c1 = 0.18 or in the opposite

direction c2 = 0.82 based on the the jump probability p in [0, 1].

Xi+1 = DFi × Ji ×

{

c1, if p > 0.18

c2, otherwise
(8)

5. The following equation used for exploration:

Xi+1 = BestPosition× rand(1, dim)×Mint × a (9)

where dim is the problem dimension,Mint is the minimum time

iteratively updated based on Ti, a is an adjustment parameter

computed as: 2× (it − ( 1
Maxit

)), and it is the current iteration.

However, the FOX has some limitations in its design. These

limitations were acknowledged by the author of FOX (Mohammed

and Rashid, 2022), while others have been identified through

further analysis. For instance, one notable drawback is its static

Input: Maximum number of epochs epochs, maximum

number of fox agents maxfa

Output: BestX and BestFitness

1: Initialize the fox agents population Xfa (fa =

1,2,3,...,maxfa)

2: Initialize BestX,BestFitness

3: while it < epochs do

4: for all fa ∈ FAs do

5: f← Fitness(Xfa)

6: if f < BestFitness then

7: BestFitness← f

8: BestX← Xfa

9: end if

10: end for

11: αmin ←
1

2×epochs

12: α← αmin + (1− αmin)× (1− it/epochs)

13: t← 0.5× µ(rand(0,1,size(BestX)))

14: Jump← 4.905× t2

15: for all fa ∈ FAs do

16: β ← rand(−α,α,size(BestX))

17: if rand(0,1) < α then

18: Xfa ← BestX + β × α

19: else

20: Xfa ← 0.5× BestX × β×α

Jump

21: end if

22: end for

23: it← it+ 1

24: end while

Algorithm 2. IFOX: new variation of FOX optimization algorithm.

approach to balancing exploration and exploitation. This paper

aims to address these limitations by proposing a new variation

of the FOX called IFOX to make it integrable with the proposed

ALC as a training algorithm to optimize the cofactor and vitamin

matrices. For reference, the implementation of the FOX can be

accessed at https://github.com/hardi-mohammed/fox.

The IFOX, as visualized in Algorithm 2, incorporates several

improvements over the FOX. First, it transforms the balance

between exploitation and exploration into a dynamic process using

the ǫ-greedy method, rather than a static approach (Liu et al., 2020;

Abdalrdha et al., 2023). This dynamic adjustment is controlled by

the parameter α, which decreases progressively as the optimization

process iterate. Second, the computation of distances is eliminated

in favor of directly using the best position, facilitated by the

parameter β , derived from α. This modification simplifies the

FOX by removing Equations 5, 6, and simplifying Equations 8

by eliminating the probability parameter p and the directional

variables (c1 and c2). Third, in Equations 9, the variables a andMint

are excluded.

5 Results

This section presents the performance results of the proposed

ALC on multiple benchmark datasets, as described in Section

4.1. The experimental parameter settings were configured for
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FIGURE 3

Flowchart of the proposed ALC.

TABLE 1 Comparison of best objective values obtained by the proposed IFOX algorithm across selected CEC2019 benchmark functions over 30

independent runs.

Function/optimizer F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

GOOSE 1.8E12 6.8E3 13.70 1.60E3 6.09 4.79 274.35 5.57 3.81 20.98

ANA - 4.00 13.70 38.50 1.22 - 116.59 5.47 2.00 2.71

LEO 7.3E9 17.47 12.70 69.86 2.76 3.01 195.56 5.06 3.26 20.01

FDO 4585.27 4.00 13.7 34.08 2.13 12.13 120.40 6.1 2.01 2.71

FOX 1.00 4.72 9.88 147.21 5.13 298.10 1.017 1.38 1.41 21.49

IFOX 1.00 4.61 2.42 35.80 1.88 1.00 1.00 1.24 1.33 20.99

The results are compared with those of FOX and several recent optimization algorithms. Lower objective values indicate better performance.

each dataset as follows: 500 detoxification cycles, a detoxification

power of 10, and dataset-specific numbers of lobules. Specifically,

the number of lobules was set to 10 for Iris Flower and Breast

Cancer Wisconsin, 15 for Wine and Voice Gender, and 50 for

MNIST. The choice of these values was done through a systematic

empirical search, where a predetermined set of possible values

has been considered, a validation based approach used. Different

values of p were searched over each dataset and the value that

provided the maximum average classification accuracy on a held-

out validation split was selected. This strategy makes sure that the

hyperparameters being chosen are tuned in a reproducible and

performance-based fashion. In order to have an efficient and fair
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FIGURE 4

Convergence performance curve of the FOX (blue) and IFOX (red) on the CEC2019 benchmark test functions. Lower fitness values indicate better

convergence performance.

TABLE 2 Function-wise ranks, total rank, and average rank for each optimization algorithm across the 10 selected CEC2019 benchmark functions.

Function/optimizer F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total rank Avg. rank

IFOX 1 3 1 2 2 1 1 1 1 5 18 1.8

FDO 3 1 4 1 3 4 4 6 4 1 31 3.1

ANA 6 1 4 3 1 6 3 4 3 1 32 3.2

FOX 1 4 2 5 5 5 2 2 2 6 34 3.4

LEO 4 5 3 4 4 2 5 3 5 3 38 3.8

GOOSE 6 6 4 6 6 3 6 5 6 4 52 5.2

Lower ranks indicate better performance.

assessment on the performance of the models, cross-validation was

used on the basis of k. In particular, each of the datasets has been

split into k equal size folds (10-folds were used in our experiments),

and the test has been repeated on every fold. Mean results of

each of the runs were used to compute final performance metrics.

To facilitate later comparison and analysis, additional classifiers,

including MLP, SVM, LR, and XGBoost (XGB), were executed on

the same datasets. However, all experiments were conducted on

an MSI GL63 8RD laptop equipped with an Intel R© CoreTM i7-

8750H× 12 processor and 32 GB of memory. This consistent setup

ensured a robust evaluation of the proposed ALC alongside the

other classifiers under the same conditions.

5.1 Performance metrics

To evaluate the performance of the proposed ALC, several

metrics were employed, including log loss (cross-entropy loss),

accuracy, precision, recall, F1-score, and training time. Initially,

Log loss (Equation 10) quantifies the divergence between predicted

probabilities and actual labels, where lower values indicate

better predictive performance (Xue et al., 2023). The accuracy

(Equation 11) measures the proportion of correctly classified

instances, serving as a straightforward indicator of overall

TABLE 3 Cross-validation performance of the proposed ALC and other

classifiers on the Iris Flower dataset (mean over 10-folds).

Metric ALC XGB SVM MLP LR

Loss 0.0169 0.0085 0.0691 0.2417 0.0543

Accuracy 1.0000 1.0000 1.0000 0.9667 1.0000

Precision 1.0000 1.0000 1.0000 0.9694 1.0000

Recall 1.0000 1.0000 1.0000 0.9667 1.0000

F1-Score 1.0000 1.0000 1.0000 0.9664 1.0000

Overfitting -0.0231% -0.0144% -0.0384% -0.0689% -0.0415%

Time (sec.) 2.12 0.91 4.42 4.18 4.31

correctness. Moreover, precision (Equation 12) evaluates the

proportion of true positives among all positive predictions,

emphasizing the model’s ability to reduce false positives. In

contrast, recall Equation 13 focuses on the proportion of true

positives among all actual positive instances, highlighting the

importance of minimizing false negatives. Furthermore, the F1-

score (Equation 14), as the harmonic mean of precision and

recall, provides a balanced assessment when class distributions

are imbalanced (Naidu et al., 2023). Moreover, the overfitting gap
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FIGURE 5

Performance results comparison of the proposed ALC (blue) with other classifiers on the validation set of the Iris dataset. (a) Shows the log loss

values, and (b) shows accuracy.

defined as the difference between training and validation accuracy,

provides insights into generalization. A smaller value indicate

better generalization, while a larger value indicates overfitting,

where themodel excels on the training set but struggles with unseen

data. Finally, the training time reflects the duration required to train

the model, offering insight into its computational efficiency.

cLog Loss = −
1

n

n
∑

i=1

(

yi log(ŷi)+ (1− yi) log(1− ŷi)
)

(10)

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1-Score = 2×

(

Precision× Recall

Precision+ Recall

)

(14)

where TP, TN, FP, and FN represent the true positive, true negative,

false positive, and false negative counts, respectively. Additionally,

y denotes the actual labels, while ŷ represents the predicted labels.

5.2 Convergence result of the training
algorithm IFOX

Table 1 provides the empirical result of the convergence

behavior of IFOX based on selected benchmark functions of the

CEC2019 suite. Unlike the original FOX, IFOX invariably reaches

lower average objective values in most of the test functions,

with vastly less variance and greater stability, especially on

high-dimensional and multimodal functions like F3 through F7.

TABLE 4 Cross-validation performance of the proposed ALC and other

classifiers on the Breast Cancer Wisconsin dataset (mean over 10-folds).

Metric ALC XGB SVM MLP LR

Loss 0.0261 0.1132 0.1203 0.0682 0.1319

Accuracy 0.9932 0.8927 0.9833 0.9833 0.9559

Precision 0.9943 0.9233 0.9833 0.9833 0.9638

Recall 0.9932 0.9233 0.9833 0.9833 0.9559

F1-Score 0.9932 0.9260 0.9833 0.9833 0.9631

Overfitting -0.0029% 0.1178% 0.0213% 0.0086% 0.0237%

Time (sec.) 3.62 1.09 3.79 4.53 3.81

Furthermore, four recent and competitive optimizers were added

to the test in order to prove the effectiveness of IFOX over its

predecessor. They consist of GOOSE, ant nesting algorithm (ANA),

lagrange elementary optimization (LEO), and FDO, which have

shown rather good performance in the literature (Hamad and

Rashid, 2024; Hama Rashid et al., 2021; Aladdin and Rashid, 2025;

Abdullah and Ahmed, 2019). The relative performance assures that

IFOX attains better convergence characteristics and final solution

qualitymost of the time.Moreover, the gain noticed in performance

increase is explained based on adding adaptive inertia control and

better search dynamics in IFOX. It is a design that puts an emphasis

on more extensive exploration during the initial phases and

more targeted exploitation as optimization goes on. Additionally,

convergence curves in Figure 4 demonstrate that IFOX converges

more rapidly compared to the original FOX and, in addition,

obtains better final values. This can be seen by the fact that the

fitness trajectory flattened very fast as compared to other methods.

Although formal theoretical demonstration of convergence is
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FIGURE 6

Performance results comparison of the proposed ALC (blue) with other classifiers on the validation set of the Breast Cancer Wisconsin dataset. (a)

Shows the log loss values, and (b) shows accuracy.

outside the scope of this paper, the similar results in independent

runs (30 runs) give good evidence of the soundness and reliability

of IFOX in varied and different optimization landscapes.

In order to compare performance on the whole, each

optimization algorithm was ranked by the number of functions

with the best objective value. The overall and the average ranking of

all functions is given in Table 2. IFOX presented a minimum total

(18) and average (1.8) rank and maintained a better performance as

compared to the rest of the optimization algorithms. Due to IFOX’s

superior convergence and stability, it was chosen as the training

algorithm in this study.

5.3 Experimental results of ALC

The performance results of the proposed ALC are presents

through this subsection, summarized in the figures and tables.

Additionally, comparisons with other classifiers, including MLP,

SVM, LR, and XGB, have been conducted on the five datasets

described in Section 4.1. Table 3 presents the performance results of

the proposed ALC and other classifiers on the Iris Flower dataset.

Additionally, Figures 5a, b show the loss and accuracy, respectively,

across the validation folds. The proposed ALC achieved 100%

accuracy with a loss of 0.0169, an overfitting gap of−0.0231%, and

a training time of 2.12 s. The XGB also achieved 100% accuracy

with a loss of 0.0085, an overfitting gap of−0.0144%, and a training

time of 0.91 s. Similarly, the SVM reached 100% accuracy with a

loss of 0.0704, an overfitting gap of −0.0384%, and a training time

of 4.42 s. The MLP attained 96.67% accuracy with a loss of 0.2417,

an overfitting gap of−0.0714%, and a training time of 4.18 s. Lastly,

the LR reached 100% accuracy with a loss of 0.0543, an overfitting

gap of−0.0415%, and a training time of 4.31 s.

TABLE 5 Cross-validation performance of the proposed ALC and other

classifiers on the Wine dataset (mean over 10-folds).

Metric ALC XGB SVM MLP LR

Loss 0.0011 0.0691 0.0001 0.0568 0.0012

Accuracy 1.0000 0.9258 1.0000 1.0000 1.0000

Precision 1.0000 0.9534 1.0000 1.0000 1.0000

Recall 1.0000 0.9424 1.0000 1.0000 1.0000

F1-Score 1.0000 0.9429 1.0000 1.0000 1.0000

Overfitting 0.0000% 0.0675% 0.0000% -0.0068% 0.0000%

Time (sec.) 2.38 1.17 3.89 3.89 3.92

Table 4 presents the performance results of the proposed ALC

and other classifiers on the Breast Cancer Wisconsin dataset.

Figures 6a, b display the loss and accuracy, respectively, on the

validation folds. The proposed ALC achieved 99.12% accuracy,

with a loss of 0.0261 and an overfitting gap of -0.0029%, with

a training time of 3.62 s. The XGB achieved 88.36% accuracy,

with a loss of 0.1132 and an overfitting gap of 0.1178%, with a

training time of 1.09 s. The SVM reached 98.25% accuracy, with

a loss of 0.1105 and an overfitting gap of 0.0213%, with a training

time of 3.79 s. The MLP achieved 98.25% accuracy, with a loss

of 0.0682 and an overfitting gap of 0.0086%, with a training time

of 4.53 s. Lastly, the LR achieved 96.49% accuracy, with a loss of

0.1319 and an overfitting gap of 0.0237%, with a training time

of 3.81 s.

Table 5 presents the performance results of the proposed ALC

and other classifiers on the Wine dataset. Figures 7a, b display

the loss and accuracy, respectively, on the validation folds. The

proposed ALC achieved 100% accuracy, with a loss of 0.0011 and

an overfitting gap of 0.0000%, with a training time of 2.38 s.
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FIGURE 7

Performance results comparison of the proposed ALC (blue) with other classifiers on the validation set of the Wine dataset. (a) Shows the log loss

values, and (b) shows accuracy.

The XGB achieved 92.38% accuracy, with a loss of 0.0691 and an

overfitting gap of 0.0675%, with a training time of 1.17 s. The SVM

achieved 100% accuracy, with a loss of 0.0001 and an overfitting

gap of 0.0000%, with a training time of 3.89 s. The MLP achieved

100% accuracy, with a loss of 0.0568 and an overfitting gap of -

0.0068%, with a training time of 3.89 s. Lastly, the LR achieved 100%

accuracy, with a loss of 0.0012 and an overfitting gap of 0.0000%,

with a training time of 3.92 s.

Table 6 presents the performance results of the proposed ALC

and other classifiers on the Voice Gender dataset. Figures 8a, b

display the log loss and accuracy, respectively, on the validation

folds. The proposed ALC achieved 97.63% accuracy, with a loss of

0.0613 and an overfitting gap of 0.0004%, with a training time of

3.21 s. The XGB achieved 92.79% accuracy, with a loss of 0.0706

and an overfitting gap of 0.0601%, with a training time of 1.19 s.

The SVM achieved 97.32% accuracy, with a loss of 0.1932 and an

overfitting gap of 0.0043%, with a training time of 4.35 s. The MLP

achieved 98.26% accuracy, with a loss of 0.0622 and an overfitting

gap of -0.0036%, with a training time of 12.59 s. Lastly, the LR

achieved 98.11% accuracy, with a loss of 0.0601 and an overfitting

gap of -0.0063%, with a training time of 4.61 s.

Table 7 presents the performance results of the proposed ALC

and other classifiers on the MNIST dataset. Figures 9a, b display

the log loss and accuracy, respectively, on the validation set. The

proposed ALC achieved 99.75% accuracy on the validation set,

with a loss of 0.0000 and an overfitting gap of 0.0025%, with

a training time of 6.18 s. The XGB achieved 94.05% accuracy,

with a loss of 0.0581 and an overfitting gap of 0.0571%, with a

training time of 2.35 s. The SVM achieved 99.50% accuracy, with

a loss of 0.0076 and an overfitting gap of 0.0050%, with a training

time of 5.38 s. The MLP achieved 99.00% accuracy, with a loss

of 0.0473 and an overfitting gap of 0.0100%, with a training time

of 5.22 s. Lastly, the LR achieved 99.50% accuracy, with a loss of

TABLE 6 Cross-validation performance of the proposed ALC and other

classifiers on the Voice dataset (mean over 10-folds).

Metric ALC XGB SVM MLP LR

Loss 0.0613 0.0706 0.1932 0.0622 0.0601

Accuracy 0.9752 0.9164 0.9750 0.9800 0.9811

Precision 0.9750 0.9325 0.9736 0.9811 0.9811

Recall 0.9752 0.9105 0.9750 0.9800 0.9811

F1-Score 0.9752 0.9150 0.9750 0.9811 0.9811

Overfitting 0.0004% 0.0601% 0.0043% -0.0036% -0.0063%

Time (sec.) 3.21 1.19 4.35 12.59 4.61

0.0137 and an overfitting gap of 0.0050%, with a training time of

5.61 s.

In summary, the proposed ALC outperformed or matched

other classifiers across the datasets tested, including Iris, Breast

Cancer Wisconsin, Wine, Voice Gender, and MNIST. The

results demonstrated superior loss, accuracy, precision, recall,

and F1-scores, highlighting the reliability and generalization of

the proposed ALC in achieving high classification performance.

Furthermore, the proposed ALC exhibited minimal overfitting and

efficient training times compared to other classifiers. However, the

next section will provide a detailed analysis and interpretation of

these results, and shedding light on limitations and imperfections

of the proposed ALC.

6 Discussion

The results presented in Section 5.3, derived from experiments

conducted on the datasets described in Section 4.1, highlight
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FIGURE 8

Performance results comparison of the proposed ALC (blue) with other classifiers on the validation set of the Voice Gender dataset. (a) Shows the log

loss values, and (b) shows accuracy.

TABLE 7 Cross-validation performance of the proposed ALC and other

classifiers on the MNIST dataset (mean over 10-folds).

Metric ALC XGB SVM MLP LR

Loss 0.0000 0.0581 0.0076 0.0473 0.0137

Accuracy 0.9975 0.9421 0.9967 0.9900 0.9967

Precision 0.9970 0.9828 0.9953 0.9906 0.9953

Recall 0.9967 0.9802 0.9967 0.9900 0.9967

F1-Score 0.9987 0.9800 0.9967 0.9900 0.9967

Overfitting 0.0025% 0.0571% 0.0050% 0.0100% 0.0050%

Time (sec.) 6.18 2.35 5.38 5.22 5.61

the superior performance of the proposed ALC compared to

other classifiers. However, a more in-depth statistical analysis is

necessary, particularly of the validation set results, as they are

considered more reliable indicators of classifier performance due to

being obtained from unseen data. The statistical analysis presented

in Table 8 compare the performance of the proposed ALC

with four classifiers—XGB, SVM, MLP, and LR—across the

five datasets described in Section 4.1. The analysis focuses

on four metrics: loss, accuracy, overfitting gap, and training

time, with statistical significance determined using the Wilcoxon

signed-rank test at a threshold of P-value < 0.05. The

Wilcoxon signed-rank test is used to compare paired samples,

particularly when data may not follow a normal distribution.

It assesses whether the differences between paired observations

are statistically significant (Hodges et al., 2022). Hence, this

analysis results provide insights into the strengths of the

proposed ALC in terms of its generalization, accuracy, and

computational efficiency.

The loss metric, which is a primary indicator of classifier

generalizability, demonstrates that the proposed ALC outperforms

other classifiers in several datasets. Specifically, in the Iris

Flower dataset, the proposed ALC showed statistically significant

improvements in loss compared to SVM (P = 0.012), MLP

(P = 0.006), and LR (P = 0.037), while its performance was

comparable to XGB (P = 0.432), indicating XGB outperforms the

proposed ALC. Similarly, in the Breast Cancer Wisconsin dataset,

the proposed ALC showed significant improvements over XGB

(P = 0.004), SVM (P = 0.001), MLP (P = 0.015), and LR

(P = 0.000). In the Wine dataset, the proposed ALC demonstrated

significant improvements compared to XGB (P = 0.022), MLP

(P = 0.005), and LR (P = 0.031), but did not show statistically

significant with SVM (P = 0.893). These trends were consistent

in more complex datasets like Voice Gender and MNIST, where

the proposed ALC achieved lower loss values compared to other

classifiers in most cases (P < 0.05). The findings indicate that the

proposed ALC offers better generalization across these datasets of

varying complexity.

In terms of accuracy, the differences between the proposed ALC

and other classifiers were generally less pronounced, as reflected

by P-values exceeding 0.05 in most datasets. Notable exceptions

include the Voice Gender dataset, where the proposed ALC

significantly outperformed SVM (P = 0.002), and the

Breast Cancer Wisconsin dataset, where the proposed ALC

showed an advantage over XGB (P = 0.015). Furthermore,

additional accuracy comparisons were conducted with other

models discussed in the related work Section 2, as presented

in Table 9, demonstrating the superiority of the proposed ALC.

These results suggest that while accuracy remains an important
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FIGURE 9

Performance results comparison of the proposed ALC (blue) with other classifiers on the validation set of the MNIST dataset. (a) Shows the log loss

values, and (b) shows accuracy.

metric, it may not always effectively differentiate the performance

of classifiers, particularly when accuracy levels are already high

across classifiers (Qu et al., 2022).

The overfitting gap metric, which evaluates the difference

between the performance on training and validation folds, reveals

that the proposed ALC demonstrates superior generalization. In

most datasets, significant improvements were observed, such as

in the Breast Cancer Wisconsin and MNIST datasets, where all

P-values were < 0.05. In contrast, the overfitting gap in the

Wine dataset showed inconsistent patterns, with P-values largely

exceeding the significance threshold (P = 0.500). These results

support the ability of the proposed ALC to reduce the risk

of overfitting. Furthermore, the training time metric is used to

measure the speed of classifiers. The statistical results suggest that

the proposed ALC is competitive and efficient. The training time

differed considerably (at least) in datasets that are smaller, including

Iris Flower (P < 0.01), Breast Cancer Wisconsin (P = 0.002),

Wine (P = 0.002), and voice Gender (P = 0.001). But on a

bigger and more complicated dataset such as MNIST, the training

time of the proposed ALC was similar to that of other classifiers

(P > 0.90). The advocated ALC had no significant differences with

XGB since it utilized tree-based models, which tend to have short

processing times.

6.1 Computational complexity and
ablation analysis

The complexity of the proposed ALC is mostly influenced by

matrix manipulation and optimization procedure. Suppose that

there are n input samples, f features, p lobules, o output classes,

and the number of iterations of the optimization (i.e., detoxification

cycles) = I. The initial large step is the product of the input toxin

matrix X ∈ R
n×f by the cofactor matrix C ∈ R

f×p in Phase I

and takes O(nfp) time. This is then summed with an element-wise

ReLU activation of the resultantmatrix whose cost isO(np). During

Phase II, a similar model of conjugation is treated as the second

matrix multiplication involving the activated toxin matrix and the

vitamin matrix V ∈ R
npo, which would lead to time complexity of

O(npo). This last elimination step runs the softmax on each of the n

output vectors, and costsO(no). The training is based on IFOX that

successively optimizes the cofactor and vitamin matrices. Suppose

every iteration uses the entire dataset, training will hence have time

complexityO(I · n · (fp + po)). So, this term dominates the overall

time complexity of the ALC when training. Moreover, in the space

complexity, the model will need O(nf ) storage of the input data,

O(fp) memory to hold the cofactor matrix C, O(po) memory to

hold the vitamin matrix V , andO(np+no) intermediate activation

and outputs. Thus, the overall space complexity is O(nf + fp +

po+np+no). The parameter matrices and batch level intermediate

results consume the most memory. Hence, the ALC has a scalable

architecture whose complexity scales linearly with size of input and

size of optimization steps and quadratically with size of internal

representation (lobules).

The ablation study results were summarized in Table 10, where

the significance of each component of ALC was revealed. The

complete model (Phase I + Phase II) represented the optimal

result, reaching 99.12 percent accuracy and demonstrating small

overfitting. Withdrawing Phase II or replacing Phase I output

freedom with a constant value resulted in significant accuracy

declines (95.20% and 91.45%, respectively), and this fact shows that

both steps are needed. The replacement of the cofactor matrix C

by random numbers or an identity vitamin matrix also lowered

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1639720
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jumaah et al. 10.3389/frai.2025.1639720

TABLE 8 Wilcoxon signed-rank test results comparing classifier pairs on

validation set metrics across all datasets.

ALC vs. Dataset P-value

Loss Accuracy Overfitting Time

XGB Iris Flower 0.432 0.872 0.481 0.493

SVM Iris Flower 0.012 0.950 0.008 0.025

MLP Iris Flower 0.006 0.951 0.021 0.001

LR Iris Flower 0.037 0.042 0.029 0.017

XGB Breast Cancer 0.004 0.015 0.007 0.970

SVM Breast Cancer 0.001 0.009 0.013 0.064

MLP Breast Cancer 0.015 0.011 0.012 0.004

LR Breast Cancer 0.000 0.020 0.001 0.005

XGB Wine 0.022 0.763 0.012 0.974

SVM Wine 0.893 0.004 0.706 0.002

MLP Wine 0.005 0.681 0.023 0.003

LR Wine 0.031 0.822 0.748 0.002

XGB Voice Gender 0.011 0.019 0.005 0.951

SVM Voice Gender 0.000 0.002 0.007 0.001

MLP Voice Gender 0.851 0.804 0.029 0.002

LR Voice Gender 0.019 0.781 0.003 0.001

XGB MNIST 0.001 0.014 0.004 0.993

SVM MNIST 0.003 0.043 0.012 0.945

MLP MNIST 0.001 0.017 0.008 0.936

LR MNIST 0.002 0.041 0.009 0.898

performance indicating the need to learn both matrices. These

findings demonstrate that all its components play a significant role

in the work of the proposed ALC as a whole.

6.2 Failure case analysis

Although the proposed ALC can deliver good results

irrespective of the data encountered, a few limitations can be

associated with it, based on an application during certain situations.

ALC does not utilize any mini-batch training mechanism, e.g.,

stochastic gradient descent (Wojtowytsch, 2023), which is normally

applied to large-scale learning to minimize computing costs. This

consequence can cause longer runtimes in full-batch training

working with mass data. There is also slower convergence in the

model in that it uses the stochastic IFOX that does not directly

optimize training error when applied to cofactor and vitamin

matrices. It could influence either the stability or efficiency of

convergence. From a model behavior perspective, ALC might fail

to perform well on datasets with poor non-linear structure, noisy

or sparse features, or extreme class skew, where the biological

metaphor might not find any useful patterns. In addition to

that, errors can be propagated and replicated by the sequential

dependency between Phase I and Phase II. These constraints

TABLE 9 Performance comparison (accuracy metric) of the proposed ALC

with models discussed in the related work.

Classifier Dataset Accuracy Ref.

ALC Iris Flower 1.0000 Proposed

SVM 0.9600 Fan et al., 2024

ALC Breast Cancer 0.9932 Proposed

RRNN 0.9951 Rajeswari and

Sakthi Priya, 2025

ALC Wine 1.0000 Proposed

SVM 0.8790 Cortez et al., 2009

MR 0.8645 Cortez et al., 2009

ANN 0.8675 Cortez et al., 2009

SVM 0.9830 Fan et al., 2024

ALC Voice Gender 0.9752 Proposed

MLP 0.9674 Buyukyilmaz and

Cibikdiken, 2016

ALC MNIST 0.9975 Proposed

SVC 0.9780 Xiao et al., 2017

DT 0.8860 Xiao et al., 2017

KNN 0.9590 Xiao et al., 2017

MLP 0.9720 Xiao et al., 2017

OPIUM 0.9590 Cohen et al., 2017

Bold values indicate that the corresponding method achieved superior results compared to

other competing algorithms.

point to the directions of further research, such as utilizing

mini-batch techniques, improving the IFOX, implementing hybrid

optimization schemes, or reorganizing the bio-chemical paradigm

to be less rigid and more flexible.

7 Conclusions

In conclusion, this paper suggests a novel supervised learning

classifier, termed the artificial liver classifier (ALC), inspired by

the human liver’s detoxification function. The ALC is easy to

implement, fast, and capable of reducing overfitting by simulating

the detoxification function through straightforward mathematical

operations. Furthermore, it introduces an improvement to the

FOX optimization algorithm, referred to as IFOX, which is

integrated with the ALC as training algorithm to optimize

parameters effectively. Furthermore, the ALC was evaluated on five

benchmark machine learning datasets: Iris Flower, Breast Cancer

Wisconsin, Wine, Voice Gender, andMNIST. The empirical results

demonstrated its superior performance compared to support vector

machines, multilayer perceptron, logistic regression, XGBoost and

other established classifiers. Despite these superiority, the ALC

has limitations, such as longer training times on large datasets

and slower convergence rates, which could be addressed in future

work using methods like mini-batch training or parallel processing.

Finally, this paper underscores the potential of biologically inspired

models and encourages researchers to simulate natural functions to

develop more efficient and powerful machine learning models.
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TABLE 10 Ablation study results showing the contribution of Phase I, Phase II, and the respective matrices in the proposed ALC on the Breast Cancer

Wilcoxon dataset.

Model variant Accuracy Loss F1-Score Overfitting Time (sec.)

Full ALC (phase I + phase II) 99.12% 0.0261 0.9932 -0.0029% 3.62

Phase I only 95.20% 0.0745 0.9517 0.0121% 2.58

Phase II only 91.45% 0.1123 0.9140 0.0450% 2.89

Random cofactor matrix 88.36% 0.1341 0.8823 0.0663% 2.51

Identity vitamin matrix 93.62% 0.0897 0.9312 0.0387% 2.73
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